Supporting Information

Facile One-Pot Synthesis of 2-Aminoindoles from Simple Anilines and Ynamides

Young Ho Kim, Huen Ji Yoo, and So Won Youn*

Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea.

Table of Contents

1.	General Information	S2
2.	General Procedure for the Preparation of Ynamides (2)	S2
3.	General Procedure for the Au(I)-Catalyzed Hydroamination of Ynamides with Anilines	S7
4.	General Procedure for the One-Pot Synthesis of 2-Aminoindoles (4)	. S 11
5.	Synthetic Application	. S24
6.	Full Data of Optimization Studies	. S35
7.	Mechanistic Studies for Step 2	. S43
8.	Copies of NMR Spectra	. S46

General Information

Nuclear Magnetic Resonance spectra were recorded on 400 MHz instruments. Spectra were recorded in CDCl₃ solutions referenced to TMS or solvent residual peaks. High Resolution Mass Spectra were measured using EI at 70 eV. GC-MS spectra were recorded on a Perkin Elmer's Clarus 600S GC-system with Turbo mass ver. 5.4.2 inert Mass Selective Detector (EI) and Elite-1 column (0.25 mm x 30 m, Film: 0.25 µm). For control of the conversion and characterization of the products, the following method was used: The method starts with the injection temperature T_0 (50 °C), after holding this temperature for 5 min, the column is heated to the temperature T₁ (ramp, 300 °C, 10 °C/min) and hold for additional 10 min. LC-MS spectra were recorded on Agilent Technologies 6120 Quadrupole LC/MS with Open LAB CDS chemstation Edition Rev. C.01.07 SR3 and Poroshell 120 EC-C18 (4.6 x 50 nm, 2.7 µm). Flash chromatography was performed on silica gel 230-400 mesh. All commercially available catalysts and ligands were purchased from Sigma-Aldrich or Strem and used as received. Unless otherwise noted, all commercially obtained reagents and solvents were used as received. Anhydrous toluene, ClCH₂CH₂Cl, DMF, and 1,4-dioxane were purchased from Sigma-Aldrich in a SureSeal[™] bottle and used as received. THF was distilled from sodium benzophenone ketyl immediately prior to use. Acetone was distilled from CaSO₄ immediately prior to use. EtOH and MeCN were distilled from CaH₂ immediately prior to use. Thin layer chromatograms (TLC) was visualized via UV. 1-Bromoalkynes, which are used for ynamide preparation, were synthesized according to literature procedure.¹

General Procedure for the Preparation of Ynamides (2)²

$$R \longrightarrow Br + HN \begin{pmatrix} R' \\ R'' \\ R'' \end{pmatrix} \xrightarrow{R'} 10 \text{ mol\% } CuSO_4 \cdot 5H_2O \\ 20 \text{ mol\% } 1,10 \text{ -phen} \\ \hline 2 \text{ equiv } K_2CO_3 \\ \text{toluene } (1.0 \text{ M}), 80 \text{ }^{\circ}C \qquad 2 \end{pmatrix} \xrightarrow{R''} R''$$

To a solution of the appropriate 1-bromoalkyne (0.709~6.07 mmol, 1.1 equiv) in toluene (0.6~5.5 mL, 1.0 M) were added CuSO₄·5H₂O (0.0644~0.552 mmol, 10 mol%), 1,10-phenanthroline (0.129~1.10 mmol, 20 mol%), K₂CO₃ (1.29~11.04 mmol, 2 equiv) and amide (0.644~5.52 mmol, 1.0 equiv) at room temperature under Ar. After being stirred at 80 °C overnight, the reaction mixture was cooled to room temperature, filtered through a pad of Celite, and washed with CH₂Cl₂. The residue was concentrated in vacuo and purified by column chromatography on silica gel to give the corresponding product **2**.

Preparation and spectral data of **2a-e** are available in our previous report.³

¹ Mukherjee, A.; Dateer, R. B.; Chaudhuri, R.; Bhunia, S.; Karad, S. N.; Liu, R.-S. J. Am. Chem. Soc. 2011, 133, 15372.

 ² (a) Zhang, Y.; Hsung, R. P.; Tracey, M. R.; Kurtz, K. C. M.; Vera, E. L. *Org. Lett.* 2004, *6*, 1151. (b) Zhang, X.; Zhang, Y.; Huang, J.; Hsung, R. P.; Kurtz, K. C. M.; Oppenheimer, J.; Petersen, M. E.; Sagamanova, I. K.; Shen, L.; Tracey, M. R. *J. Org. Chem.* 2006, *71*, 4170. (c) Sagamanova, I. K.; Kurtz, K. C. M.; Hsung, R. P. *Org. Synth.* 2007, *84*, 359.

³ Yoo, H. J.; Youn, S. W. Org. Lett. 2019, 21, 3422.

N-Benzyl-N-(p-tolylethynyl)methanesulfonamide (2f)

155.6 mg, 85%, a yellow solid (EtOAc : *n*-Hexane = 1:3), mp 78-80 °C.

¹H NMR (CDCl₃, 400 MHz) δ 7.49 (dd, *J* = 7.8, 1.8 Hz, 2H), 7.43-7.37 (m, 3H), 7.26 (d, *J* = 8.0 Hz, 2H), 7.10 (d, *J* = 8.0 Hz, 2H), 4.71 (s, 2H), 2.93 (s, 3H), 2.34 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 138.2, 134.6, 131.5, 129.02, 129.00, 128.8, 128.7, 119.3, 81.2, 71.5, 55.9, 38.9, 21.4. EIMS *m*/*z* 299 (M⁺), 220, 193, 119, 91, 65.

Spectral data were consistent with data reported in the literature.^{4a-b}

N-Benzyl-*N*-((4-chlorophenyl)ethynyl)methanesulfonamide (2g)

262.3 mg, 82%, a yellow solid (EtOAc : *n*-Hexane = 1:6), mp 65-67 °C.

¹H NMR (CDCl₃, 400 MHz) δ 7.48-7.45 (m, 2H), 7.43-7.35 (m, 3H), 7.25 (m, 4H), 4.70 (s, 2H), 2.94 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 134.3, 133.9, 132.5, 128.9, 128.81, 128.78, 128.6, 120.9, 82.8, 70.6, 55.8, 39.1. EIMS *m*/*z* 319 (M⁺), 252, 240, 205, 178, 139, 114, 65. Spectral data were consistent with data reported in the literature.^{4b-c}

N-Benzyl-*N*-((4-bromophenyl)ethynyl)methanesulfonamide (2h)

227.8 mg, 96%, a yellow solid (EtOAc : *n*-Hexane = 1:3), mp 104-107 °C.

¹H NMR (CDCl₃, 400 MHz) δ 7.49-7.46 (m, 2H), 7.43-7.38 (m, 5H), 7.19 (dt, *J* = 8.4, 2.2 Hz, 2H), 4.71 (s, 2H), 2.94 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 134.4, 132.7, 131.5, 129.0, 128.9, 128.8, 122.1, 121.4, 83.0, 70.7, 55.8, 39.1. EIMS *m*/*z* 365, 363 (M⁺), 336, 284, 252, 205, 183, 114, 91, 65. Spectral data were consistent with data reported in the literature.^{4c}

Methyl 4-((N-Benzylmethylsulfonamido)ethynyl)benzoate (2i)

211.3 mg, 62%, a yellow solid (EtOAc : *n*-Hexane = 1:3), mp 88-90 °C.

¹H NMR (CDCl₃, 400 MHz) δ 7.94 (d, *J* = 6.8 Hz, 2H), 7.48 (d, *J* = 7.6 Hz, 2H), 7.43-7.38 (m, 3H), 7.36 (dd, *J* = 8.2, 1.0 Hz, 2H), 4.72 (s, 2H), 3.90 (s, 3H), 2.96 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 166.4, 134.2, 130.5, 129.4, 128.91, 128.85, 127.4, 85.1, 71.5, 55.8, 52.1, 39.2 (2 carbons are missing due to overlapping). EIMS *m/z* 343 (M⁺), 264, 252, 232, 179, 158, 114, 91, 65.

Spectral data were consistent with data reported in the literature.^{4c}

 ⁴ (a) Li, Long.; Zhou, B.; Wang, Y.-H.; Shu, C.; Pan, Y. –F.; Lu, X.; Ye, L.-W. Angew. Chem. Int. Ed. 2015, 54, 8245. (b) Yao, B.; Liang, Z.; Niu, T.; Zhang, Y. J. Org. Chem. 2009, 74, 4630. (c) Oh, K. H.; Kim, J. G.; Park, J. K. Org. Lett. 2017, 19, 3994.

N-Benzyl-N-((4-nitrophenyl)ethynyl)methanesulfonamide (2j)

137.4 mg, 63%, a yellow oil ((EtOAc : *n*-Hexane = 1:2). ¹H NMR (CDCl₃, 400 MHz) δ 8.14 (d, *J* = 8.8 Hz, 2H), 7.48-7.39 (m, 7H), 4.75 (s, 2H), 2.99 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 146.4, 134.0, 130.9, 129.8, 129.04, 128.98, 128.9, 123.6, 87.6, 71.3, 55.9, 39.6.

EIMS *m*/*z* 330 (M⁺), 281, 252, 207, 91, 65.

Spectral data were consistent with data reported in the literature.⁵

N-Benzyl-*N*-((3-methoxyphenyl)ethynyl)methanesulfonamide (2k)

45.2 mg, 67%, a brown oil (EtOAc : *n*-Hexane = 1:3).

¹H NMR (CDCl₃, 400 MHz) δ 7.50 (dd, *J* = 8.0, 1.2 Hz, 2H), 7.44-7.38 (m, 3H), 7.20 (t, *J* = 7.8 Hz, 1H), 6.95 (dd, *J* = 7.6, 0.8 Hz, 1H), 6.87 (d, *J* = 0.4 Hz, 1H), 6.85 (dd, *J* = 8.2, 2.6 Hz, 1H), 4.71 (s, 2H), 3.78 (s, 3H), 2.95 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 159.3, 134.5, 129.3, 129.0, 128.8, 128.7, 123.8, 123.5, 116.2, 114.4, 81.8, 71.6, 55.9, 55.2, 39.0. LCMS *m*/*z* 316 [M+H]⁺. HRMS (EI) [M]⁺ *m*/*z* calcd for C₁₇H₁₇NO₃S 315.0924, found 315.0931.

N-Benzyl-*N*-(*m*-tolylethynyl)methanesulfonamide (21)

324.2 mg, 83%, a yellow oil (EtOAc : *n*-Hexane = 1:3).

¹H NMR (CDCl₃, 400 MHz) δ 7.50 (dd, *J* = 7.8, 1.8 Hz, 2H), 7.44-7.36 (m, 3H), 7.20-7.15 (m, 3H), 7.13-7.09 (m, 1H), 4.71 (s, 2H), 2.93 (s, 3H), 2.32 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 138.0, 134.5, 132.0, 129.0, 128.9, 128.8, 128.7, 128.4, 128.2, 122.2, 81.6, 71.7, 55.9, 38.9, 21.2. EIMS *m*/*z* 299 (M⁺), 252, 220, 193, 178, 128, 119, 103, 77, 65.

Spectral data were consistent with data reported in the literature.^{4c}

N-Benzyl-*N*-((3-nitrophenyl)ethynyl)methanesulfonamide (2m)

601.2 mg, 82%, a yellow oil (EtOAc : *n*-Hexane = 1:3).

¹H NMR (CDCl₃, 400 MHz) δ 8.13 (s, 1H), 8.11 (d, *J* = 8.4 Hz, 1H), 7.60 (d, *J* = 7.6 Hz, 1H), 7.49-7.38 (m, 6H), 4.74 (s, 2H), 2.99 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 148.0, 136.6, 134.1, 129.3, 128.98, 128.95, 128.9, 125.6, 124.4, 122.4, 84.5, 70.0, 55.8, 39.4. EIMS *m*/*z* 330 (M⁺), 251, 219, 207, 176, 150,

⁵ Tracer, M. R.; Zhang, Y.; Frederick, M. O.; Mulder, J. A.; Hsung, R. P. Org. Lett. 2004, 6, 2209.

N-Benzyl-*N*-(*o*-tolylethynyl)methanesulfonamide (2n)

151.3 mg, 72%, a yellow solid (EtOAc : *n*-Hexane = 1:6), mp 38-40 °C.

¹H NMR (CDCl₃, 400 MHz) δ 7.50 (d, *J* = 7.2 Hz, 2H), 7.43-7.35 (m, 3H), 7.31 (d, *J* = 7.2 Hz, 1H), 7.20-7.16 (m, 2H), 7.11 (td, *J* = 6.9, 2.4 Hz, 1H), 4.73 (s, 2H), 2.96 (s, 3H), 2.30 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 139.7, 134.5, 131.4, 129.4, 129.0, 128.8, 128.7, 127.9, 125.5, 122.2, 85.7, 70.7, 55.9, 38.8, 20.6. EIMS *m*/*z* 299 (M⁺), 252, 220, 204, 193, 178, 119, 91, 77, 65.

Spectral data were consistent with data reported in the literature.^{4c}

N-Benzyl-*N*-((2-bromophenyl)ethynyl)methanesulfonamide (20)

496.6 mg, 69%, a white solid (EtOAc : *n*-Hexane = 1:5), mp 84-86 °C.

¹H NMR (CDCl₃, 400 MHz) δ 7.57-7.54 (m, 3H), 7.43-7.38 (m, 3H), 7.36 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.23 (td, *J* = 7.6, 1.2 Hz, 1H), 7.12 (td, *J* = 7.8, 1.6 Hz, 1H), 4.75 (s, 2H), 2.97 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 134.4, 132.6, 132.3, 129.1, 128.9, 128.84, 128.80, 127.0, 125.0, 124.8, 86.5, 70.9, 55.9, 39.2. LCMS *m*/*z* 366, 364 [M+H]⁺.

Spectral data were consistent with data reported in the literature.⁶

N-Benzyl-*N*-(naphthalen-1-ylethynyl)methanesulfonamide (2p)

436.4 mg, 73%, a yellow solid (EtOAc : *n*-Hexane = 1:4), mp 66-68 °C.

¹H NMR (CDCl₃, 400 MHz) δ 8.03-8.00 (m, 1H), 7.83-7.81 (m, 1H), 7.78 (d, J = 8.0 Hz, 1H), 7.58-7.55 (m, 3H), 7.51-7.38 (m, 6H), 4.81 (s, 2H), 3.04 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 134.5, 133.11, 133.05, 129.6, 129.1, 128.9, 128.8, 128.3, 128.2, 126.7, 126.3, 126.0, 125.1, 120.1, 86.4, 70.2, 55.9, 39.0. EIMS m/z 335 (M⁺), 252, 229, 178, 91, 65. HRMS (EI) [M]⁺ m/z calcd for C₂₀H₁₇NO₂S 335.0975, found 335.0981.

N-Benzyl-*N*-(naphthalen-2-ylethynyl)methanesulfonamide (2q)

175.3 mg, 54%, a yellow solid (EtOAc : *n*-Hexane = 1:5), mp 114-116 °C.

⁶ Garzón, M.; Davies, P. W. Org. Lett. 2014, 16, 4850.

¹H NMR (CDCl₃, 400 MHz) δ 7.87 (s, 1H), 7.81-7.74 (m, 3H), 7.53 (d, *J* = 7.2 Hz, 2H), 7.51-7.38 (m, 6H), 4.76 (s, 2H), 2.98 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 134.5, 132.9, 132.6, 131.0, 129.0, 128.9, 128.8, 128.2, 127.9, 127.7, 127.6, 126.5, 119.7, 82.3, 72.0, 56.0, 39.1 (1 carbon is missing due to overlapping). EIMS *m*/*z* 335 (M⁺), 252, 207, 155, 127, 91, 65.

Spectral data were consistent with data reported in the literature.⁷

N-(2-Bromobenzyl)-*N*-(phenylethynyl)methanesulfonamide (2r)

1.0 g, 87%, a yellow solid (EtOAc : *n*-Hexane = 1:6), mp 97-99 °C.

¹H NMR (CDCl₃, 400 MHz) δ 7.62 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.60 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.39 (td, *J* = 7.6, 1.2 Hz, 1H), 7.32-7.26 (m, 5H), 7.24 (td, *J* = 7.8, 1.4 Hz, 1H), 4.88 (s, 2H), 3.21 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 133.9, 133.0, 131.1, 130.7, 130.0, 128.2, 127.9, 127.8, 123.8, 122.3, 81.4, 71.7, 55.0, 38.8. EIMS *m*/*z* 365, 363 (M⁺), 284, 252, 235, 205, 169, 115, 105, 89, 77, 63. HRMS (EI) [M]⁺ *m*/*z* calcd for C₁₆H₁₄BrNO₂S 362.9923, found 362.9936.

N,*N*'-(1,3-Phenylenebis(ethyne-2,1-diyl))bis(*N*-benzylmethanesulfonamide) (2s)

821.6 mg, 80%, a white solid (EtOAc : *n*-Hexane = 1:2), mp 84-86 °C.

¹H NMR (CDCl₃, 400 MHz) δ 7.48 (dd, *J*=7.8, 1.8 Hz, 4H), 7.44-7.37 (m, 6H), 7.34 (s, 1H), 7.26-7.52 (m, 1H), 7.24-7.19 (m, 2H), 4.71 (s, 4H), 2.94 (s, 6H). ¹³C NMR (CDCl₃, 100 MHz) δ 134.3, 133.7, 130.5, 128.9, 128.81, 128.76, 128.3, 122.7, 82.6, 70.8, 55.8, 39.0. LCMS *m*/*z* 493 [M+H]⁺, 494 [M+2H]⁺. HRMS (EI) [M]⁺ *m*/*z* calcd for C₂₆H₂₄N₂O₄S₂ 492.1172, found 492.1177.

⁷ Lu, Z.; Kong, W.; Yuan, Z.; Zhao, X.; Zhu, G. J. Org. Chem. 2011, 76, 8524.

General Procedure for the Au(I)-Catalyzed Hydroamination of Ynamides with Anilines

To a solution of the substrate **1** ($0.110 \sim 0.325 \text{ mmol}$, 1 equiv) and **2** ($0.110 \sim 0.325 \text{ mmol}$, 1 equiv) in toluene ($1.1 \sim 3.3 \text{ mL}$, 0.1 M) were added PPh₃AuCl ($0.00548 \sim 0.0163 \text{ mmol}$, 5 mol%) and AgOTf ($0.00548 \sim 0.0163 \text{ mmol}$, 5 mol%). After being stirred at 100 °C for the reported time under Ar, the reaction mixture was concentrated in vacuo. The residue was purified by column chromatography on silica gel to give the corresponding product **3**. All reactions were carried out 2-3 times repetitively and the average values of yields are given.

(E)-N-Benzyl-N-(methylsulfonyl)-N',2-diphenylacetimidamide (3aa)

85% (108.8 mg), 2 h. a yellow solid (EtOAc : *n*-Hexane = 1:8), mp 90-92 °C.

¹H NMR (CDCl₃, 400 MHz) δ 7.33-7.18 (m, 10H), 7.06-7.00 (m, 3H), 6.73 (dd, *J* = 8.4, 0.8 Hz, 2H), 4.84 (s, 2H), 3.81 (s, 2H), 3.08 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 156.0, 147.9, 136.5, 134.5, 129.1, 128.7, 128.60, 128.56, 127.9, 127.7, 126.9, 123.7, 119.7, 50.0, 41.7, 36.3. LCMS *m*/*z* 379 [M+H]⁺. HRMS (EI) [M]⁺ *m*/*z* calcd for C₂₂H₂₂N₂O₂S 378.1397, found 378.1401.

(E)-N-Methyl-N-(methylsulfonyl)-N',2-diphenylacetimidamide (3ab)

85% (33.8 mg), 2 h. a colorless oil (EtOAc : *n*-Hexane = 1:6).

¹H NMR (CDCl₃, 400 MHz) δ 7.33-7.28 (m, 4H), 7.24 (t, J = 7.6 Hz, 1H), 7.17 (d, J = 7.2 Hz, 2H), 7.07 (t, J = 7.4 Hz, 1H), 6.81 (d, J = 7.6 Hz, 2H), 3.95 (s, 2H), 3.18 (s, 3H), 2.95 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 156.9, 148.0, 135.1, 129.2, 128.8, 128.5, 127.0, 123.7, 120.0, 40.0, 36.2, 34.7. LCMS *m/z* 303 [M+H]⁺.

Spectral data were consistent with data reported in the literature.¹

(E)-N-Benzyl-N',2-diphenyl-N-tosylacetimidamide (3ac)

80% (199.7 mg), 3 h. a white solid (EtOAc : *n*-Hexane = 1:8), mp 94-96 °C.

¹H NMR (CDCl₃, 400 MHz) δ 7.77 (d, *J* = 8.4 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.27-7.21 (m, 3H), 7.19-7.15 (m, 3H), 7.11 (t, *J* = 7.2 Hz, 2H), 7.06-7.01 (m, 3H), 6.81 (d, *J* = 7.2 Hz, 2H), 6.45 (d, *J* = 7.2 Hz, 2H), 4.69 (s, 2H), 3.91 (s, 2H), 2.48 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 155.6, 148.0, 144.1, 135.8, 135.4, 134.7, 129.5, 129.1, 129.0, 128.8, 128.3, 128.1, 128.0, 127.2, 126.4, 123.5, 119.4, 51.0, 37.7, 21.6. LCMS *m/z* 455 [M+H]⁺. HRMS (EI) [M]⁺ *m/z* calcd for C₂₈H₂₆N₂O₂S 454.1710, found 474.1715.

(E)-N-Methyl-N',2-diphenyl-N-tosylacetimidamide (3ad)

90% (217.7 mg), 1 h. a pale yellow solid (EtOAc : *n*-Hexane = 1:5), mp 108-110 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.64 (d, *J* = 8.4 Hz, 2H), 7.29-7.21 (m, 7H), 7.07 (d, *J* = 6.8 Hz, 2H), 7.04 (t, *J* = 7.4 Hz, 1H), 6.62 (d, *J* = 7.6 Hz, 2H), 4.04 (s, 2H), 3.10 (s, 3H), 2.43 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 157.5, 148.1, 144.0, 135.7, 135.1, 129.4, 129.0, 128.61, 128.58, 127.9, 126.6, 123.6, 119.8, 37.1, 35.7, 21.6. LCMS *m*/*z* 379 [M+H]⁺. HRMS (EI) [M]⁺*m*/*z* calcd for C₂₂H₂₂N₂O₂S 378.1397, found 378.1404.

(E)-3-(2-Phenyl-1-(phenylimino)ethyl)oxazolidin-2-one (3ae)

85% (57.7 mg), 2 h. a colorless oil (EtOAc : *n*-Hexane = 1:4).

¹H NMR (CDCl₃, 400 MHz) δ 7.26 (tt, *J* = 7.6, 1.8 Hz, 2H), 7.21 (tt, *J* = 7.2, 1.6 Hz, 2H), 7.15 (tt, *J* = 7.2, 1.2 Hz, 1H), 7.07 (dd, *J* = 7.2, 1.2 Hz, 2H), 7.03 (tt, *J* = 7.4, 1.0 Hz, 1H), 6.75 (dd, *J* = 8.4, 1.2 Hz, 2H), 4.29 (t, *J* = 8.0 Hz, 2H), 4.25 (s, 2H), 4.10 (t, *J* = 8.0 Hz, 2H). ¹³C NMR (CDCl₃, 100 MHz) δ 154.7, 154.0, 147.7, 136.0, 129.0, 128.4, 126.4, 123.5, 120.6, 61.7, 44.7, 33.2 (1 carbon is missing due to overlapping). LCMS *m*/*z* 281 [M+H]⁺. HRMS (EI) [M]⁺ *m*/*z* calcd for C₁₇H₁₆N₂O₂ 280.1206, found 280.1212.

(E)-1-(2-Phenyl-1-(phenylimino)ethyl)pyrrolidin-2-one

67% (108.7 mg), 4 h. a colorless oil (only EtOAc).

¹H NMR (CDCl₃, 400 MHz) δ 8.05 (dd, J = 7.6, 1.6 Hz, 2H), 7.58 (tt, J = 7.4, 1.2 Hz, 1H), 7.48 (td, J = 7.6, 1.6 Hz, 2H), 7.22 (td, J = 7.8, 1.8 Hz, 2H), 6.95 (tt, J = 7.4, 1.2 Hz, 1H), 6.81 (dd, J = 8.2, 1.0 Hz, 2H), 4.91 (s, 2H), 3.47 (t, J = 6.8 Hz, 2H), 2.46 (t, J = 7.8 Hz, 2H), 2.01 (quintet, J = 7.3 Hz, 2H). ¹³C NMR (CDCl₃, 100 MHz) δ 195.3, 162.3, 152.2, 135.4, 133.5, 128.7, 128.6, 128.1, 122.2, 121.9, 50.6, 49.4, 27.1, 20.2. LCMS m/z 279 [M+H]⁺. HRMS (EI) [M]⁺ m/z calcd for C₁₈H₁₈N₂O 278.1414, found 278.1416.

(E)-1-(1-(2-Phenyl-1-(phenylimino)ethyl)-1H-indol-3-yl)ethan-1-one

72% (134.0 mg), 3 h. a yellow solid (EtOAc : *n*-Hexane = 1:3), mp 138-140 °C. ¹H NMR (CDCl₃, 400 MHz) δ 8.79-8.76 (m, 1H), 8.40-8.38 (m, 1H), 7.97 (s, 1H), 7.42-7.36 (m, 4H), 7.32 (t, *J* = 7.2 Hz, 2H), 7.25 (t, *J* = 7.4 Hz, 1H), 7.19 (d, *J* = 7.2 Hz, 2H), 7.15 (t, *J* = 7.4 Hz, 1H), 6.97 (d, *J* = 8.0 Hz, 2H), 4.27 (s, 2H), 2.38 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 193.3, 152.9, 147.8, 136.5, 134.9, 132.6, 129.3, 127.6, 127.3, 127.2, 125.3, 124.4, 124.0, 122.2, 119.9, 116.9, 35.8, 27.5 (2 carbons are missing due to overlapping). LCMS *m*/*z* 353 [M+H]⁺. HRMS (EI) [M]⁺ *m*/*z* calcd for C₂₄H₂₀N₂O 352.1570, found 352.1570.

N,4-Dimethyl-*N*-(1-(methyl(phenyl)amino)-2-phenylvinyl)benzenesulfonamide (3'-Me)

85% (69.1 mg), 3 h. a white solid (EtOAc : *n*-Hexane = 1:8), mp 125-127 °C.

Stereochemistry of olefin could not be determined and *E*/*Z* mixture was obtained with a 1:10 (= **A** : **B**) ratio. ¹H NMR (CDCl₃, 400 MHz) δ 7.59 (d, *J* = 7.2 Hz, 2H of **A** & 2H of **B**), 7.49 (d, *J* = 7.6 Hz, 2H of **A**), 7.36 (t, *J* = 7.6 Hz, 2H of **A**), 7.23-7.12 (m, 4H of **A** & 9H of **B**), 7.06 (d, *J* = 8.4 Hz, 2H of **A**), 6.90 (t, *J* = 7.2 Hz, 2H of **A**), 6.86 (t, *J* = 7.2 Hz, 1H of **B**), 6.81 (d, *J* = 8.4 Hz, 2H of **B**), 5.84 (s, 1H of **A**), 5.75 (s, 1H of **B**), 3.15 (s, 3H of **B**), 3.08 (s, 3H of **A** & 3H of **B**), 2.67 (s, 3H of **A**), 2.43 (s, 3H of **B**), 2.38 (s, 3H of **A**). ¹³C NMR (CDCl₃, 100 MHz) δ 147.4, 145.4, 143.8, 143.4, 143.0, 141.3, 137.2, 135.4, 134.8, 129.2, 129.1, 128.70, 128.65, 128.4, 128.3, 127.6, 127.3, 127.2, 127.0, 126.8, 126.6, 120.4, 119.5, 117.7, 115.8, 115.0, 114.9, 38.1, 37.8, 37.7, 36.9, 21.41, 21.36 (1 carbon is missing due to overlapping). LCMS *m*/*z* 393 [M+H]⁺. HRMS (EI) [M]⁺ *m*/*z* calcd for C₂₃H₂₄N₂O₂S 392.1553, found 392.1554.

N-(1-(Benzyl(phenyl)amino)-2-phenylvinyl)-*N*,4-dimethylbenzenesulfonamide (3'-Bn)

N N Ts Bn Me

Total 72% (55.6 mg), 3 h. Stereochemistry of olefin could not be determined and E/Z mixture was obtained with a 1.1:1 (= **A** : **B**) ratio.

A isomer: 38% (29.4 mg), a colorless oil (EtOAc : *n*-Hexane = 1:8).

¹H NMR (CDCl₃, 400 MHz) δ 7.51 (d, *J* = 8.4 Hz, 2H), 7.45 (d, *J* = 7.6 Hz, 2H), 7.32 (td, *J* = 7.8, 2.0 Hz, 2H), 7.27 (dd, *J* = 7.2, 1.2 Hz, 2H), 7.22-7.17 (m, 4H), 7.14-7.10 (m, 4H), 7.00 (dd, *J* = 8.8, 0.8 Hz, 2H), 6.82 (tt, *J* = 7.4, 1.0 Hz, 1H), 6.17 (s, 1H), 4.40 (s, 2H), 2.93 (s, 3H), 2.39 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 146.7, 143.3, 141.7, 138.8, 136.8, 134.7, 129.3, 128.8, 128.5, 127.9, 127.1, 126.8, 126.74, 126.71, 120.2, 117.8, 116.2, 53.0, 37.7, 21.5 (1 carbon is missing due to overlapping). LCMS *m*/*z* 469 [M+H]⁺. HRMS (EI) [M]⁺ *m*/*z* calcd for C₂₉H₂₈N₂O₂S 468.1866, found 468.1870.

B isomer: 34% (26.2 mg), a colorless oil (EtOAc : *n*-Hexane = 1:8).

¹H NMR (CDCl₃, 400 MHz) δ 7.76 (d, *J* = 8.0 Hz, 2H), 7.36-7.27 (m, 6H), 7.25-7.22 (m, 1H), 7.10-6.98 (m, 9H), 6.75 (tt, *J* = 7.2, 1.0 Hz, 1H), 5.67 (s, 1H), 4.80 (s, 2H), 2.91 (s, 3H), 2.46 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 145.5, 143.8, 139.0, 138.6, 135.4, 134.2, 129.6, 128.7, 128.4, 128.02, 127.95, 127.8, 127.7, 127.0, 126.7, 120.4, 117.5, 115.2, 53.8, 37.0, 21.6. LCMS *m*/*z* 469 [M+H]⁺. HRMS (EI) [M]⁺ *m*/*z* calcd for C₂₉H₂₈N₂O₂S 468.1866, found 468.1872.

N-(1-((*N*,4-Dimethylphenyl)sulfonamido)-2-phenylvinyl)-4-methyl-*N*-phenylbenzenesulfonamide (3'-Ts)

45% (49.8 mg), 3 h. a colorless oil (EtOAc : *n*-Hexane = 1:6).

Stereochemistry of olefin could not be determined and only one isomer was obtained.

¹H NMR (CDCl₃, 400 MHz) δ 7.48 (d, J = 8.0 Hz, 2H), 7.38-7.33 (m, 3H), 7.32-7.23 (m, 9H), 7.05 (d, J = 8.4 Hz, 2H), 6.99 (d, J = 8.4 Hz, 2H), 6.25 (s, 1H), 3.08 (s, 3H), 2.44 (s, 3H), 2.35 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 144.0, 142.9, 137.8, 136.5, 135.8, 133.9, 132.7, 129.5, 129.2, 129.0, 128.8, 128.5, 128.4, 128.3, 128.1, 128.0, 127.5, 35.1, 21.6, 21.4 (1 carbon is missing due to overlapping). LCMS m/z 533 [M+H]⁺. HRMS (EI) [M]⁺ m/z calcd for C₂₉H₂₈N₂O₄S₂ 532.1485, found 532.1491.

N,4-Dimethyl-*N*-(2-phenyl-1-(*N*-phenylmethylsulfonamido)vinyl)benzenesulfonamide (3'-Ms)

Total 50% (74.0 mg), 3 h. Stereochemistry of olefin could not be determined and E/Z mixture was obtained with a 1.7:1 (= **A** : **B**) ratio.

A isomer: 31% (46.5 mg), a colorless oil (EtOAc : *n*-Hexane = 1:6).

¹H NMR (CDCl₃, 400 MHz) δ 7.41-7.38 (m, 2H), 7.33-7.30 (m, 5H), 7.26-7.24 (m, 2H), 7.22-7.19 (m, 3H), 7.09 (d, *J* = 8.0 Hz, 2H), 6.69 (s, 1H), 3.17 (s, 3H), 2.85 (s, 3H), 2.35 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 143.5, 137.4, 136.2, 133.8, 133.3, 129.4, 129.3, 129.0, 128.54, 128.48, 128.4, 128.3, 127.4, 126.6, 39.9, 36.7, 21.4. LCMS *m*/*z* 457 [M+H]⁺. HRMS (EI) [M]⁺ *m*/*z* calcd for C₂₃H₂₄N₂O₄S₂ 456.1172, found 456.1174.

B isomer: 19% (27.5 mg), a colorless oil (EtOAc : *n*-Hexane = 1:6).

¹H NMR (CDCl₃, 400 MHz) δ 7.67 (d, *J* = 8.4 Hz, 2H), 7.60-7.57 (m, 2H), 7.33-7.24 (m, 10H), 5.83 (s, 1H), 3.08 (s, 3H), 2.90 (s, 3H), 2.46 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 144.2, 138.2, 135.4, 133.9, 133.4, 129.5, 129.1, 128.5, 128.4, 128.30, 128.25, 127.7, 127.5, 126.7, 40.7, 39.2, 21.6. LCMS *m/z* 457 [M+H]⁺. HRMS (EI) [M]⁺ *m/z* calcd for C₂₃H₂₄N₂O₄S₂ 456.1172, found 456.1176.

General Procedure for the One-Pot Synthesis of 2-Aminoindoles (4)

To a solution of the substrate **1** ($0.104 \sim 1.94$ mmol, 1 equiv) and **2** ($0.104 \sim 1.94$ mmol, 1 equiv) in THF ($1.0 \sim 19.4$ mL, 0.1 M) were added PPh₃AuCl ($0.00520 \sim 0.0967$ mmol, 5 mol%) and AgOTf ($0.00520 \sim 0.0967$ mmol, 5 mol%). The resulting mixture was stirred at 100 °C for 2 h under Ar. After the reaction mixture was cooled to room temperature, CuCl₂ ($0.208 \sim 3.87$ mmol, 2 equiv) was added to the reaction mixture. After being stirred at 100 °C for the reported time under Ar, the reaction mixture was filtered through Celite and concentrated in vacuo. The residue was purified by column chromatography on silica gel to give the corresponding product **4**. All reactions were carried out 3-5 times repetitively and the average values of yields are given.

N-Benzyl-*N*-(3-phenyl-1*H*-indol-2-yl)methanesulfonamide (4aa)

73% (54.4 mg), a white solid (EtOAc : *n*-Hexane = 1:3), mp 164-166 °C.

¹H NMR (CDCl₃, 400 MHz) δ 8.22 (br s, 1H), 7.61 (d, *J* = 8.0 Hz, 1H), 7.52-7.46 (m, 4H), 7.42-7.37 (m, 1H), 7.27-7.24 (m, 5H), 7.23-7.20 (m, 2H), 7.12 (ddd, *J* = 8.0, 6.0, 2.0 Hz, 1H), 4.72 (s, 2H), 2.85 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 136.3, 133.5, 133.4, 129.3, 128.9, 128.72, 128.66, 128.2, 128.1, 127.2, 126.3, 123.4, 120.4, 119.7, 113.4, 111.2, 54.9, 40.1. HRMS (EI) [M+Na]⁺ *m*/*z* calcd for C₂₂H₂₀N₂NaO₂S 399.1138, found 399.1141.

N-Benzyl-N-(5-methoxy-3-phenyl-1H-indol-2-yl)methanesulfonamide (4ba)

62% (35.3 mg), a yellow solid (EtOAc : *n*-Hexane = 1:4), mp 155-157 °C.

¹H NMR (CDCl₃, 400 MHz) δ 8.07 (br s, 1H), 7.52-7.43 (m, 4H), 7.40 (tt, *J* = 7.0, 1.7 Hz, 1H), 7.29-7.25 (m, 3H), 7.22-7.19 (m, 2H), 7.14 (d, *J* = 8.8 Hz, 1H), 7.03 (d, *J* = 2.4 Hz, 1H), 6.89 (dd, *J* = 9.0, 2.6 Hz, 1H), 4.69 (s, 2H), 3.78 (s, 3H), 2.83 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 154.7, 136.3, 133.6, 129.2, 129.0, 128.74, 128.67, 128.6, 128.5, 128.2, 127.2, 126.7, 113.8, 113.3, 112.1, 101.2, 55.9, 55.0, 40.1. HRMS (EI) [M+Na]⁺ *m/z* calcd for C₂₃H₂₂N₂NaO₃S 429.1243, found 429.1246.

N-Benzyl-N-(5-methyl-3-phenyl-1*H*-indol-2-yl)methanesulfonamide (4ca)

68% (30.9 mg), a white solid (EtOAc : *n*-Hexane = 1:4), mp 144-146 °C.

¹H NMR (CDCl₃, 400 MHz) δ 8.10 (br s, 1H), 7.51-7.45 (m, 4H), 7.41-7.38 (m, 2H), 7.26-7.25 (m, 3H), 7.22-7.19 (m, 2H), 7.14 (d, *J* = 8.4 Hz, 1H), 7.05 (dd, *J* = 8.2, 1.4 Hz, 1H), 4.70 (s, 2H), 2.84 (s, 3H), 2.40 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 136.3, 133.5, 131.7, 129.8, 129.3, 128.9, 128.73, 128.65, 128.2, 127.2, 126.5, 125.0, 119.2, 113.0, 110.9, 54.9, 40.1, 21.5 (1 carbon is missing due to overlapping). HRMS (EI) [M+Na]⁺ *m/z* calcd for C₂₃H₂₂N₂NaO₂S 413.1294, found 413.1296.

N-Benzyl-N-(5-fluoro-3-phenyl-1H-indol-2-yl)methanesulfonamide (4da)

61% (37.3 mg), a white solid (EtOAc : *n*-Hexane = 1:3), mp 180-182 °C.

¹H NMR (CDCl₃, 400 MHz) δ 8.27 (br s, 1H), 7.49 (t, *J* = 7.4 Hz, 2H), 7.44-7.38 (m, 3H), 7.26-7.24 (m, 3H), 7.22-7.17 (m, 3H), 7.13 (dd, *J* = 8.8, 4.4 Hz, 1H), 6.95 (td, *J* = 9.1, 2.5 Hz, 1H), 4.69 (s, 2H), 2.85 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 158.3 (d, *J* = 235 Hz), 136.1, 133.0, 129.9, 129.5, 129.1 (d, *J* = 5 Hz), 128.7, 128.2, 127.5, 126.7 (d, *J* = 9 Hz), 113.6 (d, *J* = 5 Hz), 112.1, 111.9 (d, *J* = 27 Hz), 104.6 (d, *J* = 24 Hz), 54.8, 40.2 (2 carbons are missing due to overlapping). HRMS (EI) [M+Na]⁺ *m/z* calcd for C₂₂H₁₉FN₂NaO₂S 417.1043, found 417.1046.

N-Benzyl-*N*-(5-chloro-3-phenyl-1*H*-indol-2-yl)methanesulfonamide (4ea)

66% (40.3 mg), a yellow solid (EtOAc : *n*-Hexane = 1:3), mp 173-175 °C.

¹H NMR (CDCl₃, 400 MHz) δ 8.28 (br s, 1H), 7.54 (s, 1H), 7.51 (t, J = 7.6 Hz, 2H), 7.44-7.40 (m, 3H), 7.26-7.25 (m, 3H), 7.19-7.13 (m, 4H), 4.69 (s, 2H), 2.87 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 136.0, 132.7, 131.7, 129.2, 129.1, 128.71, 128.67, 128.3, 127.6, 127.4, 126.3, 123.8, 119.1, 113.1, 112.3, 54.8, 40.2 (1 carbon is missing due to overlapping). HRMS (EI) [M+Na]⁺ m/z calcd for C₂₂H₁₉ClN₂NaO₂S 433.0748, found 433.0749.

N-Benzyl-*N*-(5-bromo-3-phenyl-1*H*-indol-2-yl)methanesulfonamide (4fa)

87% (684.0 mg), using 1.73 mmol of **1f** and **2a**, a white solid (EtOAc : *n*-Hexane = 1:3), mp 190-192 °C. ¹H NMR (CDCl₃, 400 MHz) δ 8.31 (br s, 1H), 7.69 (s, 1H), 7.51 (t, J = 7.4 Hz, 2H), 7.43-7.40 (m, 3H), 7.30-7.25 (m, 4H), 7.18-7.17 (m, 2H), 7.10 (dd, J = 8.6, 1.4 Hz, 1H), 4.68 (s, 2H), 2.87 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 136.0, 132.7, 131.9, 129.2, 129.1, 128.72, 128.67, 128.3, 128.0, 127.6, 126.3, 122.2, 113.8, 113.0, 112.7, 54.7, 40.2 (1 carbon is missing due to overlapping). HRMS (EI) [M+Na]⁺ *m/z* calcd for C₂₂H₁₉BrN₂NaO₂S 477.0243, found 477.0247.

N-Benzyl-*N*-(5-iodo-3-phenyl-1*H*-indol-2-yl)methanesulfonamide (4ga)

75% (46.7 mg), a white solid (EtOAc : *n*-Hexane = 1:4), mp 183-185 °C.

¹H NMR (CDCl₃, 400 MHz) δ 8.26 (br s, 1H), 7.89 (d, *J* = 1.6 Hz, 1H), 7.53-7.49 (m, 2H), 7.46 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.43-7.40 (m, 3H), 7.26-7.22 (m, 3H), 7.18-7.15 (m, 2H), 7.01 (d, *J* = 8.8 Hz, 1H), 4.67 (s, 2H), 2.87 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 136.0, 132.6, 132.3, 131.7, 129.3, 129.1, 128.8, 128.71, 128.66, 128.4, 128.3, 127.6, 113.2, 112.7, 83.9, 54.7, 40.2 (1 carbon is missing due to overlapping). HRMS (EI) [M]⁺ *m/z* calcd for C₂₂H₁₉IN₂O₂S 502.0206, found 502.0206.

N-(5-Acetyl-3-phenyl-1*H*-indol-2-yl)-*N*-benzylmethanesulfonamide (4ha)

56% (24.6 mg), a yellow oil (EtOAc : *n*-Hexane = 1:2).

¹H NMR (CDCl₃, 400 MHz) δ 8.46 (br s, 1H), 8.22 (s, 1H), 7.87 (d, *J* = 8.8 Hz, 1H), 7.54 (t, *J* = 7.4 Hz, 2H), 7.47-7.45 (m, 3H), 7.26-7.25 (m, 4H), 7.19-7.18 (m, 2H), 4.69 (s, 2H), 2.89 (s, 3H), 2.60 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 198.0, 136.0, 135.9, 132.5, 130.4, 129.4, 129.3, 129.1, 128.72, 128.65, 128.3, 127.8, 126.0, 123.6, 121.7, 115.1, 111.1, 54.8, 40.3, 26.6. HRMS (EI) [M+Na]⁺ *m*/*z* calcd for C₂₄H₂₂N₂NaO₃S 441.1243, found 441.1245.

Methyl 2-(N-Benzylmethylsulfonamido)-3-phenyl-1*H*-indole-5-carboxylate (4ia)

61% (28.9 mg), a yellow solid (EtOAc : *n*-Hexane = 1:2), mp 158-160 °C.

¹H NMR (CDCl₃, 400 MHz) δ 8.40 (br s, 1H), 8.32 (s, 1H), 7.91 (dd, J = 8.4, 1.6 Hz, 1H), 7.53 (t, J = 7.6 Hz, 2H), 7.47-7.43 (m, 3H), 7.26-7.23 (m, 4H), 7.20-7.17 (m, 2H), 4.69 (s, 2H), 3.89 (s, 3H), 2.88 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 167.8, 136.0, 135.9, 132.6, 129.4, 129.2, 129.1, 128.72, 128.66, 128.3, 127.7, 126.0, 124.7, 122.7, 122.6, 114.7, 110.9, 54.8, 51.9, 40.3. HRMS (EI) [M+Na]⁺ *m*/*z* calcd for C₂₄H₂₂N₂NaO₄S 457.1192, found 457.1195. *N*-Benzyl-*N*-(6-methyl-3-phenyl-1*H*-indol-2-yl)methanesulfonamide (4ja) & *N*-Benzyl-*N*-(4-methyl-3-phenyl-1*H*-indol-2-yl)methanesulfonamide (4ja')

Inseparable mixture of 4ka and 4ka' (66% (48.5 mg), 4ka:4ka' = 2.5:1) was obtained as a xx solid (EtOAc : *n*-Hexane = 1:4).

¹H NMR (CDCl₃, 400 MHz) δ 8.20 (br s, 1H of **4ja'**), 8.12 (br s, 1H of **4ja**), 7.51-7.44 (m, 4H of **4ja** & 5H of **4ja'**), 7.41-7.36 (m, 2H of **4ja**), 7.29-7.17 (m, 5H of **4ja** & 5H of **4ja'**), 7.10 (d, J = 4.4 Hz, 2H of **4ja'**), 7.04 (s, 1H of **4ja**), 6.96 (d, J = 8.4 Hz, 1H of **4ja**), 6.82 (t, J = 3.8 Hz, 1H of **4ja'**), 4.73 (s, 2H of **4ja**), 4.60 (s, 2H of **4ja'**), 2.83 (s, 3H of **4ja**), 2.79 (s, 3H of **4ja'**), 2.44 (s, 3H of **4ja**), 2.06 (s, 3H of **4ja'**). ¹³C NMR (CDCl₃, 100 MHz) δ 136.32, 136.29, 135.1, 133.9, 133.6, 133.4, 131.4, 131.2, 129.2, 128.84, 128.79, 128.6, 128.5, 128.14, 128.06, 127.6, 127.4, 127.1, 125.2, 124.1, 123.1, 122.2, 121.6, 119.4, 113.4, 111.1, 109.1, 55.0, 40.1, 39.9, 21.7, 20.1 (6 carbons are missing due to overlapping). HRMS (EI) [M]⁺ *m/z* calcd for C₂₃H₂₂N₂O₂S 390.1397, found 390.1403.

N-Benzyl-*N*-(6-bromo-3-phenyl-1*H*-indol-2-yl)methanesulfonamide (4ka) & *N*-Benzyl-*N*-(4-bromo-3-phenyl-1*H*-indol-2-yl)methanesulfonamide (4ka')

Inseparable mixture of 4ka and 4ka' (54% (30.8 mg), 4ka:4ka' = 1.7:1) was obtained as a yellow oil (EtOAc : n-Hexane = 1:4).

¹H NMR (CDCl₃, 400 MHz) δ 8.26 (br s, 1H of **4ka'**), 8.20 (br s, 1H of **4ka**), 7.52-7.39 (m, 5H of **4ka** & 7H of **4ka'**), 7.37 (d, *J* = 1.6 Hz, 1H of **4ka**), 7.29-7.17 (m, 7H of **4ka** & 5H of **4ka'**), 7.02 (t, *J* = 7.8 Hz, 1H of **4ka'**), 4.69 (s, 2H of **4ka**), 4.58 (s, 2H of **4ka'**), 2.85 (s, 3H of **4ka**), 2.79 (s, 3H of **4ka'**). ¹³C NMR (CDCl₃, 100 MHz) δ 136.1, 136.0, 134.2, 134.1, 133.2, 132.9, 131.9, 130.1, 129.3, 129.1, 128.79, 128.77, 128.6, 128.5, 128.4, 128.3, 127.93, 127.88, 127.6, 125.2, 125.0, 123.9, 123.8, 121.1, 116.9, 114.7, 114.4, 114.1, 113.8, 110.6, 55.1, 55.0, 40.4, 40.1 (2 carbons are missing due to overlapping). HRMS (EI) [M+Na]⁺ *m/z* calcd for C₂₂H₁₉BrN₂NaO₂S 477.0243, found 477.0246.

N-Benzyl-*N*-(6-nitro-3-phenyl-1*H*-indol-2-yl)methanesulfonamide (4la) & *N*-Benzyl-*N*-(4-nitro-3-phenyl-1*H*-indol-2-yl)methanesulfonamide (4la')

4la: 29% (13.5 mg), a yellow oil (EtOAc : *n*-Hexane = 1:4). ¹H NMR (CDCl₃, 400 MHz) δ 8.96 (br s, 1H), 7.95 (s, 1H), 7.91 (dd, *J* = 9.0, 1.8 Hz, 1H), 7.59-7.55 (m, 3H), 7.50-7.46 (m, 3H), 7.30-7.28 (m, 3H), 7.22-7.19 (m, 2H), 4.75 (s, 2H), 2.92 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 143.9, 135.5, 133.0, 132.0, 131.6, 130.8, 129.4, 129.3, 128.9, 128.6, 128.5, 128.1, 119.6, 115.6, 114.2, 107.9, 54.8, 40.8. HRMS (EI) [M+Na]⁺ *m/z* calcd for C₂₂H₁₉N₃NaO₄S 444.0988, found 444.0991. **4la'**: 28% (13.1 mg), a yellow solid (EtOAc : *n*-Hexane = 1:4), mp 198-200 °C.

¹H NMR (CDCl₃, 400 MHz) δ 8.59 (br s, 1H), 7.74 (dd, *J* = 7.8, 0.6 Hz, 1H), 7.49-7.42 (m, 4H), 7.29-7.25 (m, 6H), 7.23-7.20 (m, 2H), 4.60 (s, 2H), 2.79 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 143.0, 135.8, 135.0, 133.4, 132.5, 129.3, 128.8, 128.6, 128.5, 128.4, 127.9, 122.0, 117.9, 117.6, 116.6, 113.1, 55.0, 40.4. HRMS (EI) [M+Na]⁺ *m/z* calcd for C₂₂H₁₉N₃NaO₄S 444.0988, found 444.0993.

N-Benzyl-*N*-(7-methyl-3-phenyl-1*H*-indol-2-yl)methanesulfonamide (4ma)

66% (27.9 mg), a white solid (EtOAc : *n*-Hexane = 1:4), mp 142-144 °C.

¹H NMR (CDCl₃, 400 MHz) δ 7.99 (br s, 1H), 7.51-7.43 (m, 5H), 7.41-7.37 (m, 1H), 7.29-7.23 (m, 5H), 7.07-7.03 (m, 2H), 4.75 (s, 2H), 2.81 (s, 3H), 2.33 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 136.4, 133.6, 133.1, 129.3, 128.88, 128.85, 128.7, 128.2, 127.9, 127.2, 125.9, 123.9, 120.6, 120.4, 117.4, 114.1, 55.1, 40.1, 16.4. HRMS (EI) [M+Na]⁺ *m/z* calcd for C₂₃H₂₂N₂NaO₂S 413.1294, found 413.1295.

N-Benzyl-N-(3,7-diphenyl-1H-indol-2-yl)methanesulfonamide (4na)

69% (32.3 mg), a white solid (EtOAc : *n*-Hexane = 1:3), mp 155-157 °C.

¹H NMR (CDCl₃, 400 MHz) δ 8.08 (br s, 1H), 7.63 (d, *J* = 7.6 Hz, 1H), 7.55-7.52 (m, 4H), 7.46-7.41 (m, 4H), 7.39-7.33 (m, 7H), 7.28 (d, *J* = 6.8 Hz, 1H), 7.23 (t, *J* = 7.6 Hz, 1H), 4.84 (s, 2H), 2.70 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 138.2, 136.7, 133.5, 131.2, 129.3, 129.1, 129.0, 128.93, 128.90, 128.3, 128.2, 127.8, 127.5, 127.3, 126.6, 125.5, 123.2, 121.0, 119.0, 114.4, 55.7, 40.3. HRMS (EI) [M+Na]⁺ *m/z* calcd for C₂₈H₂₄N₂NaO₂S 475.1451, found 475.1453.

N-Benzyl-*N*-(7-bromo-3-phenyl-1*H*-indol-2-yl)methanesulfonamide (40a)

62% (59.4 mg), a yellow solid (EtOAc : *n*-Hexane = 1:5), mp 135-137 °C.

¹H NMR (CDCl₃, 400 MHz) δ 8.23 (br s, 1H), 7.51 (t, *J* = 7.4 Hz, 2H), 7.48 (d, *J* = 7.2 Hz, 1H), 7.42 (d, *J* = 7.2 Hz, 3H), 7.37 (d, *J* = 7.6 Hz, 1H), 7.30-7.29 (m, 3H), 7.23-7.22 (m, 2H), 6.99 (t, *J* = 7.8 Hz, 1H), 4.74 (s, 2H), 2.82 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 135.9, 132.9, 132.3, 129.3, 129.0, 128.78, 128.75, 128.4, 127.6, 127.3, 125.8, 121.5, 118.9, 114.9, 104.6, 55.0, 40.4 (1 carbon is missing due to overlapping).

N-Benzyl-*N*-(7-iodo-3-phenyl-1*H*-indol-2-yl)methanesulfonamide (4pa)

61% (35.1 mg), a yellow solid (EtOAc : *n*-Hexane = 1:5), mp 130-132 °C.

¹H NMR (CDCl₃, 400 MHz) δ 8.07 (br s, 1H), 7.58 (dd, *J* = 7.6, 0.8 Hz, 1H), 7.54 (d, *J* = 8.0 Hz, 1H), 7.51-7.47 (m, 2H), 7.43-7.41 (m, 3H), 7.32-7.30 (m, 3H), 7.26-7.23 (m, 2H), 6.88 (t, *J* = 7.8 Hz, 1H), 4.76 (s, 2H), 2.80 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 136.0, 135.5, 133.1, 132.1, 129.3, 129.2, 129.0, 128.9, 128.8, 128.5, 128.4, 127.6, 126.2, 122.0, 119.8, 115.2, 55.1, 40.4. HRMS (EI) [M]⁺ *m/z* calcd for C₂₂H₁₉IN₂O₂S 502.0206, found 502.0208.

N-Benzyl-*N*-(7-bromo-5-methyl-3-phenyl-1*H*-indol-2-yl)methanesulfonamide (4qa)

65% (34.3 mg), a yellow solid (EtOAc : *n*-Hexane = 1:5), mp 210-212 °C.

¹H NMR (CDCl₃, 400 MHz) δ 8.10 (br s, 1H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.41-7.38 (m, 3H), 7.29-7.28 (m, 4H), 7.22-7.20 (m, 3H), 4.72 (s, 2H), 2.81 (s, 3H), 2.37 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 136.0, 133.1, 131.3, 130.6, 129.3, 128.9, 128.79, 128.75, 128.3, 127.5, 127.4, 127.1, 118.5, 114.4, 104.2, 55.0, 40.3, 21.2 (1 carbon is missing due to overlapping). HRMS (EI) [M+Na]⁺ *m/z* calcd for C₂₃H₂₁BrN₂NaO₂S 491.0399, found 491.0402.

N-Benzyl-N-(7-bromo-4-methyl-3-phenyl-1H-indol-2-yl)methanesulfonamide (4ra)

67% (34.9 mg), a white solid (EtOAc : *n*-Hexane = 1:3), mp 180-182 °C.

¹H NMR (CDCl₃, 400 MHz) δ 8.15 (br s, 1H), 7.45-7.41 (m, 3H), 7.33-7.29 (m, 5H), 7.26-7.22 (m, 3H), 6.69 (dd, *J* = 7.8, 0.6 Hz, 1H), 4.61 (s, 2H), 2.72 (s, 3H), 1.99 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 136.0, 134.4, 131.9, 131.1, 130.9, 129.2, 128.8, 128.6, 128.3, 128.2, 127.9, 125.9, 125.3, 122.8, 116.1, 102.0, 55.2, 40.1, 19.7. HRMS (EI) [M]⁺ *m*/*z* calcd for C₂₃H₂₁BrN₂O₂S 468.0502, found 468.0504.

N-Benzyl-*N*-(3-phenyl-1*H*-benzo[g]indol-2-yl)methanesulfonamide (4sa)

68% (30.3 mg), a white solid (EtOAc : *n*-Hexane = 1:3), mp 203-205 °C.

¹H NMR (CDCl₃, 400 MHz) δ 8.78 (br s, 1H), 7.87 (d, *J* = 7.6 Hz, 1H), 7.79 (d, *J* = 8.0 Hz, 1H), 7.63 (d, *J* = 8.8 Hz, 1H), 7.54-7.41 (m, 8H), 7.30-7.28 (m, 5H), 4.79 (s, 2H), 2.83 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 136.4, 133.5, 130.9, 129.4, 129.0, 128.8, 128.7, 128.4, 128.3, 127.4, 126.1, 125.7, 124.6, 121.9, 121.3, 121.1, 119.8, 119.2, 115.6, 55.4, 40.1 (1 carbon is missing due to overlapping). HRMS (EI) [M+Na]⁺ *m/z* calcd for C₂₆H₂₂N₂NaO₂S 449.1294, found 449.1293.

N-Methyl-N-(3-phenyl-1H-indol-2-yl)methanesulfonamide (4ab)

33% (10.2 mg) from **3ab**, a white solid (EtOAc : *n*-Hexane = 1:4), mp 162-164 °C.

¹H NMR (CDCl₃, 400 MHz) δ 8.61 (br s, 1H), 7.61 (d, *J* = 8.0 Hz, 1H), 7.53-7.46 (m, 4H), 7.40-7.36 (m, 2H), 7.28 (td, *J* = 7.0, 1.0 Hz, 1H), 7.15 (td, *J* = 7.5, 1.0 Hz, 1H), 3.30 (s, 3H), 2.75 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 133.5, 133.4, 130.2, 129.4, 128.8, 127.2, 126.6, 123.6, 120.6, 119.7, 112.8, 111.3, 39.0, 38.5. LCMS *m*/*z* 301 [M+H]⁺.

Spectral data were consistent with data reported in the literature.⁸

N-Benzyl-4-methyl-*N*-(3-phenyl-1*H*-indol-2-yl)benzenesulfonamide (4ac)

69% (84.4 mg), a white solid (EtOAc : *n*-Hexane = 1:6), mp 193-195 °C.

¹H NMR (CDCl₃, 400 MHz) δ 8.51 (br s, 1H), 7.64 (d, *J* = 8.4 Hz, 2H), 7.49 (d, *J* = 8.0 Hz, 1H), 7.30 (d, *J* = 8.0 Hz, 3H), 7.25-7.16 (m, 7H), 7.09-7.05 (m, 3H), 6.64 (d, *J* = 7.2 Hz, 2H), 4.53 (s, 2H), 2.46 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 144.2, 136.1, 135.6, 133.2, 133.1, 129.9, 129.1, 128.4, 128.3, 127.8, 127.5, 126.8, 126.5, 123.0, 120.0, 119.4, 112.5, 111.0, 53.5, 21.6 (2 carbons are missing due to overlapping). EIMS *m*/*z* 452 (M⁺), 297, 252, 207, 91.

Spectral data were consistent with data reported in the literature.⁸

N,4-Dimethyl-*N*-(3-phenyl-1*H*-indol-2-yl)benzenesulfonamide (4ad)

32% (12.1 mg) from **3ad**, a white solid (EtOAc : *n*-Hexane = 1:6), mp 180-182 °C.

¹H NMR (CDCl₃, 400 MHz) δ 8.74 (br s, 1H), 7.58 (d, *J* = 8.0 Hz, 2H), 7.50 (d, *J* = 8.0 Hz, 1H), 7.39 (d, *J* = 8.0 Hz, 1H), 7.28-7.24 (m, 3H), 7.21 (t, *J* = 7.2 Hz, 1H), 7.15 (t, *J* = 7.6 Hz, 2H), 7.11 (t, *J* = 7.2 Hz, 1H), 6.67 (d, *J* = 7.6 Hz, 2H), 3.06 (s, 3H), 2.45 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 144.2, 134.1, 133.1, 133.0, 130.4, 129.8, 129.3, 128.1, 127.6, 126.67, 126.65, 123.0, 120.2, 119.4, 111.3, 110.9, 38.4, 21.6. LCMS *m*/*z* 377 [M+H]⁺.

⁸ Tian, X.; Song, L.; Rudolph, M.; Rominger, F.; Oeser, T.; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2019, 58, 3589.

Spectral data were consistent with data reported in the literature.⁸

N-Benzyl-*N*-(3-(*p*-tolyl)-1*H*-indol-2-yl)methanesulfonamide (4af)

72% (30.8 mg), a beige solid (EtOAc : *n*-Hexane = 1:3), mp 192-194 °C.

¹H NMR (CDCl₃, 400 MHz) δ 8.24 (br s, 1H), 7.62 (d, *J* = 8.0 Hz, 1H), 7.39 (d, *J* = 8.0 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.30-7.23 (m, 7H), 7.14 (ddd, *J* = 8.0, 6.0, 2.0 Hz, 1H), 4.75 (s, 2H), 2.88 (s, 3H), 2.48 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 137.0, 136.4, 133.4, 130.3, 129.6, 129.1, 128.71, 128.65, 128.1, 128.0, 126.5, 123.3, 120.3, 119.8, 113.3, 111.2, 54.8, 40.1, 21.3. HRMS (EI) [M+Na]⁺ *m/z* calcd for C₂₃H₂₂N₂NaO₂S 413.1294, found 413.1296.

N-Benzyl-*N*-(3-(4-chlorophenyl)-1*H*-indol-2-yl)methanesulfonamide (4ag)

57% (25.5 mg), a white solid (EtOAc : *n*-Hexane = 1:2), mp 186-188 °C.

¹H NMR (CDCl₃, 400 MHz) δ 8.30 (br s, 1H), 7.58 (d, *J* = 8.0 Hz, 1H), 7.47 (d, *J* = 8.4 Hz, 2H), 7.39 (d, *J* = 8.4 Hz, 2H), 7.29-7.24 (m, 5H), 7.22-7.19 (m, 2H), 7.16 (ddd, *J* = 8.0, 6.4, 1.6 Hz, 1H), 4.74 (s, 2H), 2.89 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 135.9, 133.5, 133.1, 131.8, 130.4, 129.1, 128.8, 128.7, 128.3, 128.2, 126.1, 123.6, 120.6, 119.5, 112.5, 111.3, 54.9, 40.3. HRMS (EI) [M+Na]⁺ *m/z* calcd for C₂₂H₁₉ClN₂NaO₂S 433.0748, found 433.0750.

N-Benzyl-*N*-(3-(4-bromophenyl)-1*H*-indol-2-yl)methanesulfonamide (4ah)

65% (32.4 mg), a white solid (EtOAc : *n*-Hexane = 1:2), mp 188-190 °C.

¹H NMR (CDCl₃, 400 MHz) δ 8.28 (br s, 1H), 7.59 (d, *J* = 7.2 Hz, 2H), 7.55 (d, *J* = 8.0 Hz, 1H), 7.30 (d, *J* = 7.2 Hz, 2H), 7.25-7.22 (m, 5H), 7.18-7.17 (m, 2H), 7.13 (t, *J* = 7.2 Hz, 1H), 4.71 (s, 2H), 2.87 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 135.9, 133.5, 132.3, 132.0, 130.7, 128.8, 128.7, 128.3, 128.2, 126.0, 123.6, 121.1, 120.7, 119.5, 112.6, 111.4, 54.9, 40.3. HRMS (EI) [M+Na]⁺ *m*/*z* calcd for C₂₂H₁₉BrN₂NaO₂S 477.0243, found 477.0244.

Methyl 4-(2-(N-Benzylmethylsulfonamido)-1H-indol-3-yl)benzoate (4ai)

71% (34.0 mg), a yellow oil (EtOAc : *n*-Hexane = 1:2).

¹H NMR (CDCl₃, 400 MHz) δ 8.30 (br s, 1H), 8.15 (d, *J* = 8.0 Hz, 2H), 7.62 (d, *J* = 8.0 Hz, 1H), 7.53 (d, *J* = 8.4 Hz, 2H), 7.28-7.23 (m, 5H), 7.18-7.13 (m, 3H), 4.72 (s, 2H), 3.97 (s, 3H), 2.86 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 166.9, 138.4, 135.8, 133.6, 130.1, 128.9, 128.8, 128.7, 128.6, 128.3, 127.8, 125.8, 123.7, 120.8, 119.5, 112.7, 111.4, 54.9, 52.2, 40.3. HRMS (EI) [M+Na]⁺ *m*/*z* calcd for C₂₄H₂₂N₂NaO₄S 457.1192, found 457.1194.

N-Benzyl-N-(3-(4-nitrophenyl)-1H-indol-2-yl)methanesulfonamide (4aj)

46% (21.2 mg), a yellow solid (EtOAc : *n*-Hexane = 1:1), mp 186-188 °C.

¹H NMR (CDCl₃, 400 MHz) δ 8.37 (br s, 1H), 8.31 (d, *J* = 8.8 Hz, 2H), 7.63 (d, *J* = 8.4 Hz, 1H), 7.60 (d, *J* = 8.8 Hz, 2H), 7.33-7.22 (m, 5H), 7.20 (ddd, *J* = 8.0, 6.0, 1.6 Hz, 1H), 7.14 (d, *J* = 6.4 Hz, 2H), 4.73 (s, 2H), 2.93 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 146.5, 140.5, 135.4, 133.6, 129.4, 129.1, 129.0, 128.8, 128.6, 125.4, 124.2, 124.1, 121.4, 119.4, 112.1, 111.6, 55.1, 40.5. HRMS (EI) [M+Na]⁺ *m*/*z* calcd for C₂₂H₁₉N₃NaO₄S 444.0988, found 444.0989.

N-Benzyl-*N*-(3-(3-methoxyphenyl)-1*H*-indol-2-yl)methanesulfonamide (4ak)

76% (44.3 mg), a yellow oil (EtOAc : *n*-Hexane = 1:3).

¹H NMR (CDCl₃, 400 MHz) δ 8.28 (br s, 1H), 7.63 (d, *J* = 8.0 Hz, 1H), 7.41 (t, *J* = 8.2 Hz, 1H), 7.26-7.20 (m, 7H), 7.12 (ddd, *J* = 8.0, 6.4, 2.2 Hz, 1H), 7.07 (d, *J* = 7.6 Hz, 1H), 7.06 (d, *J* = 1.2 Hz, 1H), 6.95 (dd, *J* = 7.6, 2.0 Hz, 1H), 4.73 (s, 2H), 3.86 (s, 3H), 2.89 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 160.0, 136.3, 134.7, 133.4, 129.9, 128.69, 128.65, 128.2, 126.3, 123.4, 121.6, 120.4, 119.8, 115.0, 113.2, 112.6, 111.2, 55.3, 54.9, 40.2 (1 carbon is missing due to overlapping). HRMS (EI) [M]⁺ *m*/*z* calcd for C₂₃H₂₂N₂O₃S 406.1346, found 406.1353.

N-Benzyl-*N*-(3-(*m*-tolyl)-1*H*-indol-2-yl)methanesulfonamide (4al)

66% (28.3 mg), a yellow solid (EtOAc : *n*-Hexane = 1:3), mp 162-164 °C.

¹H NMR (CDCl₃, 400 MHz) δ 8.18 (br s, 1H), 7.60 (d, *J* = 8.0 Hz, 1H), 7.38 (t, *J* = 7.6 Hz, 1H), 7.27-7.20 (m, 10H), 7.12 (ddd, *J* = 8.0, 6.0, 2.0 Hz, 1H), 4.72 (s, 2H), 2.85 (s, 3H), 2.42 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 138.4, 136.3, 133.5, 133.3, 130.0, 128.8, 128.73, 128.66, 128.2, 128.1, 128.0, 126.4, 126.3, 123.3, 120.3, 119.8, 113.6, 111.2, 54.8, 40.1, 21.6. HRMS (EI) [M+Na]⁺ *m*/*z* calcd for C₂₃H₂₂N₂NaO₂S 413.1294, found 413.1296.

N-Benzyl-*N*-(3-(3-nitrophenyl)-1*H*-indol-2-yl)methanesulfonamide (4am)

50% (23.2 mg), a yellow oil (EtOAc : *n*-Hexane = 1:1).

¹H NMR (CDCl₃, 400 MHz) δ 8.69 (br s, 1H), 8.30 (s, 1H), 8.21 (dd, J = 8.4, 0.8 Hz, 1H), 7.80 (d, J = 7.6 Hz, 1H), 7.63 (t, J = 8.0 Hz, 1H), 7.62 (d, J = 8.8 Hz, 1H), 7.35 (d, J = 8.4 Hz, 1H), 7.30 (t, J = 6.4 Hz, 2H), 7.23-7.18 (m, 3H), 7.10 (d, J = 6.8 Hz, 2H), 4.71 (s, 2H), 3.05 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 148.5, 135.13, 135.05, 135.0, 133.6, 129.7, 128.8, 128.7, 128.6, 128.4, 125.4, 124.0, 123.6, 121.6, 121.1, 119.2, 111.6, 55.0, 40.3 (1 carbon is missing due to overlapping). HRMS (EI) [M+Na]⁺ *m*/*z* calcd for C₂₂H₁₉N₃NaO₄S 444.0988, found 444.0987.

N-Benzyl-N-(3-(o-tolyl)-1H-indol-2-yl)methanesulfonamide (4an)

68% (29.1 mg), a beige solid (EtOAc : *n*-Hexane = 1:3), mp 148-150 °C.

¹H NMR (CDCl₃, 400 MHz) δ 8.23 (br s, 1H), 7.36-7.35 (m, 2H), 7.29-7.21 (m, 8H), 7.19 (d, *J* = 8.0 Hz, 2H), 7.06 (t, *J* = 7.8 Hz, 1H), 4.70 (d, *J* = 14.8 Hz, 1H), 4.53 (d, *J* = 15.2 Hz, 1H), 2.80 (s, 3H), 2.08 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 138.3, 136.4, 133.0, 132.5, 131.1, 130.6, 128.8, 128.7, 128.22, 128.19, 128.1, 126.9, 125.8, 123.1, 120.1, 120.0, 112.6, 111.2, 54.8, 40.0, 20.3. HRMS (EI) [M+Na]⁺ *m/z* calcd for C₂₃H₂₂N₂NaO₂S 413.1294, found 413.1295.

N-Benzyl-N-(3-(2-bromophenyl)-1H-indol-2-yl)methanesulfonamide (4ao)

71% (38.7 mg), using 0.120 mmol of **1a** and **2o**; 62 % (307.7 mg), using 1.10 mmol of **1a** and **2o**. a white solid (EtOAc : *n*-Hexane = 1:3), mp 114-116 °C.

¹H NMR (CDCl₃, 400 MHz) δ 8.35 (br s, 1H), 7.77 (dd, J = 8.0, 1.2 Hz, 1H), 7.40 (td, J = 7.4, 1.6 Hz, 1H), 7.32 (td, J = 7.6, 2.0 Hz, 1H), 7.28-7.20 (m, 9H), 7.09 (td, J = 7.4, 1.2 Hz, 1H), 4.72 (d, J = 15.2 Hz, 1H), 4.66 (d, J = 14.8 Hz, 1H), 2.93 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 136.4, 134.4, 133.2, 133.0, 132.9, 129.6, 129.1, 128.7, 128.6, 128.1, 127.4, 126.7, 125.5, 123.3, 120.3, 120.2, 112.5, 111.2, 54.8, 40.5. HRMS (EI) [M]⁺ *m*/*z* calcd for C₂₂H₁₉BrN₂O₂S 454.0345, found 454.0355.

N-Benzyl-*N*-(3-(naphthalen-1-yl)-1*H*-indol-2-yl)methanesulfonamide (4ap)

Two separable atropisomers (total 59%) was obtained.

Isomer A: 46% (21.3 mg), a white solid (EtOAc : *n*-Hexane = $1:6 \rightarrow 1:3$), mp 211-213 °C.

¹H NMR (CDCl₃, 400 MHz) δ 8.44 (br s, 1H), 7.99 (d, *J* = 7.6 Hz, 2H), 7.64 (d, *J* = 8.4 Hz, 1H), 7.60 (t, *J* = 6.8 Hz, 1H), 7.55 (t, *J* = 7.6 Hz, 1H), 7.48 (d, *J* = 6.8 Hz, 1H), 7.39 (t, *J* = 7.6 Hz, 1H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.29-7.25 (m, 4H), 7.17-7.16 (m, 2H), 7.12 (d, *J* = 8.0 Hz, 1H), 7.04 (t, *J* = 7.0 Hz, 1H), 4.68 (d, *J* = 14.8 Hz, 1H), 4.41 (d, *J* = 14.8 Hz, 1H), 2.78 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 136.2, 133.9, 133.1, 132.8, 130.8, 129.7, 128.6, 128.4, 128.0, 127.9, 126.5, 126.3, 126.2, 125.4, 123.2, 120.3, 120.2, 111.3, 111.1, 54.7, 40.0 (3 carbons are missing due to overlapping). HRMS (EI) [M+Na]⁺ *m/z* calcd for C₂₆H₂₂N₂NaO₂S 449.1294, found 449.1293.

Isomer **B**: 13% (6.1 mg), a yellow oil (EtOAc : n-Hexane = 1:6 \rightarrow 1:3).

¹H NMR (CDCl₃, 400 MHz) δ 9.05 (d, *J* = 8.0 Hz, 1H), 7.88 (d, *J* = 8.0 Hz, 1H), 7.71 (br s, 1H), 7.65 (td, *J* = 7.6, 1.2 Hz, 1H), 7.55 (d, *J* = 8.8 Hz, 1H), 7.49 (td, *J* = 7.6, 1.0 Hz, 2H), 7.40 (td, *J* = 7.4, 1.2 Hz, 1H), 7.26 (td, *J* = 7.4, 1.2 Hz, 2H), 7.16 (t, *J* = 7.6 Hz, 3H), 7.06 (d, *J* = 7.2 Hz, 2H), 6.99 (d, *J* = 8.8 Hz, 1H), 6.11 (br s, 1H), 4.75 (d, *J* = 13.6 Hz, 1H), 4.71 (d, *J* = 13.6 Hz, 1H), 3.16 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 135.3, 134.6, 131.9, 129.9, 128.8, 128.62, 128.55, 128.3, 128.1, 127.7, 126.4, 125.4, 124.2, 122.7, 116.8, 116.2, 112.2, 54.4, 41.6 (5 carbons are missing due to overlapping). HRMS (EI) [M+Na]⁺ *m/z* calcd for C₂₆H₂₂N₂NaO₂S 449.1294, found 449.1296.

N-Benzyl-*N*-(3-(naphthalen-2-yl)-1*H*-indol-2-yl)methanesulfonamide (4aq)

Two separable atropisomers (total 70%) was obtained.

Isomer A: 51% (23.6 mg), a yellow solid (EtOAc : *n*-Hexane = $1:5 \rightarrow 1:3$), mp 190-192 °C.

¹H NMR (CDCl₃, 400 MHz) δ 8.27 (br s 1H), 7.96 (d, J = 8.4 Hz, 1H), 7.92-7.90 (m, 1H), 7.88 (s, 1H), 7.86-7.83 (m, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.59 (dd, J = 8.4, 1.6 Hz, 1H), 7.55-7.53 (m, 2H), 7.29-7.19 (m, 7H), 7.14 (t, J = 7.8 Hz, 1H), 4.74 (s, 2H), 2.86 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 136.2, 133.63, 133.57, 132.4, 130.8, 128.8, 128.7, 128.5, 128.4, 128.2, 128.0, 127.9, 127.8, 127.3, 126.50, 126.45, 126.1, 123.5, 120.6, 119.8, 113.4, 111.3, 54.9, 40.2. HRMS (EI) [M+Na]⁺ *m*/*z* calcd for C₂₆H₂₂N₂NaO₂S 449.1294, found 449.1296.

Isomer **B**: 19% (8.9 mg), a yellow oil (EtOAc : n-Hexane = 1:5 \rightarrow 1:3).

¹H NMR (CDCl₃, 400 MHz) δ 7.86 (d, J = 8.0 Hz, 1H), 7.78 (dt, J = 8.0, 1.6 Hz, 1H), 7.73 (d, J = 8.8 Hz, 1H), 7.62 (d, J = 8.4 Hz, 1H), 7.57 (td, J = 7.6, 1.6 Hz, 1H), 7.49 (t, J = 7.4 Hz, 1H), 7.33 (td, J = 7.6, 1.2 Hz, 1H), 7.26 (tt, J = 7.4, 1.4 Hz, 2H), 7.17 (t, J = 8.0 Hz, 2H), 7.13 (td, J = 7.8, 1.4 Hz, 1H), 7.10-7.06 (m, 3H), 6.79 (d, J = 8.4 Hz, 1H), 6.13 (d, J = 8.0 Hz, 1H), 4.68 (s, 2H), 3.07 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 137.8, 134.6, 132.3, 130.7, 130.0, 129.2, 129.12, 129.10, 129.0, 128.9, 128.8, 128.6, 128.3, 125.5, 124.5, 122.7, 122.1, 121.2, 120.8, 117.3, 105.6, 54.7, 41.3 (1 carbon is missing due to overlapping). HRMS (EI) [M+Na]⁺ *m/z* calcd for C₂₆H₂₂N₂NaO₂S 449.1294, found 449.1286.

N-(2-Bromobenzyl)-*N*-(3-phenyl-1*H*-indol-2-yl)methanesulfonamide (4ar)

58% (75.2 mg), a white solid (EtOAc : *n*-Hexane = 1:3), mp 97-99 °C.

¹H NMR (CDCl₃, 400 MHz) δ 8.39 (br s, 1H), 7.57 (d, *J* = 8.0 Hz, 1H), 7.48-7.36 (m, 7H), 7.31 (d, *J* = 8.0 Hz, 1H), 7.22 (t, *J* = 8.0 Hz, 2H), 7.14-7.08 (m, 2H), 4.94 (s, 2H), 2.90 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 135.2, 133.6, 133.1, 132.9, 130.5, 129.6, 129.4, 128.8, 127.81, 127.76, 127.3, 126.5, 123.9, 123.5, 120.5, 119.9, 114.2, 111.2, 54.5, 40.0. HRMS (EI) [M+Na]⁺ *m*/*z* calcd for C₂₂H₁₉BrN₂NaO₂S 477.0243, found 477.0245.

N-(5-Bromo-3-phenyl-1*H*-indol-2-yl)-*N*-(2-bromobenzyl)methanesulfonamide (4fr)

85% (762.8 mg), using 1.69 mmol of **1f** and **2r**, a white solid (EtOAc : *n*-Hexane = 1:3), mp 222-224 °C. ¹H NMR (CDCl₃, 400 MHz) δ 8.46 (br s, 1H), 7.66 (s, 1H), 7.47 (t, J = 7.4 Hz, 2H), 7.45 (dd, J = 8.0, 1.2 Hz, 1H), 7.40 (d, J = 7.2 Hz, 1H), 7.35 (t, J = 6.8 Hz, 3H), 7.30 (dd, J = 8.6, 1.8 Hz, 1H), 7.21 (t, J = 7.4 Hz, 1H), 7.14 (d, J = 9.2 Hz, 1H), 7.11 (td, J = 7.6, 1.2 Hz, 1H), 4.90 (s, 2H), 2.89 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 135.0, 132.9, 132.4, 132.1, 130.7, 129.8, 129.3, 129.0, 128.7, 128.2, 127.8, 127.6, 126.5, 124.0, 122.4, 113.9, 113.8, 112.7, 54.5, 40.2. HRMS (EI) [M+Na]⁺ *m*/*z* calcd for C₂₂H₁₈Br₂N₂NaO₂S 554.9348, found 554.9350.

N,*N*'-(1,3-Phenylenebis(1*H*-indole-3,2-diyl))bis(*N*-benzylmethanesulfonamide) (4as)

43% (25.5 mg), a white solid (EtOAc : *n*-Hexane = 1:2), mp 76-78 °C.

¹H NMR (CDCl₃, 400 MHz) δ 8.29 (br s, 2H), 7.67-7.63 (m, 3H), 7.60 (d, *J* =7.4 Hz, 1H), 7.47 (dd, *J* = 7.4, 1.4 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 7.26-7.15 (m, 14H), 4.78 (s, 4H), 2.89 (s, 6H). ¹³C NMR (CDCl₃, 100 MHz) δ 136.1, 134.1, 133.5, 130.1, 129.5, 128.74, 128.73, 128.32, 128.30, 127.9, 126.2, 123.6, 120.7, 119.5, 113.0, 111.4, 54.9, 40.3. HRMS (EI) [M]⁺ *m/z* calcd for C₃₈H₃₄N₄O₄S₂ 674.2016, found 674.2015.

Synthetic Application

6-(Methylsulfonyl)-7-phenyl-5,6-dihydroindolo[1,2-a]quinazoline (5a)

To a solution of **4ar** (48.6 mg, 0.107 mmol, 1 equiv) in THF (0.5 mL, 0.2 M) was added CuI (1.0 mg, 0.00534 mmol, 5 mol%), 1,10-phenanthroline (1.9 mg, 0.0107 mmol, 10 mol%), and Cs₂CO₃ (175.6 mg, 0.534 mmol, 5 equiv).⁹ After being stirred at 80 °C for 5 h, the reaction mixture was cooled to rt. The resulting mixture was filtered through a pad of Celite. The filtrate was diluted with water and washed with CH₂Cl₂ (three times). The combined organic layer was washed with brine, dried over MgSO₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc : *n*-Hexane = 1:3) to give **5a** (37.6 mg, 94%) as a bright yellow solid (mp 188-190 °C).

¹H NMR (CDCl₃, 400 MHz) δ 8.01 (d, J = 8.4 Hz, 1H), 7.98 (d, J = 8.0 Hz, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.71 (d, J = 8.0 Hz, 2H), 7.53 (t, J = 8.0 Hz, 1H), 7.51 (t, J = 7.8 Hz, 2H), 7.45-7.34 (m, 3H), 7.30 (d, J = 7.6 Hz, 1H), 7.24 (t, J = 7.6 Hz, 1H), 4.91 (s, 2H), 2.32 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 135.2,

⁹ Kiruthika, S. E.; Perumal, P. T. Org. Lett. 2014, 16, 484.

133.1, 131.9, 129.4, 129.3, 128.7, 128.6, 127.6, 127.10, 127.08, 125.4, 124.4, 124.1, 122.1, 120.6, 117.4, 112.6, 111.5, 49.2, 39.8. HRMS (EI) [M+Na]⁺ *m/z* calcd for C₂₂H₁₈N₂NaO₂S 397.0981, found 397.0984.

9-Bromo-6-(methylsulfonyl)-7-phenyl-5,6-dihydroindolo[1,2-a]quinazoline (5b)

95% (145.3 mg), using **4fr** (202.4 mg, 0.379 mmol) for 6 h.

a bright yellow solid (EtOAc : *n*-Hexane = 1:4), mp 202-204 °C.

¹H NMR (CDCl₃, 400 MHz) δ 7.93 (s, 1H), 7.91 (d, *J* = 9.2 Hz, 1H), 7.88 (d, *J* = 9.2 Hz, 1H), 7.68 (d, *J* = 7.2 Hz, 2H), 7.56-7.46 (m, 5H), 7.41 (t, *J* = 7.4 Hz, 1H), 7.28 (t, *J* = 7.4 Hz, 1H), 4.92 (s, 2H), 2.36 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 134.8, 132.4, 130.5, 129.63, 129.55, 129.3, 129.2, 128.9, 127.4, 127.2, 126.8, 125.5, 124.8, 123.0, 117.4, 115.3, 113.0, 112.1, 49.1, 40.1. HRMS (EI) [M+Na]⁺ *m/z* calcd for C₂₂H₁₇BrN₂NaO₂S 475.0086, found 475.0088.

9-Bromo-7-phenylindolo[1,2-*a*]quinazoline (6a)

To a solution of **5b** (612.6 mg, 1.35 mmol, 1 equiv) in DMF (6.8 mL, 0.2 M) was added Cs_2CO_3 (533.6 mg, 1.62 mmol, 1.2 equiv).¹⁰ After being stirred at 120 °C for 24 h, the reaction mixture was poured into water and then the product was extracted with EtOAc (three times). The combined organic layer was washed with brine, dried over MgSO₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc : *n*-Hexane = 1:3) to give **6a** (463.0 mg, 92%) as a bright yellow solid (mp 216-218 °C).

¹H NMR (CDCl₃, 400 MHz) δ 8.64 (s, 1H), 8.36 (d, *J* = 8.8 Hz, 1H), 8.24 (s, 1H), 8.23 (d, *J* = 9.6 Hz, 1H), 7.84-7.79 (m, 4H), 7.56 (t, *J* = 7.8 Hz, 3H), 7.42 (t, *J* = 7.4 Hz, 1H), 7.39 (t, *J* = 7.4 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 152.1, 139.5, 137.7, 133.7, 132.9, 129.94, 129.86, 129.4, 128.7, 128.2, 126.8, 125.8, 123.7, 122.9, 119.2, 116.1, 115.4, 114.6, 109.3. HRMS (EI) [M+H]⁺ *m*/*z* calcd for C₂₁H₁₄BrN₂ 373.0335, found 373.0338.

¹⁰ Han, W.; Zhou, X.; Yang, S.; Xiang, G.; Cui, B.; Chen, Y. J. Org. Chem. **2015**, 80, 11580.

tert-Butyl (*E*)-3-(7-Phenylindolo[1,2-*a*]quinazolin-9-yl)acrylate (6b)

To a solution of **6a** (12.8 mg, 0.0343 mmol, 1 equiv) in toluene (0.7 mL, 0.05 M) were added Pd(PPh₃)₄ (4.0 mg, 0.00343 mmol, 10 mol%), K₂CO₃ (14.2 mg, 0.103 mmol, 3 equiv), and *tert*-butyl acrylate (6.0 μ L, 0.0377 mmol, 1.1 equiv). After being stirred at 120 °C for 6 h under Ar, the reaction mixture was cooled to room temperature and poured into water. Then the product was extracted with CH₂Cl₂ (three times). The combined organic layer was washed with brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc : *n*-Hexane = 1:6) to give **6b** (11.2 mg, 78%) as an orange solid (mp 225-227 °C).

¹H NMR (CDCl₃, 400 MHz) δ 8.62 (s, 1H), 8.41 (d, *J* = 8.4 Hz, 1H), 8.34 (d, *J* = 8.8 Hz, 1H), 8.24 (s, 1H), 7.86 (d, *J* = 8.0 Hz, 2H), 7.83-7.76 (m, 3H), 7.67 (d, *J* = 8.8 Hz, 1H), 7.57 (t, *J* = 7.0 Hz, 2H), 7.42 (t, *J* = 6.8 Hz, 1H), 7.40 (t, *J* = 6.8 Hz, 1H), 6.45 (d, *J* = 16.0 Hz, 1H), 1.57 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz) δ 166.5, 151.7, 144.2, 139.4, 137.7, 133.6, 133.1, 130.1, 130.0, 129.3, 129.1, 128.7, 128.4, 126.8, 123.7, 122.3, 121.2, 119.2, 114.7, 114.4, 110.3, 80.4, 28.3 (1 carbon is missing due to overlapping). HRMS (EI) [M+H]⁺ *m/z* calcd for C₂₈H₂₅N₂O₂ 421.1911, found 421.1911.

7,9-Diphenylindolo[1,2-*a*]quinazoline (6c)

6a (29.9 mg, 0.0801 mmol, 1 equiv), PhB(OH)₂ (14.7 mg, 0.120 mmol, 1.5 equiv), Pd(PPh₃)₄ (4.6 mg, 0.00401 mmol, 5 mol%), and 10% aq. Na₂CO₃ (80 μ L, 1.0 M) were dissolved in DME (0.4 mL, 0.2 M). After being stirred at reflux for 17 h under Ar, the reaction mixture was cooled to room temperature and poured into water. Then the product was extracted with CH₂Cl₂ (three times), dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc : *n*-Hexane = 1:3) to give **6c** (25.1 mg, 85%) as an orange solid (mp 230-232 °C).

¹H NMR (CDCl₃, 400 MHz) δ 8.63 (s, 1H), 8.46 (d, *J* = 8.4 Hz, 1H), 8.43 (d, *J* = 8.8 Hz, 1H), 8.35 (s, 1H), 7.92 (d, *J* = 7.6 Hz, 2H), 7.83-7.76 (m, 3H), 7.73 (d, *J* = 8.0 Hz, 2H), 7.57 (t, *J* = 7.0 Hz, 2H), 7.49 (t, *J* = 7.0 Hz, 2H), 7.42-7.36 (m, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 151.4, 141.6, 139.3, 138.0, 135.8, 133.51, 133.50, 130.1, 129.2, 129.0, 128.8, 128.7, 127.6, 127.0, 126.6, 123.3, 122.8, 119.2, 118.7, 114.6, 114.3, 110.1 (1 carbon is missing due to overlapping). HRMS (EI) [M+H]⁺ *m/z* calcd for C₂₇H₁₉N₂ 371.1543, found 371.1546.

4-Methyl-*N*-(2-(7-phenylindolo[1,2-*a*]quinazolin-9-yl)phenyl)benzenesulfonamide (6d)

To a solution of **6a** (60.1 mg, 0.161 mmol, 1.0 equiv) in THF/H₂O (1:1, 3.2 mL, 0.05 M) were added PdCl₂(dppf)·CH₂Cl₂ (13.1 mg, 0.0161 mmol, 10 mol%), Cs₂CO₃ (74.2 mg, 0.225 mmol, 1.4 equiv), and *N*-Ts-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (78.1 mg, 0.209 mmol, 1.3 equiv) under Ar.¹¹ After being stirred at reflux 90 °C for 1 h, the reaction mixture was poured into water and then the product was extracted with CH₂Cl₂ (three times). The combined organic layer was washed with brine, dried over MgSO₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc : *n*-Hexane = 1:3) to give **6d** (57.7 mg, 66%) as an orange solid (mp 138-140 °C).

¹H NMR (CDCl₃, 400 MHz) δ 8.68 (s, 1H), 8.47 (d, *J* = 8.0 Hz, 1H), 8.39 (d, *J* = 8.0 Hz, 1H), 7.88-7.82 (m, 4H), 7.73-7.70 (m, 2H), 7.53 (t, *J* = 7.4 Hz, 2H), 7.45 (t, *J* = 7.2 Hz, 1H), 7.42-7.39 (m, 3H), 7.34 (t, *J* = 8.4 Hz, 1H), 7.25 (d, *J* = 9.6 Hz, 1H), 7.16 (t, *J* = 7.8 Hz, 2H), 6.98 (d, *J* = 8.0 Hz, 2H), 6.82 (s, 1H), 2.24 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 152.1, 143.8, 139.7, 138.0, 136.0, 134.2, 134.1, 133.8, 133.2, 131.5, 130.7, 130.0, 129.5, 129.4, 129.1, 128.8, 128.7, 128.6, 127.2, 126.8, 124.6, 123.8, 123.5, 121.0, 120.6, 119.3, 114.7, 109.9, 21.4 (1 carbon is missing due to overlapping). HRMS (EI) [M]⁺ *m*/*z* calcd for C₃₄H₂₅N₃O₂S 539.1662, found 539.1664.

N,7-Diphenylindolo[1,2-*a*]quinazolin-9-amine (6e)

To a solution of **6a** (191.1 mg, 0.512 mmol, 1.0 equiv) in 1,4-dioxane (1.0 mL, 0.5 M) were added Pd(OAc)₂ (5.9 mg, 0.0256 mmol, 5 mol%), Xantphos (15.5 mg, 0.0256 mmol, 5 mol%), Cs₂CO₃ (340.1 mg, 1.024 mmol, 2 equiv), and aniline (71 μ L, 0.768 mmol, 1.5 equiv) under Ar.¹² After being stirred at 100 °C for 4 h, the reaction mixture was cooled to room temperature, filtered through a pad of Celite, and washed with EtOAc. The residue was concentrated in vacuo and purified by column chromatography on silica gel (EtOAc : *n*-Hexane = 1:3) to give **6e** (139.9 mg, 70%) as an orange solid (mp 198-200 °C).

¹H NMR (CDCl₃, 400 MHz) δ 8.62 (s, 1H), 8.40 (d, *J* = 8.8 Hz, 1H), 8.30 (d, *J* = 8.8 Hz, 1H), 7.86 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.84 (d, *J* = 2.0 Hz, 1H), 7.82-7.78 (m, 2H), 7.53 (t, *J* = 7.6 Hz, 2H), 7.38 (t, *J* = 7.6 Hz, 1H), 7.35 (t, *J* = 7.4 Hz, 2H), 7.27 (t, *J* = 7.8 Hz, 2H), 7.09 (d, *J* = 7.6 Hz, 2H), 6.90 (t, *J* = 7.2 Hz, 1H), 5.87 (br s, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 151.1, 144.5, 139.5, 138.0, 137.9, 133.6, 133.5, 129.8, 129.5,

¹¹ Youn, S. W.; Ko, T. Y.; Jang, Y. H. Angew. Chem., Int. Ed. 2017, 56, 6636.

¹² Soussi, M. A.; Provot, O.; Bernadat, G.; Bignon, J.; Wdzieczak-Bakala, J.; Desravines, D.; Dubois, J.; Brion, J. -D. Messaoudi, S.; Alami, M. *Eur. J. Med. Chem.* **2014**, *78*, 178.

129.4, 129.2, 128.6, 126.4, 125.7, 123.0, 120.3, 119.0, 117.2, 116.4, 114.9, 114.4, 109.4, 109.2. HRMS (EI) $[M]^+ m/z$ calcd for C₂₇H₁₉N₃ 385.1573, found 385.1573.

7-Phenyl-N-(pyridin-2-yl)indolo[1,2-a]quinazolin-9-amine (6f)

To a solution of **6a** (106.1 mg, 0.284 mmol, 1.0 equiv) in 1,4-dioxane (0.7 mL, 0.4 M) were added Pd₂(dba)₃ (10.1 mg, 0.0114 mmol, 4 mol%), Xantphos (20.3 mg, 0.0341 mmol, 12 mol%), K₃PO₄ (86.2 mg, 0.398 mmol, 1.4 equiv), and 2-aminopyridine (28.6 mg, 0.298 mmol, 1.05 equiv) under Ar.¹³ After being stirred at 100 °C for 3 h, the reaction mixture was cooled to room temperature, filtered through a pad of Celite, and washed with EtOAc. The residue was concentrated in vacuo and purified by column chromatography on silica gel (EtOAc : *n*-Hexane = 1:2) to give **6f** (65.8 mg, 60%) as an orange solid (mp 202-204 °C). ¹H NMR (CDCl₃, 400 MHz) δ 8.62 (s, 1H), 8.39 (d, *J* = 8.8 Hz, 1H), 8.32 (d, *J* = 8.8 Hz, 1H), 8.22 (d, *J* = 4.0 Hz, 1H), 8.05 (d, *J* = 2.0 Hz, 1H), 7.88 (d, *J* = 7.2 Hz, 2H), 7.81-7.77 (m, 2H), 7.54 (t, *J* = 7.8 Hz, 2H), 7.50-7.45 (m, 2H), 7.38 (t, *J* = 7.6 Hz, 1H), 7.36 (t, *J* = 7.6 Hz, 1H), 6.87 (d, *J* = 8.8 Hz, 1H), 6.86 (br s, 1H), 6.72 (dd, *J* = 7.0, 5.4 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 156.9, 151.3, 148.5, 139.5, 137.8, 137.7, 135.5, 133.5, 129.8, 129.2, 128.6, 126.5, 123.1, 119.0, 118.7, 114.8, 114.7, 114.4, 112.1, 109.4, 107.6 (3 carbons are missing due to overlapping). HRMS (EI) [M]⁺ *m/z* calcd for C₂₆H₁₈N₄ 386.1526, found 386.1527.

7-Phenyl-13-tosyl-13*H*-quinazolino[1',2':1,5]pyrrolo[2,3-*b*]carbazole (6g)

6d (30.7 mg, 0.0569 mmol, 1 equiv), $Pd(OAc)_2$ (1.3 mg, 0.00569 mmol, 10 mol%), bathocuproine (2.1 mg, 0.00569 mmol, 10 mol%), and NaOAc (4.8 mg, 0.0569 mmol, 1 equiv) were dissolved in mesitylene (0.6 mL, 0.1 M).¹⁴ The resulting mixture was stirred at 100 °C in an oil bath under aerobic conditions. After 6 h, the reaction mixture was concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc : *n*-Hexane = 1:2) to give **6g** (27.8 mg, 91%) as a red solid (mp 271-273 °C).

¹H NMR (CDCl₃, 400 MHz) δ 9.36 (s, 1H), 8.60 (d, J = 8.4 Hz, 1H), 8.57 (s, 1H), 8.48 (s, 1H), 8.31 (d, J = 8.0 Hz, 1H), 7.96-7.91 (m, 4H), 7.78 (dd, J = 7.6, 1.2 Hz, 1H), 7.67 (d, J = 8.4 Hz, 2H), 7.58 (t, J = 7.6 Hz, 2H), 7.48-7.39 (m, 3H), 7.36 (t, J = 7.2 Hz, 1H), 7.01 (d, J = 8.0 Hz, 2H), 2.19 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 151.5, 144.8, 139.6, 139.4, 137.9, 135.8, 134.5, 134.0, 133.4, 130.0, 129.6, 129.4,

¹³ Yin, J.; Zhao, M. M.; Huffman, M. A.; McNamara, J. M. Org. Lett. 2002, 4, 3481.

¹⁴ Youn, S. W.; Kim, Y. H.; Jo, Y. H. Adv. Synth. Catal. 2019, 361, 462.

129.2, 128.7, 127.1, 126.9, 126.6, 126.4, 125.9, 124.2, 123.4, 123.3, 120.0, 119.2, 115.5, 114.5, 110.5, 109.5, 100.6, 21.4. HRMS (EI) [M]⁺ *m/z* calcd for C₃₄H₂₃N₃O₂S 537.1505, found 537.1511.

N-Benzyl-*N*-(3-phenyl-7-(phenylethynyl)-1*H*-indol-2-yl)methanesulfonamide (7a)

To a solution of **4oa** (59.4 mg, 0.130 mmol, 1.0 equiv) in DMF (0.5 mL, 0.25 M) and NEt₃ (0.3 mL, 0.5 M) were added Pd(PPh₃)₂Cl₂ (7.0 mg, 0.00978 mmol, 7.5 mol%), CuI (3.8 mg, 0.0196 mmol, 15 mol%), PPh₃ (16.2 mg, 0.0587 mmol, 45 mol%), and phenylacetylene (37 μ L, 0.326 mmol, 2.5 equiv) under Ar.¹⁵ After being stirred at 160 °C for 3 h, the reaction mixture was poured into water and then the product was extracted with EtOAc (three times). The combined organic layer was washed with brine, dried over MgSO₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc : *n*-Hexane = 1:1) to give **7a** (50.1 mg, 81%) as a yellow solid (mp 163-165 °C).

¹H NMR (CDCl₃, 400 MHz) δ 8.34 (br s, 1H), 7.60 (d, J = 8.0 Hz, 1H), 7.56-7.54 (m, 2H), 7.53-7.45 (m, 4H), 7.44-7.38 (m, 5H), 7.30-7.24 (m, 5H), 7.12 (t, J = 7.8 Hz, 1H), 4.80 (s, 2H), 2.79 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 136.3, 134.1, 133.1, 131.7, 129.3, 129.0, 128.9, 128.8, 128.5, 128.42, 128.35, 127.4, 126.6, 125.8, 122.9, 120.5, 120.4, 114.4, 106.4, 94.1, 84.7, 55.2, 40.4 (1 carbon is missing due to overlapping). HRMS (EI) [M]⁺ *m*/*z* calcd for C₃₀H₂₄N₂O₂S 476.1553, found 476.1557.

¹⁵ Chen, S.; Wang, L.; Zhang, J.; Hao, Z.; Huang, H.; Deng, G.-J. J. Org. Chem. 2017, 82. 11182.

N-Benzyl-*N*-(7-(1-benzyl-5-phenyl-1*H*-1,2,3-triazol-4-yl)-3-phenyl-1*H*-indol-2-yl)methanesulfonamide (7b) & *N*-Benzyl-*N*-(7-(1-benzyl-4-phenyl-1*H*-1,2,3-triazol-5-yl)-3-phenyl-1*H*-indol-2-yl)methane-sulfonamide (7b')

To a solution of **7a** (46.8 mg, 0.0982 mmol, 1.0 equiv) in benzene (1.0 mL, 0.1 M) were added Cp*RuCl(PPh₃)₂ (0.8 mg, 0.000982 mmol, 1 mol%) and benzyl azide (20 μ L, 0.147 mmol, 1.5 equiv).¹⁶ After being stirred at 80 °C for 5 h, the reaction mixture was concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc : *n*-Hexane = 1:2) to give **7b** (total 43.7 mg, 73%, **A**:**B** = 1:2.3). Regiochemistry could not be determined and two regioisomers were obtained with a 1:2.3 (= **A** : **B**) ratio.

Isomer A: 22% (13.2 mg), a brown solid (EtOAc : *n*-Hexane = 1:2), mp 83-85 °C.

¹H NMR (CDCl₃, 400 MHz) δ 10.75 (br s, 1H), 7.54 (tt, *J* = 7.4, 1.4 Hz, 1H), 7.50-7.46 (m, 3H), 7.41 (d, *J* = 4.0 Hz, 4H), 7.37-7.31 (m, 1H), 7.29-7.26 (m, 8H), 7.21 (dd, *J* = 8.4, 1.6 Hz, 2H), 7.05-7.02 (m, 2H), 6.86 (dd, *J* = 7.6, 1.2 Hz, 1H), 6.82 (t, *J* = 7.6 Hz, 1H), 5.41 (s, 2H), 4.82 (s, 2H), 2.87 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 143.4, 135.8, 135.1, 133.8, 133.5, 131.3, 130.2, 130.0, 129.5, 129.4, 128.9, 128.74, 128.68, 128.6, 128.3, 128.1, 128.0, 127.6, 127.2, 126.9, 119.8, 119.64, 119.58, 114.2, 114.0, 55.3, 52.1, 40.7 (1 carbon is missing due to overlapping). HRMS (EI) [M]⁺*m*/*z* calcd for C₃₇H₃₁N₅O₂S 609.2193, found 609.2206.

Isomer **B:** 51% (30.5 mg), a brown solid (EtOAc : *n*-Hexane = 1:2), mp 244-246 °C.

¹H NMR (CDCl₃, 400 MHz) δ 10.99 (br s, 1H), 7.74 (d, *J* = 8.0 Hz, 1H), 7.54-7.51 (m, 2H), 7.45-7.35 (m, 5H), 7.20-7.07 (m, 12H), 6.87 (dd, *J* = 7.2, 0.4 Hz, 1H), 6.81 (dd, *J* = 8.0, 1.6 Hz, 2H), 4.98 (d, *J* = 14.0 Hz, 1H), 4.88 (d, *J* = 14.8 Hz, 1H), 4.84 (d, *J* = 14.0 Hz, 1H), 4.75 (d, *J* = 13.6 Hz, 1H), 2.79 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 144.8, 135.3, 134.9, 132.9, 130.9, 130.2, 129.7, 129.6, 129.2, 128.63, 128.56, 128.5, 128.4, 128.2, 128.01, 127.98, 127.9, 127.5, 127.1, 126.4, 125.2, 122.1, 120.3, 116.2, 110.1, 54.5, 52.2, 40.5 (1 carbon is missing due to overlapping). HRMS (EI) [M]⁺ *m*/*z* calcd for C₃₇H₃₁N₅O₂S 609.2193, found 609.2204.

N-(1-Allyl-7-bromo-3-phenyl-1*H*-indol-2-yl)-*N*-benzylmethanesulfonamide (7c)

To a solution of **4oa** (159.9 mg, 0.351 mmol, 1.0 equiv) in DMSO (0.4 mL, 0.9 M) was added KOH (84.7 mg, 1.404 mmol, 4 equiv). After being stirred at 25 °C for 15 min, allyl bromide (62 μ L, 0.702 mmol, 2

¹⁶ Zhang, L.; Chen, X.; Xue, P.; Sun, H. H. Y.; Williams, I. D.; Sharpless, K. B.; Fokin, V. V.; Jia, G. J. Am. Chem. Soc. 2005, 127, 15998.

equiv) was added dropwise and stirring continued for a further 4 h.¹⁷ The reaction mixture was poured into water and then the product was extracted with CH₂Cl₂ (three times). The combined organic layer was washed with brine, dried over MgSO₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc : *n*-Hexane = 1:5) to give **7c** (114.5 mg, 66%) as a yellow oil. ¹H NMR (CDCl₃, 400 MHz) δ 7.43 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.39-7.34 (m, 4H), 7.31-7.29 (m, 1H), 7.26-7.20 (m, 4H), 7.11 (dd, *J* = 8.0, 1.2 Hz, 2H), 6.92 (t, *J* = 7.6 Hz, 1H), 5.99-5.89 (m, 1H), 5.11 (d, *J* = 9.6 Hz, 1H), 5.10-5.03 (m, 1H), 4.95-4.86 (m, 2H), 4.74 (d, *J* = 14.4 Hz, 1H), 4.66 (d, *J* = 14.4 Hz, 1H), 2.57 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 135.4, 134.9, 132.8, 132.0, 131.3, 130.3, 129.8, 129.6, 128.9, 128.8, 128.6, 128.5, 127.6, 121.2, 119.5, 116.3, 116.0, 104.1, 56.3, 45.7, 41.4. HRMS (EI) [M]⁺ *m/z* calcd for C₂₅H₂₃BrN₂O₂S 494.0658, found 494.0665.

N-(1-Allyl-3-phenyl-7-((trimethylsilyl)ethynyl)-1H-indol-2-yl)-N-benzylmethanesulfonamide

To a solution of **7c** (113.3 mg, 0.229 mmol, 1.0 equiv) in NEt₃ (5.7 mL, 0.04 M) were added Pd(PPh₃)₂Cl₂ (16.1 mg, 0.0229 mmol, 10 mol%), CuI (4.4 mg, 0.0229 mmol, 10 mol%), and trimethylsilylacetylene (65 μ L, 0.457 mmol, 2.0 equiv) under Ar.¹⁸ After being stirred at 100 °C for 4 h, the reaction mixture was concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc : *n*-Hexane = 1:5) to give the corresponding product (111.5 mg, 95%) as a yellow oil.

¹H NMR (CDCl₃, 400 MHz) δ 7.43 (dd, J = 7.6, 2.0 Hz, 2H), 7.35-7.29 (m, 4H), 7.26-7.22 (m, 2H), 7.20-7.16 (m, 2H), 7.11 (dd, J = 7.2, 1.2 Hz, 2H), 7.02 (t, J = 7.6 Hz, 1H), 6.07-5.97 (m, 1H), 5.22 (dq, J = 17.4, 1.5 Hz, 1H), 5.13 (dd, J = 10.6, 0.6 Hz, 1H), 5.01-4.94 (m, 2H), 4.82 (d, J = 14.4 Hz, 1H), 4.66 (d, J = 14.4 Hz, 1H), 2.56 (s, 3H), 0.27 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz) δ 135.5, 135.1, 133.13, 133.09, 131.1, 130.2, 130.1, 129.8, 128.7, 128.5, 128.4, 127.4, 127.3, 121.2, 119.8, 116.1, 115.9, 106.6, 103.1, 98.0, 56.3, 45.6, 41.4, -0.2. HRMS (EI) [M]⁺ m/z calcd for C₃₀H₃₂N₂O₂SSi 512.1948, found 512.1952.

N-(1-Allyl-7-ethynyl-3-phenyl-1*H*-indol-2-yl)-*N*-benzylmethanesulfonamide (7d)

To a solution of the above TMS-alkynyl-substituted indole (67.6 mg, 0.132 mmol, 1.0 equiv) in THF (4.4 mL, 0.03 M) was added *n*Bu₄NF (165 μ L, 0.165 mmol, 1.25 equiv, 1.0 M solution in THF).¹⁸ After being stirred at 25 °C for 2 h, the reaction mixture was quenched with sat. aq. NH₄Cl, extracted with EtOAc (three times), dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography

¹⁷ Black, D. S.; Keller, P. A.; Kumar, N. *Tetrahedron* **1992**, *48*, 7601.

¹⁸ Kotha, S.; Aswar, V. R.; Singhal, G. Tetrahedron 2017, 73, 6436.

on silica gel (EtOAc : n-Hexane = 1:5) to give 7d (53.2 mg, 91%) as a yellow oil.

¹H NMR (CDCl₃, 400 MHz) δ 7.48 (dd, *J* = 8.0, 0.8 Hz, 1H), 7.47 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.38-7.29 (m, 4H), 7.27-7.25 (m, 2H), 7.24-7.20 (m, 2H), 7.12 (dd, *J* = 8.4, 1.6 Hz, 2H), 7.05 (t, *J* = 7.6 Hz, 1H), 6.04-5.94 (m, 1H), 5.16-5.10 (m, 2H), 5.02-4.92 (m, 2H), 4.79 (d, *J* = 14.4 Hz, 1H), 4.67 (d, *J* = 14.4 Hz, 1H), 3.27 (s, 1H), 2.59 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 135.3, 135.1, 133.2, 133.0, 131.2, 130.5, 130.2, 129.7, 128.7, 128.51, 128.46, 127.43, 127.36, 121.5, 119.9, 116.1, 116.0, 105.4, 81.9, 80.8, 56.3, 45.6, 41.4. HRMS (EI) [M]⁺ *m/z* calcd for C₂₇H₂₄N₂O₂S 440.1553, found 440.1558.

N-(1-Allyl-7-(1-benzyl-1*H*-1,2,3-triazol-4-yl)-3-phenyl-1*H*-indol-2-yl)-*N*-benzylmethanesulfonamide (7e)

To a solution of **7d** (20.2 mg, 0.0459 mmol, 1.0 equiv) in THF/H₂O (3:1, 1.1 mL, 0.04 M) were added CuSO₄·5H₂O (2.3 mg, 0.00917 mmol, 20 mol%), Na-ascorbate (8.3 mg, 0.0413 mmol, 0.9 equiv), and benzyl azide (6 μ L, 0.0459 mmol, 1 equiv) under Ar.¹⁹ After being stirred at 60 °C for 4 h, the reaction mixture was poured into water and then the product was extracted with EtOAc (three times). The combined organic layer was washed with brine, dried over MgSO₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc : *n*-Hexane = 1:2) to give **7e** (21.5 mg, 82%) as a colorless oil.

¹H NMR (CDCl₃, 400 MHz) δ 7.52 (dd, J = 7.8, 1.4 Hz, 1H), 7.47 (s, 1H), 7.41-7.34 (m, 7H), 7.31-7.28 (m, 3H), 7.26-7.22 (m, 3H), 7.16-7.08 (m, 4H), 5.60 (d, J = 15.6 Hz, 1H), 5.57 (d, J = 14.8 Hz, 1H), 5.21-5.12 (m, 1H), 4.70 (d, J = 14.4 Hz, 1H), 4.65 (d, J = 14.4 Hz, 1H), 4.62-4.48 (m, 2H), 4.43 (dq, J = 10.6, 1.4 Hz, 1H), 4.22 (dq, J = 17.2, 1.2 Hz, 1H), 2.57 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 147.3, 135.0, 134.7, 134.6, 133.5, 132.1, 131.5, 130.3, 129.8, 129.1, 128.9, 128.8, 128.53, 128.49, 128.21, 128.18, 127.4, 127.2, 123.0, 120.8, 119.7, 115.9, 115.4, 114.9, 56.6, 54.3, 46.1, 41.3. HRMS (EI) [M]⁺ *m/z* calcd for C₃₄H₃₁N₅O₂S 573.2193, found 573.2189.

N-Benzyl-N-(1-phenyl-4H-pyrrolo[3,2,1-ij]quinolin-2-yl)methanesulfonamide (8)

To a solution of **7c** (41.3 mg, 0.0834 mmol, 1.0 equiv) in MeCN/NEt₃ (10:1, 1.7 mL, 0.05 M) were added Pd(OAc)₂ (4.8 mg, 0.0208 mmol, 25 mol%) and P(*o*-Tol)₃ (10.7 mg, 0.0333 mmol, 40 mol%) under Ar.¹⁷ After being stirred at 100 °C for 4 h, the reaction mixture was concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc : *n*-Hexane = 1:5) to give **8** (26.9 mg, 78%) as a brown solid (mp 150-152 °C).

¹⁹ Gee, H.-C.; Lee, C.-H.; Jeong, Y.-H.; Jang, W.-D. Chem. Commun. 2011, 47, 11963.

¹H NMR (CDCl₃, 400 MHz) δ 7.49-7.44 (m, 4H), 7.39-7.28 (m, 7H), 6.93 (dd, J = 8.0, 7.2 Hz, 1H), 6.79 (d, J = 6.8 Hz, 1H), 6.46 (dt, J = 10.0, 2.2 Hz, 1H), 5.62 (dt, J = 10.0, 3.6 Hz, 1H), 5.01 (dt, J = 18.6, 2.7 Hz, 1H), 4.95 (d, J = 14.0 Hz, 1H), 4.59 (d, J = 14.0 Hz, 1H), 3.92 (dt, J = 18.6, 2.9 Hz, 1H), 2.61 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 135.8, 134.0, 131.6, 129.7, 129.5, 129.0, 128.8, 128.6, 127.2, 123.3, 123.2, 122.9, 120.9, 119.7, 119.4, 118.2, 115.1, 56.8, 44.6, 40.6 (1 carbon is missing due to overlapping). HRMS (EI) [M]⁺ *m/z* calcd for C₂₅H₂₂N₂O₂S 414.1397, found 414.1402.

4-Methyl-N-(3-phenyl-1H-indol-2-yl)benzenesulfonamide (7f)

To a solution of **4ac** (138.1 mg, 0.305 mmol, 1.0 equiv) in MeOH (30.5 mL, 0.01 M) were added HCO₂NH₄ (192.4 mg, 3.05 mmol, 10 equiv) and 10% Pd/C (162.4 mg, 0.153 mmol, 0.5 equiv) under Ar. After being stirred at 25 °C for 3 h, the reaction mixture was filtered through Celite and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc : *n*-Hexane = 1:5) to give **7f** (100.6 mg, 91%) as a white solid (mp 149-151 °C).

¹H NMR (CDCl₃, 400 MHz) δ 9.01 (br s, 1H), 7.49 (d, *J* = 8.0 Hz, 2H), 7.40 (d, *J* = 8.0 Hz, 1H), 7.26-7.20 (m, 4H), 7.12-7.08 (m, 4H), 6.87 (dd, *J* = 8.0, 1.2 Hz, 2H), 2.34 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 144.4, 134.8, 133.1, 132.4, 129.7, 128.74, 128.65, 127.0, 126.8, 126.6, 126.2, 122.5, 120.4, 118.9, 111.1, 107.9, 21.5. LCMS *m*/*z* 364 [M+2H]⁺. HRMS (EI) [M]⁺ *m*/*z* calcd for C₂₁H₁₈N₂O₂S 362.1083, found 362.1088.

N-Allyl-N-(3-allyl-3-phenyl-3H-indol-2-yl)-4-methylbenzenesulfonamide (7g)

Allyl bromide (13 µl, 0.150 mmol, 2.2 equiv) was added dropwise to a solution of 7f (24.7 mg, 0.0681

mmol, 1 equiv) and Cs₂CO₃ (67.2 mg, 0.204 mmol, 3.0 equiv) in DMF (0.1 mL, 0.5 M). After being stirred at 25 °C for 36 h, the reaction mixture was poured into water and then the product was extracted with EtOAc (three times). The combined organic layer was washed with brine, dried over MgSO₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc : *n*-Hexane = $1:5 \rightarrow 1:3$) to give **7g** (10.7 mg, 36%) as a yellow oil and **7h** (13.1 mg, 43%) as a white solid (mp 131-133 °C).

¹H NMR (CDCl₃, 400 MHz) δ 7.44 (d, J = 8.0 Hz, 2H), 7.25-7.21 (m, 4H), 7.15-7.13 (m, 2H), 7.11 (d, J = 8.0 Hz, 2H), 7.04 (t, J = 7.4 Hz, 1H), 6.95 (d, J = 7.6 Hz, 1H), 6.92 (d, J = 8.0 Hz, 1H), 5.88-5.78 (m, 1H), 5.35-5.27 (m, 2H), 5.24 (d, J = 10.4 Hz, 1H), 5.12 (dd, J = 16.0, 0.8 Hz, 1H), 4.93 (dd, J = 10.0, 1.6 Hz, 1H), 4.59 (dd, J = 15.8, 5.4 Hz, 1H), 4.51 (dd, J = 15.8, 5.8 Hz, 1H), 4.18 (dd, J = 13.0, 8.2 Hz, 1H), 3.14 (dd, J = 12.8, 6.4 Hz, 1H), 2.36 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 169.9, 141.8, 141.2, 140.5, 139.1, 136.9, 131.4, 130.6, 128.8, 128.5, 127.9, 127.3, 126.5, 126.3, 124.1, 123.4, 120.3, 118.6, 109.6, 60.1, 44.9, 39.7, 21.4. HRMS (EI) [M]⁺ m/z calcd for C₂₇H₂₆N₂O₂S 442.1710, found 442.1709.

N-Allyl-*N*-(1-allyl-3-phenyl-1*H*-indol-2-yl)-4-methylbenzenesulfonamide (7h)

¹H NMR (CDCl₃, 400 MHz) δ 7.53 (d, J = 8.0 Hz, 1H), 7.47 (d, J = 6.8 Hz, 2H), 7.39 (d, J = 8.4 Hz, 1H), 7.30-7.26 (m, 1H), 7.24-7.16 (m, 3H), 7.14-7.07 (m, 5H), 6.09-6.00 (m, 1H), 5.85-5.75 (m, 1H), 5.29-5.23 (m, 2H), 5.07-5.02 (m, 2H), 4.95-4.84 (m, 2H), 4.43 (ddd, J = 14.2, 6.0, 1.0 Hz, 1H), 3.95 (dd, J = 14.2, 7.8 Hz, 1H), 2.40 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 143.6, 136.2, 134.6, 134.0, 133.4, 132.6, 129.6, 129.5, 129.4, 128.1, 127.7, 126.3, 123.0, 120.1, 119.8, 117.2, 115.0, 111.1, 55.5, 46.4, 21.5 (2 carbons are missing due to overlapping). HRMS (EI) [M]⁺ m/z calcd for C₂₇H₂₆N₂O₂S 442.1710, found 442.1714.

11-Phenyl-1-tosyl-2,5-dihydro-1*H*-[1,3]diazepino[1,2-*a*]indole (9)

To a solution of **7h** (13.1 mg, 0.0296 mmol, 1 equiv) in CH_2Cl_2 (0.2 mL, 0.1 M) was added Grubbs 1st generation catalyst (1.2 mg, 0.00148 mmol, 5 mol%) under Ar. After being stirred at 25 °C for 12 h, the solvent was evaporated and the residue was purified by column chromatography on silica gel (EtOAc : *n*-Hexane = 1:5) to give **9** (11.8 mg, 96%) as a white solid (mp 89-91 °C).

¹H NMR (CDCl₃, 400 MHz) δ 7.67 (d, *J* = 8.0 Hz, 1H), 7.34 (t, *J* = 7.4 Hz, 1H), 7.29 (t, *J* = 7.4 Hz, 1H), 7.28 (d, *J* = 8.0 Hz, 2H), 7.21-7.18 (m, 5H), 7.12 (t, *J* = 7.4 Hz, 1H), 6.85 (d, *J* = 8.0 Hz, 2H), 6.04-5.98 (m, 1H), 5.82 (dt, *J* = 11.6, 2.0 Hz, 1H), 5.02 (dt, *J* = 17.2, 3.0 Hz, 1H), 4.93 (d, *J* = 18.4 Hz, 1H), 4.80 (dd, *J* = 17.2, 7.6 Hz, 1H), 4.12 (dd, *J* = 18.6, 1.8 Hz, 1H), 2.29 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 143.2, 136.3, 134.1, 133.4, 130.6, 129.0, 128.9, 128.8, 128.2, 127.3, 125.8, 125.2, 123.8, 123.1, 120.3, 120.1, 113.7, 109.3, 50.4, 41.2, 21.5. HRMS (EI) [M+Na]⁺ *m*/*z* calcd for C₂₅H₂₂N₂NaO₂S 437.1294, found 437.1301.

Full Data of Optimization Studies

	NHa + PhN addit	ive (10 mol%) iene (0.1 M)		Ph N ^{-Ts}	< Byproducts > TsNHMe Ph、	° O ↓ Ts	
	1a (1 equiv)	00 °C, Ar	3a	d ^l e		Ме	
Entry	Additive	Time (h)	3ad (%) ^{<i>a</i>}	Entry	Additive	Time (h)	3ad (%) ^{<i>a</i>}
1	M_2CO_3 (M = Na, K, Cs), NaOAc, K_3PO_4, NEt_3, DMAP, or DBU	24	trace	15	FeCl ₃	24	64
2	<i>p</i> TsOH, AcOH, BF ₃ ·Et ₂ O	24	58-60	16	Fe(OTf) ₂	1	(84)
3	CF ₃ CO ₂ H	24	20	17	CuCl ₂	20	31
4	$HNTf_2$	2	55	18	Cu(OTf) ₂	3	71
5	TfOH	1.5	63	19	Cu(OAc) ₂	24	43
6	AgSbF ₆	10	80 (79)	20	CuCl	24	56
7	AgPF ₆	10	57	21	CuOTf	1	62
8	AgOTf	2	63	22	CuOAc	24	60
9	ZnBr ₂	24	76 (71)	23	Mg(OTf) ₂	24	55
10	Zn(OTf) ₂	2	54	24	Bi(OTf) ₃	1	67
11	PPh ₃ AuCl	24	38	25	In(OTf) ₃	1	(72)
12	5% PPh ₃ AuCl / 5% AgNTf ₂	2	97 (93)	26	Sc(OTf) ₃	2	58
13	5% PPh ₃ AuCl / 5% AgOTf	1	93 (90)	27	Yb(OTf) ₃	2	68 (63)
14	5% PPh ₃ AuCl / 5% AgOTf	48	77				

1. Step 1 – Amidine Synthesis: Screening of Additives

In most reactions, a hydrolyzed product of ynamide 2a was produced in 10~20% yields. ^{*a*} Determined by ¹H NMR using trichloroethylene as an internal standard. Values in parentheses indicate isolated yields.

	() N 1	+ Ph HR ¹ 2 (1 eq	$= N \begin{pmatrix} R^2 & 5 \\ 5 \\ R^3 & t \\ R^3 & t \end{pmatrix}$	nol% PPh ₃ , mol% AgC bluene (0.1 100 °C, A	AuCl DTf M)	$\frac{1}{N} = \frac{\frac{Ph}{N}}{R^3}$	or	R ¹ Me	
With 2d $(R^2 = Ts, R^3 = Me)^a$				With $\mathbf{1a} (\mathbf{R}^1 = \mathbf{H})^b$					
Entry	\mathbb{R}^1	Time (h)	3' (%) ^c	Entry	R ²	R ³	Time (h)	$3 (\%)^{c}$	
1	Me	3	(85)	8	Ts	Me (2d)	$1, 3^{d}$	$(90, 82^d)$ (3ad)	
2	Bn	3	(72)	9	Ts	Bn (2c)	3	(80) (3ac)	
3	Ts	3	(45)	10	Ms	Me (2b)	2	(85) (3ab)	
4	Ms	3	(50)	11	Ms	Bn (2a)	2, 2^{d}	(85, 76 ^d) (3aa)	
5	Ac	24	0	12	CO ₂ Me	Bn	2	13	
6	Cbz	20	0	13	s ∐		2	(95) (3aa)	
7	Boc	6	0		^ج N O (2e)		2	(83) (386)	
				14	₹ N		4	(67)	
				15	N A	c	3	(72)	

2. Step 1 – Amidine Synthesis: Screening of *N*-Protecting Groups

^{*a*} Hydrolyzed product of ynamide **2a** was produced in 4-59% yields. ^{*b*} Hydrolyzed product of ynamide **2** was not observed. ^{*c*} Determined by ¹H NMR using trichloroethylene as an internal standard. Values in parentheses indicate isolated yields. ^{*d*} In THF instead of toluene.
3. Step 2 – Indole Synthesis: Cyclization Reaction Under the Conditions (for Oxidative Cyclization of Enamines/Imines) Reported in the Literature

	Ph N N Sad	Ph Ts N H H 4ad	+	D Ph N N Me
Entry	Reaction Conditions	4ad (%) ^a	$\mathbf{A}(\%)^a$	References
1	10 mo% Pd(OAc) ₂ , 3 equiv Cu(OAc) ₂ , 3 equiv K ₂ CO ₃ in DMF (0.08 M) at 80 °C for 24 h under Ar	0	0	F. Glorius, <i>et al.</i> Angew. Chem. Int. Ed. 2008 , 47, 7230.
2	10 mo% Pd(OAc) ₂ , 2 equiv <i>n</i> Bu ₄ NBr in DMSO (0.2 M) at 60 °C for 24 h under O ₂	0	15	N. Yoshikai, <i>et al.</i> J. Am. Chem. Soc. 2012 , 134, 9098.
3	10 mo% Pd(OAc) ₂ , 2 equiv Cu(OAc) ₂ in DMSO (0.2 M) at 80 °C for 24 h under Ar	36 (29)	0	N. Yoshikai, <i>et al.</i> J. Am. Chem. Soc. 2012 , 134, 9098.
4	5 mo% CuI, 17.5 mo% 1,10-Phen, 2 equiv Li ₂ CO ₃ in DMF (0.1 M) at 100 °C for 24 h under air	0	46	S. Cacchi, <i>et al.</i> Angew. Chem. Int. Ed. 2009 , 48, 8078.
5	1.3 equiv PhI(OAc) ₂ in DCE (0.1 M) at 25 °C for 7 h and then at 60 °C for 17 h	0	5	K. Zhao, <i>et al.</i> Org. Lett. 2009 , 11, 2417.
6	10 mo% FeCl ₃ , 3 equiv Cu(OAc) ₂ ·CuCl ₂ , 1.5 equiv K ₂ CO ₃ in DMF (0.1 M) at 120 °C for 6 h under Ar	6 (45)	(15)	YM. Liang, et al. Chem. Commun. 2010 , 46, 2823.

^a Determined by ¹H NMR using trichloroethylene as an internal standard. Values in parentheses indicate isolated yields.

Entry	FeCl ₃	K_2CO_3	[Cu]	Time (h)	4ad (%) ^a	$\mathbf{A}(\%)^a$
1	Ο	0	3 equiv Cu(OAc) ₂ ·CuCl ₂	6	(45)	(15)
2	0	Ο	3 equiv CuCl ₂	5	19	12
3	Ο	Х	3 equiv CuCl ₂	5	(35)	4
4	Х	0	3 equiv CuCl ₂	7	20	10
5	Х	Х	3 equiv CuCl ₂	3	(39)	6
6	0	Х	3 equiv Cu(OAc) ₂	4	0	0
7	Х	0	3 equiv Cu(OAc) ₂	7	0	0
8	Х	Х	3 equiv Cu(OAc) ₂	4	0	0
9	Х	Х	1.5 equiv CuCl ₂	24	22	0
10^{b}	Х	Х	3 equiv CuCl ₂	5	39	trace
11 ^{<i>b-c</i>}	Х	Х	3 equiv CuCl ₂	5	(37)	trace
$12^{b, d}$	Х	Х	3 equiv CuCl ₂	24	17	23
13 ^{<i>b</i>-<i>c</i>}	Х	Х	2 equiv CuCl ₂	4	34 (32)	5
14 ^{<i>b</i>-<i>c</i>}	Х	Х	1.5 equiv CuCl ₂	5	30	11

4. Control Experiments of Entry 6 of Above Table

^{*a*} Determined by ¹H NMR using trichloroethylene as an internal standard. Values in parentheses indicate isolated yields. ^{*b*} In toluene (0.1 M). ^{*c*} At 100 °C. ^{*d*} At 60 °C.

5. Step 2 – Indole Synthesis: Screening of Catalysts

	Sad	Ph N ^{Ts} Me	10 mol% c 2 equiv 0 toluene (0 100 °C	atalyst CuCl ₂ D.1 M) , Ar	Ph Ts N H H 4ad		
Entry	Catalyst	Time (h)	4ad $(\%)^a$	Entry	Catalyst	Time (h)	4ad $(\%)^a$
1	-	4	34 (32)	8	IrCl ₃	5	24
2	FeCl ₃	6	15	9	[Ru(<i>p</i> -cymene)Cl ₂] ₂	5	18
3	$Pd(OAc)_2$	6	18	10	RuCl ₃	5	33
4^b	$Pd(OAc)_2$	2	28	11	$AgSbF_6$	6	21
5	[Cp*RhCl ₂] ₂	5	22	12	$M(OTf)_2 (M = Cu, Fe)$	2	5-9
6	5% [Cp*RhCl ₂] ₂ /10% AgSbF ₆	4	26	13	10% PPh ₃ AuCl/10% AgOTf	2	6
7	[Cp*IrCl ₂] ₂	5	17				

^{*a*} Determined by ¹H NMR using trichloroethylene as an internal standard. Values in parentheses indicate isolated yields. ^{*b*} In DMSO (0.2 M) at 120 °C.

6. Step 2 – Indole Synthesis: Screening of Oxidants

Entry	Oxidant	Time (h)	4ad (%) ^{<i>a</i>}
1	CuCl ₂	5	39
2	CuX_2 (X = F, Br, OTf, OAc)	2-4	0-trace
3	CuX (X = Br, I, OTf, OAc)	1-24	-
4	AgOAc, Ag ₂ O, Ag ₂ CO ₃	24	-
5	DDQ, BQ, $K_2S_2O_8$, Oxone, PhI(OAc) ₂ , TBHP, Bz ₂ O ₂ , tBu_2O_2 , $tBuONO$, Selectfluor, (PhO ₂ S) ₂ NF, Mn(OAc) ₃ ·2H ₂ O, NBS, NCS ^b	1-24	-
6	I_2	1	20
7	I ₂ at 40 °C	24	(27)
8	NIS	3	24
9	40 mol% [I] + 2 equiv TBHP at 60 °C ([I] = I_2 , NIS, KI, nBu_4NI , PhI)	4-20	0-16

^{*a*} Determined by ¹H NMR using trichloroethylene as an internal standard. Values in parentheses indicate isolated yields.

7. Step 2 – Indole Synthesis: Screening of Solvents

	Ph N N 3ad N Me 3 equiv Cu solvent (0. 120 °C,	$\begin{array}{c} CI_2 \\ 1 \text{ M}) \\ Ar \\ 4ad \end{array}$,∕Ts N Me
Entry	Solvent	Time (h)	4ad (%) ^a
1	DMF	3	(39)
2	toluene	5	39
3	ClCH ₂ CH ₂ Cl	1.5	30
4	1,4-dioxane	5	20
5	THF	1.5	34
6	MeCN	1.5	-
7	EtOAc	3	17
8	DMSO	5	25
9	tAmOH	5	5
10	Acetone, EtOH, TFE, HF	IP 3-5	-

^{*a*} Determined by ¹H NMR using trichloroethylene as an internal standard. Values in parentheses indicate isolated yields.

8. Step 2 – Indole Synthesis: Screening of N-Protecting Groups

11

Ms

24

$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
With 3								
Entry	\mathbb{R}^2	R ³	Time (h)	$4 (\%)^a$	Entry	R^2-R^3	Time (h)	4 (%) ^{<i>a</i>}
1	Ts	Me (3ad)	4	(32) (4ad)	6	s L	2	$11 (A_{00})$
2	Ts	Bn (3ac)	6	(50) (4ac)	0	³ N ^O (3ae)	3	11 (4ae)
3	Ms	Me (3ab)	6	(33) (4ab)	7	O L	4	
4	Ms	Bn (3aa)	6	(73) (4aa)	/	₹ N	4	-
5^b	Ms	Bn (3aa)	2	(46) (4aa)		8	5	25
					8	Ac		
With 3'					^{<i>a</i>} Dete	ermined by ¹ H	NMR using	trichloro- Values in
Entry	\mathbb{R}^1	Time (h)	4' (%	$(a)^a$	parenth equiv 1	neses indicate iso NCS instead of Cu	lated yields. $1Cl_2$, at 120 °	^b Using 1 C.
9	Me	24	-		-			
10	Bn	3	20					

-

9. One-Pot Two-Step Reaction for Indole Synthesis

	5 mol% ca R ¹ solvent (0	atalyst Ph	۲ ¹
	+ Ph \longrightarrow N _{p2} + Oh	h, then N	- 2
	\sim NH ₂ R ² 2 equiv ox	kidant H	₹²
	1a (1 equiv) 100 °C,	, Ar 4	
Entry	Variation	Time (h, Step 2)	$4 (\%)^a$
	Catalyst (with $2a$ ($R^1 = Ms$, $R^2 = Bn$), Solvent	= toluene, Oxidant = C	CuCl ₂)
1	5 mol% PPh ₃ AuCl / 5 mol% AgNTf ₂	4	(45) (4aa)
2	5 mol% PPh ₃ AuCl / 5 mol% AgOTf	4 or 22	(60) or (58)
3	$10 \text{ mol}\% \text{ AgSbF}_6$	2	31
4	10 mol% AgOTf	10	17
5	10 mol% Cu(OTf) ₂	3	2
	Oxidant (with $2a$, Catalyst = 5 mol% PPh ₃ Au	Cl/AgOTf, Solvent = to	oluene)
6	CuCl ₂	4	(60) (4aa)
7	I ₂	2	6
8	NIS	2	12
9	NCS (1 or 2 equiv)	4	30 or 7
	Solvent (with $2a$, Catalyst = 5 mol% PPh ₃ AuC	Cl/AgOTf, Oxidant = C	uCl ₂)
10	toluene	4	(60) (4aa)
11	ClCH ₂ CH ₂ Cl	4	(44)
12	THF	4	(73)
13	DMF	4	13
14	toluene (0.2 M, step 1) \rightarrow THF (0.2 M, step 2)) 4	(71)
15	toluene (0.2 M, step 1) \rightarrow DMF (0.2 M, step 2	2) 4	(59)
	2 (Catalyst = 5 mol% PPh ₃ AuCl/AgOTf, Oxid	lant = CuCl ₂ , Solvent =	THF)
16	$2a (R^1 = Ms, R^2 = Bn)$	4	(73) (4aa)
17^{b}	2b ($R^1 = Ms, R^2 = Me$)	6	35 (4ab)
18	$2c (R^1 = Ts, R^2 = Bn)$	6	(69) (4ac)
19 ^b	2d ($R^1 = Ts, R^2 = Me$)	6	30 (4ad)
20	$(\mathbf{R}^1 = \mathbf{M}\mathbf{s}, \mathbf{R}^2 = n\mathbf{B}\mathbf{u})$	6	60
21	$(R^1 = Ms, R^2 = cHex, Ph, or pTol)$	6	36-42
22	$(\mathbf{R}^1 = \mathbf{M}\mathbf{s}, \mathbf{R}^2 = t\mathbf{B}\mathbf{u} \text{ or allyl})$	6	-
	O L		
23	$(\mathbf{R}^{1}-\mathbf{R}^{2}=\overset{\mathbf{F}_{N}}{\smile})$	6	- (4 ae)
	Other variation from the conditions of entry 1	1	
24	1.5 equiv 2a	4	(76) (4aa)
25	2% PPh ₃ AuCl / 2% AgOTf	4	(66)
26	under air	4	(68)

^{*a*} Determined by ¹H NMR using trichloroethylene as an internal standard. Values in parentheses indicate isolated yields. ^{*b*} C and D were obtained in 18-25% and 13-28% yields, respectively.

10. One-Pot Reaction for Indole Synthesis

	H_2 + Ph H_2 + Bh H_2 + Bh H_2 + Bh H_2 + Character + C	10 mol% catalyst 2 equiv CuCl ₂ solvent (0.1 M) 100 °C, Ar	Ph Ms N H H	
	1a (1 equiv)		4aa	
Entry	Catalyst	Solvent	Time (h)	4aa (%) ^a
1	-	toluene	24	- ^b
2	5 mol% PPh ₃ AuCl/AgOTf (1:1)	toluene	24	26
3	5 mol% PPh ₃ AuCl/AgOTf (1:1)	THF	24	12
4	5 mol% PPh ₃ AuCl/AgOTf (1:1)	toluene/DMF (1:1)	24	5
5	5 mol% PPh ₃ AuCl/AgNTf ₂ (1:1)	toluene	24	33
6	AgSbF ₆	toluene	2	38
7	AgOTf	toluene	19	17
8	Cu(OTf) ₂	toluene	7	7
9	Yb(OTf) ₃	toluene	7	9
10	In(OTf) ₃	toluene	7	4
11	Fe(OTf) ₂	toluene	19	-
12	FeCl ₃	toluene	19	-
13	ZnBr ₂	toluene	19	trace

^{*a*} Determined by ¹H NMR using trichloroethylene as an internal standard. ^{*b*} E was obtained in 52% yields with Z/E = 1/1.

11. One-Pot Reaction Using the Indole Forming Protocols (Intermolecular Coupling of Amines/Amides with Alkynes/Alkenes) Reported in the Literature

	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ph R' N R R	R = H, Me, R' = Ts, Ms	Ac, Cbz, Ts
Entry	Reaction Conditions	R	4 (%) ^{<i>a</i>}	References
	$\mathbf{R'} = \mathbf{Ms}$			
1	2.5 mol% [Cp*RhCl ₂] ₂ , 10 mol% AgSbF ₆ ,	Н	20	K. Fagnou, <i>et al</i> .
	2.1 equiv Cu(OAc) ₂ ·H ₂ O in <i>t</i> AmOH (0.2 M) at 120 °C for 12-24 h under air	Me, Ac, Cbz, Ts	-	- J. Am. Chem. Soc. 2008 , 130, 16474.
2	5 mo% Pd(OAc) ₂ , 10 mol% BPhen,	H, Me, Ac,	-	S. W. Youn, et al.
	2 equiv Cu(OAc) ₂ ·H ₂ O, 0 or 1 equiv BQ in toluene (0.1 M) at 120 °C for 18-24 h under air	Cbz, Ts		Angew. Chem. Int. Ed. 2017 , 56, 6636.
3	5 mo% Pd(OAc) ₂ , 2 equiv Cu(OAc) ₂ ·H ₂ O, 0 or 2 equiv NaOAc in toluene (0.1 M) at 120 °C	H, Ts	-	A. K. Sahoo, et al. Angew. Chem. Int. Ed.
	for 2-18 h under air (modified)			2013 , <i>52</i> , 4607.
4	0 or 5 mo% Pd(OAc) ₂ , 2 equiv K ₂ CO ₃ in toluene (0.1 M) at 120 °C for 24 h under air	Н	-	T. Skrydstrup, <i>et al.</i> J. Org. Chem. 2008 , 73, 9447.
	R' = Ts			
5	5 mo% Pd(OAc) ₂ in DMA/PivOH (4/1, 0.2 M) at 120 °C for 10 h under O ₂	Н	-	N. Jiao, <i>et al.</i> Angew. Chem. Int. Ed. 2009 , 48, 4572.
6	10 mo% Pd(OAc) ₂ , 2 equiv Cu(OAc) ₂ in DMSO (0.2 M) at 80 °C for 24 h under Ar	Н	-	N. Yoshikai, <i>et al.</i> J. Am. Chem. Soc. 2012 , 134, 9098.
7	5 mol% [Cp*RhCl ₂] ₂ , 2 equiv NaOAc in toluene (0.25 M) at 120 °C or in MeOH (0.25 M) at 25 °C for 12-24 h under air	H, Me, Ac, Cbz, Ts	-	J. You, <i>et al.</i> <i>RSC Adv</i> . 2014 , <i>4</i> , 49186.
8	2.5 mol% [Cp*RhCl ₂] ₂ , 25 mol% CsOAc, 1.2 equiv AcOH in toluene (0.4 M) at 120 °C or in CH ₂ Cl ₂ (0.4 M) at 25 °C for 24 h under Ar	H, Me, Ac, Cbz, Ts	-	G. Liu, X. Lu, <i>et al.</i> Angew. Chem. Int. Ed. 2013 , 52, 6033.
9	2.5 mol% [Ru(<i>p</i> -cymene)Cl ₂] ₂ , 25 mol% K ₂ CO ₃ in toluene (0.4 M) at 120 °C or in CH ₂ Cl ₂ (0.4 M) at 25 °C for 24 h under Ar	H, Me, Ac, Cbz, Ts	-	G. Liu, X. Lu, et al. Org. Chem. Front. 2014 , 1, 1161.

^a Isolated yields.

Mechanistic Studies for Step 2

1. Byproducts as a Possible Intermediate

2. Reactions of 3 in the Presence of Radical Scavenger

	$ \begin{array}{c} $	2 equiv CuCl ₂ TEMPO or BHT toluene or THF (0.1 M) 100 °C, 2-6 h, Ar		h R^1 H^N + R^2		n . R ¹ 2
Entry	$3(R^1, R^2)$	Radical Scavenger	Solvent	Time (h)	4 $(\%)^a$	$\mathbf{A}(\%)^a$
1	3ad (Ts, Me)	-	toluene	4	(32) (4ad)	5
2^b		-	THF	1.5	34	-
3		TEMPO (1 equiv)	THF	2	39	30
4		BHT (1 equiv)	THF	2	15	-
5	3aa (Ms, Bn)	-	toluene	6	(73) (4aa)	-
6		TEMPO (1 equiv)	THF	6	69	31
7		TEMPO (3 equiv)	THF	6	-	(65)
8		BHT (1 equiv)	THF	6	43	-
9		BHT (3 equiv)	THF	6	32	-

^{*a*} Determined by ¹H NMR using trichloro-ethylene as an internal standard. Values in parentheses indicate isolated yields. ^{*b*} 3 equiv CuCl₂ at 120 °C.

(E)-N-Methyl-2-oxo-N',2-diphenyl-N-tosylacetimidamide (A-Ts)

15% (6.1 mg). a white solid (EtOAc : *n*-Hexane = 1:6), mp 130-132 °C.

¹H NMR (CDCl₃, 400 MHz) δ 7.87 (d, *J* = 8.4 Hz, 2H), 7.76 (d, *J* = 7.6 Hz, 2H), 7.46 (t, *J* = 7.4 Hz, 1H), 7.40 (d, *J* = 8.0 Hz, 2H), 7.35 (t, *J* = 7.8 Hz, 2H), 7.02 (t, *J* = 7.8 Hz, 2H), 6.83 (t, *J* = 7.4 Hz, 1H), 6.62 (d, *J* = 7.6 Hz, 2H), 3.32 (s, 3H), 2.48 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 189.8, 152.8, 146.1, 144.9, 135.1, 134.5, 133.7, 129.9, 129.2, 128.4, 128.0, 123.7, 120.9, 33.2, 21.7 (1 carbon is missing due to overlapping). LCMS *m*/*z* 393 [M+H]⁺. HRMS (EI) [M]⁺ *m*/*z* calcd for C₂₂H₂₀N₂O₃S 392.1189, found 392.1189.

(E)-N-Benzyl-N-(methylsulfonyl)-2-oxo-N',2-diphenylacetimidamide (A-Ms)

65% (13.8 mg). a yellow oil (EtOAc : *n*-Hexane = 1:4).

¹H NMR (CDCl₃, 400 MHz) δ 7.62 (d, *J* = 7.6 Hz, 2H), 7.55 (d, *J* = 7.6 Hz, 2H), 7.42-7.34 (m, 4H), 7.25 (t, *J* = 7.6 Hz, 2H), 6.99 (t, *J* = 7.6 Hz, 2H), 6.79 (t, *J* = 7.4 Hz, 1H), 6.59 (d, *J* = 7.6 Hz, 2H), 5.34 (br s, 2H), 2.98 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 191.0, 151.6, 145.6, 135.8, 134.4, 133.8, 129.4, 128.7, 128.4, 128.3, 128.2, 128.0, 123.8, 120.7, 48.8, 42.7. LCMS *m*/*z* 393 [M+H]⁺.

Spectral data were consistent with data reported in the literature.¹

(*E*)-2,2-Dichloro-*N*-methyl-*N'*,2-diphenyl-*N*-tosylacetimidamide or *N*-(2-chloro-1-(chloro(phenyl)-amino)-2-phenylvinyl)-*N*,4-dimethylbenzenesulfonamide (B)

88% (20.7 mg). a white solid (EtOAc : *n*-Hexane = 1:5), mp 112-114 °C.

¹H NMR (CDCl₃, 400 MHz) δ 7.90 (d, J = 7.2 Hz, 2H), 7.44-7.36 (m, 3H), 7.23 (t, J = 8.0 Hz, 2H), 7.22 (d, J = 7.6 Hz, 2H), 7.11 (t, J = 7.2 Hz, 1H), 7.07 (d, J = 8.4 Hz, 2H), 6.77 (d, J = 7.6 Hz, 2H), 3.15 (s, 3H), 2.36 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 152.1, 146.6, 143.6, 135.3, 129.19, 129.16, 128.8, 128.1, 127.9, 127.3, 125.2, 119.7, 37.6, 21.5 (2 carbons are missing due to overlapping). LCMS *m/z* 447 [M+H]⁺. HRMS (EI) [M]⁺ *m/z* calcd for C₂₂H₂₀Cl₂N₂O₂S 446.0617, found 446.0621.

2-Chloro-N-methyl-2-phenyl-N-tosylacetamide (C-Ts) & 2-Chloro-N,2-diphenylacetamide (D)

Inseparable mixture of C-Ts and D (12.2 mg, C-Ts:D = 1:2.2) was obtained as a white solid ($CH_2Cl_2 : n$ -Hexane = 1:1).

¹H NMR (CDCl₃, 400 MHz) δ 8.38 (br s, 1H of **D**), 7.57 (t, *J* = 8.0 Hz, 2H of **C-Ts** & 2H of **D**), 7.51 (dd,

J = 7.8, 1.8 Hz, 2H of **D**), 7.47-7.45 (m, 2H of **C-Ts**), 7.43-7.34 (m, 3H of **C-Ts** & 5H of **D**), 7.28 (d, *J* = 8.4 Hz, 2H of **C-Ts**), 7.17 (t, *J* = 7.4 Hz, 1H of **D**), 6.48 (s, 1H of **C-Ts**), 5.51 (s, 1H of **D**), 3.20 (s, 3H of **C-Ts**), 2.43 (s, 3H of **C-Ts**). ¹³C NMR (CDCl₃, 100 MHz) δ 168.1, 165.3, 145.4, 136.9, 136.7, 135.3, 135.0, 130.0, 129.4, 129.3, 129.1, 129.02, 128.95, 128.6, 127.8, 127.7, 125.2, 120.0, 62.1, 58.6, 33.6, 21.6. LCMS *m*/*z* 338 [M+H]⁺ of **C-Ts**, 246 [M+H]⁺ of **D**.

Spectral data of $C-Ts^{20}$ and D^{21} were consistent with data reported in the literature.

N-(1-Chloro-2-phenylvinyl)-*N*,4-dimethylbenzenesulfonamide (E)

CI Ph N Ts Me

52% (71.8 mg, *E*:*Z* = 1:1). a white oil (EtOAc : *n*-Hexane = 1:8).

¹H NMR (CDCl₃, 400 MHz) δ 7.78 (d, *J* = 8.0 Hz, 2H), 7.76 (d, *J* = 8.0 Hz, 2H), 7.62-7.60 (m, 4H), 7.40-7.29 (m, 10H), 6.92 (s, 1H), 6.66 (s, 1H), 3.09 (s, 3H), 3.04 (s, 3H), 2.45 (s, 3H), 2.44 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 144.4, 144.2, 134.4, 134.1, 133.0, 132.9, 132.3, 130.4, 129.7, 129.6, 129.43, 129.36, 128.8, 128.72, 128.69, 128.6, 128.3, 128.2, 128.1, 35.9, 35.7, 21.6 (2 carbons are missing due to overlapping). LCMS *m*/*z* 322 [M+H]⁺.

Spectral data of $(E)^{-22}$ and (Z)-isomers²⁰ were consistent with data reported in the literature.

²⁰ Pan, F.; Li, X.-L.; Chen, X.-M.; Shu, C.; Ruan, P.-P.; Shen, C.-H.; Lu, X.; Ye, L.-W. ACS Catal. 2016, 6, 6055.

²¹ Song, Q.-W.; Yu, B.; Liu, A.-H.; He, Y.; Yang, Z.-Z.; Diao, Z.-F.; Song, Q.-C.; Li, X.-D.; He, L.-N. RSC Adv. 2013, 3, 19009.

²² Kim, S. W.; Um, T.-W.; Shin, S. Chem. Commun. 2017, 53, 2733.

Copies of NMR Spectra

N-Benzyl-*N*-((4-chlorophenyl)ethynyl)methanesulfonamide (2g)

N-Benzyl-*N*-((4-bromophenyl)ethynyl)methanesulfonamide (2h)

Methyl 4-((N-Benzylmethylsulfonamido)ethynyl)benzoate (2i)

N-Benzyl-*N*-((4-nitrophenyl)ethynyl)methanesulfonamide (2j)

N-Benzyl-*N*-((3-methoxyphenyl)ethynyl)methanesulfonamide (2k)

N-Benzyl-*N*-(*m*-tolylethynyl)methanesulfonamide (21)

N-Benzyl-*N*-((3-nitrophenyl)ethynyl)methanesulfonamide (2m)

N-Benzyl-*N*-(*o*-tolylethynyl)methanesulfonamide (2n)

N-Benzyl-*N*-((2-bromophenyl)ethynyl)methanesulfonamide (20)

N-Benzyl-*N*-(naphthalen-1-ylethynyl)methanesulfonamide (2p)

N-Benzyl-N-(naphthalen-2-ylethynyl)methanesulfonamide (2q)

N-(2-Bromobenzyl)-*N*-(phenylethynyl)methanesulfonamide (2r)

N,N'-(1,3-Phenylenebis(ethyne-2,1-diyl))bis(*N*-benzylmethanesulfonamide) (2s)

(E)-N-Benzyl-N-(methylsulfonyl)-N',2-diphenylacetimidamide (3aa)

(E)-N-Methyl-N-(methylsulfonyl)-N',2-diphenylacetimidamide (3ab)

(*E*)-*N*-Benzyl-*N'*,2-diphenyl-*N*-tosylacetimidamide (3ac)

(*E*)-*N*-Methyl-*N'*,2-diphenyl-*N*-tosylacetimidamide (3ad)

(E)-3-(2-Phenyl-1-(phenylimino)ethyl)oxazolidin-2-one (3ae)

(E)-1-(2-Phenyl-1-(phenylimino)ethyl)pyrrolidin-2-one

(E)-1-(1-(2-Phenyl-1-(phenylimino)ethyl)-1H-indol-3-yl)ethan-1-one

N,4-Dimethyl-*N*-(1-(methyl(phenyl)amino)-2-phenylvinyl)benzenesulfonamide (3'-Me)

N-(1-(Benzyl(phenyl)amino)-2-phenylvinyl)-N,4-dimethylbenzenesulfonamide (3'-Bn) - A

N-(1-(Benzyl(phenyl)amino)-2-phenylvinyl)-*N*,4-dimethylbenzenesulfonamide (3'-Bn) - B

N-(1-((*N*,4-Dimethylphenyl)sulfonamido)-2-phenylvinyl)-4-methyl-*N*-phenylbenzenesulfonamide (3'-Ts)

-3.169 -2.846 Ρh Ts N Ме Мs 3'-Ms 3 8 5 2 9 7 6 ġ, 0 ppm 1 3.08 3.15 2.18 3.11 2.07 49 21.41 A 77.32 76.68 Ρh ,∕Ts N. Ms Ме 3'-Ms 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

N,4-Dimethyl-*N*-(2-phenyl-1-(*N*-phenylmethylsulfonamido)vinyl)benzenesulfonamide (3'-Ms) - A

N,4-Dimethyl-*N*-(2-phenyl-1-(*N*-phenylmethylsulfonamido)vinyl)benzenesulfonamide (3'-Ms) - B

N-Benzyl-*N*-(3-phenyl-1*H*-indol-2-yl)methanesulfonamide (4aa)

N-Benzyl-*N*-(5-methoxy-3-phenyl-1*H*-indol-2-yl)methanesulfonamide (4ba)

Ρh Ms N Βn 4ca 3 9 8 7 5 2 6 4 ò i. ppm 0.88 3.99 3.49 0.94 2.96 3.02 1.95 21.46 $\bigwedge^{77.32}_{76.68}$ 54.87 40.07 Ρh Ms Ъn N' H 4ca 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 20 10 60 50 40 30 ppm

N-Benzyl-*N*-(5-methyl-3-phenyl-1*H*-indol-2-yl)methanesulfonamide (4ca)

N-Benzyl-*N*-(5-fluoro-3-phenyl-1*H*-indol-2-yl)methanesulfonamide (4da)

N-Benzyl-*N*-(5-chloro-3-phenyl-1*H*-indol-2-yl)methanesulfonamide (4ea)

N-Benzyl-*N*-(5-bromo-3-phenyl-1*H*-indol-2-yl)methanesulfonamide (4fa)

4.672 Ρh Ms M Ъη Ĥ 4ga 9 5 3 8 7 6 4 2 1 0 ppm 0.95 1.100 2.07 2.11 1.07 3.06 2.01 135.96 132.64 132.64 132.64 123.77 123.77 128.77 128.77 128.65 128.65 128.66 128.26 128.26 128.26 128.26 128.26 128.26 128.26 128.26 128.27 128.26 128.26 128.27 128.26 128.27 128.26 128.27 12 $\bigwedge^{3.85}_{77.32}$ 54.74 Ρh Ms M Βn Ĥ 4ga 180 170 160 150 140 130 120 110 100 210 200 190 90 80 70 60 50 40 30 20 10 ppm

N-Benzyl-*N*-(5-iodo-3-phenyl-1*H*-indol-2-yl)methanesulfonamide (4ga)

N-(5-Acetyl-3-phenyl-1*H*-indol-2-yl)-*N*-benzylmethanesulfonamide (4ha)

Methyl 2-(*N*-Benzylmethylsulfonamido)-3-phenyl-1*H*-indole-5-carboxylate (4ia)

N-Benzyl-*N*-(6-methyl-3-phenyl-1*H*-indol-2-yl)methanesulfonamide (4ja) & *N*-Benzyl-*N*-(4-methyl-3-phenyl-1*H*-indol-2-yl)methanesulfonamide (4ja')

N-Benzyl-*N*-(6-bromo-3-phenyl-1*H*-indol-2-yl)methanesulfonamide (4ka) & *N*-Benzyl-*N*-(4-bromo-3-phenyl-1*H*-indol-2-yl)methanesulfonamide (4ka')

N-Benzyl-*N*-(6-nitro-3-phenyl-1*H*-indol-2-yl)methanesulfonamide (4la)

N-Benzyl-*N*-(4-nitro-3-phenyl-1*H*-indol-2-yl)methanesulfonamide (4la')

N-Benzyl-*N*-(7-methyl-3-phenyl-1*H*-indol-2-yl)methanesulfonamide (4ma)

N-Benzyl-*N*-(3,7-diphenyl-1*H*-indol-2-yl)methanesulfonamide (4na)

N-Benzyl-*N*-(7-bromo-3-phenyl-1*H*-indol-2-yl)methanesulfonamide (40a)

N-Benzyl-*N*-(7-iodo-3-phenyl-1*H*-indol-2-yl)methanesulfonamide (4pa)

N-Benzyl-*N*-(7-bromo-5-methyl-3-phenyl-1*H*-indol-2-yl)methanesulfonamide (4qa)

N-Benzyl-*N*-(7-bromo-4-methyl-3-phenyl-1*H*-indol-2-yl)methanesulfonamide (4ra)

N-Methyl-*N*-(3-phenyl-1*H*-indol-2-yl)methanesulfonamide (4ab)

N-Benzyl-4-methyl-*N*-(3-phenyl-1*H*-indol-2-yl)benzenesulfonamide (4ac)

N,4-Dimethyl-*N*-(3-phenyl-1*H*-indol-2-yl)benzenesulfonamide (4ad)

N-Benzyl-*N*-(3-(*p*-tolyl)-1*H*-indol-2-yl)methanesulfonamide (4af)

N-Benzyl-*N*-(3-(4-chlorophenyl)-1*H*-indol-2-yl)methanesulfonamide (4ag)

N-Benzyl-*N*-(3-(4-bromophenyl)-1*H*-indol-2-yl)methanesulfonamide (4ah)

Methyl 4-(2-(N-Benzylmethylsulfonamido)-1H-indol-3-yl)benzoate (4ai)

N-Benzyl-*N*-(3-(4-nitrophenyl)-1*H*-indol-2-yl)methanesulfonamide (4aj)

N-Benzyl-*N*-(3-(3-methoxyphenyl)-1*H*-indol-2-yl)methanesulfonamide (4ak)

N-Benzyl-*N*-(3-(*m*-tolyl)-1*H*-indol-2-yl)methanesulfonamide (4al)

N-Benzyl-*N*-(3-(3-nitrophenyl)-1*H*-indol-2-yl)methanesulfonamide (4am)

N-Benzyl-*N*-(3-(*o*-tolyl)-1*H*-indol-2-yl)methanesulfonamide (4an)

N-Benzyl-*N*-(3-(2-bromophenyl)-1*H*-indol-2-yl)methanesulfonamide (4ao)

N-Benzyl-N-(3-(naphthalen-1-yl)-1H-indol-2-yl)methanesulfonamide (4ap) - A

N-Benzyl-N-(3-(naphthalen-1-yl)-1H-indol-2-yl)methanesulfonamide (4ap) - B

N-Benzyl-N-(3-(naphthalen-2-yl)-1H-indol-2-yl)methanesulfonamide (4aq) - A

N-Benzyl-N-(3-(naphthalen-2-yl)-1H-indol-2-yl)methanesulfonamide (4aq) - B

N-(2-Bromobenzyl)-*N*-(3-phenyl-1*H*-indol-2-yl)methanesulfonamide (4ar)

N-(5-Bromo-3-phenyl-1*H*-indol-2-yl)-*N*-(2-bromobenzyl)methanesulfonamide (4fr)

N,N'-(1,3-Phenylenebis(1*H*-indole-3,2-diyl))bis(*N*-benzylmethanesulfonamide) (4as)

6-(Methylsulfonyl)-7-phenyl-5,6-dihydroindolo[1,2-*a*]quinazoline (5a)

9-Bromo-6-(methylsulfonyl)-7-phenyl-5,6-dihydroindolo[1,2-*a*]quinazoline (5b)

9-Bromo-7-phenylindolo[1,2-*a*]quinazoline (6a)

tert-Butyl (*E*)-3-(7-Phenylindolo[1,2-*a*]quinazolin-9-yl)acrylate (6b)

7,9-Diphenylindolo[1,2-*a*]quinazoline (6c)

4-Methyl-*N*-(2-(7-phenylindolo[1,2-*a*]quinazolin-9-yl)phenyl)benzenesulfonamide (6d)

N,7-Diphenylindolo[1,2-*a*]quinazolin-9-amine (6e)

7-Phenyl-*N*-(pyridin-2-yl)indolo[1,2-*a*]quinazolin-9-amine (6f)

7-Phenyl-13-tosyl-13*H*-quinazolino[1',2':1,5]pyrrolo[2,3-*b*]carbazole (6g)

N-Benzyl-*N*-(3-phenyl-7-(phenylethynyl)-1*H*-indol-2-yl)methanesulfonamide (7a)

N-Benzyl-*N*-(7-(1-benzyl-5-phenyl-1*H*-1,2,3-triazol-4-yl)-3-phenyl-1*H*-indol-2-yl)methanesulfonamide (7b) & *N*-Benzyl-*N*-(7-(1-benzyl-4-phenyl-1*H*-1,2,3-triazol-5-yl)-3-phenyl-1*H*-indol-2-yl)methanesulfonamide (7b') - A

N-Benzyl-*N*-(7-(1-benzyl-5-phenyl-1*H*-1,2,3-triazol-4-yl)-3-phenyl-1*H*-indol-2-yl)methanesulfonamide (7b) & *N*-Benzyl-*N*-(7-(1-benzyl-4-phenyl-1*H*-1,2,3-triazol-5-yl)-3-phenyl-1*H*-indol-2-yl)methanesulfonamide (7b') - B

N-(1-Allyl-7-bromo-3-phenyl-1*H*-indol-2-yl)-*N*-benzylmethanesulfonamide (7c)

N-(1-Allyl-3-phenyl-7-((trimethylsilyl)ethynyl)-1H-indol-2-yl)-N-benzylmethanesulfonamide

N-(1-Allyl-7-ethynyl-3-phenyl-1*H*-indol-2-yl)-*N*-benzylmethanesulfonamide (7d)

N-(1-Allyl-3-phenyl-7-(1-tosyl-1*H*-1,2,3-triazol-4-yl)-1*H*-indol-2-yl)-*N*-benzylmethanesulfonamide (7e)

N-Benzyl-*N*-(1-phenyl-4*H*-pyrrolo[3,2,1-*ij*]quinolin-2-yl)methanesulfonamide (8)

4-Methyl-*N*-(3-phenyl-1*H*-indol-2-yl)benzenesulfonamide (7f)

N-Allyl-*N*-(3-allyl-3-phenyl-3*H*-indol-2-yl)-4-methylbenzenesulfonamide (7g)

N-Allyl-*N*-(1-allyl-3-phenyl-1*H*-indol-2-yl)-4-methylbenzenesulfonamide (7h)

11-Phenyl-1-tosyl-2,5-dihydro-1*H*-[1,3]diazepino[1,2-*a*]indole (9)

(E)-N-Methyl-2-oxo-N',2-diphenyl-N-tosylacetimidamide (A-Ts)

(E)-N-Benzyl-N-(methylsulfonyl)-2-oxo-N',2-diphenylacetimidamide (A-Ms)

(*E*)-2,2-Dichloro-*N*-methyl-*N'*,2-diphenyl-*N*-tosylacetimidamide or *N*-(2-chloro-1-(chloro(phenyl)-amino)-2-phenylvinyl)-*N*,4-dimethylbenzenesulfonamide (B)

3.196 480 506 Ph N^{-Ts} + Ph Cl Me C-Ts ∖_Ph H ď D 9 5 2 8 6 4 3 1 0 7 ppm 2.21 01 3.35 2.15 3.13 46 33,63 168.13 145.37 136.70 136.70 135.29 134.95 135.29 135.29 135.29 129.36 129.36 129.12 129.12 129.12 129.12 129.12 129.12 129.12 129.12 129.12 129.12 120.12 12 T7.32 77.00 76.68 Ph C Me C-Ts N^{-Ts} + Ph Cl N^{_Ph} D 210 180 170 160 150 140 130 120 110 100 90 70 50 30 10 200 190 80 60 40 20 ppm

2-Chloro-*N*-methyl-2-phenyl-*N*-tosylacetamide (C-Ts) & 2-Chloro-*N*,2-diphenylacetamide (D)

N-(1-Chloro-2-phenylvinyl)-*N*,4-dimethylbenzenesulfonamide (E)