Cu Single-Atoms Embedded in Porous Carbon Nitride for

Selective Oxidation of Methane to Oxygenates

Bo Wu, Ruoou Yang, Lei Shi, Tiejun Lin, Xing Yu, Ming Huang, Kun Gong, Fanfei Sun, Zheng Jiang, Shenggang Li, Liangshu Zhong,* Yuhan Sun*

1. Experimental Section

- 1.1 Materials
- 1.2 Synthesis of M-SAs/C₃N₄ and C₃N₄
- 1.3 Synthesis of Cu-NPs/C $_3N_4$
- 1.4 Characterizations
- 1.5 Catalyst testing
- 1.6 Products analysis
- 1.7 DFT calculation
- 2. Supplementary Figures S1-S13
- 3. Supplementary Tables S1-S5
- 4. References

1 Experimental Section

1.1 Materials.

All reagents were used as received without further purification. Melamine and cobalt (II) chloride trihydrate (CoCl₂·6H₂O) were purchased from Sinopharm Chemicals. Cyanuric acid, copper (II) chloride dihydrate (CuCl₂·2H₂O), iron (III) chloride hexahydrate (FeCl₃·6H₂O), manganese chloride tetrahydrate (MnCl₂·4H₂O) were purchased from Aladdin Chemicals. All the agents without further purification.

1.2 Synthesis of M-SAs/C₃N₄ and C₃N₄.

Taking Cu-SAs/C₃N₄ as an example, 2.557 g (15 mmol) CuCl₂·2H₂O and 5.0 g melamine were dissolved in 1000 mL ultrapure water (18 MΩ*cm) at 70 °C, and the solution was denoted as solution A. 5.1 g cyanuric acid was dissolved in 2000 mL ultrapure water at 70 °C, and the solution was denoted as solution B. Then solution B was poured into solution A and then maintained for 10 min at 70 °C. The precursor was filtrated, washed with water and dried at 80 °C overnight. The obtained light green powder was placed in a tube furnace and heated at 550 °C for 4 h with a heating rate of 2.5 °C/min under argon gas (100 mL/min). After cooling to ambient temperature, and the obtained catalyst was denoted as Cu-SAs/C₃N₄. The synthesis of Fe-SAs/C₃N₄, Co-SAs/C₃N₄ and Mn-SAs/C₃N₄ were similar to the procedure mentioned above by replacing the Cu source with other metal precursors, while C₃N₄ was prepared without the addition of metal source.

1.3 Synthesis of Cu-NPs/C₃N₄.

For the synthesis of Cu-NPs/C₃N₄, the mass amount of CuCl₂·2H₂O was 0.852 g (5 mmol). After solution B was poured into solution A for 10 min, the solution was further dried under stirring until a solid powder was formed. The obtained powder was placed in a tube furnace and heated at 550 °C for 4 h with a heating rate of 2.5 °C/min under argon gas (100 mL/min), and the as-obtained catalyst was denoted as Cu-NPs/C₃N₄. For comparison, Cu/SiO₂ and Cu/Al₂O₃ were prepared with nominal Cu loading amount of 1% by wetness impregnation method, and the samples were calcined at 400 °C in static air for 4 h.

1.4 Characterizations

The loading amount of metal (Cu, Fe, Mn, Co) in the M/C₃N₄ catalysts was determined by an inductively coupled plasma optical emission spectrometer (ICP-OES). X-Ray diffraction (XRD) patterns were recorded on a Rigaku Ultima IV X-ray instrument with Cu K α (λ =0.154056 nm) radiation at a beam voltage of 40 kV and a beam current of 40 mA, and the scanning speed was 2º/min. The Brunauer Emmett-Teller (BET) specific surface area measurements were determined by a Tristar II system N₂ adsorption/desorption apparatus (Micromeritics Instruments, USA), and the sample were degassed at 120 °C for 5 h before test. The Fourier transform infrared spectroscopy (FT-IR) were recorded on a Thermo Scientific Nicolet 1s10 instrument. The samples were deposited and pressed onto a KBr window and then those were placed in IR cell. Field emission scanning electron microscopy (FESEM) images were obtained with a Zeiss SAPPHIRE Supra 55 system operating voltage at 5 kV. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM-2011 system operating voltage at 100 kV. High-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) was performed on JEOL ARM300F equipped with double aberration correctors and a cold field emission gun. The chemical state of the catalysts surface elements was characterized by an ESCLAB250 spectrometer, using a monochromatic Al Kα radiation source (=1486.6 eV). The binding energies (BEs) were calibrated using the C1s peak at 284.8 eV as a reference. The X-ray photoelectron spectroscopy (XPS) were processed by the Avantage software, and the ratio of elements with varied valence states was calculated based on the fitted peak areas.

Transition metal (Cu, Fe, Co and Mn) K-edge X-ray absorption spectra (XAS) were performed on the BL14W1 beam line at the Shanghai Synchrotron Radiation Facility (SSRF), operated at 3.5 GeV with injection currents of 210 mA. A Si (111) double-crystal monochromator was used to reduce the harmonic component of the monochrome beam. Cu (Fe, Co and Mn) foils were used as reference sample. The extended X-ray absorption fine structure (EXAFS) raw data were then background-subtracted, normalized and Fourier transformed by the standard procedures with the IFEFFIT package.

The electron paramagnetic resonance (EPR) spectroscopy measurement was performed using an ELEXSYS E5000 spectrometer equipped with a liquid nitrogen cryostat, and 5,5-dimethyl-1pyrroline-*N*-oxide (DMPO) was used as the radical trap. The samples were dispersed in water to detect \cdot CH₃, \cdot OH and \cdot OOH radicals. For methane oxidation reaction, the autoclave was firstly charged with 30 mg Cu-SAs/C₃N₄ catalyst, 10 mL ultrapure water, 1.0 mL DMPO (100 mg/mL), 1.0 mL H₂O₂ (40wt%). A sample prior to reaction was removed, filtered and placed in sealed glass tube. The autoclave was purged with 95% CH₄/Ar for three times, and then pressurized to 3 MPa. The reaction mixtures were kept at 25 °C for 2 h, and a certain sample was filtered and sealed in a glass tube.

1.5 Catalytic activity Testing

Methane conversion was evaluated in a 50 mL stainless-steel autoclave containing a Teflon liner vessel purchased from Shanghai Yan Zheng Instrument. First, the vessel was charged with 30 mg catalyst, 15 mL H₂O and 5 mL H₂O₂ (40wt%), and then the vessel was flushed with methane and charged to 5~30 bar (95% CH₄ in Ar). The reaction temperature was maintained at 25 °C. The reaction products were quickly cooled down in ice bath for 20 min before analysis in order to minimize the loss of volatile products. For the cyclic catalytic test with the same reaction conditions, the stirring paddle were rinsed with water, and the collected rinsing mixture was centrifuged to separate catalyst. The collected catalyst was dried at 80 °C before the test for the next run.

1.6 Products Analysis

The gaseous phase products were analyzed by a gas chromatograph (GC-950, Haixin) with an TDX-1 column. The signal was detected by thermal conductivity detector (TCD) and flame ionized detector (FID) with methanizer unit. CO and CO_2 were quantified against a calibration curve constructed from commercial standard. An illustrative GC spectrum was provided in Figure S1.

The liquid products containing methanol (CH₃OH), methyl hydroperoxide (CH₃OOH) and formic acid (HCOOH) were analyzed by 600 M ¹H NMR (Bruker AVIII 600M). After reaction, an aliquot sample (0.5 mL) containing products was mixed with 0.1 mL deuterium oxide (D₂O, Sigma-Aldrich) and 0.1 mL sodium 4,4-Dimethyl-4-silapentane-1-sulfonate (DSS, 6 mM, Tokyo Chemical Industry Co.) as an internal standard. The quantitative analysis of oxygenates was carried out by building standard curves. An illustrative ¹H-NMR spectrum was provided in Figure S2. The oxygenates selectivity (%), turnover frequency (TOF, h⁻¹), the conversion of H₂O₂ and gain (G) factor were calculated using following equations (1-4):

Oxygenates selectivity (%) =
$$\frac{n_{(oxygenated products)}}{n_{(total products)}} \times 100\%$$
 (1)

$$TOF(h^{-1}) = \frac{n_{(oxygenated products)}}{n_{(metal)} \times h}$$
(2)

$$\operatorname{Con}_{H_2O_2}(\%) = \frac{n_{(H_2O_2)\text{ consumed}}}{n_{(H_2O_2)\text{ in}}} \times 100\%$$
(3)

Gain factor (G) =
$$\frac{n_{(oxygenated products)}}{n_{(H_2O_2)consumed}}$$
 (4)

1.7 DFT calculation

Density functional theory (DFT) calculations were performed to optimize the possible active sites in the structure of Cu-N₄. The Gaussian 09 program [1] was used with the B3LYP exchange-correlation functional [2] and the DFT-optimized DZVP2 and DZVP basis sets [3].

Figure S1. Typical GC-FID spectrum for the identification of CO (**t=3.0 min**), methane (**t=6.4 min**) and CO₂ (**t=14.0 min**).

Figure S2. Typical ¹H-NMR spectrum for the identification of DSS (δ =0 ppm), methanol (δ =3.35 ppm), methyl hydroperoxide (δ =3.86 ppm) and formic acid (δ =8.42 ppm). Resonance at δ =0.6, 1.8 and 2.9 ppm arised from the internal standard. It should be noted that the quantification of CH₃OOH was calibrated by the same curve as that of CH₃OH according to the reported work [4].

Figure S3. (a) SEM image and (b, c) TEM images of C_3N_4 . (d) SEM image and (e, f) TEM images of Cu-NPs/C₃N₄. The representative Cu NPs were highlighted by a red circle.

Figure S4. (a) N_2 adsorption and desorption isotherms and (b) Pore size distribution of C_3N_4 , Cu-SAs/C₃N₄ and Cu-NPs/C₃N₄ measured at 77 K.

Figure S5. (a) XPS spectra in Cu 2p region and (b) Cu LM2 Auger spectra of Cu-SAs/C₃N₄ and Cu-NPs/C₃N₄. The peaks located at 932.8 eV and 571.1 eV were assigned to Cu⁺ species.

Figure S6. XPS spectra for N 1s region of Cu-SAs/C₃N₄ and C₃N₄. The N 1s XPS spectra of Cu-SAs/C₃N₄ could be spilt into five kinds of nitrogen configurations. Originating from the sp²-hybridized pyridinic nitrogen atoms in C=N-C, the peak at 398.3 eV demonstrated the successful synthesis of graphite-like C₃N₄. The peaks with binding energy located at 399.1 eV, 400.1 eV, 401.1 eV and 404.1 eV were assigned to nitrogen bonded to copper (Cu-N_x moieties), pyrrolic-N, graphitic-N and oxidized N, respectively. Clearly, for the C₃N₄ matrix, only three peaks could be observed without the presence of two peaks assigned to oxidized graphitic N and the nitrogen bonded to copper.

Figure S7. Characterizations of Cu-NPs/C₃N₄. (a) Cu K-edge XANES spectra. (b) Fourier transform (FT) of the Cu K-edge EXAFS.

Figure S8. (a) Cu K-edge XANES. (b) FT-EXAFS. (c) XPS spectra of Cu-SAs/C₃N₄ with different Cu loadings. These results revealing that the existence of Cu oxidized state ($1 < \delta < 2$), and the oxidized state of Cu increased with Cu loadings increased (Figure S8a, the white intensity increased with the Cu loadings increased). (d) TOF versus Cu loadings over the Cu-SAs/C₃N₄ catalyst.

Figure S9. Characterizations of M-SAs/C₃N₄ (M= Fe, Co, Mn) catalyst. (a) Fe K-edge XANES spectra. (b) Fourier transform (FT) of the Fe K-edge EXAFS. (c) Co K-edge XANES spectra. (d) Fourier transform (FT) of the Co K-edge EXAFS. (e) Mn K-edge XANES spectra. (f) Fourier transform (FT) of the Mn K-edge EXAFS.

Figure S10. Conversion of H₂O₂ and gain (G) factor during methane oxidation over Cu, Fe, Co and Mn-SAs/C₃N₄ catalysts. Reaction conditions: 30 mg catalysts, 5 mL 40wt% H₂O₂, 15 mL H₂O, 3 MPa 95% CH₄/Ar, 25 °C for 5 h, 1000 rpm.

Figure S11. Catalytic performance of the Cu-SAs/C₃N₄ catalyst for methane selective oxidation with different H₂O₂ adding amount.
Reaction conditions: 3 MPa 95% CH₄/Ar, 1~8 mL 40wt% H₂O₂ solution, 20 mL volume in total,

30 mg catalyst, 25 °C for 5 h, 1000 rpm.

Figure S12. The spent Cu-SAs/C₃N₄ catalyst at 25 °C for 5 h. (a) TEM. (b) AC-HAADF-STEM, the representative Cu single atoms were highlighted by red cycles. (c) STEM and (d) Element mappings.

Figure S13. Characterizations of Cu-SAs/C₃N₄. (a) XANES and (b) EXAFS of the fresh Cu-SAs/C₃N₄ and spent Cu-SAs/C₃N₄.

XANES spectrum of the spent Cu-SAs/C₃N₄ exhibited a slightly higher oxidation state of Cu species, indicating the partial oxidation of Cu-N₄ moieties. The EXAFS spectra showed nearly the same characteristics to that of fresh Cu-SAs/C₃N₄. The coordination number of first shell was 4.2 (Table S2) with a slightly increased Cu-N coordination, which was assigned to the interaction between Cu and O atoms during the reaction [5]. The coordination from either Cu-N or Cu-O was undistinguishable in EXAFS. The fitting results of short-range local coordination structure including distance and coordination number suggested that Cu species in the spent Cu-SAs/C₃N₄ remained atomic dispersion.

Samples	Samples Cu loading (%)		Pore size [nm]	Pore volume [cm ³ /g]	
C ₃ N ₄	-	117.8	16.5	0.46	
Cu-SAs/C ₃ N ₄	1.0	89.8	15.2	0.34	
Cu-NPs/C ₃ N ₄	$Cu-NPs/C_3N_4 65.7$		13.1	0.14	

Table S1. Physical parameters of C_3N_4 , Cu-SAs/ C_3N_4 and Cu-NPs/ C_3N_4 .

Sample	Shell	N ^a	R(Å) ^b	Δσ ² *10 ³ (Å ²) ^c	R-factor
Cu foil	Cu-Cu	12.0	2.56	/	/
1.0% Cu-SAs/C ₃ N ₄	Cu-N	3.8±1.1	1.95±0.02	4.52±4.57	0.008
1.0% Cu-SAs/C ₃ N ₄ (spent)	Cu-N/O	4.2±1.5	1.97±0.03	4.50±5.31	0.019
0.5% Cu-SAs/C ₃ N ₄	Cu-N	3.7±0.9	1.96±0.02	8.88±3.53	0.002
0.2% Cu-SAs/C ₃ N ₄	Cu-N	3.7±0.8	1.96±0.02	6.24±2.54	0.002
65.7% Cu-NPs/C ₃ N ₄	Cu-N	2.2±0.3	1.92±0.02	6.51±2.16	0.002
	Cu-Cu	3.1±0.4	2.53±0.03	8.67±1.84	

Table S2. Structure parameters extracted from the EXAFS fitting.

^a Coordination number; ^b Distance between absorber and backscatter atoms; ^c Debye-Waller factor to account for both thermal and structural disorders; R-factor indicated the goodness of the fit. The obtained S_0^2 of Cu foil was 0.88 and it was fixed in the subsequent fitting of Cu foil K-edge data for the catalyst.

Entry	Catalysts	Metal loading [%]	Oxygenates [µmol]	TOF [h ⁻¹]
1	Cu-SAs/C ₃ N ₄	1.0	153	6.7
2	Cu-SAs/C ₃ N ₄	0.5	71	6.2
3	Cu-SAs/C ₃ N ₄	0.2	25	5.4
4	Cu-NPs/C ₃ N ₄	65.7	65	N.A.
5	Fe-SAs/C ₃ N ₄	2.0	55	1.2
6	Co-SAs/C ₃ N ₄	1.2	37	1.3
7	Mn-SAs/C ₃ N ₄	1.7	15	0.3
8	C_3N_4	0	0	0
9	Cu/SiO ₂	1.0	26	1.1
10	Cu/Al ₂ O ₃	1.0	41	1.7

Table S3. Catalytic performance for methane selective oxidation to oxygenates at 25 °C for 5 h.

		Temperature	t	Oxygenates	Production /µmol g ⁻¹		TOF Icts [h ⁻¹]	Reference	
Entry Catalyst	Catalyst [°C] [h] s	selectivity/% CH ₃ OH	СН₃ООН	Total products					
1	1.0% Cu-SAs/C ₃ N ₄	25	2	95	397	2946	3500	11.0	This work
2	2.7% FeN ₄ /GN	25	10	94	-	-	2300	0.5	<i>Chem</i> 2018, 4, 1902
3	CNT@PCN/Ni-SAs(0.68%)	50	10	-	-	-	1574	1.4	<i>Angew</i> . Chem. Int. Ed. 2019, 131, 18559
4	1% Cr/TiO ₂	25	1	93	50	300	520	2.7	<i>Angew</i> . Chem. Int. Ed. 2020, 132, 1232
5	0.3% Rh/ZrO ₂	70	0.5	78	31	7	49	3.3	J. Am. Chem. Soc. 2017, 139, 17694
6	1% AuPd/TiO ₂	50	0.5	90	29	112	157	4.9	ACS Catal. 2018, 8, 2567
7	1% AuPd/TiO ₂	30	0.5	83	7	39	56	4.3	<i>Angew</i> . Chem. Int. Ed. 2013, 52, 1280
8	0.33% Fe/TiO ₂	25	3	97	-	-	-	6	Nat. Catal. 2018, 1, 889
9	AuPd colloid	50	0.5	88	-	-	-	8.6	Science 2017, 358, 223

Table S4. Comparison of direct conversion of methane to oxygenates at low temperature

Cu loading		
(%)		
1.0		
0.99		

Table S5. The ICP-OES results for the pristine Cu-SAs/ C_3N_4 and Cu-SAs/ C_3N_4 after 3 cycles reaction.

References

1 M. J. Frisch, G.W. Trucks, H. B. Schlegel, G. E. Scuseria. M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, 2009, Gaussian 09, Revision C.01. Gaussian, Inc., Wallingford.

2 A. D. Becke, J. Chem. Phys. 1993, 98, 5648.

3 N. Godbout, D. R. Salahub, J. Andzelm, E. Wimmer, Can. J. Chem. 1992, 70, 560.

4 H. Song, X. G. Meng, S. Y. Wang, W. Zhou, X. S. Wang, T. Kako, J. H. Ye, *J. Am. Chem. Soc.* **2019**, 141, 20507.

5 T. Zhang, D. Zhang, X. H. Han, T. Dong, X. W. Guo, C. S. Song, R. Si, W. Liu, Y. F. Liu, Z. K. Zhao, *J. Am. Chem. Soc.* **2018**, 140:16936-16940.