Supporting Information

Low-spin 1,1'-diphosphametallocenates of Chromium and Iron

Samuel M. Greer,^{1,2,3} Ökten Üngör,³ Ross J. Beattie,¹ Jaqueline L. Kiplinger,^{*1} Brian L. Scott,¹ Benjamin W. Stein,^{*1} and Conrad A. P. Goodwin^{*1,4}

¹Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.

²National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA.

³Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32306, USA.

⁴Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.

*Correspondence to: kiplinger@lanl.gov; bstein@lanl.gov; cgoodwin@lanl.gov.

Table of Contents

S1. Experimental Details				
S1.1.	Preparation of KTMP	4		
S1.2.	Synthesis of $2-M$ (M = Cr, Fe)	5		
S1.3.	Attempted extension to Mn and Co	6		
S2. Crystallo	ography	8		
S3. Molecula	ar Structures	11		
S4. NMR Sp	ectroscopy	17		
S5. UV-vis-nIR Spectroscopy				
S6. ATR-FTIR Spectroscopy				
S7. EPR Spectroscopy				
S8. ⁵⁷ Fe Mös	ssbauer Spectroscopy	31		
S9. Quantum	n Chemical Calculations	32		
S9.1 .	Example ORCA input files	33		
\$10. SQUID	Magnetometry	35		
S11. Qualita	tive ligand HOMOs in Cp ⁻ vs {PC4H4} ⁻	36		
S12. Referen	S12. References			
S13. CIF reports				

S1. Experimental Details

General considerations

All syntheses and manipulations were conducted under UHP argon (AirGas) with rigorous exclusion of oxygen and water using Schlenk line and glove box techniques. Molecular sieves (4 Å, Sigma Aldrich, 8-12 mesh) were activated at 200 °C for 12 hours, at $5x10^{-4}$ mbar. All solvents were degassed (by bubbling Ar through them, or under dynamic vacuum) prior to drying procedures. Anhydrous THF (Sigma Aldrich) was degassed, refluxed over K/Ph₂CO until a persistent purple color was obtained, then distilled and stored over 4 Å molecular sieves. Anhydrous hexane and toluene (Sigma Aldrich) were degassed, refluxed over NaK/Ph₂CO for several days until dark coloration (purple solutions or purple/green solids) were observed, then distilled and stored over 4 Å molecular sieves. All solvents were tested with a dilute THF solution of Na₂Ph₂CO (150 mg Ph₂CO in 20 mL of THF with an excess of Na metal) such that ethereal solvents required 1 drop / mL to retain purple coloration and hydrocarbon solvents required 1 drop / 2 mL. Anhydrous C₆D₆ and C₄D₈O (both Sigma Aldrich) for NMR spectroscopy were degassed, stirred with NaK for 72 hours and filtered through a glass-fiber filter disc prior to use. KC8 was prepared by heating graphite flakes (200 mesh, Sigma Aldrich) and 1/8th of a molar equivalent of freshly cleaned K metal together in a glass scintillation vial inside an argon glovebox with vigorous stirring using a metal spatula. 2-butyne was vacuum transferred and stored over 4 Å sieves for 4 days prior to use. 2.2.2-cryptand (Alfa Aesar) was dried under vacuum ($5x10^{-4}$ mbar) for 48 hours and stored in a glovebox. PhPCl₂, anhydrous CrCl₂ (Alfa Aesar), anhydrous FeCl₂ (Alfa Aesar) and anhydrous CoCl₂ (Fisher Scientific) were used as received. $[M(TMP)_2]$ (1-M, M = Cr or Fe) were prepared using a procedure slightly modified from those previously described;^{1,2} anhydrous FeCl₂ and CrCl₂ were combined with base free KTMP in THF at room temperature, and the complexes were crystallized from hexane. The glovebox atmosphere was periodically checked using a dilute toluene solution of [Ti(Cp)2(µ-Cl)]2 (200 mg of commercial [Ti(Cp)2(Cl)2] reduced over an excess of Zn powder in 20 mL of toluene, and filtered. A drop of the green solution was allowed to dry on a vial lid (Urea, VWR) prior to any manipulations, such that the residue dried to a dark green color each time (a color change to yellow or orange indicates decomposition of the Ti test compound and atmospheric O₂/H₂O removal is required). All glassware, and glass-fiber filter discs, were stored in an oven (>150 °C) for 24 hours prior to being brought into the glovebox, and FEP (fluorinated ethylene propylene) NMR liners were brought into the box via overnight vacuum cycles. The NMR solutions were loaded into a fresh FEP NMR liner, stoppered with a PTFE plug, and then placed in J. Young tap appended NMR tubes. This was done as it facilitates the easy handling of material in facilities primarily concerned with Th/dU work and is a local requirement for the area this work had to be performed in. Crystals for single-crystal X-ray diffraction were mounted on nylon loops in Paratone-N oil. Solution phase electronic absorption spectra were collected at ambient temperature using a Varian Cary 6000i UV-visnIR spectrometer. Solutions were contained in low volume (1 mL) screw-capped quartz cuvettes (1 cm path length). ATR-FTIR spectra were obtained using a Thermo Scientific Nicolet iS5 FTIR spectrometer using a Golden Gate Diamond ATR (ZnSe lenses) with a reaction anvil. Experimental details for other techniques (⁵⁷Fe Mössbauer and EPR spectroscopies, and SQUID magnetometry) are described separately in their corresponding sections.

S1.1. Preparation of KTMP

Base-free KTMP was prepared by a multi-step procedure adapted from several literature procedures and beginning with cheap, commercially available starting materials (Scheme 1). Here we have structurally characterized two of the intermediates, $[Zr(Cp)_2(C_4Me_4)$ (5) and Ph-PC₄Me₄ (Ph-TMP, 6) for the first time.

$$ZrCl_{4} + 2 THF \longrightarrow [Zr(Cl)_{4}(THF)_{2}] \longrightarrow [Zr(Cp)_{2}(Cl)_{2}]$$

Excess CpH + Na \longrightarrow NaCp $2 x$ THF, $-78^{\circ}C$ [Zr(Cp)_{2}(Cl)_{2}]

$$[Zr(Cp)_{2}(Cl)_{2}] + 2.3 \text{ MeCCMe} \xrightarrow{2.1 \ {}^{n}\text{BuLi}}_{\text{THF, -78°C}} [Zr(Cp)_{2}(C_{4}\text{Me}_{4})_{2}] \xrightarrow{2.2 \ \text{PhPCl}_{2}}_{\text{THF, -78°C}} \text{Ph-PC}_{4}\text{Me}_{4} + [Zr(Cp)_{2}(Cl)_{2}] \xrightarrow{6}$$

This procedure all performed in one flask with warming and re-cooling steps.

Scheme S1. Synthesis of KTMP, beginning from dicyclopentadiene / Na and anhydrous ZrCl4.

 $[Zr(Cp)_2(Cl)_2]$ was prepared from $[Zr(Cl)_4(THF)_2]$ (prepared from ZrCl₄ and stoichiometric THF in DCM, and recrystallized from DCM)³ and two equivalents of NaCp (prepared from dicyclopentadiene and Na metal) in THF,⁴ followed by solvent removal and extraction of the bright yellow residue with DCM. $[Zr(Cp)_2(C4Me_4)]$ (5) was prepared from $[Zr(Cp)_2(Cl)_2]$, "BuLi, and 2-butyne, and crystallized from hexane or used *in situ*.^{5,6} Ph-TMP (6) was prepared from 5 and PhPCl₂, then purified by distillation which afforded colorless crystals, rather than a colorless oil.⁵ During the course of this study we have structurally characterized 5 and 6 for the first time (*vide infra*). Base-free KTMP was prepared from 6 and a four-fold excess of K metal in boiling DME or THF, followed by filtration of the bright orange solution and exhaustive extraction of the gray/brown

residue. Multiple crops of colorless crystals were collected by repeated concentration and cooling of the orange solution. This material was then fully desolvated *in vacuo* to afford a white powder, which was confirmed to be base-free by elemental analysis. (TMP)₂ was prepared as previously described, and purified by crystallization from hexane.⁵

S1.2. Synthesis of 2-M (M = Cr, Fe)

Synthesis of $[K(2.2.2-crypt)][Cr(TMP)_2]$ 2-Cr: A solution of 1-Cr (55 mg, 0.17 mmol) and 2.2.2-crypt (62 mg, 0.17 mmol) in THF (1 mL) was prepared in a 20 mL glass scintillation vial equipped with a Teflon stir bar, then cooled to -35° C for 1 hour. Separately, a vial of KC₈ was also chilled to -35° C along with an aluminum vial block. Cold KC₈ (25 mg, 0.18 mmol, 1.1 eq.) was added rapidly to the vigorously stirred THF solution which was maintained close to -35° C by the vial block. The solution immediately turned from dark red to dark brown/black. The brown/black solution was filtered from black solids (presumably graphite) through a glass pipette loaded with a glass-fiber disc padded with a 2 mm layer of KC₈ into a 4 mL glass vial. Hexane (3 mL) was carefully layered on top of the THF solution, and the vial was then stored at -35° C for 18 hours. The pale brown/colorless supernatant was decanted and the brown/black crystals were washed with room temperature hexane (3 x 2 mL) followed by drying *in vacuo* to afford **2-Cr** (yield 102 mg, 82%). CrKP₂N₂O₆C₃₄H₆₀; calcd. C 54.75, H 8.11, N 3.76; found C 54.32, H 8.18, N 3.49. ¹H NMR (C₄D₈O, 400 MHz, 298 K): 2.63, 3.62, 3.65, only peaks attributable to free 2.2.2-cryptand, and to the solvent residual signals were observed. ³¹P{¹H} NMR (C₄D₈O, 162 MHz, 298 K): 74.55, diamagnetic impurity, corresponds to free {TMP}⁻ anion. ATR-IR ($\bar{\nu}$, cm⁻¹): 2958 (m), 2935 (w), 2922 (w), 2866 (m), 2825 (s), 2727 (w), 2698 (w), 2360 (m), 2343 (m), 1477 (m), 1454 (w), 1442 (m), 1412 (w), 1398 (w), 1369 (m), 1358 (m), 1350 (s), 1300 (m), 1292 (m), 1257 (m), 1240 (w), 1169 (w), 1132 (s), 1101 (vs), 1080 (vs), 1057 (m), 1018 (m), 947 (s), 931 (s), 831 (m), 820 (m), 752 (m), 681 (w), 669 (w), 658 (vw), 571 (m). UV-vis-nIR (THF) λ_{max} (cm⁻¹, ε): 502 (19904, 4180, vbr).

Synthesis of $[K(2.2.2-crypt)][Fe(TMP)_2]$ 2-Fe: A solution of 1-Fe (150 mg, 0.45 mmol) and 2.2.2-crypt (170 mg, 0.45 mmol) in THF (1 mL) was prepared in a 20 mL glass scintillation vial equipped with a Teflon stir bar, then cooled to -35° C for 1 hour. Separately, a vial of KC₈ was also chilled to -35° C along with an aluminum vial block. Cold KC₈ (67 mg, 0.50 mmol, 1.1 eq.) was added rapidly to the vigorously stirred THF solution which was maintained close to -35° C by the vial block. The solution immediately turned from dark red to dark green/black. The green/black solution was filtered from black solids (presumably graphite) through a glass pipette loaded with a glass-fiber disc padded with a 2 mm layer of KC₈ into a 4 mL glass vial. Hexane (3 mL) was carefully layered on top of the THF solution, and the vial was then stored at -35° C for 18 hours. The pale brown/colorless supernatant was decanted and the green/black crystals were washed with room temperature hexane

(3 x 2 mL) followed by drying in vacuo to afford **2-Fe** (yield 243 mg, 72%). FeKP₂N₂O₆C₃₄H₆₀; calcd. C 54.47, H 8.07, N 3.74; found C 54.96, H 8.35, N 3.61. ¹H NMR (C₄D₈O, 400 MHz, 298 K): 1.94 (s, 12H, TMP-3,4-Me₂), 2.19 (d, ³J_{HP} = 10.29 Hz, 12H, TMP-2,5-Me₂), 2.28 (s, 12H, 2.2.2-crypt), 3.30 (s, 12H, 2.2.2-crypt), 3.37 (s, 24H, 2.2.2-crypt). ³¹P {¹H} NMR (C₄D₈O, 162 MHz, 298 K): 74.46, diamagnetic impurity, corresponds to free {TMP}⁻ anion. ATR-IR ($\bar{\nu}$, cm⁻¹): 2954 (w), 2873 (m), 2835 (m), 2729 (w), 2698 (w), 2360 (w), 2343 (w), 2324 (w), 1475 (m), 1442 (m), 1414 (w), 1390 (w), 1358 (m), 1350 (m), 1296 (m), 1257 (m), 1240 (w), 1173 (w), 1132 (s), 1099 (vs), 1078 (vs), 1020 (m), 947 (s), 931 (s), 829 (m), 820 (m), 796 (w), 752 (m), 679 (w), 667 (w), 638 (vw), 625 (vw), 588 (w), 569 (w), 553 (w), 536 (w). UV-vis-nIR (THF) λ_{max} (cm⁻¹, ε): 428 (23375, 2220, vbr), 533 (18754, 1830, vbr), 616 (16239, 1720, vbr), 885 (11297, 1760), 924 (10818, 1730).

S1.3. Attempted extension to Mn and Co

The synthesis of a redox series, such as that for **3-M** and **4-M** (M = Mn, Fe, Co) was desirable. Attempts to synthesize the required **1-Mn** from commercial MnCl₂, MnCl₂(THF)_n prepared *in-situ*, MnCl₂(DME)_n prepared *in-situ*, or MnCl₂(PMe₃) with two equivalents of KTMP in THF, DME or toluene resulted in intractable mixtures of dark powder that were insoluble in all common solvents that are compatible with this ligand set. The synthesis of **1-Co** was attempted using anhydrous CoCl₂ and two equivalents of K-TMP in THF (see below).

Synthesis of $[Co(\eta^5-TMP)(\mu^2:\eta^1:\eta^1-TMP)]_2$ 7: CoCl₂ (65 mg, 0.5 mmol) was slurried in THF (4 mL) in a 20 mL glass scintillation vial at room temperature. K-TMP (178 mg, 1 mmol) was added to the blue suspension, which immediately turned dark brown. The brown mixture was stirred for 16 hours at room temperature. Volatiles were removed *in vacuo* and the black tacky residue was extracted with hot (60 °C) hexane (6 mL) which afforded a dark brown/black solution which was concentrated to 1.5 mL and stored at room temperature for 16 hours to afford black crystals of 7 along with sticky brown residues (mass 14 mg). We were unable to optimize the yield of this complex. A ³¹P{¹H} NMR taken of the crystalline material indicated several products (Figure S21).

Attempted reduction of crude 7: The reaction above was repeated on the same scale. We then attempted reduction of the crude mixture, assuming an arbitrary 80% conversion of the reactants to 7, presuming any reduced product might form a salt-like complex as 2-M, and be separable from 7 based on solubility. After stirring for 16 hours at room temperature, the crude mixture was reduced to dryness in vacuo, and extracted with warm (45 °C) toluene (5 mL), filtered through a glass pipette loaded with a glass-fiber disc into a 20 mL glass scintillation vial, and the brown/black solution was reduced to dryness in

vacuo. Solid 2.2.2-crypt (151 mg, 0.4 mmol, 0.8 eq. assuming 80% conversion) was added along with a Teflon stir bar, and then the tacky black residue was dissolved in THF (2 mL), and cooled to -35 °C. Pre-cooled (-35 °C) solid KCs (54 mg, 0.40 mmol, 0.8 eq. assuming 80% conversion) was added to the rapidly stirred solution which was maintained at -35°C using a chilled vial block. No perceptible color change was observed. After stirring for 1 minute the black solution was filtered underneath pre-cooled hexane (10 mL) in a 20 mL glass scintillation vial, and stored overnight at -35°C which afforded several low quality crystals of [K(2.2.2-crypt)][TMP] (8), 2.2.2-crypt, and no other crystalline products. The brown solution was decanted from the crystals and reduced to a thin oil in vacuo, which formed biphasic mixtures in hydrocarbon solvents (pentane, hexane, toluene), and pale brown solutions in ethereal solvents (THF, DME, Et₂O), but no further crystalline products could be isolated. When the reaction was repeated at room temperature, the observed colors and biphasic mixtures etc. were all identical, and likewise no crystalline products that contained Co could be isolated in our hands.

S2. Crystallography

General considerations

The crystal data for complexes 1-Cr, 1-Fe, 2-Cr, 2-Fe, 5 – 8 are compiled in Tables S1-3. Crystals of 1-Fe, 2-Cr, 2-Fe, 7, and 8 were examined with a Bruker D8 Quest diffractometer equipped with a CMOS detector and using mirror-monochromated Mo K α radiation ($\lambda = 0.71073$ Å) operating in shutterless mode; crystals of 1-Cr was examined with a Bruker APEX II diffractometer equipped with a CCD detector and using mirror-monochromated Mo K α radiation ($\lambda = 0.71073$ Å); crystals of 5 were examined using an Oxford Diffraction Supernova diffractometer, equipped with CCD area detector and a mirrormonochromated Mo Ka radiation ($\lambda = 0.71073$ Å); and crystals of 4 were examined with a Rigaku XtalLAB AFC11 diffractometer, equipped with CCD detector and mirror-monochromated Cu K α radiation ($\lambda = 1.54184$ Å). APEX II (APEX II), or APEX III (D8 Quest), or CrysAlisPro (Rigaku XtalLAB AFC11) software was used for control and solving the unit cells prior to data collection. Intensities were integrated from data recorded on 0.5° frames by ω rotation with 10s frame exposure (1-Cr), 13s frame exposure (1-Fe), 25s frame exposure (2-Fe), 30s frame exposure (2-Cr), or 90s frame exposure; or by 0.7° frames by ω rotation with 1s or 2s frame exposure (6); or finally by 0.8° frames by ω rotation with 30s frame exposure (5). CrysAlisPro was used for final unit cell determination and parameters were refined from the observed positions of all strong reflections in each data set and an analytical absorption correction was applied.⁷ The Olex2⁸ GUI was used for structure solution and refinement utilizing the ShelX software packages.^{9,10} The structures were solved using ShelXT;¹⁰ the datasets were refined by ShelXL⁹ using full-matrix least-squares on all unique F^2 values, with anisotropic displacement parameters for all non-hydrogen atoms, and with constrained riding hydrogen geometries; $U_{iso}(H)$ was set at 1.2 (1.5 for methyl groups) times Ueq of the parent atom. The largest features in final difference syntheses were close to heavy atoms and were of no chemical significance. Olex2 combined with Inkscape was employed for molecular graphics.^{8,11} CCDC 2003385 (1-Cr), 2003386 (1-Fe), 2003387 (2-Cr), 2003388 (2-Fe), 2003389 (5), 2003390 (6), 2017380 (7), and 2017381 (8) contain the supplementary crystal data for this article.[§] These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

	1-Cr	1-Fe	2-Cr	2-Fe
Internal identifier	Apx2920	Dq0894	Dq1027	Dq0907
CCDC ref code	2003385	2003386	2003387	2003389
Formula	$CrP_2C_{16}H_{24}$	FeP ₂ C ₁₆ H ₂₄	KCrP2N2O6C34H60	KFeP2N2O6C34H60
Fw	330.29	334.14	745.88	749.73
Crystal syst	Monoclinic	Monoclinic	Triclinic	Triclinic
Space group	$P2_{1}/n$	<i>C</i> 2/c	<i>P</i> –1	<i>P</i> –1
<i>a</i> , Å	7.8420(3)	14.2948(7)	10.1994(4)	10.1947(2)
<i>b</i> , Å	12.5620(4)	12.8549(6)	14.2193(7)	14.2373(4)
<i>c</i> , Å	8.8611(3)	8.8448(4)	15.0882(6)	15.0677(3)
α, °	90	90	62.328(4)	62.275(2)
β, °	109.444(4)	104.364(5)	86.597(3)	85.840(2)
γ, °	90	90	87.156(3)	87.045(2)
<i>V</i> , Å ³	823.13(5)	1574.50(13)	1933.91(16	1930.42(8)
Z	2	4	2	2
$ ho_{ m calcd},~{ m g~cm^{-3}}$	1.333	1.410	1.281	1.290
μ , mm ⁻¹	0.874	1.146	0.529	0.624
<i>F</i> (000)	348	704	798	802
Cryst size, mm	0.30 x 0.35 x 0.42	0.16 x 0.19 x 0.29	0.30 x 0.30 x 0.30	0.05 x 0.22 x 0.25
Temperature, K	100(2)	100(2)	100(2)	100(2)
no. reflections (unique)	6774 (1508)	6215 (1605)	23292 (7060)	25573 (7807)
R _{int}	0.017	0.032	0.033	0.036
$R_1(wR_2) (F^2 > 2\sigma(F^2))$	0.0252 (0.0667)	0.0312 (0.0789)	0.0338 (0.0872)	0.0400 (0.1035)
Sa	1.09	1.12	1.10	1.09
min./max. diff map, Å $^{\!-\!3}$	-0.26, 0.33	-0.24, 0.56	-0.25, 0.49	-0.26, 0.62

Table S1. Crystallographic data for 1-Cr, 1-Fe, 2-Cr, and 2-Fe.

 ${}^{a}R = \sum ||F_{O}| - |F_{C}|| / \sum |F_{O}|; R_{W} = [\sum w(F_{O}^{2} - F_{C}^{2})^{2} / \sum w(F_{O}^{2})^{2}]^{0.5}; S = [\sum w(F_{O}^{2} - F_{C}^{2})^{2} / (no. \ data - no. \ params)]^{0.5} \ for \ all \ data.$

Table S2. Crystallographic data for 5 – 8.	
--	--

	5	6	7	8
Internal identifier	Adpm457	Ldpm35	Dq1025	Dq0919
Formula	$ZrC_{18}H_{22}$	$PC_{14}H_{17}$	$Co_2P_4C_{32}H_{48}$	$K_2P_2O_{12}N_4C_{52}H_{96}{\cdot}C_4H_8O$
Fw	329.57	216.24	674.44	1181.57
Crystal syst	Monoclinic	Triclinic	Monoclinic	Triclinic
Space group	<i>I</i> 2/a	<i>P</i> -1	C2/c	<i>P</i> –1
<i>a</i> , Å	14.1554(8)	8.0727(2)	20.161(3)	12.7189(8)
<i>b</i> , Å	9.6976(4)	8.74422(19)	9.0620(4)	15.9437(10)
<i>c</i> , Å	12.0182(6)	18.4065(4)	20.214(3)	17.8937(12)
α, °	90	103.1739(17)	90	64.066(6)
β, °	112.336(6)	92.6248(19)	119.71(2)	85.655(5)
γ, °	90	100.705(2)	90	86.321(5)
<i>V</i> , Å ³	1526.00(15)	1237.81(5)	3207.6(9)	3251.9(4)
Z	4	4	4	2
$ ho_{ m calcd},{ m g}~{ m cm}^{-3}$	1.434	1.160	1.397	1.207
μ , mm ⁻¹	0.705	1.664	1.254	0.254
<i>F</i> (000)	680	464	1416	1280
Cryst size, mm	0.04 x 0.12 x 0.17	0.09 x 0.18 x 0.19	0.10 x 0.12 x 0.40	0.05 x 0.14 x 0.37
Temperature, K	150(2)	150(2)	100(2)	100(2)
no. reflections (unique)	2872 (1558)	13067 (4482)	17531 (2935)	31744 (13040)
R _{int}	0.028	0.019	0.065	0.065
$R_1(wR_2) (F^2 > 2\sigma(F^2))$	0.0330 (0.0805)	0.0329 (0.0899)	0.0333 (0.0834)	0.0673 (0.1979)
Sa	1.07	1.04	1.01	1.06
min./max. diff map, $Å^{-3}$	-0.54, 0.46	-0.26, 0.32	-0.34, 0.50	-0.54, 0.73

 ${}^{a}R = \sum ||F_{O}| - |F_{C}|| / \sum |F_{O}|; R_{W} = [\sum w(F_{O}^{2} - F_{C}^{2})^{2} / \sum w(F_{O}^{2})^{2}]^{0.5}; S = [\sum w(F_{O}^{2} - F_{C}^{2})^{2} / (no. \ data - no. \ params)]^{0.5} \ for \ all \ data.$

S3. Molecular structures

Figure S1. Side view (left) and top view (right) of the molecular structure of **1-Cr** with ellipsoids set at 50%, and hydrogen atoms removed for clarity. Cr(1) sits on a site of symmetry, and thus the inter-ring angle is necessarily 180°. (operations: x, y, z; 1–x, 1–y, 1–z).

Figure S2. Side view (left) and top view (right) of the molecular structure of **1-Fe** with ellipsoids set at 50%, and hydrogen atoms removed for clarity. Fe(1) sits on a site of symmetry, and thus the inter-ring angle is necessarily 180°. (operations: x, y, z; $\frac{1}{2}$ -x, $\frac{1}{2}$ -y, 1-z).

Table S3.	. Structural	parameters	for	1-Cr	and	1-Fe.
-----------	--------------	------------	-----	------	-----	-------

M = Cr or Fe ^a	1-Cr	1-Fe	
P–M / Å	2.3812(4)	2.2932(4)	
$TMP_{cent}\cdots M / Å$	1.795(1)	1.660(1)	
$PC_{2plane} \cdots C_{4plane}{}^b \ / \ ^\circ$	4.45(12)	1.27(13)	

^a Prior-reported CCDC codes for 1-Cr: NORRAN; 1-Fe: ABIGAU.

^b A plane is defined by the three atoms, P and the two adjoining C atoms; a second plane is defined by all four C atoms of the TMP ring. The "hinge angle", HA, between these two planes is reported.

Figure S3. Molecular structure of **2-Cr** with ellipsoids set at 50%, and hydrogen atoms removed for clarity. The structure has been inverted for this image to show the similarity to **2-Fe** (below).

Figure S4. Molecular structure of 2-Fe with ellipsoids set at 50%, and hydrogen atoms removed for clarity.

Table S4. Structural parameters for 2-Cr and 2-Fe.

M = Cr or Fe	2-Cr	2-Fe
P-M / Å	2.3596(8) / 2.3595(7)	2.3842(8) / 2.4078(7)
$TMP_{cent} \cdots M \ / \ \mathring{A}$	1.739(1) / 1.737(1)	1.714(1) / 1.711(1)
$TMP_{cent} \cdots M \cdots TMP_{cent} \ / \ ^{\circ}$	177.60(4)	178.78(2)
$PC_{2plane} \cdots C_{4plane}{}^a \ / \ ^\circ$	3.57(2) / 4.64(2)	6.58(2) / 8.73(2)
P–M–P ring twist / °	139.82(5)	146.35(5)

^a A plane is defined by the three atoms, P and the two adjoining C atoms; a second plane is defined by all four C atoms of the TMP ring. The "hinge angle", HA, between these two planes is reported.

Figure S5. Molecular structure of **1-Cr** (left), and the anion of **2-Cr** (right) with ellipsoids set at 50%. Hydrogen atoms, methyl groups on P(1) ring, and the cation of **2-Cr** removed for clarity. Intended to show structural comparisons of the 1,1'-diphosphametallocene fragment. The pair of numbers for the hinge angle corresponds to the P(1) ring / P(2) ring respectively.

Ta	ble	e S5.	Stru	uctural	compar	risons	between	the	1-C	r and	2-	Cr	pair.
----	-----	-------	------	---------	--------	--------	---------	-----	------------	-------	----	----	-------

$\mathbf{M} = \mathbf{C}\mathbf{r}$	1-Cr	2-Cr	Δ
P–M / Å	2.3812(4)	2.3596(8) / 2.3595(7)	-0.022(1)
TMP_{cent} ····M / Å	1.795(1)	1.739(1) / 1.737(1)	Avg0.057(1)
$TMP_{cent} \cdots M \cdots TMP_{cent}{}^b \ / \ ^\circ$	180	177.60(4)	-2.40°
$PC_{2plane} \cdots C_{4plane}{}^a \ / \ ^\circ$	4.45(12)	3.57(2) / 4.64(2)	С

^a A plane is defined by the three atoms, P and the two adjoining C atoms; a second plane is defined by all four C atoms of the

TMP ring. The "hinge angle", HA, between these two planes is reported.

^b The propagated error is too large and precludes meaningful analysis beyond that **2-Cr** has approximately the same deviation of the P atoms from the TMP plane a **1-Cr**.

Figure S6. Molecular structure of **1-Fe** (left) and the anion of **2-Fe** (right) with ellipsoids set at 50%. Hydrogen atoms, methyl groups on P(1) ring, and the cation of **2-Fe** removed for clarity. Intended to show structural comparisons of the 1,1'-diphosphametallocene fragment. The pair of numbers for the hinge angle corresponds to the P(1) ring / P(2) ring respectively.

Table S6. Structural comparisons between the 1-Fe and 2-Fe pair.

M = Fe	1-Fe	2-Fe	Δ
P–M / Å	2.2932(4)	2.3842(8) / 2.4078(7)	+0.103(1)
TMP_{cent} ····M / Å	1.660(1)	1.714(1) / 1.711(1)	Avg. +0.053(1)
$TMP_{cent} \cdots M \cdots TMP_{cent}{}^b \ / \ ^\circ$	180	178.78(2)	-1.12
$PC_{2plane} \cdots C_{4plane}{}^a / \circ$	1.27(13)	6.58(2) / 8.73(2)	С

^a A plane is defined by the three atoms, P and the two adjoining C atoms; a second plane is defined by all four C atoms of the TMP ring. The "hinge angle", HA, between these two planes is reported.

^b The propagated error is too large and precludes meaningful analysis beyond that **2-Fe** has a much larger deviation of the P atoms from the TMP plane than **1-Fe**.

Figure S7. Molecular structure of **5** with ellipsoids set at 50%. A disordered component for both Cp rings, and hydrogen atoms removed for clarity. Zr(1) sits on a site of symmetry, thus half the molecule is symmetry generated (operations: x, y, z; $\frac{1}{2}-x$, y, 1–z).

 $Zr(1) \cdots Cp_{cent} = 2.210(5)$ Å; Zr(1)-C(2) = 2.232(3) Å; C(2)-C(3) = 1.355(4) Å; C(3)-C(3A) = 1.505(6) Å.

 $Cp_{cent} \cdots Zr(1) \cdots Cp_{cent} = 133.6(2)^{\circ}; C(2)-Zr(1)-C(2A) = 81.22(15)^{\circ}; Cp_{cent} \cdots Zr(1) \cdots Cp_{cent} dihedral C(2)-Zr(1)-C(2A) = 91.66^{\circ}.$

Figure S8. Molecular structure of **6** with ellipsoids set at 50%. A second molecule in the asymmetric unit, and hydrogen atoms removed for clarity.

P(1)-C(1) = 1.7987(13) Å; P(1)-C(4) = 1.8057(17) Å; P(1)-C(9) = 1.8313(16) Å; C(1)-C(2) = 1.353(2) Å; C(2)-C(3) = 1.477(2) Å; C(3)-C(4) = 1.347(2) Å.

 $C(1)-P(1)-C(4) = 1.7979(13)^{\circ}; C(1)-P(1)-C(9) = 106.06(6)^{\circ}; C(4)-P(1)-C(9) = 103.36(7)^{\circ}.$

Figure S9. Front view (left) and side view (right) of the molecular structure of 7 with ellipsoids set at 50%, and hydrogen atoms removed for clarity.

 $Co(1) \cdots Co(1A) = 2.685(1) \text{ Å}; Co(1) - P(1) = 2.2963(10) \text{ Å}; Co(1) - P(2) = 2.1697(10) \text{ Å}; P(1)TMP_{cent} \cdots Co(1) = 1.705(1) \text{ Å}.$ $TPM_{cent} \cdots Co(1 \cdots Co(1A) = 166.57(4)^{\circ}; Co(1) - P(2) - Co(1A) = 76.38(4)^{\circ}; P(2) - Co(1) - P(2A) = 94.06(4)^{\circ}; \sum_{Co(1) - P(2A) - Co(1A) - P(2)} = 340.88^{\circ}.$

Figure S10. Molecular structure of **8** with ellipsoids set at 50%. Hydrogen atoms, a second set of [K(2.2.2-crypt)] and TMP, and a THF molecule removed for clarity. The extensive disorder components were also removed, and preclude meaningful discussion of the metrical parameters for this compound.

S4. NMR Spectroscopy

Figure S11. ¹H NMR spectrum of **1-Fe** in C₆D₆ at room temperature, spectrum cropped to show all observed peaks. * denotes a small amount of $(TMP)_2$, presumably formed *via* oxidative coupling of K-TMP from traces of FeCl₃ in commercial samples of FeCl₂. An authentic sample of $(TMP)_2$ was prepared and the ¹H NMR spectra were compared (*vide infra*, Figure S17) which agreed well with literature values.²

Figure S12. ³¹P{¹H} NMR spectrum of 1-Fe in C₆D₆ at room temperature, spectrum cropped to show all observed peaks. *denotes a small amount of $(TMP)_2$.

Figure S13. ¹H NMR spectrum of 2-Cr in C₄D₈O at room temperature, spectrum cropped to show all observed peaks.

Figure S14. ³¹P{¹H} NMR spectrum of **2-Cr** in C₄D₈O at room temperature. The sole observed peak at 74.55 ppm corresponds well to the reported ³¹P resonance for [K(18-crown-6)(TMP)], and is likely a diamagnetic impurity due to decomposition.

Figure S15. ¹H NMR spectrum of **2-Fe** in C₄D₈O at room temperature, spectrum cropped to show all observed peaks. Broad features around -10 ppm, 6 ppm and 12.5 ppm could not be identified by integration or by comparison with known complexes. The spectrum can be compared with that of **1-Fe** (Figure S11).

Figure S16. ³¹P {¹H} NMR spectrum of **2-Fe** in C₄D₈O at room temperature. The sole observed peak at 74.46 ppm corresponds well to the reported ³¹P resonance for [K(18-crown-6)(TMP)], and is likely a diamagnetic impurity due to decomposition.

Figure S17. ¹H NMR spectrum of $(TMP)_2$, in C₆D₆ at room temperature, spectrum cropped to show all observed peaks. The peak at 1.89 ppm presents as a triplet but could plausibly be a doublet of doublets due to ABB' coupling of the CH₃ group with the 1,3-P and the 1,4-P.

Figure S18. $^{31}P\{^{1}H\}$ NMR spectrum of (TMP)₂, in C₆D₆ at room temperature.

Figure S19. ¹H NMR spectrum of **2-Cr** in C₄D₈O, with an external drop of C₄H₈O outside the FEP liner to act as a reference. Collected at room temperature.

Figure S20. ¹H NMR spectrum of 2-Fe in C₄D₈O, with an external drop of C₄H₈O outside the FEP liner to act as a reference.

Collected at room temperature. The second external THF resonance could not be distinguished from overlapping sample peaks.

Fable S7. Solution n	nagnetic susceptibility	data for 2-Cr and 2	2-Fe via Evans NMR method. ^a
-----------------------------	-------------------------	---------------------	---

^b Sample / peak	μ_{eff} / B.M	χ' _m T (S.I.)/	χ'_m T (c.g.s. e.m.u.)/	$\chi'_{m}T$ (S.I.)/ m ³	mass of	mass of solvent	M_r/g	Δ peak /
	mol ⁻¹	m ³ mol ⁻¹	cm ³ mol ⁻¹ K	mol ⁻¹ K	sample / g	+ sample / g	mol ⁻¹	Hz
[K(2.2.2-crypt)][Cr(TMP) ₂] peak 1	1.455	1.12E-08	0.265	3.33E-06	0.0150	0.2465	745.892	73.87
[K(2.2.2-crypt)][Cr(TMP) ₂] peak 2	1.433	1.12E-08	0.257	3.33E-06	0.0150	0.2465	745.892	69.94
[K(2.2.2-crypt)][Fe(TMP) ₂]	1.376	1.12E-08	0.237	3.33E-06	0.0150	0.2826	749.741	51.77

^a The small masses engender large errors in this methodology, the results should be cautiously interpreted along with other

data. ^b Spectrometer frequency 400.130 MHz. Simple diamagnetic correction of M_r / -2,000,000 applied. $\rho_{D8THF} = 0.985 \text{ g mL}^-$

¹.

Figure S21. ${}^{31}P{}^{1}H$ NMR spectrum of crystals of 7 in C₆D₆ at room temperature.

S5. UV-vis-nIR Spectroscopy

Figure S22. UV-vis-nIR spectrum of 1-Cr in THF (0.63 mM) at room temperature recorded between 5,556–36,364 cm⁻¹ (1,800–275 nm), window shown between 6,000–32,000 cm⁻¹ (1,667–313 nm).

Figure S23. UV-vis-nIR spectrum of 1-Fe in THF (0.50 mM) at room temperature recorded between 5,556–36,364 cm⁻¹ (1,800–275 nm), window shown between 6,000–32,000 cm⁻¹ (1,667–313 nm).

Figure S24. UV-vis-nIR spectrum of 2-Cr in THF (0.40 mM) at room temperature recorded between 5,556–36,364 cm⁻¹ (1,800–275 nm), window shown between 6,000–32,000 cm⁻¹ (1,667–313 nm). Features either side of 7,000 cm⁻¹ are due to imperfect background subtraction.

Figure S25. UV-vis-nIR spectrum of 2-Fe in THF (0.40 mM) at room temperature recorded between 5,556–36,364 cm⁻¹ (1,800–275 nm), window shown between 6,000–32,000 cm⁻¹ (1,667–313 nm). Features either side of 7,000 cm⁻¹ are due to imperfect background subtraction.

Figure S26. UV-vis-nIR spectrum of both **1-Cr** (black, bottom line) and **2-Cr** (red, top line) in THF at room temperature recorded between 5,556-36,364 cm⁻¹ (1,800-275 nm), window shown between 6,000-32,000 cm⁻¹ (1,667-313 nm). Intended to highlight the spectral differences upon reduction.

Figure S27. UV-vis-nIR spectrum of both **1-Fe** (black, bottom line) and **2-Fe** (red, top line) in THF at room temperature recorded between $5,556-36,364 \text{ cm}^{-1}$ (1,800-275 nm), window shown between $6,000-32,000 \text{ cm}^{-1}$ (1,667-313 nm). Intended to highlight the spectral differences upon reduction.

Figure S28. A photograph of the solutions used for the UV-vis-nIR measurements. From left to right, 2-Fe, 1-Fe, 2-Cr, and

1-Cr.

S6. ATR-FTIR Spectroscopy

Figure S29. FT-IR spectrum of both 2-Cr a microcrystalline powder, between 4,000-525 cm⁻¹.

Figure S30. FT-IR spectrum of both 2-Fe a microcrystalline powder, recorded between 4,000-525 cm⁻¹.

Figure S31. FT-IR spectrum of both **2-Cr** (black, top line) and **2-Fe** (red, bottom line) as a microcrystalline powder, recorded between 4,000-525 cm⁻¹. Inset shown between 1,600-500 cm⁻¹, to show that the two complexes are essentially identical in the fingerprint region.

S7. EPR Spectroscopy

General considerations: High-Field/Frequency Electron Paramagnetic Resonance spectra were recorded on powder samples of **2-Cr** and **2-Fe**. Samples were loaded into polyethylene cups and immobilized with a PTFE stopper. All sample manipulations were performed in an inert atmosphere glovebox. The transmission-type spectrometer used in this study combined a 17 T superconducting magnet with a phase-locked source (Virginia Diodes Inc., Charlottesville, VA, USA) with a series of frequency multipliers. The field modulated signal was detected by an InSb hot-electron bolometer (QMC Ltd., Cardiff, U.K.). Temperature control was achieved using an Oxford Instruments (Oxford, U.K.) continuous-flow cryostat. Spectral simulations were generated using EasySpin.¹²

Figure S32. Experimental (black) and simulated (red) EPR spectra of 2-Fe (top), 2-Cr (bottom), note the x-axis scale for 2-Cr. Spectra were recorded at the temperatures and frequencies denoted on the respective figures. Note: the baseline features in the 2-Fe spectrum results from micro-crystallites in the imperfectly ground powder. Multi-frequency studies of 2-Cr and 2-Fe reveal no additional features arising from higher spin states. However, 2-Fe exhibits a minor impurity at lower field which is omitted here for clarity and is shown below in Figure S33. The *g*-values used in the simulations are reported the main text as well as in Table S8.

		S	<i>g</i> 1, <i>g</i> 2, <i>g</i> 3
2 E a	Exp.	1/2	2.033(5), 1.999(5), 1.943(5)
2-Fe	NEVPT2	1/2	2.116, 2.029,1.919
2 Ст	Exp.	1/2	2.023(5), 1.993(5), 1.985(5)
2-Cr	NEVPT2	1/2	2.007, 1.984, 1.978

Table S8. Experimental and CASSCF/NEVPT2 Calculated Spin Hamiltonian Parameters.

Figure S33. Spectrum of 2-Fe (same as Figure S32) with an extended axis to show the unknown minor species. The g-values of these features are: ~ 2.09 (*), 2.12 (#), and ~2.18 (†). No evidence of this species was present in 2-Cr.

The sign of $\Delta g_{\mu} (g_{\mu} - g_{c})$, i.e., whether the g – value is less than or greater than the free election value, g_{c} , is determined by the competition of the low-energy α - and β - electron transitions. If the excited states contributing to Δg are predominately accessed by transitions involving α -electrons, then $\Delta g < 0$ while those involving low-lying β -electrons will result in $\Delta g > 0$. The g-values are reasonably well reproduced by the CASSCF + NEVPT2 calculations (see Table S8) and some qualitative insight may be gleaned from examining the AILFT orbital diagrams in Figure 3. In the case of **2-Cr** the lowest energy state (transitions: $\{d_{xy}/d_{y2-y2}\} \rightarrow \{d_{z2}\}$) do not mix by spin-orbit coupling and the sign and magnitude of Δg are determined by the mixing of numerous higher energy excited states. This explains the relatively small Δg values (**2-Cr**, $|\Delta g_{avg}| = 0.0158$). For **2-Fe** the first excited state can be described as an α - electron transition from $\{d_{xz}\} \rightarrow \{d_{yz}\}$ which will mix with the ground state and negative Δg along z. As in the case of **2-Cr**, several higher energy excited states make up the remaining contributions. However, the comparatively large mixing induced by the first excited state is likely a key contributor to the larger observed $|\Delta g_{avg}| = 0.0311$ in **2-Fe**.

S8. ⁵⁷Fe Mössbauer Spectroscopy

General considerations: Spectra were recorded at 120 K in zero applied field using a constant acceleration spectrometer and a 57 Co/Rh source. The samples used for these measurements consisted of ground powders of **1**-**Fe** and **2-Fe** that were contained in polyethylene sample cups with tightly fitted lids. The isomer shift is reported relative to that of α -Fe at room temperature. Spectral simulations were generated using the WMOSS software package (SEE Co. Minneapolis, MN).¹³

		δ (mm/sec)	$\Delta E_Q (\mathrm{mm/sec})$	$\Gamma(\text{mm/sec})^{a}$
) Eo	Exp.	0.65	1.28	-0.602
2-Fe	DFT	0.66	1.46	-
1 6	Exp.	0.48	2.02	0.318
1-Fe	DFT	0.50	1.91	-

Table S9. Experimental and DFT Calculated ⁵⁷Fe Mössbauer Parameters.

^a Positive and negative linewidths indicate Lorentzian and Gaussian lineshapes, respectively.

S9. Quantum Chemical Calculations

DFT Calculations: Calculations for **1-Cr**, **2-Cr**, **1-Fe**, and **2-Fe** were performed using the atomic coordinates determined by X-ray crystallography (with hydrogen positions optimized). These calculations were performed using ORCA V4.1 with the BP86 functional along with the def2-tzvp basis sets.¹⁴⁻¹⁸ The functional was chosen from our previous success in reproducing ⁵⁷Fe Mössbauer parameters using the BP86 functional.¹⁹ The resolution of the identity approximation was used along with auxiliary basis sets generated using the 'autoaux' command.²⁰ The quadrupole splitting and isomer shifts were then calculated using the BP86 functional with CP(PPP) (Fe)/def2-tzvp(C)/def2-svp(H). The RI approximation was not used for calculation of ⁵⁷Fe Mössbauer Parameters. The computed density at the Fe nucleus was converted to experimental values of the isomer shift using the calibration curve described by Römelt, *et al.*²¹ Example input files are shown below.

Complete Active Space Self-Consistent Field/AILFT Calculations: State-averaged complete active space self- consistent field (SA-CASSCF) followed by second-order N-electron valence perturbation theory (NEVPT2) calculations were performed on the same structures used in the DFT calculations (vide supra). Scalar relativistic effects were accounted for by the Douglas–Kroll–Hess (DKH) procedure. SOC was accounted for by quasi-degenerate perturbation theory. This methodology of accounting for SOC has proven successful in numerous other studies.²²⁻³⁰ The dkh-def2-tzvp (Fe,C)/dkh-def2-svp (H) basis set combination was used. The active space consisted of the five 3d – orbitals and all of the 3d – electrons (six for Fe²⁺, seven for Fe⁺, four for Cr²⁺, five for Cr⁺). All roots for all multiplicities were included. This means that for Cr²⁺/Fe²⁺ 5 quintet, 45 triplet, and 50 singlet states were included. For Cr⁺ 1 sextet, 24 quartet, and 75 singlet states were included. For Fe⁺ 10 quartet states and 40 doublet states were included. The *ab-initio* ligand field analysis was performed as implemented in ORCA V4.1 and the energies presented in the text are those associated with the mapping of the CASSCF+NEVPT2 energies. Example input files are shown below.²⁷

S9.1. Example ORCA input files

Optimize Hydrogen Positions:

! BP86 def2-tzvp autoaux opt %geom optimizehydrogens true end *xyz charge multiplicity xyz coordinates of structure * ⁵⁷Fe Mössbauer Parameters: ! BP86 def2-tzvp NoFinalGrid %method SpecialGridAtoms 26 SpecialGridIntAcc 7 end %basis NewGTO H "def2-svp" NewGTO Fe "CP(PPP)" end *xyz charge multiplicity xyz coordinates of structure * %eprnmr nuclei = all Fe {rho, fgrad} end

CASSCF + NEVPT2:

!DKH dkh-def2-tzvp autoaux normalprint moread %moinp "guess.gbw" # Here the guess orbitals were from a single point DFT calculation %casscf # Here the Fe^+/d^7 settings are used as an example nel 7 norb 5 mult 4,2 nroots 10,40 actorbs dorbs trafostep RI nevpt2 true rel dosoc true gtensor true end end %basis NewGTO H "def2-svp" NewGTO Fe "CP(PPP)" end *xyz -1 2 xyz coordinates of structure *

Table S10. Summary of CASSCF+NEVPT2 and AILFT results for 1-Fe, 2-Fe, 1-Cr, and 2-Cr.

	Method	Spin Ground State	AILFT Energies (cm ⁻¹)
	CASSCF	2	0.0, 1018.7, 3671.5, 18514.2, 21138.6
1-Fe	CASSCF+NEVPT 2	0	0.0, 899.0, 2984.5, 23425.8, 25707.1
	CASSCF	3/2	0.0, 389.9, 4677.5, 14412.4, 19698.6
2-Fe	CASSCF+NEVPT 2	1/2	0.0, 354.7, 4364.2, 19153.3, 25100.0
	CASSCF	2	0.0, 2226.9, 5170.3, 18790.0, 22484.6
1-Cr	CASSCF+NEVPT 2	1	0.0, 2518.0, 4620.0, 21382.7, 24956.9
	CASSCF	1/2	0.0, 461.3, 7483.5, 21077.6, 25943.8
2-Cr	CASSCF+NEVPT 2	1/2	0.0, 343.7, 6144.3, 24766.6, 29492.1

S10. SQUID Magnetometry

General considerations: Samples of 1-Cr, 2-Cr, and 2-Fe used for measurements consisted of crushed microcrystalline powders weighed (28.0 mg, 1-Cr; 23.6 mg, 2-Cr; 29.0 mg, 2-Fe) into thin-walled precision borosilicate NMR tubes, which were flame sealed under vacuum. A diamagnetic correction was performed using two further NMR tubes from the same batch also sealed under vacuum.

Magnetic measurements were performed with a Quantum Design SQUID magnetometer MPMS-XL. The temperature dependence of magnetic susceptibility was measured in a direct current (DC) applied magnetic field of 0.1 T in the range from 1.8 to 300 K.

Figure S34. Temperature dependence of χ T for 1-Cr and 2-Cr between 1.8 and 300 K. The red lines are to guide the eye for values at 298 K (1-Cr, 1.24 emu·K/mol; 2-Cr, 0.38 emu·K/mol).

Figure S35. Temperature dependence of χ T for **2-Fe** between 1.8 and 300 K. The red line is to guide the eye for the value at 298 K (0.26 emu·K/mol).

S11. Qualitative ligand HOMOs in Cp⁻ vs {PC₄H₄}⁻

Figure S36. Illustrative pictures of the ligand HOMOs relevant to the LUMO in FcH, and [Fe(PC4H4)2].

The ligand HOMO in Cp⁻ in D_{5h} symmetry is comprised of two degenerate orbitals. However, for {PC₄H₄}⁻, the P atom breaks the 5-fold symmetry, and thus the analogous orbitals are not degenerate. While both the π_P and π_C orbitals shown above are of appropriate symmetry to interact with the metal d_{xz}, d_{yz} orbitals, they differ in energy by ~ 1 eV, and thus the [Fe(PC₄H₄)₂] complex LUMO is mostly comprised of the π_P orbital and a metal d_{yz} orbital. Please see Fenske *et al* for a much more in depth analysis,³¹ as the above discussion does not fully account for the lower symmetry of **2-Fe**.

Author Contributions

CAPG performed all synthesis, UV-vis-nIR and NMR characterization and sample preparation, and X-ray diffraction data collection and interpretation with supervision by BLS. SMG performed EPR and Mössbauer spectroscopies and interpreted the data, and also performed all theoretical work, with supervision by BWS. OU performed SQUID magnetometry measurements and interpretation. RJB sealed samples for analysis and was supervised by JLK. CAPG lead the project with project scope and design helped by SMG. The manuscript was prepared by CAPG with input from all authors.

References

- 1. F. Nief, F. Mathey, L. Ricard, F. Robert, Organometallics, 1988, 7, 921.
- 2. R. Feher, F. H. Köhler, F. Nief, L. Ricard, S. Rossmayer, Organometallics, 1997, 16, 4606.
- 3. L. E. Manxzer, J. Deaton, P. Sharp, R. R. Schrock, in *Inorganic Syntheses*, 2007, pp. 135.
- 4. T. K. Panda, M. T. Gamer, P. W. Roesky, Organometallics, 2003, 22, 877.
- 5. P. J. Fagan, W. A. Nugent, J. Am. Chem. Soc., 1988, 110, 2310.
- 6. P. J. Fagan, W. A. Nugent, Org. Syn., 1992, 70.
- 7. CrysAlisPro 39.27b, Oxford Diffraction / Agilent Technologies UK Ltd, Yarnton, U.K., 2017.
- O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, *J. Appl. Crystallogr.*, 2009, 42, 339.
- 9. G. M. Sheldrick, Acta Crystallogr. A, 2008, 64, 112.
- 10. G. M. Sheldrick, Acta Crystallogr. C, 2015, 71, 3.
- 11. Inkscape: Open Source Scalable Vector Graphics Editor. https://inkscape.org/.
- 12. S. Stoll, A. Schweiger, J. Magn. Reson., 2006, 178, 42.
- 13. I. Prisecaru, WMOSS4 Mössbauer Spectral Analysis Software. http://wmoss.org/.
- 14. A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098.
- 15. A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
- 16. F. Neese, WIRES Comput. Mol. Sci., 2018, 8, e1327.
- 17. J. P. Perdew, *Phys. Rev. B*, 1986, **33**, 8822.

- 18. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297.
- C. A. P. Goodwin, M. Giansiracusa, S. M. Greer, H. M. Nicholas, P. Evans, M. Vonci, S. Hill, N. F. Chilton, D. P. Mills, *Nat. Chem.*, 2020.
- 20. G. L. Stoychev, A. A. Auer, F. Neese, J. Chem. Theory. Comput., 2017, 13, 554.
- 21. M. Römelt, S. Ye, F. Neese, Inorg. Chem., 2009, 48, 784.
- 22. S. K. Singh, J. Eng, M. Atanasov, F. Neese, Coord. Chem. Rev., 2017, 344, 2.
- D. Maganas, J. Krzystek, E. Ferentinos, A. M. Whyte, N. Robertson, V. Psycharis, A. Terzis, F. Neese, P. Kyritsis, *Inorg. Chem.*, 2012, 51, 7218.
- 24. S. Ye, F. Neese, J. Chem. Theory. Comput., 2012, 8, 2344.
- 25. J. Jung, M. Atanasov, F. Neese, Inorg. Chem., 2017, 56, 8802.
- E. A. Suturina, J. Nehrkorn, J. M. Zadrozny, J. Liu, M. Atanasov, T. Weyhermuller, D. Maganas, S. Hill,
 A. Schnegg, E. Bill, J. R. Long, F. Neese, *Inorg. Chem.*, 2017, 56, 3102.
- M. Atanasov, D. Aravena, E. Suturina, E. Bill, D. Maganas, F. Neese, *Coord. Chem. Rev.*, 2015, 289-290, 177.
- 28. E. A. Suturina, D. Maganas, E. Bill, M. Atanasov, F. Neese, Inorg. Chem., 2015, 54, 9948.
- M. Autillo, M. A. Islam, J. Jung, J. Pilme, N. Galland, L. Guerin, P. Moisy, C. Berthon, C. Tamain, H. Bolvin, *Phys. Chem. Chem. Phys.*, 2020, 22, 14293.
- 30. J. Jung, M. A. Islam, V. L. Pecoraro, T. Mallah, C. Berthon, H. Bolvin, Chemistry, 2019, 25, 15112.
- 31. N. M. Kostic, R. F. Fenske, Organometallics, 1983, 2, 1008.

S13. CIF Reports

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 1-Cr

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 1-Cr

Bond precision:	C-C = 0.0021 A	Wavelength	=0.71073
Cell:	a=7.8420(3) alpha=90	b=12.5620(4) beta=109.444(4)	c=8.8611(3) gamma=90
Temperature:	100 K	()	
	Calculated	Reported	
Volume	823.13(5)	823.13(5)	
Space group	P 21/n	P 1 21/n	1
Hall group	-P 2yn	-P 2yn	
Moiety formula	C16 H24 Cr P2	C16 H24 C	r P2
Sum formula	C16 H24 Cr P2	C16 H24 C	r P2
Mr	330.29	330.29	
Dx,g cm-3	1.333	1.333	
Z	2	2	
Mu (mm-1)	0.874	0.874	
F000	348.0	348.0	
F000'	349.12		
h,k,lmax	9,15,10	9,15,10	
Nref	1507	1508	
Tmin,Tmax	0.700,0.769	0.804,1.0	00
Tmin'	0.686		
Correction metho AbsCorr = MULTI-	od= # Reported T -SCAN	Limits: Tmin=0.804	Tmax=1.000
Data completenes	ss= 1.001	Theta(max)= 25.34	9
R(reflections)=	0.0252(1441)	wR2(reflections)=	0.0667(1508)
S = 1.091	Npar=	92	

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

🎱 д	lert	level	G		
PLAT	328_ALE	ERT_4_G	Possible Missing H on sp3? Phosphorus	P1	Check
PLAT	380_ALE	ERT_4_G	<pre>Incorrectly? Oriented X(sp2)-Methyl Moiety</pre>	C6	Check
PLAT8	383_ALE	ERT_1_G	No Info/Value for _atom_sites_solution_primary .	Please	Do !
PLATS	941_ALE	ERT_3_G	Average HKL Measurement Multiplicity	4.5	Low
PLATS	978_ALE	ERT_2_G	Number C-C Bonds with Positive Residual Density.	6	Info
0	ALERT	level 2	A = Most likely a serious problem - resolve or explain		
0	ALERT	level 1	B = A potentially serious problem, consider carefully		
0	ALERT	level	${f c}$ = Check. Ensure it is not caused by an omission or o	versigł	nt
5	ALERT	level	G = General information/check it is not something unex	pected	
1	ALERT	type 1	CIF construction/syntax error, inconsistent or missin	g data	
1	ALERT	type 2	Indicator that the structure model may be wrong or de	ficient	:
1	ALERT	type 3	Indicator that the structure quality may be low		
2	ALERT	type 4	Improvement, methodology, query or suggestion		
0	ALERT	type 5	Informative message, check		

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 16/07/2020; check.def file version of 12/07/2020

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 1-Fe

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 1-Fe

Bond precision:	C-C = 0.003	30 A	Wa	avelengt	h=0.71073
Cell:	a=14.2948(7) b	= 12.8549	(6)	c=8.8448(4)
Temperature:	100 K	L	eca-104.	504(5)	gamma-90
	Calculated		1	Reported	1
Volume	1574.50(13)			1574.50(13)
Space group	C 2/c			C 1 2/c	1
Hall group	-C 2yc			-C 2yc	
Moiety formula	C16 H24 Fe P	2		C16 H24	Fe P2
Sum formula	C16 H24 Fe P	2		C16 H24	Fe P2
Mr	334.14			334.14	
Dx,g cm-3	1.410			1.410	
Z	4			4	
Mu (mm-1)	1.146			1.146	
F000	704.0			704.0	
F000′	706.33				
h,k,lmax	17,16,11			17,16,11	_
Nref	1608			1605	
Tmin,Tmax	0.770,0.832			0.850,1.	000
Tmin'	0.717				
Correction metho AbsCorr = MULTI-	od= # Reporte -SCAN	ed T Li	.mits: Tmi	in=0 . 850	Tmax=1.000
Data completenes	ss= 0.998		Theta(ma	x)= 26.3	370
R(reflections)=	0.0312(1407	7)	wR2(refl	ections)	= 0.0798(1605)
S = 1.117	N	par= 9	2		

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

A: PLAT0 PLAT9	lert 94_ALI 11_ALI	level ERT_2_C ERT_3_C	C Ratio of Maximum / Minimum Residual Density Missing FCF Refl Between Thmin & STh/L= 0.600	2.29 4	Report Report
• A	lert	level	G Possible Missing H on sp32 Phosphorus	 p1	Check
PLAT9	41 ALI	ERT 3 G	Average HKL Measurement Multiplicity	3.9	Low
PLAT9	78_ALI	ERT_2_G	Number C-C Bonds with Positive Residual Density.	6	Info
0	ALERT	level	A = Most likely a serious problem - resolve or explain		
0	ALERT	level	B = A potentially serious problem, consider carefully		
2	ALERT	level	C = Check. Ensure it is not caused by an omission or ove	ersigh	nt
3	ALERT	level	G = General information/check it is not something unexpe	ected	
0	ALERT	type 1	CIF construction/syntax error, inconsistent or missing	data	
2	ALERT	type 2	Indicator that the structure model may be wrong or def:	icient	:
2	ALERT	type 3	Indicator that the structure quality may be low		
1	ALERT	type 4	Improvement, methodology, query or suggestion		
0	ALERT	type 5	Informative message, check		

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 16/07/2020; check.def file version of 12/07/2020

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 2-Cr

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 2-Cr

Bond precision:	C-C = 0.0030 A	Wa	velength=0.71073	
Cell:	a=10.1994(4)	b=14.2193(7) $c=15.0882(6)$	
Temperature:	aipna=62.328(4) 100 K	Deta=86.59	7(3) gamma=87.156(3)
	Calculated	R	eported	
Volume	1933.91(16)	1	933.91(16)	
Space group	P -1	P	-1	
Hall group	-P 1	-	P 1	
Moiety formula	C18 H36 K N2 O6, Cr P2	C16 H24 C	16 H24 Cr P2, C18 H36 2 O6	K
Sum formula	C34 H60 Cr K N2 C	06 P2 C	34 H60 Cr K N2 O6 P2	
Mr	745.88	7	45.88	
Dx,g cm-3	1.281	1	.281	
Z	2	2		
Mu (mm-1)	0.529	0	.529	
F000	798.0	7	98.0	
F000′	799.73			
h,k,lmax	12,17,18	1	2,17,18	
Nref	7083	7	060	
Tmin,Tmax	0.853,0.853	0	.902,1.000	
Tmin'	0.853			
Correction meth AbsCorr = MULTI	nod= # Reported T I I-SCAN	Limits: Tmi	n=0.902 Tmax=1.000	
Data completene	ess= 0.997	Theta(max)= 25.350	
R(reflections)=	= 0.0338(5848)	wR2(refle	ctions)= 0.0872(7060)
S = 1.100	Npar=	423		

```
The following ALERTS were generated. Each ALERT has the format
      test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.
```

➡ Alert level C

PLAT911	ALERT	3 C	Missing	FCF	Refl	Between	Thmin	&	STh/L=	0.600	13 Report
											L .

Alert level G

PLAT042_ALERT_1_G Calc. and Reported MoietyFormula Strings Differ	Please	Check
PLAT328_ALERT_4_G Possible Missing H on sp3? Phosphorus	P1	Check
PLAT328_ALERT_4_G Possible Missing H on sp3? Phosphorus	P2	Check
PLAT380_ALERT_4_G Incorrectly? Oriented X(sp2)-Methyl Moiety	C7	Check
PLAT380_ALERT_4_G Incorrectly? Oriented X(sp2)-Methyl Moiety	C16	Check
PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min).	1	Note
PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600	10	Note
PLAT933_ALERT_2_G Number of OMIT Records in Embedded .res File	1	Note
PLAT941_ALERT_3_G Average HKL Measurement Multiplicity	3.3	Low
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.	8	Info

0 ALERT level A = Most likely a serious problem - resolve or explain

0 ALERT level B = A potentially serious problem, consider carefully 1 ALERT level C = Check. Ensure it is not caused by an omission or oversight

10 ALERT level G = General information/check it is not something unexpected

1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 5 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 16/07/2020; check.def file version of 12/07/2020

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 2-Fe

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 2-Fe

Bond precision:	C-C = 0.0034 A	Wa	avelengt	h=0.71073
Cell:	a=10.1947(2) alpha=62.275(2)	b=14.2373	(4)	c=15.0677(3)
Temperature:	100 K	2000 0010		Januar 0, 1010 (1)
	Calculated	1	Reported	
Volume	1930.42(8)		1930.42(8)
Space group	P -1	:	P -1	
Hall group	-P 1		-P 1	
Moiety formula	C18 H36 K N2 O6, Fe P2	С16 Н24	C16 H24 N2 O6	Fe P2, C18 H36 K
Sum formula	C34 H60 Fe K N2 C	06 P2	С34 Н60	Fe K N2 O6 P2
Mr	749.73		749.73	
Dx,g cm-3	1.290		1.290	
Z	2		2	
Mu (mm-1)	0.624		0.624	
F000	802.0		802.0	
F000′	803.77			
h,k,lmax	12,17,18		12,17,18	
Nref	7890		7807	
Tmin,Tmax	0.856,0.969		0.872,1.	000
Tmin'	0.856			
Correction meth AbsCorr = MULTI	nod= # Reported T 1 I-SCAN	Limits: Tm:	in=0.872	Tmax=1.000
Data completene	ess= 0.989	Theta(ma	x)= 26.3	70
R(reflections)=	= 0.0400(6351)	wR2(refl	ections)	= 0.1035(7807)
S = 1.090	Npar=	423		

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level C PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density PLAT906_ALERT_3_C Large K Value in the Analysis of Variance PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L= 0.600 C Report

Alert level G

PLAT042_ALERT_1_G Calc. and Reported MoietyFormula Strings Differ	Please	Check
PLAT154_ALERT_1_G The s.u.'s on the Cell Angles are Equal (Note)	0.002	Degree
PLAT328_ALERT_4_G Possible Missing H on sp3? Phosphorus	P1	Check
PLAT328_ALERT_4_G Possible Missing H on sp3? Phosphorus	P2	Check
PLAT883_ALERT_1_G No Info/Value for _atom_sites_solution_primary .	Please	Do !
PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min).	1	Note
PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600	22	Note
PLAT933_ALERT_2_G Number of OMIT Records in Embedded .res File	1	Note
PLAT941_ALERT_3_G Average HKL Measurement Multiplicity	3.3	Low
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.	6	Info

0 ALERT level A = Most likely a serious problem - resolve or explain
0 ALERT level B = A potentially serious problem, consider carefully
3 ALERT level C = Check. Ensure it is not caused by an omission or oversight
10 ALERT level G = General information/check it is not something unexpected
3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
3 ALERT type 2 Indicator that the structure model may be wrong or deficient
4 ALERT type 3 Indicator that the structure quality may be low
3 ALERT type 4 Improvement, methodology, query or suggestion
0 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 16/07/2020; check.def file version of 12/07/2020

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 5

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 5

Bond precision:	C-C = 0.0040 H	Wavelength=0.71073			
Cell:	a=14.1554(8) alpha=90	b=9.6976(4 beta=112.3	ł) 336(6)	c=12.0182(6)	
Temperature:	150 K			J	
	Calculated		Reported		
Volume	1526.00(15)		1525.99(1	4)	
Space group	I 2/a		I 1 2/a 1		
Hall group	-I 2ya		-I 2ya		
Moiety formula	C18 H22 Zr		C18 H22 Z	r	
Sum formula	C18 H22 Zr		C18 H22 Z	r	
Mr	329.58		329.57		
Dx,g cm-3	1.434		1.435		
Z	4		4		
Mu (mm-1)	0.705		0.705		
F000	680.0		680.0		
F000′	668.18				
h,k,lmax	17,12,15		17,12,15		
Nref	1559		1558		
Tmin,Tmax	0.905,0.974		0.775,1.0	00	
Tmin'	0.889				
Correction method= # Reported T Limits: Tmin=0.775 Tmax=1.000 AbsCorr = GAUSSIAN					
Data completenes	ss= 0.999	Theta(ma	ax)= 26.38	6	
R(reflections)= 0.0330(1401) wR2(reflections)= 0.0805(1558)					
S = 1.068	Npar	= 117			

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.

```
۲
  Alert level G
PLAT003_ALERT_2_G Number of Uiso or Uij Restrained non-H Atoms ...
                                                                         15 Report
PLAT187 ALERT 4 G The CIF-Embedded .res File Contains RIGU Records
                                                                          1 Report
PLAT301_ALERT_3_G Main Residue Disorder .....(Resd 1 )
                                                                         53% Note
PLAT811_ALERT_5_G No ADDSYM Analysis: Too Many Excluded Atoms ....
                                                                          ! Info
                                                                         144 Note
PLAT860_ALERT_3_G Number of Least-Squares Restraints .....
PLAT883 ALERT 1 G No Info/Value for atom sites solution primary .
                                                                      Please Do !
PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min).
                                                                          1 Note
PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600
                                                                          1 Note
PLAT941_ALERT_3_G Average HKL Measurement Multiplicity .....
                                                                         1.8 Low
PLAT955_ALERT_1_G Reported (CIF) and Actual (FCF) Lmax Differ by .
                                                                          1 Units
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.
                                                                           8 Info
   0 ALERT level A = Most likely a serious problem - resolve or explain
   0 ALERT level B = A potentially serious problem, consider carefully
  0 ALERT level C = Check. Ensure it is not caused by an omission or oversight
  11 ALERT level G = General information/check it is not something unexpected
   2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
   2 ALERT type 2 Indicator that the structure model may be wrong or deficient
   4 ALERT type 3 Indicator that the structure quality may be low
```

```
2 ALERT type 4 Improvement, methodology, query or suggestion
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 16/07/2020; check.def file version of 12/07/2020

¹ ALERT type 5 Informative message, check

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 6

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 6

Bond precisio	n: C-C = 0.0	020 A	Wavelength=1.54184			
Cell:	a=8.0727(2)	9(17)	b=8.74422(19) 248(19)	c=18.4065(4)	
Temperature:	150 K			10(1))	gamma 1001/03(2)	
	Calculated		F	eported		
Volume	1237.81(5)		1	237.81(5)	
Space group	P -1		F	· -1		
Hall group	-P 1		-	P 1		
Moiety formul	a C14 H17 P		C	214 H17 I	P	
Sum formula	C14 H17 P		C	214 H17 1	P	
Mr	216.25		2	16.24		
Dx,g cm-3	1.160		1	160		
Z	4		4	ł		
Mu (mm-1)	1.664		1	664		
F000	464.0		4	64.0		
F000'	466.15					
h,k,lmax	9,10,22		9	,10,22		
Nref	4541		4	482		
Tmin,Tmax	0.760,0.86	2	C	.703,1.	000	
Tmin'	0.690					
Correction method= # Reported T Limits: Tmin=0.703 Tmax=1.000 AbsCorr = GAUSSIAN						
Data completeness= 0.987 Theta(max)= 68.247						
R(reflections)= 0.0329(42	11)	wR2(refle	ctions)	= 0.0899(4482)	
S = 1.036		Npar=	279			

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

PLAT	lert 911_ALI	level ERT_3_C	C Missing	FCF Refl	L Between	Thmin &	STh/L=	0.600	55	Report
⊖ A	lert	level	G							
PLAT	412_AL	ERT_2_G	Short In	tra XH3	XHn	H6A	H5D	•	2.02	Ang.
							x,y,z	=	1_555 Che	ck
PLAT	912_AL	ert_4_g	Missing	# of FCI	F Reflect	ions Abo	ve STh/L=	0.600	5	Note
PLAT	941_AL	ERT_3_G	Average	HKL Meas	surement	Multipli	city		2.9	Low
PLAT	978_AL	ERT_2_G	Number C	-C Bonds	s with Po	sitive R	esidual De	nsity.	8	Info
PLAT	992_AL	ERT_5_G	Repd & A	ctual _1	ceflns_nu	mber_gt '	Values Dif	fer by	2	Check
0	ALERT	level a	A = Most	likely a	a serious	problem	- resolve	or exp	olain	
0	ALERT	level 1	B = A pot	entially	y serious	problem	, consider	carefu	illy	
1	ALERT	level (C = Check	. Ensure	e it is n	ot cause	d by an om	ission	or oversig	nt
5	ALERT	level (G = Gener	al info	rmation/c	heck it	is not som	ething	unexpected	
0	ALERT	type 1	CIF cons	truction	n/syntax	error, i	nconsisten	t or mi	ssing data	
2	ALERT	type 2	Indicato	r that t	the struc	ture mod	el may be	wrong c	or deficient	t
2	ALERT	type 3	Indicato	r that t	the struc	ture qua	lity may b	e low		
1	ALERT	type 4	Improvem	ent, met	chodology	, query	or suggest	ion		
1	ALERT	type 5	Informat	ive mess	sage, che	ck				

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 16/07/2020; check.def file version of 12/07/2020

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 7

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 7

Bond precision:	C-C = 0.0040 A	Wavelength=0.71073				
Cell:	a=20.161(3) alpha=90	b=9.0620(4) beta=119.71(2)	c=20.214(3)			
Temperature:	100 K	2000 1130,1(2)	gannia 90			
	Calculated	Report	ed			
Volume	3207.6(9)	3207.7	(9)			
Space group	C 2/c	C 1 2/	c 1			
Hall group	-C 2yc	-C 2yc				
Moiety formula	C32 H48 Co2 P4	C32 H4	8 Co2 P4			
Sum formula	C32 H48 Co2 P4	C32 H4	8 Co2 P4			
Mr	674.44	674.44				
Dx,g cm-3	1.397	1.397				
Z	4	4				
Mu (mm-1)	1.254	1.254				
F000	1416.0	1416.0				
F000′	1420.68					
h,k,lmax	24,10,24	24,10,	24			
Nref	2938	2935				
Tmin,Tmax	0.835,0.882	0.861,	1.000			
Tmin'	0.606					
Correction method= # Reported T Limits: Tmin=0.861 Tmax=1.000 AbsCorr = MULTI-SCAN						
Data completenes	ss= 0.999	Theta(max)= 25	.342			
R(reflections)=	0.0333(2325)	wR2(reflection	s)= 0.0834(2935)			
S = 1.009	Npar=	180				

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.

Alert level G						
PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Co1P1 .	5.5	s.u.				
PLAT328_ALERT_4_G Possible Missing H on sp3? Phosphorus	P1	Check				
PLAT883_ALERT_1_G No Info/Value for _atom_sites_solution_primary .	Please	Do !				
PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min).	1	Note				
PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600	1	Note				
PLAT933_ALERT_2_G Number of OMIT Records in Embedded .res File	1	Note				
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.	4	Info				
0 ALERT level A = Most likely a serious problem - resolve or explain	ı					
0 ALERT level B = A potentially serious problem, consider carefully						
0 ALERT level C = Check. Ensure it is not caused by an omission or oversight						
7 ALERT level G = General information/check it is not something unexpected						
1 ALERT type 1 CIF construction/syntax error, inconsistent or missir	ıg data					
3 ALERT type 2 Indicator that the structure model may be wrong or de	eficient	:				
1 ALERT type 3 Indicator that the structure quality may be low						
2 ALERT type 4 Improvement, methodology, query or suggestion						
0 ALERT type 5 Informative message, check						

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 16/07/2020; check.def file version of 12/07/2020

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 8

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 8

Bond precision:	C-C = 0.0050 A	Way	elength=0.710	73
Cell:	a=12.7189(8)	b=15.9437(1	0) c=17.89	37(12)
Temperature:	alpha=64.066(6) 100 K	beta=85.655	(5) gamma=8	6.321(5)
	Calculated	Re	ported	
Volume	3251.9(4)	32	51.9(4)	
Space group	P -1	Р	-1	
Hall group	-P 1	-I	1	
Moiety formula	2(C18 H36 K N2 O H12 P), C4 H8 O	6), 2(C8 2) 2(C8 H12 P), C4 C18 H36 K N2	Н8 О, Об)
Sum formula	C56 H104 K2 N4 O	13 P2 C5	6 H104 K2 N4	013 P2
Mr	1181.57	11	81.57	
Dx,g cm-3	1.207	1.	207	
Z	2	2		
Mu (mm-1)	0.254	0.	254	
F000	1280.0	12	80.0	
F000′	1281.74			
h,k,lmax	15,19,22	15	,19,22	
Nref	13295	13	040	
Tmin,Tmax	0.958,0.987	0.	826,1.000	
Tmin'	0.910			
Correction meth AbsCorr = MULT	nod= # Reported T I-SCAN	Limits: Tmin	=0.826 Tmax=1	.000
Data completeness= 0.981 Theta(max)= 26.372				
R(reflections)=	= 0.0673(8417)	wR2(reflee	tions)= 0.197	9(13040)
S = 1.063	Npar=	1310		

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level C PLAT088_ALERT_3_C Poor Data / Parameter Ratio 9.95 Note PLAT329_ALERT_4_C Carbon Atom Hybridisation Unclear for C35B Check PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds 0.005 Ang. PLAT906 ALERT 3 C Large K Value in the Analysis of Variance 3.712 Check PLAT911 ALERT 3 C Missing FCF Refl Between Thmin & STh/L= 168 Report 0.600 PLAT977_ALERT_2_C Check Negative Difference Density on H6B -0.35 eA-3 PLAT977_ALERT_2_C Check Negative Difference Density on H6C -0.40 eA-3

Alert level G PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 10 Note PLAT003 ALERT 2 G Number of Uiso or Uij Restrained non-H Atoms ... 136 Report PLAT042 ALERT 1 G Calc. and Reported MoietyFormula Strings Differ Please Check PLAT176_ALERT_4_G The CIF-Embedded .res File Contains SADI Records 3 Report PLAT178_ALERT_4_G The CIF-Embedded .res File Contains SIMU Records 5 Report PLAT301_ALERT_3_G Main Residue Disorder(Resd 1) 100% Note PLAT301_ALERT_3_G Main Residue Disorder(Resd 3 100% Note) 100% Note PLAT302 ALERT 4 G Anion/Solvent/Minor-Residue Disorder (Resd 2 100% Note)) PLAT302 ALERT 4 G Anion/Solvent/Minor-Residue Disorder (Resd 100% Note 6 PLAT302 ALERT 4 G Anion/Solvent/Minor-Residue Disorder (Resd 7 100% Note) PLAT302 ALERT 4 G Anion/Solvent/Minor-Residue Disorder (Resd 8) 100% Note PLAT302_ALERT_4_G Anion/Solvent/Minor-Residue Disorder (Resd 9) 100% Note PLAT304_ALERT_4_G Non-Integer Number of Atoms in (Resd 57.33 Check 1) PLAT304_ALERT_4_G Non-Integer Number of Atoms in (Resd 2) 55.50 Check PLAT304 ALERT 4 G Non-Integer Number of Atoms in (Resd 3) 4) 5.67 Check PLAT304 ALERT 4 G Non-Integer Number of Atoms in (Resd 7.50 Check PLAT304_ALERT_4_G Non-Integer Number of Atoms in (Resd 6) 17.14 Check PLAT304_ALERT_4_G Non-Integer Number of Atoms in (Resd 7 3.86 Check PLAT304_ALERT_4_G Non-Integer Number of Atoms in (Resd 8) 10.85 Check PLAT304_ALERT_4_G Non-Integer Number of Atoms in (Resd 9) 2.14 Check PLAT380 ALERT 4 G Incorrectly? Oriented X(sp2)-Methyl Moiety C5 Check PLAT380 ALERT 4 G Incorrectly? Oriented X(sp2)-Methyl Moiety C6 Check PLAT380_ALERT_4_G Incorrectly? Oriented X(sp2)-Methyl Moiety C7 Check PLAT380_ALERT_4_G Incorrectly? Oriented X(sp2)-Methyl Moiety C8 Check PLAT380_ALERT_4_G Incorrectly? Oriented X(sp2)-Methyl Moiety C31A Check PLAT380_ALERT_4_G Incorrectly? Oriented X(sp2)-Methyl Moiety C32A Check PLAT380 ALERT 4 G Incorrectly? Oriented X(sp2)-Methyl Moiety C33A Check PLAT380_ALERT_4_G Incorrectly? Oriented X(sp2)-Methyl Moiety C34A Check PLAT398_ALERT_2_G Deviating C-O-C Angle From 120 for O13A 100.9 Degree PLAT398_ALERT_2_G Deviating C-O-C 87.6 Degree Angle From 120 for O13B ..H53C 2.09 Ang. PLAT413_ALERT_2_G Short Inter XH3 .. XHn H5A 1-x,1-y,1-z = 2 666 Check PLAT413_ALERT_2_G Short Inter XH3 .. XHn H6C ..H42A 2.09 Ang. 1-x,-y,1-z = 2_656 Check PLAT413 ALERT 2 G Short Inter XH3 .. XHn 2.09 Ang. H6C ..H42C 2 656 Check 1-x, -y, 1-z =PLAT720 ALERT 4 G Number of Unusual/Non-Standard Labels 4 Note --C36B 1.78 Ang. PLAT773_ALERT_2_G Check long C-C Bond in CIF: C35B PLAT773_ALERT_2_G Check long C-C Bond in CIF: C45B 1.86 Ang. --C46B PLAT790_ALERT_4_G Centre of Gravity not Within Unit Cell: Resd. # 2 Note C18 H36 K N2 O6 PLAT790_ALERT_4_G Centre of Gravity not Within Unit Cell: Resd. # 4 Note C18 H36 K N2 O6 PLAT811_ALERT_5_G No ADDSYM Analysis: Too Many Excluded Atoms ! Info

```
2121 Note
PLAT860_ALERT_3_G Number of Least-Squares Restraints .....
PLAT910 ALERT 3 G Missing # of FCF Reflection(s) Below Theta(Min).
                                                                           4 Note
PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600
                                                                          84 Note
PLAT933_ALERT_2_G Number of OMIT Records in Embedded .res File ...
                                                                           4 Note
PLAT941_ALERT_3_G Average HKL Measurement Multiplicity .....
                                                                         2.4 Low
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.
                                                                           5 Info
PLAT992_ALERT_5_G Repd & Actual _reflns_number_gt Values Differ by
                                                                           1 Check
   0 ALERT level A = Most likely a serious problem - resolve or explain
  0 ALERT level B = A potentially serious problem, consider carefully
  7 ALERT level C = Check. Ensure it is not caused by an omission or oversight
  47 ALERT level G = General information/check it is not something unexpected
  1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
```

13 ALERT type 2 Indicator that the structure model may be wrong or deficient 10 ALERT type 3 Indicator that the structure quality may be low

- 28 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation); however, if you intend to submit to Acta Crystallographica Section C or E or IUCrData, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 16/07/2020; check.def file version of 12/07/2020