Supporting Information

Triazole formation of phosphinyl alkynes with azides through transient protection of phosphine by copper

Norikazu Terashima, Yuki Sakata, Tomohiro Meguro, Takamitsu Hosoya, and Suguru Yoshida*

Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering Tokyo Medical and Dental University (TMDU) 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan

Contents

General Remarks	S1
Structures of Phosphinyl Alkynes and Azides	S2
Experimental Procedures Characterization Data of New Compounds	S3 S8
NMR Spectra of Compounds	S19

General Remarks

All reactions were performed in a dry glassware under atmosphere of argon otherwise noted. Analytical thin-layer chromatography (TLC) was performed on precoated (0.25 mm) silica-gel plates (Merck Chemicals, Silica Gel 60 F₂₅₄, Cat. No. 1.05715). Column chromatography was conducted using silica-gel (Kanto Chemical Co., Inc., Silica Gel 60N, spherical neutral, particle size 40-50 µm, Cat. No. 37563-85 or particle size 63-210 µm, Cat. No. 37565-85). Preparative thin-layer chromatography (PTLC) was performed on silica-gel (Wako Pure Chemical Industries Ltd., Wakogel B5-F, Cat. No. 230-00043). Melting points (Mp) were measured on a YANACO MP-J3 instrument or an OptiMelt MPA100 (Stanford Research Systems), and are uncorrected. ¹H and ¹³C NMR spectra were obtained with a Bruker AVANCE 500 spectrometer at 500 or 126 MHz, respectively. ¹⁹F NMR spectra were obtained with a Bruker AVANCE 400 spectrometer at 376 MHz. Chemical shifts (δ) are given in parts per million (ppm) downfield from (CH₃)₄Si (δ 0.00 for ¹H NMR in CDCl₃) or the solvent peak (δ 77.0 for ¹³C NMR in CDCl₃) as an internal reference or triphenylphosphine (δ –6.0 for ³¹P NMR in CDCl₃) as an external standard with coupling constants (J) in hertz (Hz). The abbreviations s, d, t, q, sept, m, and br signify singlet, doublet, triplet, quartet, septet, multiplet, and broad, respectively. IR spectra were measured by diffuse reflectance method on a Shimadzu IRPrestige-21 spectrometer attached with DRS-8000A with the absorption band given in cm⁻¹. Highresolution mass spectra (HRMS) were measured on a Bruker micrOTOF mass spectrometer under positive electrospray ionization (ESI⁺) conditions.

Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. SiliaMetS Thiourea (ca. 1.24 mmol/g, Cat. No. R69530B) and SiliaMetS Triamine (ca. 1.26 mmol/g, Cat. No. R48030B) were purchased from SiliCycle Inc. Resin(polystyrene)-PPh₂ (PSmmol/g. Cat. No. 366455) purchased from Sigma–Aldrich. TPP) (~3.0 was 4-(Diphenylphosphino)benzoic acid,^{S1} 2-(diphenylphosphino)benzoic acid,^{S2} 4-methoxycarbonyl-3-(diphenylphosphino)benzoic acid,^{S3} 4-methoxyphenyl azide (2b),^{S4} 4-nitrophenyl azide (2c),^{S4} 2,6dichlorophenyl azide (2d),^{S5} 2,6-diisopropylphenyl azide (2e),^{S6} 2-azidomethyl pyridine (2f),^{S7} 4-(2-(2-(6-chlorohexvloxv)ethoxv)ethvlaminocarbonvl)benzvl (2h).^{S8} azide 2-(2-(2-(4-(3.6bis(diethylamino)xanthylium-9-yl)-3-sulfonatobenzenesulfonamido)ethoxy)ethoxy)ethoxy)ethyl azide (2i),^{S8} (11-oxo-2,3,6,7-tetrahydro-1H,5H,11H-pyrano[2,3-f]pyrido[3,2,1-ij]quinolin-9yl)methyl azide (**2k**),^{S9} 3-(2,6-bis(ethoxycarbonyl)-4,4-difluoro-1,3,5,7-tetramethyl-3a,4a-diaza-4-bora-*s*-indacen-8-yl)-4-methoxyphenyl azide (**2l**),^{S10} ethynyldiphenylphosphine (**1f**),^{S11} methyl 3-bromo-5-iodebenzoate (**5**),^{S12} 4-(methoxycarbonyl)benzyl azide (**2m**),^{S13} and tris[(1-benzyl-*1H*-1,2,3-triazol-4-yl)methyl]amine (TBTA)^{S14} were prepared according to the reported methods.

MeO₂C Ph₂F ö PPh₂ Ph₂ 1b 1c 1a Ph₂F Ph_oP ö PPh₂ 1d 1e 1f BnN₃ 2a ` OMe 2b 2c 2d 2e 2f CI MeO 2g 2h ΗN 2i N_3 N_3 NEt₂ Me EtO₂C MeO₂C 0= OMe Et₂N SO3ò Me Me 2m 2j CO₂Et Mé 21 2k 0⁻"S 0 NH

Structures of Phosphinyl Alkynes and Azides

N₃

Experimental Procedures

A typical procedure for the preparation of triaryl phosphine bearing terminal alkyne

To a solution of 4-(diphenylphosphino)benzoic acid (1.28 g, 4.18 mmol) dissolved in CH₂Cl₂ (20 mL) were successively added 3-amino-1-propyne (269 mg, 4.88 mmol), 1-ethvl-3-(3dimethylaminopropyl)carbodiimide hydrochloride (810 4.23 mmol) and mg, 4-(dimethylamino)pyridine (508 mg, 4.16 mmol) at room temperature. After stirring for 17 h at the same temperature, to the mixture was added H₂O (10 mL). The mixture was extracted with EtOAc $(20 \text{ mL} \times 3)$, and the combined organic extract was washed with brine (10 mL), dried (Na₂SO₄), and after filtration, the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (silica-gel 20 g, *n*-hexane/CH₂Cl₂ = 3/1 to 1/1) to give 4-(diphenylphosphino)-N-(2-propyn-1-yl)benzamide (1a) (1.07 g, 3.12 mmol, 75%) as a colorless solid. According procedure. this N-(2-propyn-1-yl)-4-(methoxycarbonyl)-3to (**1b**) prepared (diphenylphosphino)benzamide using 4-methoxycarbonyl-3was (diphenylphosphino)benzoic acid instead of 4-(diphenylphosphino)benzoic acid.

Preparation of 2-propyn-1-yl 2-(diphenylphosphino)benzoate (1c)

To a solution of 2-(diphenylphosphino)benzoic acid (221 mg, 0.721 mmol) dissolved in CH₂Cl₂ (5 mL) were successively added 2-propyne-1-ol (41.6 μL, 0.721 mmol), 1-ethyl-3-(3dimethylaminopropyl)carbodiimide hydrochloride (139 mg, 0.725 mmol) and 4-(dimethylamino)pyridine (87.3 mg, 0.715 mmol) at room temperature. After stirring for 13 h at the same temperature, to the mixture was added H_2O (10 mL). The mixture was extracted with EtOAc $(20 \text{ mL} \times 3)$ and the combined organic extract was washed with brine (10 mL), dried (Na₂SO₄), and after filtration, the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (silica-gel 20 g, *n*-hexane/CH₂Cl₂ = 3/1 to 1/1) to give 2-propyn-1-yl 2-(diphenylphosphino)benzoate (1c) (129 g, 0.375 mmol, 52%) as an orange solid.

Preparation of 2-[2-[2-(2-propynyloxy)ethoxy]ethoxy]ethyl 2-(diphenylphosphino)benzoate (1d)

To a solution of 2-(diphenylphosphino)benzoic acid (338 mg, 1.10 mmol) dissolved in DMF (4.0 mL) were added 1-[bis(dimethylamino)methylene]-1*H*-benzotriazolium 3-oxide tetrafluoroborate (TBTU) (354 mg, 1.10 mmol) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (339 mg, 2.23 mmol) dissolved in DMF (1.0 mL) at room temperature. After stirring for 30 min at the same temperature,

to the reaction mixture was added 2-[2-[2-(2-propynyloxy)ethoxy]ethoxy]ethanol (211 mg, 1.12 mmol) dissolved in DMF (1.0 mL). After stirring for 17 h at the same temperature, the reaction mixture was diluted with CH_2Cl_2 (10 mL) and the resulting mixture was washed with 1M HCl (3 mL × 3), a saturated aqueous solution NaHCO₃ (3 mL × 3) and brine (3 mL × 3). The organic layer was collected, dried (Na₂SO₄), and after filtration, the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (silica-gel 50 g, *n*-hexane/EtOAc = 2/1) to give 2-[2-[2-(2-propynyloxy)ethoxy]ethoxy]ethoy]ethyl 2-(diphenylphosphino)benzoate (1d) (240 mg, 0.504 mmol, 46%) as a colorless oil.

Preparation of N-(2-propyn-1-yl)-3-(diphenylphosphino)propanamide (1e)

To a solution of *N*-succinimidyl 3-(diphenylphosphino)propionate (370 mg, 1.04 mmol) dissolved in CH₂Cl₂ were successively added triethylamine (416 μ L, 3.00 mmol) and 3-amino-1-propyne (72.4 mg, 1.31 mmol) dissolved in CH₂Cl₂ (1.0 mL) at room temperature. After stirring for 19 h at the same temperature, to the mixture was added H₂O (10 mL) and extracted with CH₂Cl₂ (15 mL × 3). The combined organic extract was washed with brine (10 mL), dried (Na₂SO₄), and after filtration, the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (silica-gel 20 g, *n*-hexane/EtOAc = 1/1) to give *N*-(2-propyn-1-yl)-3-(diphenylphosphino)propanamide (**1e**) (250 mg, 94% purity, determined by ¹H NMR analysis, 0.797 mmol, 76.7%) as a colorless oil.

A typical procedure for selective click reaction of the terminal alkyne moiety of phosphine

A mixture of 4-(diphenylphosphaneyl)-N-(2-propyn-1-yl)benzamide (1a) (51.3 mg, 0.149 mmol) and tetrakis(acetonitrile)copper(I) tetrafluoroborate (47.4 mg, 0.151 mmol) was dissolved in CH₂Cl₂ (2.0 mL) at room temperature. After stirring for 30 min at the same temperature, to the reaction mixture were successively added tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (TBTA) (3.20 mg, 6.03 µmol) and a solution of benzyl azide (2a) (16.2 mg, 0.122 mmol) dissolved in CH₂Cl₂ (1.0 mL). After stirring for 1 h at the same temperature, to the mixture were added an aqueous solution of diethylenetriamine-N,N,N',N",N"-pentaacetic acid pentasodium salt (DTPA·5Na) (0.10 M, 25 mL, 2.5 mmol) and EtOAc (10 mL). After stirring for 15 h at the same temperature, the reaction mixture was extracted three times with EtOAc (20 mL \times 3), and the combined organic extract was washed with brine (10 mL), dried (Na₂SO₄), and after filtration, the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (silica-gel 4 g, *n*-hexane/EtOAc N-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-4-1/1to EtOAc) to give (diphenylphosphaneyl)benzamide (3a) (48.7 mg, 0.102 mmol, 84%) as a colorless solid.

Sequential conjugation using triarylphosphine bearing terminal alkyne via CuAAC with benzyl azide (2a) followed by Staudinger reaction with 2,6-dichlorophenyl azide (2d)

A mixture of 4-(diphenylphosphaneyl)-*N*-(2-propyn-1-yl)benzamide (**1a**) (50.5 mg, 0.147 mmol) and tetrakis(acetonitrile)copper(I) tetrafluoroborate (46.7 mg, 0.148 mmol) was dissolved in CH₂Cl₂ (2.0 mL) at room temperature. After stirring for 30 min at the same temperature, to the reaction mixture were successively added tris[(1-benzyl-*1H*-1,2,3-triazol-4-yl)methyl]amine (TBTA) (3.29 mg, 6.20 µmol) and a solution of benzyl azide (**2a**) (16.1 mg, 0.121 mmol) dissolved in CH₂Cl₂ (1.0 mL). After stirring for 1 h at the same temperature, to the mixture were successively added SiliaMetS Triamine (ca. 1.29 mmol/g, 1.94 g, ca. 2.5 mmol), CH₂Cl₂ (10 mL) and 2,6-dichlorophenyl azide (**2d**) (35.3 mg, 0.188 mmol) dissolved in CH₂Cl₂ (1.0 mL). After stirring for 15 h at the same temperature, the reaction mixture was filtered through a pad of Celite, and the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (silica-gel 5 g, *n*-hexane/EtOAc = 1/1 to *n*-hexane/EtOAc = 1/2) to give *N*-((1-benzyl-1*H*-1,2,3-triazol-4-yl)methyl)-4-(diphenylphosphaneyl)benzamide (**4a**) (72.2 mg, 0.113 mmol, 94%) as a colorless solid.

Synthesis of methyl 3-bromo-5-(diphenylphosphino)benzoate (7)

To a mixture of methyl 3-bromo-5-iodobenzoate (5) (4.19 g, 12.3 mmol), $Pd(OAc)_2$ (3.05 mg, 13.6 µmol), and triethylamine (3.41 mL, 24.6 mmol) dissolved in MeCN (20 mL) was added diphenylphosphine (6) (2.35 mL, 13.5 mmol) at room temperature. After stirring the mixture for 6 h under reflux (95 °C, bath temperature), the mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (silica-gel 150 g, *n*-hexane/EtOAc = 10/1) to give methyl 3-bromo-5-(diphenylphosphino)benzoate (7) (4.67 g, 11.7 mmol, 95%) as a colorless oil.

To a mixture of methyl 3-bromo-5-(diphenylphosphino)benzoate (7) (1.70 g, 4.26 mmol), $(Ph_3P)_2PdCl_2$ (117 mg, 0.167 mmol), and copper(I) iodide (64.9 mg, 0.341 mmol) dissolved in DMF (20 mL) and diisopropylamine (10 mL) was added trimethylsilylacetylene (8) (1.81 mL, 12.8 mmol) at 80 °C. After stirring for 24 h at the same temperature, the reaction mixture was extracted three times with EtOAc (20 mL × 3), and the combined organic extract was washed with brine (10 mL), dried (Na₂SO₄), and after filtration, the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (silica-gel 80 g, *n*-hexane/CH₂Cl₂ = 3/1 to *n*-hexane/EtOAc = 9/1) to give methyl 3-(trimethylsilylethynyl)-5-(diphenylphosphino)benzoate (9) (1.21 g, 2.90 mmol, 68%) as a colorless oil.

Synthesis of platform molecule 12

To a solution of 3-(trimethylsilylethynyl)-5-(diphenylphosphino)benzoate (9) (213 mg, 0.511 mmol) dissolved in THF (3.0 mL) was added aqueous NaOH (1 M, 2 mL) at room temperature. After stirring for 16 h at the same temperature, to the reaction mixture was added 1 M aqueous HCl until acidic. The mixture was extracted three times with EtOAc (15 mL \times 3), and the combined organic extract was washed with brine (10 mL), dried (Na₂SO₄), and after filtration, the filtrate was concentrated under reduced pressure.

Without further purification, carboxylic acid 10 was dissolved in CH₂Cl₂ (2.0 mL). To the solution were successively added DIBAC-amine 11 (141 mg, 0.511 mmol), 1-ethyl-3-(3dimethylaminopropyl)carbodiimide hydrochloride (100)mg, 0.522 mmol), and 4-(dimethylamino)pyridine (63.0 mg, 0.516 mmol) at room temperature. After stirring for 6 h at the same temperature, the mixture was concentrated under reduced pressure. After the addition of H₂O (15 mL), the mixture was extracted with EtOAc (15 mL \times 3), and the combined organic extract was washed with brine (10 mL), dried (Na₂SO₄), and after filtration, the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (silica-gel 30 g, nhexane/EtOAc = 1/1) to give platform molecule 12 (185 mg, 0.314 mmol, 62%, in 2 steps from 9) as a colorless solid.

A procedure for the reaction of platform molecule 12 with methyl 4-azidomethylbenzoate (S1)

To a solution of platform molecule **12** (8.99 mg, 15.3 µmol) dissolved in CH₂Cl₂ (1.0 mL) was added methyl 4-azidomethylbenzoate (2.49 mg, 13.0 µmol) in CH₂Cl₂ at room temperature. After stirring for 2 h at the same temperature, the mixture was concentrated under reduced pressure. The residue was purified by preparative TLC (EtOAc/*n*-hexane = 2/1) to give platform-triazole **S1** (9.09 mg, 11.7 µmol, 90%) as a colorless solid.

A procedure for the reaction of S1 with azides 2b and 2d

A mixture of triazole **S1** (9.09 mg, 11.7 µmol) and tetrakis(acetonitrile)copper(I) tetrafluoroborate (8.69 mg, 27.6 µmol) was dissolved in CH₂Cl₂ (1.0 mL) at room temperature. After stirring for 30 min at the same temperature, to the reaction mixture were successively added tris[(1-benzyl-*1H*-1,2,3-triazol-4-yl)methyl]amine (TBTA) (5.23 mg, 9.86 µmol) and a solution of 4-methoxyphenyl azide (**2b**) (1.48 mg, 9.92 µmol) dissolved in CH₂Cl₂ (1.0 mL). After stirring for 24 h at the same temperature, to the mixture were successively added SiliaMetS Triamine (ca. 1.29 mmol/g, 1.0 g, ca. 0.80 mmol), CH₂Cl₂ (10 mL) and 2,6-dichlorophenyl azide (**2d**) (9.50 mg, 50.5 µmol) dissolved in CH₂Cl₂ (1.0 mL). After stirring for 15 h at the same temperature, the reaction mixture was filtered through a pad of Celite, and the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (silica-gel 2.5 g, *n*-hexane/EtOAc = 1/2) to give azaylide **13** (9.60 mg, 8.82 µmol, 89%) as a colorless solid.

Characterization Data of New Compounds

1-Benzyl-4-(diphenylphosphino)-1H-1,2,3-triazole (**3n**)^{S15} was identical in spectra data with those reported in the literatures.

N-(2-Propyn-1-yl)-4-(diphenylphosphino)benzamide (1a)

Colorless solid; Mp 112–114 °C; TLC R_f 0.57 (*n*-hexane/EtOAc = 1/1); ¹H NMR (CDCl₃, 500 MHz) δ 2.28 (t, 1H, J = 2.6 Hz), 4.25 (dd, 2H, J = 5.3, 2.6 Hz), 6.20–6.27 (br t, 1H), 7.28–7.40 (m, 12H), 7.69–7.74 (m, 2H); ¹³C NMR (CDCl₃, 126 MHz) δ 29.8 (1C), 71.9 (1C), 79.3 (1C), 126.9 (d, 2C, J_{C-P} = 6.5 Hz) 128.6 (d, 4C, J_{C-P} = 7.1 Hz), 129.1 (2C), 133.5 (d, 2C, J_{C-P} = 18.6 Hz), 133.6 (1C), 133.9 (d, 4C, J_{C-P} = 19.6 Hz), 136.2 (d, 2C, J_{C-P} = 10.3 Hz), 142.6 (d, 1C, J_{C-P} = 14.0 Hz), 166.8 (1C); ³¹P NMR (CDCl₃, 162 MHz) δ –6.1 (t, J = 7.1 Hz); IR (KBr, cm⁻¹) 696, 743, 912, 1304, 1433, 1481, 1531, 1597, 1643, 3296; HRMS (ESI⁺) m/z 366.1010 ([M+Na]⁺, C₂₂H₁₈NNaOP⁺ requires 366.1018).

N-(2-Propyn-1-yl)-4-(methoxycarbonyl)-3-(diphenylphosphino)benzamide (1b)

Yellow solid; Mp 47–53 °C; TLC R_f 0.62 (*n*-hexane/EtOAc = 1/1); ¹H NMR (CDCl₃, 500 MHz) δ 2.25 (t, 1H, J = 2.5 Hz), 3.75 (s, 3H), 4.12 (dd, 2H, J = 5.1, 2.5 Hz), 5.81–5.91 (br t, 1H), 7.23 (dd, 1H, J = 3.6, 1.8 Hz), 7.25–7.32 (m, 4H), 7.32–7.40 (m, 6H), 7.80 (dd, 1H, J = 8.2, 1.7 Hz), 8.11 (dd, 1H, J = 8.1, 3.7 Hz); ¹³C NMR (CDCl₃, 126 MHz) δ 29.9 (1C), 52.3 (1C), 72.1 (1C), 78.9 (1C), 126.9 (1C), 128.7 (d, 4C, $J_{C-P} = 7.3$ Hz), 129.1 (2C), 131.0 (d, 1C, $J_{C-P} = 2.1$ Hz), 132.4 (1C), 133.9 (d, 4C, $J_{C-P} = 21.0$ Hz), 136.3 (1C), 137.0 (d, 1C, $J_{C-P} = 18.4$ Hz), 137.1 (d, 2C, $J_{C-P} = 10.9$ Hz), 141.8 (d, 1C, $J_{C-P} = 29.8$ Hz), 165.8 (1C), 166.5 (d, 1C, $J_{C-P} = 2.6$ Hz); ³¹P NMR (CDCl₃, 162 MHz) δ –4.6 to –4.3 (m); IR (KBr, cm⁻¹) 696, 745, 1254, 1275, 1288, 1433, 1530, 1643, 1721; HRMS (ESI⁺) m/z 424.1072 ([M+Na]⁺, C₂₄H₂₀NNaO₃P⁺ requires 424.1073).

2-Propyn-1-yl 2-(diphenylphosphino)benzoate (1c)

Orange solid; Mp 95 °C (decomposition); TLC $R_f 0.38$ (*n*-hexane/CH₂Cl₂ = 1/1); ¹H NMR (CDCl₃, 500 MHz) δ 2.44 (t, 1H, J = 2.5 Hz), 4.75 (d, 2H, J = 2.5 Hz), 6.91–6.98 (m, 1H), 7.21–7.37 (m, 10H), 7.37–7.44 (m, 2H), 8.08–8.14 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 52.8 (1C), 75.1 (1C), 77.4 (1C), 128.2 (1C), 128.5 (d, 4C, J_{C-P} = 7.2 Hz), 128.7 (2C), 130.9 (d, 1C, J_{C-P} = 2.5 Hz), 132.3 (1C), 133.2 (d, 1C, J_{C-P} = 18.8 Hz), 133.9 (d, 4C, J_{C-P} = 20.5 Hz), 134.3 (1C), 137.7 (d, 2C, J_{C-P} = 10.9 Hz), 141.0 (d, 1C, J_{C-P} = 27.5 Hz), 165.7 (d, 1C, J_{C-P} = 2.3 Hz); ³¹P NMR (CDCl₃, 162 MHz) δ –4.98 (s); IR (KBr, cm⁻¹) 696, 745, 1057, 1101, 1250, 1265, 1433, 1721; HRMS (ESI⁺) m/z 345.1036 ([M+H]⁺, C₂₂H₁₈O₂P⁺ requires 345.1039).

2-(2-(2-(2-Propynyloxy)ethoxy)ethoxy)ethyl 2-(diphenylphosphino)benzoate (1d)

Colorless oil; TLC $R_f 0.64$ (*n*-hexane/EtOAc = 1/1); ¹H NMR (CDCl₃, 500 MHz) δ 2.41 (t, 1H, J = 2.4 Hz),

3.57–3.71 (m, 10H), 4.18 (d, 2H, J = 2.4 Hz), 4.31–4.34 (br t, 2H), 6.90–6.95 (m, 1H), 7.22–7.43 (m, 12H), 8.06–8.11 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 58.4 (1C), 64.2 (1C), 68.9 (1C), 69.1 (1C), 70.4 (1C), 70.5 (1C), 70.6 (1C), 74.5 (1C), 79.6 (1C), 128.1 (1C), 128.4 (d, 4C, $J_{C-P} = 7.2$ Hz), 128.6 (2C), 130.8 (d, 1C, $J_{C-P} = 2.6$ Hz), 132.0 (1C), 133.9 (d, 4C, $J_{C-P} = 20.8$ Hz), 134.2 (d, 1C, $J_{C-P} = 19.2$ Hz), 134.3 (1C), 137.9 (d, 2C, $J_{C-P} = 11.1$ Hz), 140.5 (d, 1C, $J_{C-P} = 26.6$ Hz), 166.6 (d, 1C, $J_{C-P} = 1.8$ Hz); ³¹P NMR (CDCl₃, 162 MHz) δ – 5.31 (s); IR (KBr, cm⁻¹) 698, 746, 1059, 1103, 1140, 1254, 1267, 1435, 1715, 2870; HRMS (ESI⁺) m/z 477.1812 ([M+H]⁺, C₂₈H₃₀O₅P⁺ requires 477.1825).

N-(2-Propyn-1-yl)-3-(diphenylphosphino)propionamide (1e)

Pale yellow oil; TLC $R_f 0.65$ (*n*-hexane/EtOAc = 1/1); ¹H NMR (CDCl₃, 500 MHz) δ 2.18 (t, 1H, J = 2.6 Hz), 2.21–2.28 (m, 2H), 2.32–2.39 (m, 2H), 3.97 (dd, 1H, J = 5.2, 2.6 Hz), 5.86–5.99 (br, 1H), 7.29–7.34 (m, 6H), 7.38–7.44 (m, 4H); ¹³C NMR (CDCl₃, 126 MHz) δ 23.2 (d, 1C, J_{C-P} = 11.9 Hz), 29.3 (1C), 32.4 (d, 1C, J_{C-P} = 18.4 Hz), 71.7 (1C), 79.5 (1C), 128.6 (d, 4C, J_{C-P} = 6.5 Hz), 128.9 (2C), 132.7 (d, 4C, J_{C-P} = 18.9 Hz), 137.8 (d, 2C, J_{C-P} = 12.7 Hz), 172.0 (d, 1C, J_{C-P} = 13.9 Hz); ³¹P NMR (CDCl₃, 162 MHz) δ –16.4 to –16.0 (m); IR (KBr, cm⁻¹) 1250, 1433, 1537, 1651, 3051; HRMS (ESI⁺) *m*/*z* 296.1188 ([M+H]⁺, C₁₈H₁₉NOP⁺ requires 296.1199).

N-((1-Benzyl-1*H*-1,2,3-triazol-4-yl)methyl)-4-(diphenylphosphino)benzamide (**3a**)

Colorless solid; Mp 177–179 °C; TLC R_f 0.67 (EtOAc); ¹H NMR (CDCl₃, 500 MHz) δ 4.68 (d, 2H, J = 5.7 Hz), 5.49 (s, 2H), 6.93 (t, 1H, J = 5.4 Hz), 7.26–7.39 (m, 17H), 7.52 (s, 1H), 7.70 (d, 2H, J = 7.1 Hz); ¹³C NMR (CDCl₃, 126 MHz) δ 35.4 (1C), 54.3 (1C), 122.2 (1C), 126.8 (d, 2C, J_{C-P} = 6.5 Hz), 128.1 (2C), 128.6 (d, 4C, J_{C-P} = 7.3 Hz), 128.8 (1C), 129.07 (2C), 129.15 (2C), 133.5 (d, 2C, J_{C-P} = 18.9 Hz), 133.86 (d, 4C, J_{C-P} = 19.6 Hz), 133.90 (1C), 134.4 (1C), 136.2 (d, 2C, J_{C-P} = 10.7 Hz), 142.4 (d, 1C, J_{C-P} = 13.6 Hz), 144.8 (1C), 167.1 (1C); ³¹P NMR (CDCl₃, 162 MHz) δ –6.3 to –5.9 (m); IR (KBr, cm⁻¹) 696, 721, 743, 1298, 1433, 1528, 1549, 1639; HRMS (ESI⁺) m/z 477.1830 ([M+H]⁺, C₂₉H₂₆N₄OP⁺ requires 477.1839).

N-((1-(4-Methoxyphenyl)-1*H*-1,2,3-triazol-4-yl)methyl)-4-(diphenylphosphino)benzamide (**3b**)

Colorless solid; Mp 151–152 °C; TLC R_f 0.25 (*n*-hexane/EtOAc = 1/1); ¹H NMR (CDCl₃, 500 MHz) δ 3.86 (s, 3H), 4.78 (d, 2H, J = 5.6 Hz), 6.97–7.03 (m, 2H), 7.10–7.18 (br, 1H), 7.27–7.40 (m, 12H), 7.57–7.63 (m, 2H), 7.73–7.79 (m, 2H), 7.98 (s, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 35.4 (1C), 55.6 (1C), 114.7 (2C), 121.0 (1C), 122.2 (2C), 126.9 (d, 2C, J_{C-P} = 6.5 Hz), 128.6 (d, 4C, J_{C-P} = 7.2 Hz), 129.1 (2C), 130.4 (1C), 133.5 (d, 2C, J_{C-P} = 18.9 Hz), 133.86 (d, 4C, J_{C-P} = 20.0 Hz), 133.87 (1C), 136.2 (d, 2C, J_{C-P} = 10.7 Hz), 142.4 (d, 1C, J_{C-P} = 13.8 Hz), 145.0 (1C), 159.9 (1C), 167.2 (1C); ³¹P NMR (CDCl₃, 162 MHz) δ –6.3 to –5.9 (m); IR (KBr, cm⁻¹) 696, 745, 831, 1042, 1256, 1304, 1433, 1483, 1518, 1639; HRMS (ESI⁺) m/z 515.1602 ([M+Na]⁺, C₂₉H₂₅N₄NaO₂P⁺ requires 515.1607).

N-((1-(4-Nitrophenyl)-1*H*-1,2,3-triazol-4-yl)methyl)-4-(diphenylphosphino)benzamide (**3c**)

Colorless solid; Mp 160–169 °C; TLC $R_f 0.27$ (*n*-hexane/EtOAc = 1/1); ¹H NMR (CDCl₃, 500 MHz) δ 4.80 (d, 2H, J = 5.9 Hz), 7.12 (t, 1H, J = 5.9 Hz), 7.26–7.39 (m, 12H), 7.71–7.76 (AA'BB', 2H), 7.93–7.98 (AA'BB', 2H), 8.23 (s, 1H), 8.37–8.42 (AA'BB', 2H); ¹³C NMR (CDCl₃, 126 MHz) δ 35.3 (1C), 120.5 (2C), 120.9 (1C), 125.5 (2C), 126.8 (d, 2C, $J_{C-P} = 6.5$ Hz), 128.7 (d, 4C, $J_{C-P} = 7.1$ Hz), 129.1 (2C), 133.53 (1C), 133.56 (d, 2C, $J_{C-P} = 18.9$ Hz), 133.9 (d, 4C, $J_{C-P} = 20.1$ Hz), 136.1 (d, 2C, $J_{C-P} = 10.8$ Hz), 141.0 (1C), 142.9 (d, 1C, $J_{C-P} = 14.3$ Hz), 146.3 (1C), 147.3 (1C), 167.3 (1C); ³¹P NMR (CDCl₃, 162 MHz) δ –6.2 to –5.9 (m); IR (KBr, cm⁻¹) 696, 748, 854, 1342, 1506, 1526, 1597, 1643; HRMS (ESI⁺) m/z 530.1337 ([M+Na]⁺, C₂₈H₂₂N₅NaO₃P⁺ requires 530.1352).

N-((1-(2,6-Dichlorophenyl)-1H-1,2,3-triazol-4-yl)methyl)-4-(diphenylphosphino)benzamide (3d)

Colorless solid; Mp 153–155 °C; TLC R_f 0.41 (*n*-hexane/EtOAc = 1/1); ¹H NMR (CDCl₃, 500 MHz) δ 4.85 (d, 2H, J = 5.5 Hz), 7.09 (t, 1H, J = 5.5 Hz), 7.27–7.39 (m, 12H), 7.41–7.46 (m, 1H), 7.47–7.52 (m, 2H), 7.73–7.78 (AA'BB', 2H), 7.80 (s, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 35.3 (1C), 124.7 (1C), 126.9 (d, 2C, $J_{C-P} = 6.5$ Hz), 128.6 (d, 4C, $J_{C-P} = 7.3$ Hz), 128.8 (2C), 129.1 (2C), 131.8 (1C), 133.0 (1C), 133.5 (d, 2C, $J_{C-P} = 18.7$ Hz), 133.9 (d, 4C, $J_{C-P} = 20.0$ Hz), 136.2 (d, 2C, $J_{C-P} = 10.3$ Hz), 142.4 (d, 1C, $J_{C-P} = 13.7$ Hz), 144.4 (1C), 167.2 (1C): Some signals were not observed clearly; ³¹P NMR (CDCl₃, 162 MHz) δ –6.3 to –5.9 (m); IR (KBr, cm⁻¹) 696, 743, 795, 1298, 1435, 1489, 1533, 1647; HRMS (ESI⁺) m/z 553.0709 ([M+Na]⁺, C₂₈H₂₁³⁵Cl₂N₄NaOP⁺ requires 553.0722).

N-((1-(2,6-Diisopropylphenyl)-1*H*-1,2,3-triazol-4-yl)methyl)-4-(diphenylphosphino)benzamide (3e)

Colorless solid; Mp 182–183 °C; TLC $R_{\rm f}$ 0.57 (*n*-hexane/EtOAc = 1/1); ¹H NMR (CDCl₃, 500 MHz) δ 1.12 (dd, 12H, J = 6.8 Hz, $J_{\rm H-P} = 13.3$ Hz), 2.18 (sept, 2H, J = 6.8 Hz), 4.84 (d, 2H, J = 5.5 Hz), 7.02 (t, 1H, J = 5.3 Hz), 7.27–7.39 (m, 14H), 7.49 (t, 1H, J = 7.8 Hz), 7.68 (s, 1H), 7.74–7.79 (AA'BB', 2H); ¹³C NMR (CDCl₃, 126 MHz) δ 24.0 (2C), 24.1 (2C), 28.4 (2C), 35.5 (1C), 123.8 (2C), 125.1 (1C), 126.9 (d, 2C, $J_{\rm C-P} = 6.6$ Hz), 128.7 (d, 4C, $J_{\rm C-P} = 7.2$ Hz), 129.1 (2C), 130.9 (1C), 133.0 (1C), 133.6 (d, 2C, $J_{\rm C-P} = 18.7$ Hz), 133.9 (d, 4C, $J_{\rm C-P} = 19.8$ Hz), 134.1 (1C), 136.2 (d, 2C, $J_{\rm C-P} = 10.3$ Hz), 142.4 (d, 1C, $J_{\rm C-P} = 13.8$ Hz), 143.9 (2C), 146.0 (1C), 167.2 (1C); ³¹P NMR (CDCl₃, 162 MHz) δ –6.2 to –5.9 (m); IR (KBr, cm⁻¹) 696, 742, 1300, 1433, 1477, 1531, 1653, 2965; HRMS (ESI⁺) *m*/z 569.2453 ([M+Na]⁺, C₃₄H₃₅N₄NaOP⁺ requires 569.2441).

N-((1-(2-Pyridylmethyl)-1H-1,2,3-triazol-4-yl)methyl)-4-(diphenylphosphino)benzamide (3f)

Colorless solid; Mp 167–172 °C; TLC $R_f 0.37$ (CH₂Cl₂/MeOH = 10/1); ¹H NMR (CDCl₃, 500 MHz) δ 4.71 (d, 2H, J = 5.4 Hz), 5.63 (s, 2H), 6.88 (t, 1H, J = 5.4 Hz), 7.19 (d, 1H, J = 7.8 Hz), 7.24–7.39 (m, 13H), 7.65–7.73 (m, 3H), 7.74 (s, 1H), 8.57–8.61 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 35.4 (1C), 55.7 (1C), 122.4 (1C), 122.8 (1C), 123.5 (1C), 126.8 (d, 2C, J_{C-P} = 6.5 Hz), 128.0 (1C), 128.65 (d, 4C, J_{C-P} = 7.3 Hz), 129.1 (2C), 133.5 (d, 2C, J_{C-P} = 18.8 Hz), 133.9 (d, 4C, J_{C-P} = 19.6 Hz), 136.2 (d, 2C, J_{C-P} = 10.6 Hz), 137.3 (1C), 142.3 (d, 1C, J_{C-P} = 14.0 Hz), 144.8 (1C), 149.9 (1C), 154.2 (1C), 167.0 (1C); ³¹P NMR (CDCl₃, 162 MHz) δ –6.3 to –5.9 (m); IR (KBr, cm⁻¹) 696, 727, 744, 1300, 1433, 1479, 1531, 1595, 1643; HRMS (ESI⁺) *m*/*z* 500.1599 ([M+Na]⁺, C₂₈H₂₄N₅NaOP⁺ requires 500.1611).

4-(4-Diphenylphosphinobenzoylaminomethyl)-1-(2-(2-(2-(2-(biotinamido)ethoxy)ethoxy)ethoxy)ethyl)-1H-1,2,3-triazole (**3g**)

Colorless solid; TLC $R_f 0.40$ (CH₂Cl₂/MeOH = 5/1); ¹H NMR (CDCl₃, 500 MHz) δ 1.28–1.45 (m, 2H), 1.45–1.69 (m, 4H), 1.96–2.10 (m, 2H), 2.67 (d, 1H, J = 16.0 Hz), 2.84 (dd, 1H, J = 16.0, 6.1 Hz), 3.02–3.09 (m, 1H), 3.34–3.48 (m, 2H), 3.51–3.66 (m, 10H), 3.87 (t, 2H, J = 6.3 Hz), 4.20–4.26 (m, 1H), 4.39–4.46 (m, 1H), 4.50 (t, 2H, J = 6.3 Hz), 4.60 (dd, 1H, J = 18.6, 7.3 Hz), 4.74 (dd, 1H, J = 18.6, 7.3 Hz), 5.55–5.60 (br, 1H), 6.85 (t, 1H, J = 6.7 Hz), 6.96–7.01 (br, 1H), 7.24–7.39 (m, 12H), 7.78–7.85 (m, 2H), 7.89 (s, 1H), 8.40 (t, 1H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 126 MHz) δ 25.3 (1C), 28.0 (1C), 28.2 (1C), 35.0 (1C), 35.6 (1C), 39.2 (1C), 40.5 (1C), 50.3 (1C), 55.7 (1C), 60.0 (1C), 61.9 (1C), 69.3 (1C), 69.8 (1C), 70.1 (1C), 70.4 (1C), 70.47 (1C), 70.52 (1C), 123.9 (1C), 127.1 (d, 2C, $J_{C-P} = 6.5$ Hz), 128.6 (d, 4C, $J_{C-P} = 7.2$ Hz), 129.0 (d, 2C, $J_{C-P} = 2.2$ Hz), 133.4 (d, 2C, $J_{C-P} = 13.6$ Hz), 144.8 (1C), 164.1 (1C), 167.1 (1C), 173.3 (1C); ³¹P NMR (CDCl₃, 162 MHz) δ –6.21 (t, J = 6.9 Hz); IR (KBr, cm⁻¹) 698, 1094, 1117, 1433, 1535, 1545, 1647, 1697, 2924, 3289; HRMS (ESI⁺) m/z 810.3146 ([M+Na]⁺, C₄₀H₅₀N₇NaO₆PS⁺ requires 810.3173).

1-(4-(2-(2-(6-Chlorohexyloxy)ethoxy)ethylaminocarbonyl)benzyl)-4-(4diphenylphosphinobenzoylaminomethyl)-1*H*-1,2,3-triazole (**3h**)

Colorless solid; TLC *R*_f 0.32 (EtOAc); ¹H NMR (CDCl₃, 500 MHz) δ 1.29–1.37 (m, 2H), 1.37–1.45 (m, 2H), 1.56 (tt, 2H, *J* = 7.1, 7.1 Hz), 1.73 (tt, 2H, *J* = 7.1, 7.1 Hz), 3.44 (t, 2H, *J* = 6.7 Hz), 3.50 (t, 2H, *J* = 6.7 Hz), 3.56–3.59 (m, 2H), 3.62–3.69 (m, 6H), 4.47 (d, 2H, *J* = 5.6 Hz), 5.52 (s, 2H), 6.75–6.81 (br t, 1H), 7.10 (t, 1H,

 $J = 5.6 \text{ Hz}, 7.26-7.39 \text{ (m, 14H)}, 7.56 \text{ (s, 1H)}, 7.69-7.74 \text{ (m, 2H)}, 7.75-7.79 \text{ (AA'BB', 2H)}; {}^{13}\text{C NMR} \text{ (CDCl}_3, 126 \text{ MHz}) \delta 25.3 \text{ (1C)}, 26.6 \text{ (1C)}, 29.4 \text{ (1C)}, 32.4 \text{ (1C)}, 35.4 \text{ (1C)}, 39.7 \text{ (1C)}, 45.0 \text{ (1C)}, 53.7 \text{ (1C)}, 69.6 \text{ (1C)}, 70.0 \text{ (1C)}, 70.2 \text{ (1C)}, 71.2 \text{ (1C)}, 122.4 \text{ (1C)}, 126.9 \text{ (d, 2C, } J_{C-P} = 6.5 \text{ Hz}), 127.8 \text{ (2C)}, 128.1 \text{ (2C)}, 128.6 \text{ (d, 4C, } J_{C-P} = 7.0 \text{ Hz}), 129.1 \text{ (2C)}, 133.5 \text{ (d, 2C, } J_{C-P} = 19.1 \text{ Hz}), 133.80 \text{ (1C)}, 133.84 \text{ (d, 4C, } J_{C-P} = 19.7 \text{ Hz}), 135.0 \text{ (1C)}, 136.2 \text{ (d, 2C, } J_{C-P} = 10.2 \text{ Hz}), 137.7 \text{ (1C)}, 142.4 \text{ (d, 1C, } J_{C-P} = 13.7 \text{ Hz}), 145.1 \text{ (1C)}, 166.6 \text{ (1C)}, 167.1 \text{ (1C)}; {}^{31}\text{P} \text{ NMR} \text{ (CDCl}_3, 162 \text{ MHz}) \delta -6.3 \text{ to} -5.9 \text{ (m)}; \text{ IR} \text{ (KBr, cm}^{-1)} 696, 745, 1092, 1117, 1304, 1433, 1541, 1643; HRMS (ESI⁺) <math>m/z$ 748.2763 ([M+Na]⁺, C₄₀H₄₅³⁵ClN₅NaO₄P⁺ requires 748.2790).

Colorless oil; TLC $R_f 0.31$ (CH₂Cl₂/MeOH = 9/1); ¹H NMR (CDCl₃, 500 MHz) δ 3.37 (s, 3H), 3.51–3.65 (m, 28H), 3.86 (t, 2H, J = 5.1 Hz), 4.52 (t, 2H, J = 5.1 Hz), 4.70 (d, 2H, J = 5.6 Hz), 7.27–7.39 (m, 12H), 7.75–7.79 (m, 2H), 7.81 (s, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 35.4 (1C), 50.2 (1C), 50.7 (1C), 59.0 (1C), 69.3 (1C), 70.3–70.5 (m, 12C), 71.8 (1C), 123.5 (1C), 127.0 (d, 2C, J_{C-P} = 6.5 Hz), 128.6 (d, 4C, J_{C-P} = 7.2 Hz), 129.0 (2C), 133.4 (d, 2C, J_{C-P} = 19.1 Hz), 133.8 (d, 4C, J_{C-P} = 19.8 Hz), 134.0 (1C), 136.2 (d, 2C, J_{C-P} = 10.3 Hz), 142.1 (d, 1C, J_{C-P} = 13.6 Hz), 144.4 (1C),167.1 (1C); ³¹P NMR (CDCl₃, 162 MHz) δ –6.3 to –5.9 (m); IR (KBr, cm⁻¹) 698, 746, 1107, 1298, 1350, 1435, 1479, 1533, 1655, 2872; HRMS (ESI⁺) *m/z* 775.3444 ([M+Na]⁺, C₃₉H₅₃N₄NaO₉P⁺ requires 775.3442).

N-((1-Benzyl-1H-1,2,3-triazol-4-yl)methyl)-4-(methoxycarbonyl)-3-(diphenylphosphino)benzamide (3j)

Yellow solid; Mp 164–171 °C; TLC $R_f 0.35$ (CH₂Cl₂/EtOAc = 2/1); ¹H NMR (CDCl₃, 500 MHz) δ 3.74 (s, 3H), 4.55 (d, 2H, J = 5.4 Hz), 5.49 (s, 2H), 6.55 (t, 1H, J = 5.4 Hz), 7.22–7.41 (m, 16H), 7.44 (s, 1H), 7.77 (dd, 1H, J = 8.2, 1.7 Hz), 8.07 (dd, 1H, J = 8.1, 3.6 Hz); ¹³C NMR (CDCl₃, 126 MHz) δ 35.4 (1C), 52.3 (1C), 54.2 (1C), 122.1 (1C), 126.8 (1C), 128.1 (2C), 128.7 (d, 4C, J_{C-P} = 7.3 Hz), 128.9 (1C), 129.0 (2C), 129.2 (2C), 130.9 (d, 1C, J_{C-P} = 1.8 Hz), 132.4 (1C), 133.8 (d, 4C, J_{C-P} = 20.7 Hz), 134.4 (1C), 136.7 (1C), 136.8 (d, 1C, J_{C-P} = 18.9 Hz), 137.1 (d, 2C, J_{C-P} = 10.6 Hz), 141.7 (d, 1C, J_{C-P} = 29.5 Hz), 144.4 (1C), 166.3 (1C), 166.6 (d, 1C, J_{C-P} = 2.6 Hz)³¹P NMR (CDCl₃, 162 MHz) δ –4.5 (s); IR (KBr, cm⁻¹) 698, 745, 1254, 1273, 1288, 1433, 1531, 1645, 1717; HRMS (ESI⁺) m/z 535.1882 ([M+H]⁺, C₃₁H₂₈N₄O₃P⁺ requires 535.1894).

(1-Benzyl-1*H*-1,2,3-triazol-4-yl)methyl 2-(diphenylphosphino)benzoate (**3k**)

Colorless solid; TLC $R_f 0.70$ (*n*-hexane/EtOAc = 1/2); ¹H NMR (CDCl₃, 500 MHz) δ 5.29 (s, 2H), 5.45 (s, 2H), 6.86–6.93 (m, 1H), 7.17–7.42 (m, 18H), 8.02–8.08 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 54.1 (1C), 58.3 (1C), 123.9 (1C), 128.0 (2C), 128.2 (1C), 128.4 (d, 4C, $J_{C-P} = 7.3$ Hz), 128.6 (2C), 128.7 (1C), 129.1 (2C), 130.9 (d, 1C, $J_{C-P} = 1.9$ Hz), 132.2 (1C), 133.5 (d, 1C, $J_{C-P} = 18.3$ Hz), 133.9 (d, 4C, $J_{C-P} = 20.5$ Hz), 134.2 (1C), 134.5 (1C), 137.8 (d, 2C, $J_{C-P} = 11.0$ Hz), 140.7 (d, 1C, $J_{C-P} = 26.8$ Hz), 143.2 (1C), 166.5 (d, 1C, $J_{C-P} = 1.0$ Hz), 140.7 (d, 1C, $J_{C-P} = 26.8$ Hz), 143.2 (1C), 166.5 (d, 1C, $J_{C-P} = 1.0$ Hz), 140.7 (d, 1C, $J_{C-P} = 26.8$ Hz), 143.2 (1C), 166.5 (d, 1C, $J_{C-P} = 1.0$ Hz), 140.7 (d, 1C, $J_{C-P} = 26.8$ Hz), 143.2 (1C), 166.5 (d, 1C, $J_{C-P} = 1.0$ Hz), 140.7 (d, 1C), $J_{C-P} = 26.8$ Hz), 143.2 (1C), 166.5 (d, 1C), $J_{C-P} = 1.0$ Hz), 140.7 (d, 1C), $J_{C-P} = 26.8$ Hz), 143.2 (1C), 166.5 (d, 1C), $J_{C-P} = 1.0$ Hz), 140.7 (d, 1C), $J_{C-P} = 26.8$ Hz), 143.2 (1C), 166.5 (d, 1C), $J_{C-P} = 26.8$ Hz), 143.2 (1C), 166.5 (d, 1C), $J_{C-P} = 26.8$ Hz), 143.2 (1C), 166.5 (d, 1C), $J_{C-P} = 26.8$ Hz), 143.2 (1C), 166.5 (d, 1C), $J_{C-P} = 26.8$ Hz), 143.2 (1C), 166.5 (d, 1C), $J_{C-P} = 26.8$ Hz), 143.2 (1C), 166.5 (d, 1C), $J_{C-P} = 26.8$ Hz), 143.2 (1C), 166.5 (d, 1C), $J_{C-P} = 26.8$ Hz), 143.2 (1C), 166.5 (d, 1C), $J_{C-P} = 26.8$ Hz), 143.2 (1C), 166.5 (d, 1C), $J_{C-P} = 26.8$ Hz), 143.2 (1C), 166.5 (d, 1C), $J_{C-P} = 26.8$ Hz), 143.2 (1C), 166.5 (d, 1C), $J_{C-P} = 26.8$ Hz), 143.2 (1C), 166.5 (d, 1C), $J_{C-P} = 26.8$ Hz), 143.2 (1C), 166.5 (d, 1C), $J_{C-P} = 26.8$ Hz), 143.2 (1C), 166.5 (d, 1C), $J_{C-P} = 26.8$ Hz), 143.2 (1C), 166.5 (d, 1C), $J_{C-P} = 26.8$ Hz), 143.2 (1C), 166.5 (d, 1C), $J_{C-P} = 26.8$ Hz), 143.2 (1C), 166.5 (d, 1C), $J_{C-P} = 26.8$ Hz), 143.2 (1C), 166.5 (d, 1C), $J_{C-P} = 26.8$ Hz), 143.2 (1C), 166.5 (d, 1C), $J_{C-P} = 26.8$ Hz), 140.8 Hz), 140.8 (1C), 160.8 (1C), 160.8 (1C), 160.8 (1C)

2.5 Hz); ³¹P NMR (CDCl₃, 162 MHz) δ –4.7 (s); IR (KBr, cm⁻¹) 698, 727, 746, 1049, 1103, 1138, 1252, 1267, 1433, 1713; HRMS (ESI⁺) *m/z* 500.1482 ([M+Na]⁺, C₂₉H₂₄N₃NaO₂P⁺ requires 500.1498).

2-(2-(2-(2-(1-Benzyl-1*H*-1,2,3-triazol-4-yl)methoxy)ethoxy)ethoxy)ethyl 2-(diphenylphosphino)benzoate (**3**I)

Colorless oil; TLC R_f 0.48 (EtOAc); ¹H NMR (CDCl₃, 500 MHz) δ 3.54–3.68 (m, 10H), 4.29 (t, 2H, J = 5.0 Hz), 4.64 (s, 2H), 5.49 (s, 2H), 6.90–6.95 (m, 1H), 7.21–7.41 (m, 17H), 7.46 (s, 1H), 8.04–8.09 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 54.1 (1C), 64.2 (1C), 64.7 (1C), 68.9 (1C), 69.7 (1C), 70.49 (1C), 70.51 (1C+1C, two signals overlapped), 122.5 (1C), 128.1 (2C), 128.2 (1C), 128.5 (d, 4C, $J_{C-P} = 7.2$ Hz), 128.6 (2C), 128.7 (1C), 129.1 (2C), 130.8 (d, 1C, $J_{C-P} = 2.5$ Hz), 132.0 (1C), 133.9 (d, 4C, $J_{C-P} = 20.7$ Hz), 134.2 (d, 1C, $J_{C-P} = 19.0$ Hz), 134.3 (1C), 134.6 (1C), 137.9 (d, 2C, $J_{C-P} = 11.0$ Hz), 140.5 (d, 1C, $J_{C-P} = 26.9$ Hz), 145.6 (1C), 166.6 (d, 1C, $J_{C-P} = 1.8$ Hz); ³¹P NMR (CDCl₃, 162 MHz) δ –5.34 (s); IR (KBr, cm⁻¹) 698, 748, 1103, 1254, 1267, 1715; HRMS (ESI⁺) m/z 632.2293 ([M+Na]⁺, C₃₅H₃₆N₃NaO₅P⁺ requires 632.2285).

N-((1-Benzyl-1*H*-1,2,3-triazol-4-yl)methyl)-3-(diphenylphosphino)propionamide (**3m**)

Colorless oil; TLC $R_f 0.29$ (*n*-hexane/EtOAc = 1/1); ¹H NMR (CDCl₃, 500 MHz) δ 2.20–2.27 (m, 2H), 2.31–2.37 (m, 2H), 4.42 (d, 2H, J = 5.7 Hz), 5.46 (s, 2H), 6.30–6.42 (br, 1H), 7.24–7.40 (m, 15H), 7.45 (s, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 23.4 (d, 1C, J_{C-P} = 12.0 Hz), 32.5 (d, 1C, J_{C-P} = 18.2 Hz), 34.9 (1C), 54.2 (1C), 122.2 (1C), 128.1 (2C), 128.5 (d, 4C, J_{C-P} = 6.6 Hz), 128.7 (2C), 128.8 (1C), 129.1 (2C), 132.7 (d, 4C, J_{C-P} = 18.9 Hz), 134.4(1C), 137.8 (d, 2C, J_{C-P} = 12.7 Hz), 145.0 (1C), 172.2 (d, 1C, J_{C-P} = 13.5 Hz); ³¹P NMR (CDCl₃, 162 MHz) δ –16.5 to –16.1 (m); IR (KBr, cm⁻¹) 1246, 1433, 1541, 1647, 3066; HRMS (ESI⁺) *m*/*z* 429.1831 ([M+H]⁺, C₂₅H₂₆N₄OP⁺ requires 429.1839).

2,6-Dichloro-N-(4-((1-benzyl-1H-1,2,3-triazol-4-

yl)methyl)carbamoylphenyl)diphenylphosphoranylidene)aniline (4a)

Colorless solid; Mp 193–198 °C; TLC R_f 0.57 (EtOAc); ¹H NMR (CDCl₃, 500 MHz) δ 4.66 (d, 2H, J = 5.4 Hz), 5.47 (s, 2H), 6.52–6.58 (m, 1H), 7.08–7.13 (m, 2H), 7.17 (t, 1H, J = 5.4 Hz), 7.23–7.32 (m, 2H), 7.33–7.39 (m, 3H), 7.39–7.48 (m, 4H), 7.48–7.55 (m, 3H), 7.66–7.77 (m, 4H), 7.78–7.85 (m, 4H); ¹³C NMR (CDCl₃, 126 MHz) δ 35.4 (1C), 54.2 (1C), 119.0 (d, 1C, J_{C-P} = 2.6 Hz), 122.3 (1C), 126.8 (d, 2C, J_{C-P} = 12.3 Hz), 127.8 (d, 2C, J_{C-P} = 1.3 Hz), 128.1 (2C), 128.3 (d, 4C, J_{C-P} = 12.4 Hz), 128.8 (1C), 129.1 (2C), 131.39 (d, 2C, J_{C-P} = 104.2 Hz), 131.43 (d, 2C, J_{C-P} = 9.0 Hz), 131.6 (d, 2C, J_{C-P} = 2.6 Hz), 132.6 (d, 4C, J_{C-P} = 10.1 Hz), 132.8 (d, 2C, J_{C-P} = 10.1 Hz), 134.3 (1C), 136.2 (d, 1C, J_{C-P} = 102.0 Hz),136.5 (d, 1C, J_{C-P} = 2.7 Hz), 144.3 (1C), 144.7 (1C), 166.6 (1C); ³¹P NMR (CDCl₃, 162 MHz) δ –0.54 (s); IR (KBr, cm⁻¹) 719, 1111, 1308, 1471, 1539, 1652; HRMS (ESI⁺) m/z 658.1278 ([M+Na]⁺, C₃₅H₂₈³⁵Cl₂N₅NaOP⁺ requires 658.1301).

Purple solid; TLC $R_f 0.21$ (CH₂Cl₂/MeOH = 9/1); ¹H NMR (CDCl₃, 500 MHz) δ 1.23 (t, 12H, J = 7.0 Hz), 3.23–3.32 (br q, 2H), 3.38–3.73 (m, 18H), 3.90 (t, 2H, J = 4.5 Hz), 4.38–4.48 (br t, 2H), 4.67 (d, 2H, J = 4.7 Hz), 6.46–6.58 (m, 3H), 6.72 (d, 2H, J = 8.7 Hz), 6.95 (t, 1H, J = 5.4 Hz), 7.02–7.14 (m, 4H), 7.17 (d, 1H, J = 7.8 Hz), 7.31–7.44 (m, 4H), 7.44–7.51 (m, 2H), 7.63–7.78 (m, 6H), 7.90 (d, 2H, J = 6.2 Hz), 7.95–8.05 (m, 2H), 8.18–8.27 (br, 1H), 8.86 (s, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 12.5 (4C), 35.4 (1C), 43.1 (1C), 45.7 (4C), 50.2 (1C), 69.3 (1C+1C, two signals overlapped), 69.9 (1C), 70.49 (1C), 70.54 (1C), 70.7 (1C), 95.5 (2C), 113.5 (2C), 114.2 (2C), 118.8 (1C), 126.9 (2C), 127.1 (1C), 127.3 (d, 2C, J_{C-P} = 12.5 Hz), 127.7 (2C), 128.3 (d, 4C, J_{C-P} = 12.5 Hz), 129.0 (1C), 129.7 (1C), 131.5 (1C), 132.0 (d, 2C, J_{C-P} = 111.4 Hz), 132.6 (d, 4C, J_{C-P} = 9.7 Hz), 133.2 (1C), 133.5 (1C), 136.8 (1C), 142.4 (1C), 147.9 (1C), 155.4 (2C), 157.7 (2C), 158.6 (1C), 166.0 (1C): Some signals were not observed clearly; ³¹P NMR (CDCl₃, 162 MHz) δ –0.4 to 0.2 (m); IR (KBr, cm⁻¹) 1076, 1134, 1180, 1246, 1275, 1339, 1416, 1466, 1483, 1591; HRMS (ESI⁺) *m*/*z* 1283.3477 ([M+Na]⁺, C₆₃H₆₇³⁵Cl₂N₈NaO₁₀PS₂⁺ requires 1283.3428).

2,6-Dichloro-N-(4-((1-((11-oxo-2,3,6,7-tetrahydro-1H,5H,11H-pyrano[2,3-f]pyrido[3,2,1-ij]quinolin-9-yl)methyl)-1H-1,2,3-triazol-4-yl)methyl)carbamoylphenyl)diphenylphosphoranylidene)aniline (4c)

Yellow solid; TLC $R_f 0.34$ (CH₂Cl₂/MeOH = 9/1); ¹H NMR (CDCl₃, 500 MHz) δ 1.89–1.98 (m, 4H), 2.71 (t, 2H, *J* = 6.1 Hz), 2.84 (t, 2H, *J* = 6.2 Hz), 3.21–3.29 (m, 4H), 4.69 (d, 2H, *J* = 5.6 Hz), 5.53 (s, 2H), 5.69 (s, 1H), 6.51–6.57 (m, 1H), 6.95 (s, 1H), 7.07–7.12 (m, 2H), 7.23 (t, 1H, *J* = 5.6 Hz), 7.38–7.44 (m, 4H), 7.47–7.53 (m, 2H), 7.64 (s, 1H), 7.68–7.75 (m, 4H), 7.78–7.85 (m, 4H); ¹³C NMR (CDCl₃, 126 MHz) δ 20.3 (1C), 20.4 (1C), 21.1 (1C), 27.7 (1C), 35.4 (1C), 49.4 (1C), 49.9 (1C), 50.3 (1C), 105.7 (1C), 106.9 (1C), 107.2 (1C), 118.6 (1C), 119.1 (d, 1C, *J*_{C-P} = 2.6 Hz), 120.4 (1C), 122.9 (1C), 126.8 (d, 2C, *J*_{C-P} = 12.3 Hz), 127.8 (2C), 128.3 (d, 4C, *J*_{C-P} = 12.3 Hz), 131.3 (d, 2C, *J*_{C-P} = 103.8 Hz), 131.5 (d, 2C, *J*_{C-P} = 8.9 Hz), 131.7 (d, 2C, *J*_{C-P} = 2.7 Hz), 132.5 (d, 4C, *J*_{C-P} = 10.1 Hz), 132.8 (d, 2C, *J*_{C-P} = 10.1 Hz), 136.2 (d, 1C, *J*_{C-P} = 101.9 Hz) 136.4 (d, 1C, *J*_{C-P} = 2.8 Hz), 144.2 (1C), 145.1 (1C), 146.4 (1C), 148.0 (1C), 151.4 (1C), 161.7 (1C), 166.7 (1C); ³¹P NMR (CDCl₃, 162 MHz) δ -0.8 to -0.2 (m); IR (KBr, cm⁻¹) 1113, 1182, 1312, 1437, 1483, 1526, 1555, 1601, 1616, 1705; HRMS (ESI⁺) *m/z* 821.1955 ([M+Na]⁺, C₄₄H₃₇³⁵Cl₂N₆NaO₃P⁺ requires 821.1934).

2,6-Dichloro-N-(4-((1-(2,6-bis(ethoxycarbonyl)-4,4-difluoro-1,3,5,7-tetramethyl-3a,4a-diaza-4-bora-s-indacen-8-yl)-4-methoxyphenyl)-1H-1,2,3-triazol-4-yl)methyl)carbamoylphenyl)diphenylphosphorany lidene)aniline (**4d**)

Orange solid; TLC $R_f 0.86$ (EtOAc); ¹H NMR (CDCl₃, 500 MHz) δ 1.32 (t, 6H, J = 7.1 Hz), 1.80 (s, 6H), 2.84 (s, 6H), 3.86 (s, 3H), 4.28 (q, 4H, J = 7.1 Hz), 4.76 (d, 2H, J = 5.7 Hz), 6.52–6.58 (m, 1H), 7.07–7.18 (m, 4H), 7.38–7.45 (m, 4H), 7.48–7.54 (m, 2H), 7.56 (d, 1H, J = 2.7 Hz), 7.67–7.76 (m, 4H), 7.80–7.87 (m, 4H), 7.88 (dd, 1H, J = 8.9, 2.7 Hz), 8.03 (s, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 13.2 (2C), 14.3 (2C), 15.1 (2C), 35.4 (1C), 56.3 (1C), 60.3 (2C), 112.3 (1C), 119.1 (1C), 120.7 (1C), 121.7 (1C), 122.5 (1C), 123.4 (1C), 124.7 (1C), 126.8 (d, 2C, $J_{C-P} = 12.6$ Hz), 127.8 (d, 2C, $J_{C-P} = 1.9$ Hz), 128.4 (d, 4C, $J_{C-P} = 12.3$ Hz), 131.26 (2C), 131.28 (d, 2C, $J_{C-P} = 103.8$ Hz), 131.456 (1C), 131.458 (d, 4C, $J_{C-P} = 12.3$ Hz) 131.7 (d, 2C, $J_{C-P} = 2.3$ Hz), 132.6 (d, 4C, $J_{C-P} = 10.1$ Hz), 132.9 (d, 2C, $J_{C-P} = 10.2$ Hz), 136.3 (d, 2C, $J_{C-P} = 8.8$ Hz), 136.4 (d, 1C, $J_{C-P} = 102.1$ Hz), 140.4 (1C), 144.2 (1C), 145.4 (1C), 146.7 (2C), 156.6 (1C), 164.2 (2C), 166.8 (1C); ³¹P NMR (CDCl₃, 162 MHz) δ –0.2 to 0.7 (m); IR (KBr, cm⁻¹) 1009, 1036, 1111, 1184, 1256, 1314, 1437, 1510, 1528, 1705; HRMS (ESI⁺) m/z 1064.2856 ([M+Na]⁺, C₅₄H₄₉B³⁵Cl₂F₂N₇NaO₆P⁺ requires 1064.2812).

Methyl 3-bromo-5-(diphenylphosphino)benzoate (5)

Colorless oil; TLC $R_f 0.31$ (*n*-hexane/EtOAc = 10/1); ¹H NMR (CDCl₃, 500 MHz) δ 3.87 (s, 3H), 7.27–7.41 (m, 10H), 7.49–7.53 (m, 1H), 7.94 (ddd, 1H, J = 7.5, 1.5, 1.5 Hz), 8.12 (dd, 1H, J = 1.5, 1.5 Hz); ¹³C NMR (CDCl₃, 126 MHz) δ 52.5 (1C), 123.0 (d, 1C, J_{C-P} = 5.1 Hz), 128.8 (d, 4C, J_{C-P} = 7.3 Hz), 129.3 (2C), 132.0 (d, 1C, J_{C-P} = 7.1 Hz), 132.6 (1C), 133.1 (d, 2C, J_{C-P} = 22.9 Hz), 133.8 (d, 4C, J_{C-P} = 20.1 Hz), 135.6 (d, 1C, J_{C-P} = 10.9 Hz), 139.9 (d, 1C, J_{C-P} = 17.2 Hz), 141.4 (d, 1C, J_{C-P} = 18.1 Hz), 165.5 (1C); ³¹P NMR (CDCl₃, 162 MHz) δ –5.5 to –5.1 (m); IR (KBr, cm⁻¹) 696, 742, 766, 1132, 1273, 1435, 1557, 1728; HRMS (ESI⁺) m/z 420.9967 ([M+Na]⁺, C₂₀H₁₆⁷⁹BrNaO₂P⁺ requires 420.9963).

Methyl 3-(trimethylsilylethynyl)-5-(diphenylphosphino)benzoate (7)

Colorless solid; Mp 76–78 °C; TLC R_f 0.31 (*n*-hexane/EtOAc = 10/1); ¹H NMR (CDCl₃, 500 MHz) δ 0.22 (s, 9H), 3.86 (s, 3H), 7.27–7.39 (m, 10H), 7.56 (ddd, 1H, J = 7.0, 1.5, 1.5 Hz), 7.92 (ddd, 1H, J = 7.4, 1.5, 1.5 Hz), 8.09 (dd, 1H, J = 1.5, 1.5 Hz); ¹³C NMR (CDCl₃, 126 MHz) δ –0.19 (3C), 52.3 (1C), 96.0 (1C), 103.6 (1C), 123.9 (d, 1C, J_{C-P} = 7.1 Hz), 128.7 (d, 4C, J_{C-P} = 7.2 Hz), 129.1 (2C), 130.4 (d, 1C, J_{C-P} = 7.1 Hz), 133.4 (1C), 133.8 (d, 4C, J_{C-P} = 20.1 Hz), 134.3 (d, 2C, J_{C-P} = 20.7 Hz), 135.9 (d, 1C, J_{C-P} = 10.9 Hz), 138.9 (d, 1C, J_{C-P} = 15.3 Hz), 140.5 (d, 1C, J_{C-P} = 19.3 Hz), 166.1 (1C); ³¹P NMR (CDCl₃, 162 MHz) δ –6.1 to –5.7 (m); IR (KBr, cm⁻¹) 696, 745, 845, 1211, 1250, 1290, 1435, 1728; HRMS (ESI⁺) *m/z* 439.1257 ([M+Na]⁺,

 $C_{25}H_{25}NaO_2PSi^+$ requires 439.1254).

N-(3-(5*H*,6*H*-11,12-Didehydrodibenzo[*b*,*f*]azocin-5-yl)-3-oxopropyl)-3-ethynyl-5-(diphenylphosphino)benzamide (**12**)

Colorless solid; Mp 120 °C (decomp.); TLC R_f 0.38 (*n*-hexane/EtOAc = 1/1); ¹H NMR (CDCl₃, 500 MHz) δ 2.05 (ddd, 1H, J = 16.7, 7.2, 3.6 Hz), 2.52 (ddd, 1H, J = 16.6, 7.9, 3.8 Hz), 3.1 (s, 1H), 3.31–3.39 (m, 1H), 3.48–3.57 (m, 1H), 3.69 (d, 1H, J = 13.9 Hz), 5.12 (d, 1H, J = 13.9 Hz), 6.67 (t, 1H, J = 5.8 Hz), 7.15 (d, 1H, J = 7.5 Hz), 7.24–7.40 (m, 16H), 7.45 (ddd, 1H, J = 6.4, 1.4, 1.4 Hz), 7.62 (dd, 1H, J = 1.4, 1.4 Hz), 7.65–7.69 (m, 2H); ¹³C NMR (CDCl₃, 126 MHz) δ 34.6 (1C), 35.9 (1C), 55.5 (1C), 78.5 (1C), 82.6 (1C), 107.6 (1C), 114.9 (1C), 122.6 (1C), 122.71 (d, 1C, $J_{C-P} = 5.7$ Hz), 122.72 (1C), 125.6 (1C), 127.2 (1C), 127.9 (1C), 128.3 (1C), 128.4 (1C), 128.5 (1C), 128.7 (d, 4C, $J_{C-P} = 7.2$ Hz), 129.0 (1C), 129.1 (2C), 130.5 (1C), 132.0 (1C), 132.6 (d, 1C, $J_{C-P} = 23.8$ Hz), 133.8 (dd, 4C, $J_{C-P} = 19.9, 2.0$ Hz), 134.9 (d, 1C, $J_{C-P} = 7.4$ Hz), 135.9 (d, 1C, $J_{C-P} = 10.9, 1.7$ Hz), 139.0 (1C), 139.2 (d, 2C, $J_{C-P} = 16.3$ Hz), 147.8 (1C), 150.9 (1C), 166.0 (1C), 172.2 (1C); ³¹P NMR (CDCl₃, 162 MHz) δ –6.1 to –5.7 (m); IR (KBr, cm⁻¹) 696, 750, 1398, 1435, 1479, 1506, 1522, 1636, 1647; HRMS (ESI⁺) m/z 589.2057 ([M+H]⁺, C₃₉H₃₀N₂O₂P⁺ requires 589.2039).

Methyl 4-((8-(3-(3-(diphenylphosphaneyl)-5-ethynylbenzamido)propanoyl)-8,9-dihydro-1H-dibenzo[b,f][1,2,3]triazolo[4,5-d]azocin-1-yl)methyl)benzoate (S1)

Colorless oil; TLC R_f 0.32 (*n*-hexane/EtOAc = 1/1); HPLC analysis: Rt = 19.2 min (33%) and 19.6 (59%) [column: Shiseido CAPCELL PAK MG II (4.6 mm i.d. × 250 mm); mobile phase: CH₃CN:H₂O = 40:60 (0–5 min), linear gradient from 40:60 to 99:1 (5–25 min), 99:1 (25–35 min); flow rate: 1.00 mL/min; detection: UV at 254 nm]; ³¹P NMR (CDCl₃, 162 MHz) δ –6.1 to –5.7 (m); IR (KBr, cm⁻¹) 1110, 1286, 1433, 1510, 1651, 1720, 3053; HRMS (ESI⁺) *m/z* 780.2732 ([M+H]⁺, C₄₈H₃₉N₅O₄P⁺ requires 780.2734). HPLC chart:

Methyl 4-((8-(3-(3-(N-(2,6-dichlorophenyl)-P,P-diphenylphosphorimidoyl)-5-(1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl)benzamido)propanoyl)-8,9-dihydro-1H-dibenzo[b,f][1,2,3]triazolo[4,5-d]azocin-1-yl)methyl)benzoate (13)

Colorless oil; TLC $R_f 0.15$ (*n*-hexane/EtOAc = 1/1); HPLC analysis: Rt = 9.0 min (47%) and 9.2 min (50%) [column: Shiseido CAPCELL PAK MG II (4.6 mm i.d. × 250 mm); mobile phase: MeOH:H₂O = 40:60 (0–5 min), linear gradient from 40:60 to 99:1 (5–10 min), 99:1 (10–25 min); flow rate: 1.00 mL/min; detection: UV at 550 nm]; ³¹P NMR (CDCl₃, 162 MHz) δ –0.2 to 0.6 (m); IR (KBr, cm⁻¹) 1113, 1282, 1435, 1517, 1653, 1718, 3059; HRMS (ESI⁺) *m*/*z* 1088.2999 ([M+H]⁺, C₆₁H₄₉Cl₂N₉O₅P⁺ requires 1088.2966). HPLC chart:

References for Supporting Information

- S1 L. Adriaenssens, Q. Liu, F. Chaux-Picquet, S. Tasan, M. Picquet, F. Denat, P. L. Gendre, F. Marques, C. Fernandes, F. Mendes, L. Gano, M. P. C. Campello and E. Bodio, *ChemMedChem*, 2014, 9, 1567.
- S2 Y. K. Kim, S. J. Lee and K. H. Ahn, J. Org. Chem., 2000, 65, 7807.
- S3 E. Saxon and C. R. Bertozzi, *Science*, 2000, 287, 2007.
- S4 K. Barral, A. D. Moorhouse and J. E. Moses, Org. Lett., 2007, 9, 1809.
- S5 T. Meguro, N. Terashima, H. Ito, Y. Koike, I. Kii, S. Yoshida and T. Hosoya, *Chem. Commun.*, 2018, 54, 7904.
- S6 T. S. Pilyugina, R. R. Schrock, A. S. Hock and P. Müller, *Organometallics*, 2005, 24, 1929.
- S7 W. S. Brotherton, H. A. Michaels, T. Simmons, R. J. Clark, N. S. Dalal and L. Zhu, Org. Lett., 2009, 11, 4954.
- S8 I. Kii, A. Shiraishi, T. Hiramatsu, T. Matsushita, H. Uekusa, S. Yoshida, M. Yamamoto, A. Kudo, M. Hagiwara and T. Hosoya, *Org. Biomol. Chem.*, 2010, 8, 4051.
- S9 L. Wirtz, D. Auerbach, G. Jung and U. Kazmaier, Synthesis, 2012, 44, 2005.
- S10 J.-J. Shie, Y.-C. Liu, Y.-M. Lee, C. Lim, J.-M. Fang and C.-H. Wong, J. Am. Chem. Soc., 2014, 136, 9953.
- S11 A. Kondoh, H. Yorimitsu and K. Oshima, J. Am. Chem. Soc., 2007, 129, 4099.
- S12 F. Ishiwari, K. Fukasawa, T. Sato, K. Nakazono, Y. Koyama and T. Takata, *Chem. Eur. J.*, 2011, **17**, 12067.
- S13 C.-H. Lee, S. Lee, H. Yoon and W.-D. Jang, Chem. Eur. J., 2011, 17, 13898.
- S14 T. R. Chan, R. Hilgraf, K. B. Sharpless and V. V. Fokin, Org. Lett., 2004, 6, 2853.
- S15 R. Veillard, E. Bernoud, I. Abdellah, J.-F. Lohier, C. Alayrac and A.-C. Gaumont, Org. Biomol. Chem., 2014, 12, 3635.

NMR Spectra of New Compounds

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of *N*-(2-propyn-1-yl)-4-(diphenylphosphino)benzamide (1a) (CDCl₃)

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of *N*-(2-propyn-1-yl)-4-(methoxycarbonyl)-3-(diphenylphosphino)benzamide (**1b**) (CDCl₃)

 $^1\rm H$ NMR (500 MHz) and $^{13}\rm C$ NMR (126 MHz) spectra of 2-propyn-1-yl 2-(diphenylphosphino)benzoate (1c) (CDCl_3)

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of 2-(2-(2-(2-propynyloxy)ethoxy)ethoxy)ethyl 2-(diphenylphosphino)benzoate (1d) (CDCl₃)

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of *N*-(2-propyn-1-yl)-3-(diphenylphosphino)propionamide (1e) (CDCl₃)

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of *N*-((1-benzyl-1*H*-1,2,3-triazol-4-yl)methyl)-4-(diphenylphosphino)benzamide (**3a**) (CDCl₃)

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of *N*-((1-(4-methoxyphenyl)-1*H*-1,2,3-triazol-4-yl)methyl)-4-(diphenylphosphino)benzamide (**3b**) (CDCl₃)

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of *N*-((1-(4-nitrophenyl)-1*H*-1,2,3-triazol-4-yl)methyl)-4-(diphenylphosphino)benzamide (**3c**) (CDCl₃)

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of N-((1-(2,6-dichlorophenyl)-1H-1,2,3-triazol-4-yl)methyl)-4-(diphenylphosphino)benzamide (**3d**) (CDCl₃)

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of *N*-((1-(2,6-diisopropylphenyl)-1*H*-1,2,3-triazol-4-yl)methyl)-4-(diphenylphosphino)benzamide (**3e**) (CDCl₃)

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of *N*-((1-(2-pyridylmethyl)-1*H*-1,2,3-triazol-4-yl)methyl)-4-(diphenylphosphino)benzamide (**3f**) (CDCl₃)

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of 4-(4-diphenylphosphinobenzoylaminomethyl)-1-(2-(2-(2-(2-(biotinamido)ethoxy)ethoxy)ethoxy)ethyl)-1*H*-1,2,3-triazole (**3g**) (CDCl₃)

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of 1-(4-(2-(2-(6-chlorohexyloxy)ethoxy)ethylaminocarbonyl)benzyl)-4-(4-diphenylphosphinobenzoylaminomethyl)-1*H*-1,2,3-triazole (**3h**) (CDCl₃)

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of *N*-((1-benzyl-1*H*-1,2,3-triazol-4-yl)methyl)-4-(methoxycarbonyl)-3-(diphenylphosphino)benzamide (**3j**) (CDCl₃)

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of (1-benzyl-1*H*-1,2,3-triazol-4-yl)methyl 2-(diphenylphosphino)benzoate (**3k**) (CDCl₃)

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of 2-(2-(2-(2-(1-benzyl-1*H*-1,2,3-triazol-4-yl)methoxy)ethoxy)ethoxy)ethyl 2-(diphenylphosphino)benzoate (**3l**) (CDCl₃)

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of *N*-((1-benzyl-1*H*-1,2,3-triazol-4-yl)methyl)-3-(diphenylphosphino)propionamide (**3m**) (CDCl₃)

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of 2,6-dichloro-*N*-(4-((1-benzyl-1*H*-1,2,3-triazol-4-yl)methyl)carbamoylphenyl)diphenylphosphoranylidene)aniline (**4a**) (CDCl₃)

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of 2,6-dichloro-*N*-(4-((1-(2-(2-(2-(2-(2-(4-(3,6-bis(diethylamino)xanthylium-9-yl)-3-sulfonatobenzenesulfon-amido)ethoxy)ethoxy)ethoxy)ethyl)-1*H*-1,2,3-triazol-4-yl)methyl)carbamoylphenyl)diphenylphosphoranylidene)aniline (**4b**) (CDCl₃)

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of 2,6-dichloro-*N*-(4-((1-((11-oxo-2,3,6,7-tetrahydro-1*H*,5*H*,11*H*-pyrano[2,3-*f*]pyrido[3,2,1-*ij*]quinolin-9-yl)methyl)-1*H*-1,2,3-triazol-4-yl)methyl)carbamoylphenyl)diphenylphosphoranylidene)aniline (**4c**) (CDCl₃)

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of 2,6-dichloro-*N*-(4-((1-(2,6-bis(ethoxycarbonyl)-4,4-difluoro-1,3,5,7-tetramethyl-3a,4a-diaza-4-bora-s-indacen-8-yl)-4-methoxyphenyl)-1*H*-1,2,3-triazol-4-

yl)methyl)carbamoylphenyl)diphenylphosphoranylidene)aniline (4d) (CDCl₃)

 1 H NMR (500 MHz) and 13 C NMR (126 MHz) spectra of methyl 3-bromo-5-(diphenylphosphino)benzoate (5) (CDCl₃)

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of methyl 3-(trimethylsilylethynyl)-5-(diphenylphosphino)benzoate (7) (CDCl₃)

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of N-(3-(5H,6H-11,12-didehydrodibenzo[b,f]azocin-5-yl)-3-oxopropyl)-3-ethynyl-5-(diphenylphosphino)benzamide (12) (CDCl₃)

 ^1H NMR (500 MHz) and ^{13}C NMR (126 MHz) spectra of platform-triazole **S1** (CDCl_3)

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of *azaylide* **13** (CDCl₃)