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1. General Methods

All reagents were obtained from commercial suppliers and used without further
purification. Deep eutectic solvents [FeCls-6H.O/glycerol (Gly) (3:1 mol mol);
ZnCly/Gly (2:1 mol mol™); MnCL/Gly (2:1 mol mol™); CuCl>-2H,0/Gly (2:1 mol mol’
1; ChClI (choline chloride)/FeCls-6H,0 (1:2 mol mol™); ChCl/ZnCl, (1:2 mol mol™?);
ChCI/MnCl2-4H20 (1:2 mol mol!); ChCI/CuClz-2H,0 (1:2 mol mol™!); CACI/H,0 (1:2
mol mol™), ChCI/Gly (1:2 mol mol!), FeCls-6H,0O/mono-ethylene glycol (MEG) (2:1
mol mol™')] were prepared by heating under stirring up to 75 °C for 10-30 min the
corresponding individual components until a clear solution was obtained. All these
DESs are stable at room temperature and reaction conditions. ESI" experiments were
carried out to record mass spectra on a Hewlett-Packard 1100 HPLC/MS (electrospray)
instrument. 'H-NMR spectra (CDCl; and MeOD) were obtained using a Bruker DPX-
300 ('H, 300.13 MHz; “C{'H}, 75.4 MHz) spectrometer and employing the & scale
(ppm) for chemical shifts. Calibration was made on the signal of the solvent ('H:
CDCls, 7.26 ppm; *C: CDCls, 77.0 ppm). HPLC analyses to determine the degree of
conversion were carried out on an Agilent RR1200 HPLC system, using a reversed
phase column (Zorbax Eclipse XDB-C18, RR, 18um, 4.6 x 50 mm, Agilent). Analytical
thin layer chromatography (TLC) was carried out on pre-coated 0.25 mm thick plates of
Kieselgel 60 F254; visualization was accomplished by UV light (254 nm) or by
spraying with a solution of 5 % (w/v) ammonium molybdate and 0.2 % (w/v)
cerium(III) sulfate in 100 mL 17.6 % (w/v) aq. sulfuric acid and heating to 473 K until
blue spots appear. Chromatography was conducted by using silica gel 60 with a particle
size distribution 40—-63 pum and 230400 ASTM.
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2. Protocols

2.1 General procedure for the catalytic propargylic isomerization of 1,1-diphenyl-
2-propyn-1-ol (1a) in LADESSs

In a typical experiment, 1a (0.2 mmol) and 0.8 mL of LADES were loaded into a glass
open vial and stirred at room temperature for the required time (Table 1). The course of
the reaction was monitored by regular sampling and analysis by TLC and HPLC. After
completion of the reaction, the obtained crude was extracted with cyrene (2 x 400 pL).
The organic layers were separated by centrifugation (90 s, 13000 rpm), combined, and
finally dried over Na;SO4. The crude was filtered through silica gel (hexane-ethyl
acetate 10:1).

3,3-diPhenylpropenal (1b): Light yellow oil. 'H NMR (300 MHz, CDCls) & (ppm):
6.63 (d, J 7.5 Hz, 1H), 7.25-7.55 (m, 10 H), 9.56 (d, J 7.5 Hz, 1H); *C-NMR (75.5
MHz, CDCI) & (ppm): 127.3 (CH), 128.4 (CH), 128.6 (CH), 128.7 (CH), 129.5 (CH),
130.5 (CH), 130.7 (CH), 136.7 (C), 139.7 (C), 162.3 (C), 193.5 (C=0). NMR data are
in good agreement with those reported in: A. Antifiolo, F. Carrillo-Hermosilla, V.

Cadierno, J. Garcia-Alvarez, A. Otero, ChemCatChem 2012, 4, 123.

2.2 General procedure for the catalytic isomerization of propargylic alcohols (1a-
14a) in FeCl3-6H20/Gly (2:1)

In a typical experiment, the specific propargylic alcohol 1a—14a (0.2 mmol) and 0.8 mL
of FeCl3-6H>O/Gly (3:1) were loaded into a glass open vial and stirred at the specified
temperature (RT or 40 °C) for the required time (Table 2). The course of the reaction
was monitored by regular sampling and analysis by TLC and HPLC. After completion
of the reaction, the obtained crude was extracted with cyrene (2 x 400 pL). The organic
layers were separated by centrifugation (90 s, 13000 rpm), combined, and finally dried
over NaxSOs. The crude of the reaction was filtered through silica gel (hexane-ethyl
acetate mixtures). 3-Phenylbut-2-enal (2b), mixture E/Z of isomers:! Light yellow
oil. 'H NMR (300 MHz, CDCls) § (ppm): For E isomer: 10.21 (d, J = 6.0 Hz, 1H), 7.10-
7.60 (m, 5 H), 6.42 (d, J = 6.0 Hz, 1H), 2.60 (s, 3H); For Z-isomer: 9.50 (d, J = 6.0 Hz,
1H), 7.10-7.60 (m, 5 H), 6.15 (d, J = 6.0 Hz, 1H), 2.35 (s, 3H). NMR data are in good

! The reported E/Z ratio was 86:14 (see Table 2, entry 2).
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agreement with those reported in: A. Antifiolo, F. Carrillo-Hermosilla, V. Cadierno, J.
Garcia-Alvarez, A. Otero, ChemCatChem 2012, 4, 123.

(E)-Cinnamaldehyde (3b): Light yellow oil. 'H NMR (300 MHz, CDCl3) § (ppm):
9.72 (d, J = 7.5 Hz, 1H), 7.35-7.55 (m, 6 H), 6.71 (dd, J = 16.0 and 7.5 Hz, 1H); *C-
NMR (75.5 MHz, CDCI3) 6 (ppm): 128.5 (CH), 128.6 (CH), 129.1 (CH), 131.3 (CH),
134.0 (CH), 152.9 (C), 194.2 (C=0). NMR data are in good agreement with those
reported in: A. Antifiolo, F. Carrillo-Hermosilla, V. Cadierno, J. Garcia-Alvarez, A.
Otero, ChemCatChem 2012, 4, 123.

3,3-Bis(4-methylphenyl)acrylaldehyde (4b): Light yellow oil. 'H NMR (300 MHz,
CDCI) 8 (ppm): 6.57 (d, J = 8.0 Hz, 1H), 7.25-7.35 (m, 4 H), 9.55 (d, J = 8.0 Hz, 1H);
BC-NMR (75.5 MHz, CDCls) § (ppm): 21.4 (CH3), 126.5 (CH), 128.8 (CH), 129.0
(CH), 129.3 (CH), 130.8 (CH), 133.9 (C), 137.1 (C), 140.0 (C), 141.0 (C), 162.5 (C),
193.7 (C=0). NMR data are in good agreement with those reported in: A. Antifiolo, F.
Carrillo-Hermosilla, V. Cadierno, J. Garcia-Alvarez, A. Otero, ChemCatChem 2012, 4,
123.

3,3-bis(4-chlorophenyl)acrylaldehyde (5b): Light yellow oil. 'H NMR (300 MHz,
CDCl3) 6 (ppm): 6.58 (d, J=7.8 Hz, 1H), 7.20-7.35 (m, 4 H), 7.46 (d, J = 2.0 Hz, 2H),
7.48 (d, J = 2.0 Hz, 2H), 9.54 (d, J = 7.8 Hz, 1H); '*C-NMR (75.5 MHz, CDCl3) §
(ppm): 127.7 (CH), 128.9 (CH), 129.1 (CH), 129.8 (CH), 131.9 (CH), 134.6 (C), 136.0
(©), 137.0 (C), 137.8 (C), 159.4 (C), 192.6 (C=0). NMR data are in good agreement
with those reported in: A. Antifolo, F. Carrillo-Hermosilla, V. Cadierno, J. Garcia-
Alvarez, A. Otero, ChemCatChem 2012, 4, 123.
3,3-Bis(4-methoxyphenyl)acrylaldehyde (6b): Light yellow oil. '"H NMR (300 MHz,
CDCI) 6 (ppm): 3.87 (s, 3H), 3.90 (s, 3H), 6.51 (d, J = 8.0 Hz, 1H), 6.92 (d, J = 9.0
Hz), 2H), 6.98 (d, J = 9.0 Hz), 7.26 (d, J = 9.0 Hz, 2H), 7.34 (d, J = 9.0 Hz, 2H), 9.51
(d, J = 8.0 Hz, 1H). NMR data are in good agreement with those reported in: A.
Antifiolo, F. Carrillo-Hermosilla, V. Cadierno, J. Garcia-Alvarez, A. Otero,
ChemCatChem 2012, 4, 123.

3,3-Bis([1,1'-biphenyl]-4-yl)acrylaldehyde (7b): Light yellow oil. 'H NMR (300
MHz, CDCl3) & (ppm): 6.71 (d, J = 9.0 Hz, 1H), 7.30-7.60 (m, 10 H), 7.65-7.80 (m,
8H), 9.66 (d, J = 9.0 Hz, 1H); '*C-NMR (75.5 MHz, CDCls) § (ppm): 127.1 (CH),
127.1 (CH), 127.2 (CH), 127.3 (CH), 127.9 (CH), 128.0 (CH), 129.0 (CH), 129.3 (CH),
131.4 (CH), 135.5 (C), 138.6 (C), 140.0 (C), 140.1 (C), 142.4 (C), 143.4 (C), 161.5 (C),
193.4 (C=0). MS (ESI") m/z (rel. intensity): 361.2 [(M+H)", 100], 383.2 [(M+Na)", 10].
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3-Isopropyl-4-methylpent-3-en-2-one (8b): Light yellow oil. 'H NMR (300 MHz,
CDCI) & (ppm): 1.07 (d, J = 9.0 Hz, 6H), 1.65 (s, 3H), 1.71 (s, 3H), 2.27 (s, 3H), 2.81
(heptet, J = 9.0 Hz, 1H); '*C-NMR (75.5 MHz, CDCl;) § (ppm): 19.2 (CH3), 21.3
(CH3), 22.0 (CHa3), 28.7 (CH3), 33.3 (CH3), 127.1 (C), 143.4 (C), 209.7 (C=0). NMR
data are in good agreement with those reported in: V. Cadierno, S. E. Garrido, J.
Gimeno, Adv. Synth. Catal. 2006, 348, 101.

1-Acetylcyclohexene (9b): Light yellow oil. 'H NMR (300 MHz, CDCl3) & (ppm):
1.55-1.65 (m, 4H), 2.15-2.25 (m, 4H), 2.28 (s, 3H), 6.91 (s, 3H); *C-NMR (75.5 MHz,
CDCI3) & (ppm): 21.5 (CH2), 21.9 (CH2), 23.0 (CH2), 24.0 (CH2), 25.2 (CHz3), 139.7
(CH), 140.9 (C), 199.4 (C=0). NMR data are in good agreement with those reported in:
V. Cadierno, S. E. Garrido, J. Gimeno, Adv. Synth. Catal. 2006, 348, 101.
1-Acetylcycloheptene (10b): Light yellow oil. '"H NMR (300 MHz, CDCls) § (ppm):
1.40-1.60 (m, 4H), 1.70-1.85 (m, 2H), 2.32 (s, 3H), 2.35-2.40 (m, 2H), 2.50-2.55 (m,
2H), 7.10 (t, J = 6.0 Hz, 1H); 3*C-NMR (75.5 MHz, CDCl3) § (ppm): 25.3 (CH3), 25.4
(CH»), 25.8 (CH>), 26.1 (CH2), 29.1 (CH»), 32.3 (CH>), 145.6 (CH), 146.6 (C), 192.0
(C=0). NMR data are in good agreement with those reported in: V. Cadierno, S. E.
Garrido, J. Gimeno, Adv. Synth. Catal. 2006, 348, 101.
1,3,3-Triphenylprop-2-en-1-one (11b): Yellow pale solid. 'H NMR (300 MHz,
CDCI) 6 (ppm): 7.17 (s, 1H), 7.20-7.25 (m, 2H), 7.25-7.30 (m, 3H), 7.30-7.45 (m, 7H),
7.45-7.50 (m, 1H), 7.97 (d, J = 6.0 Hz, 2H); '*C-NMR (75.5 MHz, CDCl3) § (ppm):
124.1 (CH), 128.1 (CH), 128.4 (CH), 128.5 (CH), 128.6 (CH), 128.8 (C), 129.4 (CH),
129.8 (CH), 132.7 (CH), 138.3 (C), 139.1 (C), 141.4 (C), 154.7 (C), 192.7 (C=0). NMR
data are in good agreement with those reported in: A. Antifolo, F. Carrillo-Hermosilla,
V. Cadierno, J. Garcia-Alvarez, A. Otero, ChemCatChem 2012, 4, 123.
1-Phenyl-3,3-di-p-tolylprop-2-en-1-one (12b): Yellow pale solid. '"H NMR (300 MHz,
CDCI3) 6 (ppm): 2.36 (s, 3H), 2.43 (s, 3H), 7.05-7.10 (m, 5H), 7.15-7.20 (m, 2H),
7.26-7.30 (m, 2H), 7.35-7.40 (m, 2H), 7.45-7.50 (m, 1H), 7.96 (d, J = 6.0 Hz, 2H 2H);
BC-NMR (75.5 MHz, CDCl3) & (ppm): 21.3 (CH3), 21.4 (CH3), 122.7 (CH), 128.4
(CH), 128.6 (CH), 128.7 (CH), 128.8 (CH), 129.1 (CH), 129.8 (CH), 132.5 (CH), 136.3
(C), 138.2 (C), 138.6 (C), 138.9 (C), 139.6 (C), 155.3 (C), 192.5 (C=0O). NMR data are
in good agreement with those reported in: S. Tanaka, T. Kunisawa, Y. Yoshii, T.
Hattori, Org. Lett. 2019, 21, 8509.
(3,3)-Bis(4-fluorophenyl)-1-phenylprop-2-en-1-one (13b): Yellow pale solid. 'H
NMR (300 MHz, CDCl3) 6 (ppm): 6.95-7.20 (m, 7H), 7.35-7.45 (m, 4H), 7.50-7.55 (m,
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1H), 7.92 (d, J = 8.0 Hz, 2H); *C-NMR (75.5 MHz, CDCI3) & (ppm): 115.3 (2CH, Jcr=
22 Hz), 115.6 (2CH, Jcr= 22 Hz), 124.0 (CH), 128.5 (2CH), 128.7 (2CH), 130.4 (2CH,
Jcr= 8 Hz), 131.6 (2CH, Jcr= 8 Hz), 132.9 (CH), 134.7 (C, Jcr= 3 Hz), 137.4 (C, Jcr=3
Hz), 138.1 (C), 152.6 (C), 162.8 (C, Jcr= 248 Hz), 163.6 (C, Jcr= 250 Hz), 192.3
(C=0). NMR data are in good agreement with those reported in: N. Naveen, G.
Ramesh, R. Balamurugan, Chemistry Select 2019, 4, 13610.
1,1-Bis(4-fluorophenyl)hept-1-en-3-one (14b): Light yellow oil. '"H NMR (300 MHz,
CDCI) 6 (ppm): 0.86 (t, J= 7.5 Hz, 2H), 1.20-1.30 (m, 2H), 1.45-1.60 (m, 2H), 2.33 (t,
J=6.0 Hz, 2H), 6.56 (s, 1H), 7.00-7-15 (m, 4H), 7.16-7.22 (m, 2H), 7.25-7.32 (m, 2H);
B3C-NMR (75.5 MHz, CDCls) § (ppm): 13.8 (CH3), 22.3 (CH>), 26.4 (CHz), 43.3 (CH),
115.3 (2CH, Jcr= 22 Hz), 115.5 (2CH, Jcr= 22 Hz), 126.2 (CH), 130.2 (2CH, Jcr= 8
Hz), 131.30 (2CH, Jcr= 8 Hz), 134.6 (C), 137.1 (C), 151.2 (C), 164.6 (C), 165.2 (C),
201.6 (C=0). MS (ESI") m/z (rel. intensity): 301.2 [(M+H)", 100].

2.3 General procedure for the catalytic hydration of phenylacetylene (15) in
FeCl3-6H20/Gly (2:1)

Phenylacetylene (15, 0.3 mmol) and 1.0 mL of FeCl3-6H>O/Gly (3:1) were loaded into
a glass open vial and stirred at 45 °C over 18 h. The course of the reaction was
monitored by regular sampling and analysis by HPLC. After completion of the reaction,
the resulting crude was extracted with cyrene (2 x 400 pL). The organic layers were
separated by centrifugation (90 s, 13000 rpm), combined, and finally dried over
NaxSO4. The crude product was finally filtered through silica gel yielding pure
acetophenone (16, >95% yield).

Acetophenone (16): Colorless liquid. 'TH NMR (300 MHz, CDCl3) § (ppm): 2.60 (s,
3H), 7.35-7.45 (m, 2H), 7.45-7.55 (m, 1H), 7.85-7.95 (m, 2H); *C-NMR (75.5 MHz,
CDCI3) & (ppm): 26.6 (CH3), 128.3 (CH), 128.6 (CH), 133.1 (CH), 137.1 (C), 198.1
(C=0). NMR data are in good agreement with those reported in: J. R. Cabrero-
Antonino, A. Leyva-Pérez, A. Corma, Chem. Eur. J., 2012, 18, 11107.

The LADES-based catalytic system was recycled for 4 runs following the procedure
described in the Section 3.3.1 (Figure S1).
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Figure S1. FeCls-6H,0/Gly-catalyzed hydration of 15.

2.4 General procedure for the catalytic cyclization of N-prop-2-ynylbenzamide (17)
into 5-methyl-2-phenyloxazole (18) in FeClz-6H20/Gly (2:1)
N-prop-2-ynylbenzamide (17, 0.2 mmol) and 1.0 mL of FeCl3-6H,O/Gly (3:1).were
loaded into a glass open vial and stirred at 40 °C over 4 h. The course of the reaction
was monitored by regular sampling and analysis by TLC and HPLC. After completion
of the reaction (¢ >99%), the obtained crude was extracted with cyrene (2 x 400 pL).
The organic layers were separated by centrifugation (90 s, 13000 rpm), combined, and
finally dried over Na>;SOs. The resulting product was filtered through silica gel yielding
pure 5-methyl-2-phenyloxazole (18, 60% yield). It should be noted that the high
volatility of 18 decreased the isolated yield.

5-methyl-2-phenyloxazole (18): Colorless liquid. 'H NMR (300 MHz, CDCls) &
(ppm): 2.42 (s, 3H), 6.86 (s, 1H), 7.25-7.45 (m, 3H), 8.00-8.05 (m, 2H). NMR data are
in good agreement with those reported in: G. C. Senadi, W.-P. Hu, J.-S. Hsiao, J. K.
Vandavasi, C.-Y. Chen, J. J. Wang, Org. Lett., 2012, 14, 4478.

The LADES-based catalytic system was recycled for 5 runs following the procedure
described in the Section 3.3.1 (Figure S2).
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Figure S2. FeCl3-6H>O/Gly-catalyzed cyclization of 17.

2.5 General procedure for the catalytic hydrolysis of substituted methyl benzoates
(19-22) in FeCl3-6H20/Gly (2:1)

Methyl benzoate (19, 0.4 mmol) and 1.0 mL of FeCls3-6H>O/Gly (3:1) were loaded into
a glass open vial and stirred at 70 °C over 14 h. The course of the reaction was
monitored by regular sampling and analysis by HPLC. After completion of the reaction,
the obtained crude was extracted with cyrene (2 x 400 puL). The organic layers were
separated by centrifugation (90 s, 13000 rpm), combined, and finally dried over
NaxSO4. The resulting product was filtered through silica gel yielding pure benzoic acid
(23, ¢ >99%, 95% yield).

Benzoic acid (23): White solid. '"H NMR (300 MHz, CDCls) § (ppm): 7.47 (t, J = 8.0
Hz, 2H), 7.64 (t, J =7.5 Hz,1H), 8.16 (d, J = 8.0 Hz, 2H); >*C-NMR (75.5 MHz, CDCl;)
d (ppm): 128.5 (CH), 129.3 (C), 130.2 (CH), 133.8 (CH), 172.1 (C=0). NMR data are
in good agreement with those reported in: X. Lian, S. Fu, T. Ma, S. Li, W. Zeng, Appl.
Organometal. Chem. 2011, 25, 443.

The LADES catalytic system was recycled for 5 runs following the procedure described
in the Section 3.3.1 (Figure S3).
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Figure S3. FeCl3-6H20/Gly-catalyzed hydrolysis of 19.

The hydrolysis of methyl esters of m-methylbenzoate (20), p-nitrobenzoate (21) and p-
cyanobenzoate (22) was accomplished under identical reactions conditions with yields

higher than 85%.

3-Methylbenzoic acid (24): 93% yield. White solid. '"H NMR (300 MHz, MeOD) §
(ppm): 2.39 (s, 3H), 7.30-7.45 (m, 2H), 7.75-7.90 (m, 2H); '3C-NMR (75.5 MHz,
MeOD) & (ppm): 126.5 (CH), 128.0 (CH), 129.8 (CH), 130.4 (C), 133.3 (CH), 138.0
(C), 172.1 (C=0). NMR data are in good agreement with those reported in: K.
Kobayashi, Y. Kondo, Org. Lett. 2009, 11, 2035.

4-Nitrobenzoic acid (25): 90% yield. White solid. 'H NMR (300 MHz, MeOD) §
(ppm): 8.25 (d, J= 9.0 Hz, 2H), 8.34 (d, J = 9.0 Hz, 2H); *C-NMR (75.5 MHz, MeOD)
o (ppm): 123.1 (CH), 130.5 (CH), 129.8 (CH), 136.2 (C), 150.5 (C), 166.2 (C=0).
NMR data are in good agreement with those reported in: M. Yoshida, Y. Katagiri, W.-
B. Zhu, K. Shishido, Org. Biomol. Chem. 2009, 7, 4062.

4-Cyanobenzoic acid (26): 85% yield. White solid. 'H NMR (300 MHz, MeOD) &
(ppm): 7.87 (d, J= 9.0 Hz, 2H), 8.18 (d, J = 9.0 Hz, 2H); *C-NMR (75.5 MHz, MeOD)
o (ppm): 115.8 (C), 1117.6 (C), 129.9 (CH), 132.0 (CH), 134.8 (C), 166.5 (C=0). NMR
data are in good agreement with those reported in: A. Littke, M. Soumeillant, R, F.
Kaltenbach, R. J. Cherney, C. M. Tarby, S. Kian, Org. Lett. 2007, 9, 1711.

S9



3. Mechanism of the Meyer-Schuster rearrangement

Gimeno and coworkers reviewed the catalytic isomerization of allylic alcohols which
occurs through three different reaction pathways, namely Meyer-Schuster and Rupe
rearrangements and the redox-type isomerization (Dalton Trans., 2010, 39, 4015-4031).
As FeCls and InCls exhibit a similar reactivity as Lewis acids (Chem. Eur. J. 2000, 6,
3491), we envision that a similar pathway may be also followed for the described FeCls-

catalyzed MS and Rupe rearrangements.

Meyer-Schuster rearrangement

, OH R3 ?\
3 X > sz\ﬂj R
R R
l[Fe] T
HO----7lFel R2? R?
RZ //II [Fe] Hzo
& T RONG gt T R 1
R3 \\R1 -H,0 \"N‘,\R - [Fel X/R
OH
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4. Optimization of downstream processing

4.1 Study of miscibility of FeClz-6H20/Gly (2:1) and organic solvents
To several vials containing 1 mL of FeCl;-6H>O/Gly (3:1), 1 mL of different organic
solvents was added and the mixture was shaken vigorously and subjected to

centrifugation (Figure S4). The following results were obtained:

1- Solvents leading to miscible solutions:

THF, 2-Me-THF, 1,4-dioxane, MTBE, CPME, MEK, MIBK, DMI

2-Solvents leading to immiscible solutions:

n-Hexane, n-heptane, cyclohexane, EtOAc, iPrOAc, toluene, CHCI3, CH2Cly, cyrene

Figure S4

4.2 Study on the extraction of products from FeCls3-6H20/Gly (2:1)

A set of 9 vials containing 1a (0.2 mmol) and FeCl3-6H,O/Gly (3:1) (0.8 mL) were
enabled to react according to the conditions reported in Table 1 (entry 6). After 15 min,
the reaction mixtures were extracted (2 x 0.5 mL) with the nine solvents leading to
immiscible solutions reported in Section 3.1. EtOAc and iPrOAc were discarded due to
partial leaching of FeCls. The resulting 1b was poorly extracted in n-hexane, n-heptane
and cyclohexane (determined by TLC and HPLC). Conversely, toluene, cyrene, CH>Cl
and CHCI; led to quantitative extraction of 1b.
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4.3. Recycling of the catalytic system in the CDES-mediated Meyer Schuster

isomerization

4.3.1. Recycling procedure based on extractive workup

1a (0.2 mmol) and 0.8 mL of FeCl3-6H>O/Gly (3:1) were loaded into a glass open vial
and stirred at RT over 10 min. Then, the reaction was extracted with cyrene (2 x 400
puL). The upper organic phases were successively separated by centrifugation (90 s,
13000 rpm), combined, and finally dried over Na2SO4. The conversion was assessed by
HPLC analysis. The remaning lower phase (FeClz-6H.O/Gly) was supplemented with

1a (0.2 mmol) to start the second cycle, and so on. Results are collected in Figure S5.

100 +

80 -

40 -

Conversion (%)

20 -

1 2 3 4 5 6 7 8 9 10
Cycles

Figure S5. FeCls-6H,O/Gly-catalyzed Meyer-Schuster isomerization of 1a.

4.3.2. Recycling procedure based on filtration/precipitation workup

11a (0.2 mmol) and 0.8 mL of FeCl3-6H>O/G/y (3:1) were loaded into a glass open vial
and stirred at RT. Almost immediately, the formation of a precipitate was observed and
the stirring was maintained over 30 min. After this time, the reaction mixture was
diluted with 1 mL of water and stirred vigorously for a few seconds. Then, the solid was
filtered off and washed twice with water (2 x 1.0 mL), providing pure 11b. The LADES
was reconstituted from the filtrate by evaporation of water under reduced pressure so as

to be be ready for a new reaction cycle. Results are collected in Table S6.
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Figure S6. FeCl;-6H>O/Gly-catalyzed Meyer-Schuster isomerization of 11a.
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5.- NMR spectra data
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Figure S1. 'H-NMR full chart for 1b in CDCls.
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Figure S2. '°C{'H}-NMR full chart for 1b in CDCls.
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6. HPLC analytical data

6.1. Analytical data for the determination of the degree of conversion (c) in Meyer
Schuster and Rupe rearrangements

Apparent conversions of substrates 1a—14a to products 1b—14b were determined based
on the % peak area of product and substrate. In the first instance, complete conversion
was qualitatively assessed for all the reactions included in Table 2 by TLC. The
propargylic alcohols 1a—14a showed significant differences in Ry from the
corresponding o,B-unsaturated carbonyl compounds 1b—14b. Likewise, alcohols la—
14a underwent oxidation much more intensely than products when treated with KMnOa.
After work up described in Section 2, the apparent conversion was established by
HPLC. In all cases, and in good agreement with TLC analysis, complete disappearance
of the starting product 1a—14a was assessed. As a result, calibration experiments for
determining the response factors of propargylic alcohols and o,f-unsaturated carbonyl

compounds were discarded.

HPLC Method for l1a-14a: HPLC analyses were carried out on an Agilent

chromatographic system, using a reversed phase column (Zorbax Eclipse XDB-C18,
RR, 1.8 um, 4.6 x 50 mm, Agilent) and acetonitrile (MeCN) and 0.1% trifluoroacetic
acid (TFA) in water as solvents. Samples were eluted with three linear gradients from
10% to 60% MeCN during 5.70 min, followed by another from 60% to 100% MeCN
during 0.5 min and a third gradient from 100% to 10% MeCN during 1.90 min, at flow
rate of 2 ml/min. Detection and spectral characterization of peaks were performed at
210 and 278 nm with a diode array detector and ChemStation Rev.B.03.01 software
(Agilent).
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Table S3. Analytical data for the determination of ¢ (%) in Meyer Schuster and Rupe
rearrangements.

Retention time (tr, min)

Propargylic alcohol tr Products tr
la 4.9 1b 59
2a 3.2 2b 4.0
3a 25 3b 3.6
4a 6.3 4b 6.7
Sa 6.4 5b 6.7
6a 4.8 6b 55
7a 6.7 6b 7.0
8a 4.5 7b 4.7
%a 2.7 9b 35
10a 3.3 10b 4.4
11a 6.5 11b 6.7
12a 6.8 12b 6.9
13a 6.6 13b 6.7
l4a 6.7 14b 6.8
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7. Copy of HPLC chromatograms

Attachment S1. In process HPLC monitoring for the isomerization of 1a into 1b (Table

2, entry 1)
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Attachment S3. In process HPLC monitoring for the isomerization of 3a into 3b (Table

2, entry 3)
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Attachment S4. In process HPLC monitoring for the isomerization of 4a into 4b (Table

2, entry 4)
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Attachment S5. In process HPLC monitoring for the isomerization of 5a into 5b (Table

2, entry 5)
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Attachment S7. In process HPLC monitoring for the isomerization of 7a into 7b (Table
2, entry 7)
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Attachment S8. In process HPLC monitoring for the isomerization of 8a into 8b (Table
2, entry 8)
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Attachment S9. In process HPLC monitoring for the isomerization of 9a into 9b (Table
2, entry 9)
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Attachment S10. In process HPLC monitoring for the isomerization of 10a into 10b
(Table 2, entry 10).
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Attachment S11. In process HPLC monitoring for the isomerization of 11a into 11b
(Table 2, entry 11).
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Attachment S12. In process HPLC monitoring for the isomerization of 12a into 12b
(Table 2, entry 12)
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Attachment S13. In process HPLC monitoring for the isomerization of 13a into 13b
(Table 2, entry 13)
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Attachment S14. In process HPLC monitoring for the isomerization of 14a into 14b
(Table 2, entry 14)
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Attachment S15. In process HPLC monitoring for the hydration of 15 into 16 (Scheme

3)
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Attachment S16. In process HPLC monitoring for the cyclization of 17 into 18

(Scheme 3)
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Attachment S17. In process HPLC monitoring for the hydrolysis of 19 into 23 (Scheme
3)
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Attachment S18. In process HPLC monitoring for the hydrolysis of 20 into 24 (Scheme
3)
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Attachment S19. In process HPLC monitoring for the isomerization of 11a into 11b.
Recycling studies of CDES through extraction workup with cyrene.
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