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Experimental Section 

Chemmicals 

Graphite flake (~325 mesh, 99.8%) and hydrogen peroxide (30%) were purchased 

from Alfa Aesar. Sulfuric Acid (98%) and phosphoric acid (86%) were purchased from 

J.T.Baker. Potassium permanganate (99%) and L-Ascorbic Acid (99%) were bought from 

Sigma Aldrich. The deionized water (18.2 M Ω) obtained by the purification system was used. 

All the chemicals were used as received. 

Synthesis of P-Si/G 

Graphene oxide was prepared by modified Hummer’s method reported previous work. 

P-Si nanoparticles were synthesized via spark-discharge method by using SiH4 and PH3 and 

the final P content in P-Si is around 20 ppm which is identified by XRF and the average size 

of P-Si is 110 nm. Generally, 100 mg of P-Si nanoparticles were dispersed into 100 mL of 

graphene oxide aqueous solution with a concentration of 0.2 mg mL-1 under ultrasonic for 0.5 

h. Subsequently, 20 mg of L-ascrobic as the reductant was added into above mixture and the 

temperature of the reaction system was heated at 75 °C for 8 h. The intermediate was washed 

by water and ethanol, finally dried in vacuum oven under 60 °C overnight followed by 

annealing under argon atmosphere at 550 °C for 2 h. For comparison, we also synthesized P-
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Si/C composite using commercial carbon material, i.e. graphene nanoplates (GNPs) and 

carbon nanotube (CNT). With the same loading of P-Si, P-Si/C composites were obtained by 

sonication with the above carbon materials aqueous solutions and following stirring overnight. 

The corresponding P-Si/C composites are denoted as P-Si/GNPs and P-Si/CNT.  

Synthesis of different cations modified PGA 

PGA was synthesized according to previous work. Different cations modified PGA were 

obtained by adding PGA powder directly into 0.1 M LiOH, NaOH, KOH and ammonia under 

magnetic stirring for 12 h and the pH value of the mixture was fixed at 9. The above solution 

were used as binder directly. 

Materials Characterization 

The morphology and inner structure of P-Si/G were characterized by scanning electron 

microscope (SEM, LEO-1550), transmission electron microscopy (TEM, JEOL JEM-

ARM200F) and X-ray diffraction (XRD). Thermogravimetric analysis (TGA) was performed 

from room temperature to 900 °C under air atmosphere. The fourier transform infrared 

spectroscopy (FT-IR) spectra of Nano-Si were documented with KBr pellets from Avatar360 

(Thermo Nicolet, USA). The viscosity test was conducted at room temperature by using a 

cone-plate rheometer (AR1000, Texas Instrument). 

Electrochemical performance tests were done using CR2032-type coin cell with a 

MPG2 potential station (EC lab software, BioLogic) in a potential voltage from 0.01 to 1 V vs 

Li+/Li at room temperature. The working electrodes were composed of P-Si/G composite (80 

wt%), Super P (10 wt%) and alginate sodium or PGA which was synthesized by our previous 

study (10 wt %). The mass loading of P-Si/G electrode is from 0.9~1.2 mg cm-2. Lithium foil 

was used as counter electrode and the separator is from Celgard C480. The electrolyte 

solution was 1M LiPF6/ethylene carbonate (EC)/dimethyl carbonate (DMC) (1:1 by volume). 

The batteries were assembled in glove box with oxygen and water content less than 0.1 ppm. 

The morphology of the P-Si/G electrode before and after 1 cycle is characterized by 

optical microscopy (Nikon, ECLIPSE). 

 

 

 

 

 

 

 



  

3 

 

 

Additional Figures and Table: 

 

 
Figure S1. SEM (a) and TGA curve (b) of P-Si/G composite. 

 

 

 

 
Figure S2 Cyclic voltammetric curves showing the electrochemical performance of the P-

Si/G composite. 
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Figure S3. Charge/discharge curve of P-Si/G electrode. 

 

 

 
Figure S4. Cycling performance of P-Si/CNT, P-Si/GNPs, P-Si and Si electrode. 

 

 

 
Figure S5. Comparison of morphology between Si electrode (a) and P-Si/G (b) electrode after 

cycling. 
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Figure S6. Cycling performance of Si nanoparticles electrode by utilizing different binders. 

 

 

 
Figure S7. Rate capability of Si nanoparticles electrode using different cations modified PGA. 

 

 

 
Figure S8. Cycling performance of P-Si/G electrode full cell using LCO as cathode at 1 C 

between 2 and 4.3 V. 
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Figure S9. Direct observing of self-healing capability of P-Si/G electrode: (a) before cycling, 

(b) after 1st discharge and (c) after 1st discharge for 5 min. 

 

 

 

 
Figure S10. Time-dependent Nyquist plot of P-Si/G electrode using sodium alginate (a) and 

PGA (b) as binder. (inset is the equivalent circuit), the RSEI and Rct values of P-Si/G electrode 

with PGA and sodium alginate binder changes along with the time (c) and (d). 
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Figure S11. FTIR spectra of PGA and ammonia modified PGA. 

 

 

 

 

 

 
 

Figure S12. Digital graph of P-Si electrodes after 100 cycles using sodium alginate, PGA and 

amonium modified PGA as binder. 

 

 

 

Table S1. Viscosity of Li+, Na+, K+ and NH4
+ modified PGA solution (at 25 ℃ when the 

concentration is 0.6 mg mL-1). 

 Li-γPGA Na-γPGA K-γPGA NH4-γPGA γPGA DI water 

Viscosity 

(mPa▪s) 
2.6 2.6 2.7 3.7 2.8 0.9 
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Table S2. Comparision of mass loading and electrochemical performance of previous 

reported Si anode. 

Ref. Mass loading (mg cm-2) Cycling performance 

[1] 1 722mAh g-1 at 0.1 A g-1 after 100 cycles 

[2] 0.9 1325 mAh g-1 at 0.2 A g-1 after 60 cycles 

[3] 1 1660 mAh g−1 at 0.2 A g−1 after 100 cycles 

[4] 1.5 534.3 mAh g−1 at 0.5 A g−1 after 200 cycles 

[5] 0.8-1.2 1107 mAh g−1 at 0.5 A g−1 after 100 cycles 

[6] 0.6-0.7 1000 mAh g−1 at 0.1 A g−1 after 50 cycles 

[7] 1.4 595  mAh g−1 at 0.2 A g−1 after 200 cycles 

[8] 0.8-1.1 1002 mAh g−1 at 0.1 A g−1 after 100 cycles 

[9] 0.7 1670 mAh g−1 at 0.1 C after 100 cycles 

[10] 0.8-1 1031 mAh g−1 at 0.5 A g−1 after 100 cycles 

[11] 0.5-0.7 1300 mAh g−1 at 0.5C after 150 cycles 
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