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Experimental Section

Chemmicals

Graphite flake (~325 mesh, 99.8%) and hydrogen peroxide (30%) were purchased
from Alfa Aesar. Sulfuric Acid (98%) and phosphoric acid (86%) were purchased from
J.T.Baker. Potassium permanganate (99%) and L-Ascorbic Acid (99%) were bought from
Sigma Aldrich. The deionized water (18.2 M Q) obtained by the purification system was used.
All the chemicals were used as received.
Synthesis of P-Si/G

Graphene oxide was prepared by modified Hummer’s method reported previous work.
P-Si nanoparticles were synthesized via spark-discharge method by using SiH4 and PH3 and
the final P content in P-Si is around 20 ppm which is identified by XRF and the average size
of P-Si is 110 nm. Generally, 100 mg of P-Si nanoparticles were dispersed into 100 mL of
graphene oxide aqueous solution with a concentration of 0.2 mg mL* under ultrasonic for 0.5
h. Subsequently, 20 mg of L-ascrobic as the reductant was added into above mixture and the
temperature of the reaction system was heated at 75 °C for 8 h. The intermediate was washed
by water and ethanol, finally dried in vacuum oven under 60 °C overnight followed by
annealing under argon atmosphere at 550 °C for 2 h. For comparison, we also synthesized P-
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Si/C composite using commercial carbon material, i.e. graphene nanoplates (GNPs) and
carbon nanotube (CNT). With the same loading of P-Si, P-Si/C composites were obtained by
sonication with the above carbon materials aqueous solutions and following stirring overnight.
The corresponding P-Si/C composites are denoted as P-Si/GNPs and P-Si/CNT.
Synthesis of different cations modified PGA

PGA was synthesized according to previous work. Different cations modified PGA were
obtained by adding PGA powder directly into 0.1 M LiOH, NaOH, KOH and ammonia under
magnetic stirring for 12 h and the pH value of the mixture was fixed at 9. The above solution
were used as binder directly.
Materials Characterization

The morphology and inner structure of P-Si/G were characterized by scanning electron
microscope (SEM, LEO-1550), transmission electron microscopy (TEM, JEOL JEM-
ARMZ200F) and X-ray diffraction (XRD). Thermogravimetric analysis (TGA) was performed
from room temperature to 900 °C under air atmosphere. The fourier transform infrared
spectroscopy (FT-IR) spectra of Nano-Si were documented with KBr pellets from Avatar360
(Thermo Nicolet, USA). The viscosity test was conducted at room temperature by using a
cone-plate rheometer (AR1000, Texas Instrument).

Electrochemical performance tests were done using CR2032-type coin cell with a
MPG2 potential station (EC lab software, BioLogic) in a potential voltage from 0.01 to 1 V vs
Li*/Li at room temperature. The working electrodes were composed of P-Si/G composite (80
wt%), Super P (10 wt%) and alginate sodium or PGA which was synthesized by our previous
study (10 wt %). The mass loading of P-Si/G electrode is from 0.9~1.2 mg cm™. Lithium foil
was used as counter electrode and the separator is from Celgard C480. The electrolyte
solution was 1M LiPFe/ethylene carbonate (EC)/dimethyl carbonate (DMC) (1:1 by volume).
The batteries were assembled in glove box with oxygen and water content less than 0.1 ppm.

The morphology of the P-Si/G electrode before and after 1 cycle is characterized by
optical microscopy (Nikon, ECLIPSE).



Additional Figures and Table:
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Figure S1. SEM (a) and TGA curve (b) of P-Si/G composite.
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Figure S2 Cyclic voltammetric curves showing the electrochemical performance of the P-
Si/G composite.
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Figure S3. Charge/discharge curve of P-Si/G electrode.
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Figure S4. Cycling performance of P-Si/CNT, P-Si/GNPs, P-Si and Si electrode.

Figure S5. Comparison of morphology between Si electrode (a) and P-Si/G (b) electrode after
cycling.
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Figure S6. Cycling performance of Si nanoparticles electrode by utilizing different binders.
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Figure S7. Rate capability of Si nanoparticles electrode using different cations modified PGA.
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Figure S8. Cycling performance of P-Si/G electrode full cell using LCO as cathode at 1 C
between 2 and 4.3 V.



Figure S9. Direct observing of self-healing capability of P-Si/G electrode: (a) before cycling,

(b) after 1% discharge and (c) after 1% discharge for 5 min.
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Figure S10. Time-dependent Nyquist plot of P-Si/G electrode using sodium alginate (a) and
PGA (b) as binder. (inset is the equivalent circuit), the Rsejand Rct values of P-Si/G electrode
with PGA and sodium alginate binder changes along with the time (c) and (d).
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Figure S11. FTIR spectra of PGA and ammonia modified PGA.
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Figure S12. Digital graph of P-Si electrodes after 100 cycles using sodium alginate, PGA and
amonium modified PGA as binder.

Table S1. Viscosity of Li*, Na*, K" and NH4s" modified PGA solution (at 25 °C when the
concentration is 0.6 mg mL™Y).

Li-yPGA  Na-yPGA K-yPGA  NHsyPGA  yPGA DI water

Viscosity
(mPars)

2.6 2.6 2.7 3.7 2.8 0.9




Table S2. Comparision of mass loading and electrochemical performance of previous
reported Si anode.

Ref. Mass loading (mg cm) Cycling performance

[1] 1 722mAh gt at 0.1 A g after 100 cycles
[2] 0.9 1325 mAh gt at 0.2 A g after 60 cycles
[3] 1 1660 mAh gt at 0.2 A g * after 100 cycles
[4] 1.5 534.3 mAh g tat 0.5 A g * after 200 cycles
[5] 0.8-1.2 1107 mAh g tat 0.5 A gt after 100 cycles
[6] 0.6-0.7 1000 mAh g tat 0.1 A gt after 50 cycles
[7] 1.4 595 mAh g tat 0.2 A g'* after 200 cycles
[8] 0.8-1.1 1002 mAh gtat0.1 A g* after 100 cycles
[9] 0.7 1670 mAh g tat 0.1 C after 100 cycles
[10] 0.8-1 1031 mAh g tat 0.5 A gt after 100 cycles
[11] 0.5-0.7 1300 mAh gt at 0.5C after 150 cycles
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