Supporting Information

Visible-Light-Induced Radical Isocyanide Insertion Protocol for Synthesis of Difluoromethylated Spiro[indole-3,3'-quinoline] Derivatives

Jingjing Zhang^{a,b,‡}, Wentao Xu,^{a,‡} Yi Qu,^a Yuxiu Liu,^a Yongqiang Li,^a Hongjian Song,^{a,*} and Qingmin Wang^{a,*}

^a State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, People's Republic of China

^b Tianjin Agricultural University, Tianjin 300384, People's Republic of China

Table of Contents

1. General information	S3
2. Synthesis of compounds 1	
3. Synthesis of compounds 2	
4. Synthesis of compounds 3	S11-S21
5. Reaction set-up for irradiation of mixture with blue LEDs	S22
6. Free radical capture experiments	
7. Light on/off experiments	S24-S25
8. NMR spectra of 1, 2, and 3	

1. General information

Reagents were purchased from commercial sources and were used as received. ¹H and ¹³C Nuclear Magnetic Resonance (NMR) spectra were recorded on Bruker Avance 400 Ultrashield NMR spectrometers. ¹⁹F NMR spectra were recorded on a Varian 400 instrument spectrometer. Chemical shifts (δ) were given in parts per million (ppm) and were measured downfield from internal tetramethylsilane. High-resolution mass spectrometry (HRMS) data were obtained on an FTICR-MS instrument (Ionspec 7.0 T). The melting points were determined on an X-4 microscope melting point apparatus and are uncorrected. Conversion was monitored by thin layer chromatography (TLC). Flash column chromatography was performed over silica gel (100-200 mesh). Blue LED (3 W, $\lambda_{max} = 470$ nm) purchased from JIADENG (LS) was used for blue light irradiation. A fan attached to the apparatus was used to maintain the reaction temperature at room temperature.

2. Synthesis of compounds 1 (1e was selected as example)

Scheme 1S. Synthesis of 1e

To a solution of LiAlH₄ (15 mmol) in anhydrous THF (20 mL) was added 2-amino-5-methylbenzoic acid (10 mmol) dropwise at 0 °C. Then, the mixture was gradually warmed to room temperature. When the reaction was complete as monitored by TLC, water was added to quench the reaction, and the mixture was extracted with ethyl acetate three times. The combined organic layer was dried over anhydrous Na₂SO₄, filtered, and evaporated to afford the desired product (2-amino-5-methylphenyl)methanol 1.339 g, 98% yield.

To a solution of (2-amino-5-methylphenyl)methanol (9.8 mmol) and 2-methyl-1*H*-indole (12.74 mmol) in 1,2-dichloroethane (40 mL). After degassing with argon and four evacuation/backfill cycles with argon, trifluoroacetic acid (3.92 mmol) was added dropwise, then the mixture was heated with heating mantle and stirred at 50 °C. When the reaction was complete as monitored by TLC, aqueous solution of saturated Na₂CO₃ was added, concentrated under reduced pressure, dilute hydrochloric acid was added, and the mixture was extracted with dichloromethane three times. The combined organic layer was dried over anhydrous Na₂SO₄, filtered, and evaporated, and the resulting mixture was purified by column chromatography on silica gel to afford the product 4-methyl-2-((2-methyl-1*H*-indol-3-yl)methyl)aniline 1.528 g, 62% yield.

To a 50 mL flask were added formic acid (27.5 mmol) and acetic anhydride (25 mmol). The reaction mixture was heated with heating mantle and stirred at 50 °C for 2 h, then a solution of 4-methyl-2-((2-methyl-1H-indol-3-yl)methyl)aniline in THF was added. When the reaction was complete as monitored by TLC, the mixture was adjusted to pH 7 with NaOH solution (1M), extracted with ethyl acetate three times. The combined organic layer was dried over anhydrous Na₂SO₄, filtered, and evaporated, and the resulting mixture was purified by column chromatography on silica gel to afford the product *N*-(4-methyl-2-((2-methyl-1H-indol-3-yl)methyl)phenyl)formamide 1.32 82% g, yield.

To a 100 mL flask were added *N*-(4-methyl-2-((2-methyl-1*H*-indol-3-yl)methyl)phenyl)formamide (4 mmol) and 20 mL anhydrous THF. After degassing with argon and four evacuation/backfill cycles with argon, triethylamine (20 mmol) was added, then the mixture was cooled to -78 °C, and phosphorus oxychloride (12 mmol) was added to the solution. When the reaction was complete as monitored by TLC, aqueous solution of saturated Na₂CO₃ was added, extracted with ethyl acetate three times. The combined organic layer was dried over anhydrous Na₂SO₄, filtered, and evaporated, and the resulting mixture was purified by column chromatography on silica gel to afford the product **1e** 0.78g, 74% yield.

Br

3-(2-isocyanobenzyl)-2-methyl-1H-indole (1a)

White solid, mp 91-92°C, 82% yield; $R_f = 0.40$ (DCM/EtOAc, 7:1); ¹H NMR (400 MHz, CDCl₃) δ 7.86 (s, 1H), 7.37 (s, 1H), 7.29 (d, J = 7.6 Hz, 2H), 7.20 – 7.06 (m, 3H), 7.06 – 6.97 (m, 2H), 4.18 (s, 2H), 2.38 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 166.2, 137.9, 135.4, 132.6, 129.5, 129.4, 129.3, 128.7, 126.8, 121.3, 119.5, 118.2, 110.4, 110.3, 107.9, 26.4, 11.9. HRMS (ESI) calcd for C₁₇H₁₄N₂ [M+H]⁺ 247.1230, found 247.1235

3-(5-fluoro-2-isocyanobenzyl)-2-methyl-1H-indole (1b)

Brown solid, mp 123-124°C, 72% yield; $R_f = 0.30$ (DCM/EtOAc, 7:1); ¹H NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H), 7.35 (dd, J = 8.4, 5.2 Hz, 1H), 7.31 – 7.26 (m, 1H), 7.17 – 7.10 (m, 1H), 7.09 – 7.00 (m, 1H), 6.85 (td, J = 8.4, 2.8 Hz, 1H), 6.69 (dd, J = 9.6, 2.8 Hz, 1H), 4.14 (s, 1H), 2.36 (s,

1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) 166.6, 162.6 (d, J = 250 Hz), 141.1, 135.4, 132.7, 128.5, 128.4, 121.5, 119.7, 118.0, 116.5(d, J = 24.0 Hz), 114.1 (d, J = 24.0 Hz), 110.5, 107.1, 26.5, 11.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -124.1 (td, J = 9.5, 4.3 Hz). HRMS (ESI) calcd for C₁₇H₁₃FN₂ [M+H]⁺ 265.1136, found 265.1135.

3-(5-chloro-2-isocyanobenzyl)-2-methyl-1H-indole (1c)

CI FIGURA Brown oil, 73% yield; $R_f = 0.40$ (DCM/EtOAc, 7:1); ¹H NMR (400 MHz, CDCl₃) δ 7.94 (s, 1H), 7.36 – 7.27 (m, 3H), 7.21 – 7.12 (m, 2H), 7.09 – 7.02 (m, 1H), 6.99 (s, 1H), 4.15 (s, 2H), 2.41 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 167.6, 140.0, 135.5, 132.9, 129.6, 127.9, 127.2, 121.4, 119.6, 117.9, 110.6, 106.9, 26.4, 11.9. HRMS (ESI) calcd for C₁₇H₁₃ClN₂ [M+H]⁺ 281.0840, found 281.0836.

3-(5-bromo-2-isocyanobenzyl)-2-methyl-1H-indole (1d)

Brown oil, 63% yield; $R_f = 0.50$ (DCM/EtOAc, 7:1); ¹H NMR (400 MHz, CDCl₃) δ 7.98 (s, 1H), 7.31 (s, 2H), 7.24 – 7.19 (m, 1H), 7.14 – 7.09 (m, 2H), 7.04 – 6.96 (m, 2H), 4.14 (s, 2H), 2.29 (s, 2H). ¹³C{¹H}

NMR (100 MHz, CDCl₃) δ 166.3, 138.0, 135.5, 132.0, 129.6, 129.5, 128.7, 126.8, 126.7, 121.3, 119.5, 118.2, 110.5, 107.8, 26.5, 11.9. HRMS (ESI) calcd for

C₁₇H₁₃BrN₂ [M+H]⁺ 325.0335, found 325.0314

3-(2-isocyano-5-methylbenzyl)-2-methyl-1H-indole (1e)

-NC Brown solid, mp 102-103°C, 66% yield; $R_f = 0.40$ (DCM/EtOAc, 7:1); ¹H NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H), 7.35 – 7.28 (m, 2H), 7.25 (d, J =2.2 Hz, 1H), 7.15 - 7.07 (m, 1H), 7.06 - 7.00 (m, 1H), 6.97 (d, J = 8.1 Hz, 1H), 6.84 (s, 1H), 4.13 (s, 2H), 2.39 (s, 3H), 2.18 (s, 3H). ¹³C{¹H} NMR (100 MHz, $CDCl_3$) δ 139.7, 137.6, 135.4, 132.4, 130.0, 128.8, 127.4, 126.6, 121.2, 119.5, 118.2, 110.3, 108.1, 26.3, 21.5, 11.9. HRMS (ESI) calcd for C₁₈H₁₆N₂ [M+H]⁺ 261.1386, found 261.1390.

3-(2-isocyano-5-methoxybenzyl)-2-methyl-1H-indole (1f)

-NC White solid, mp 120-121°C, 85% yield; $R_f = 0.50$ (DCM/EtOAc, 6:1); ¹H NMR (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.35 – 7.26 (m, 3H), 7.16 – 7.06 (m, 1H), 7.06 - 6.97 (m, 1H), 6.67 (dd, J = 8.7, 2.8 Hz, 1H), 6.55(d, J = 2.7 Hz, 1H), 4.13 (s, 2H), 3.62 (s, 3H), 2.38 (s, 3H). ¹³C{¹H} NMR (100 MHz, $CDCl_3$) δ 160.0, 139.7, 135.4, 132.5, 128.7, 128.0, 121.3, 119.5, 118.2, 115.3, 111.4, 110.3, 110.0, 107.8, 55.4, 26.6, 11.9. HRMS (ESI) calcd for C₁₈H₁₆N₂O [M+H]⁺ 277.1335, found 277.1339.

3-(2-isocyano-3-methylbenzyl)-2-methyl-1H-indole (1g)

White solid, mp 154-155°C, 58% yield; $R_f = 0.40$ (DCM/EtOAc, 5:1); ¹H NMR (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.30 (dd, J = 8.0, 0.7 Hz, 2H), 7.18 - 6.98 (m, 5H), 6.86 (t, J = 4.5 Hz, 1H), 4.17 (s, 3H), 2.46 (s, 4H), 2.40 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 164.3, 137.8, 135.4,

135.0, 132.4, 128.7, 127.9, 126.8, 121.2, 119.4, 118.3, 110.3, 108.1, 26.8, 19.0, 11.9. HRMS(ESI) calcd for $C_{18}H_{16}N_2$ [M+H]⁺ 261.1386, found 261.1386.

3-(2-isocyano-3,4-dimethylbenzyl)-2-methyl-1H-indole (1h)

White solid, mp 112-113°C, 48% yield; $R_f = 0.40$ (DCM/EtOAc, 5:1);¹H NMR (400 MHz, CDCl₃) δ 7.85 (s, 1H), 7.35 – 7.26 (m, 2H), 7.14 – 7.06 (m, 1H), 7.04 - 6.98 (m, 1H), 6.96 (d, J = 8.0 Hz, 1H), 6.74 (d, J = 8.0 Hz, 1H), 4.13 (s, 2H), 2.38 (s, 6H), 2.23 (s, 3H). ¹³C{¹H} NMR (100 MHz, $CDCl_3$) δ 167.7, 135.4, 135.2, 135.1, 133.2, 132.4, 130.2, 128.8, 126.2, 121.2, 119.4,

118.3, 110.3, 108.2, 26.8, 20.1, 15.6, 11.9. HRMS (ESI) calcd for C₁₉H₁₈N₂ [M+H]⁺ 275.1543, found 275.1547.

3-(2-fluoro-6-isocyanobenzyl)-2-methyl-1H-indole (1i)

White solid, mp 130-131°C, 66% yield; $R_f = 0.40$ (DCM/EtOAc, 6:1); ¹H NMR (400 MHz, CDCl₃) δ 7.78 (s, 1H), 7.42 (d, J = 7.6 Hz, 1H), 7.27 – 7.22 (m, 1H), 7.19 – 7.14 (m, 2H), 7.12 – 7.04 (m, 2H), 7.03 – 6.96 (m, 1H), 4.16 (s, 3H), 2.48 (s, 4H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.6, 161.1 (d, J=197.0 Hz), 135.1, 132.3, 128.3, 128.0, 127.9, 126.3, 123.4, 121.1, 119.4, 118.1, 117.0, 116.7, 110.2, 107.5, 21.0, 12.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -122.2 (td, J =10.0, 4.6 Hz). HRMS (ESI) calcd for C₁₇H₁₃FN₂ [M+H]⁺ 265.1136, found 265.1138.

3-(2-isocyano-4-(trifluoromethyl)benzyl)-2-methyl-1H-indole (1j)

Yellow solid, mp 114-115°C, 82% yield; $R_f = 0.50$ (DCM/EtOAc, 7:1); ¹H NMR (400 MHz, CDCl₃) δ 7.94 (s, 1H), 7.66 (s, 1H), 7.43 (d, J = 8.0Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.25 (s, 1H), 7.20 – 7.10 (m, 2H), 7.04 (t, J = 7.6 Hz, 1H), 4.22 (s, 2H), 2.40 (s, 3H). ¹³C{¹H} NMR (100 MHz,

CDCl₃) δ 168.7, 142.0, 135.4, 132.7, 130.3, 128.9, 127.4 (d, J = 245.7 Hz), 126.0, 123.8, 121.6, 119.4, 117.9, 110.5, 106.9, 26.6, 11.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7 (s, 3F). HRMS (ESI) calcd for C₁₈H₁₃F₃N₂ [M+H]⁺ 315.1114, found 315.1119

3-(2-isocyanobenzyl)-2,5-dimethyl-1H-indole (1k)

White solid, mp 145-146°C, 87% yield; $R_f = 0.40$ (DCM/EtOAc, 7:1); ¹H NMR (400 MHz, CDCl₃) δ 7.74 (s, 1H), 7.37 (dd, J = 5.2, 3.8 Hz, 1H), 7.19 – 7.12 (m, 1H), 7.09 (s, 1H), 7.04 – 6.98 (m, 1H), 6.94 (d, J =8.2 Hz, 1H), 4.14 (s, 1H), 2.37 (s, 1H), 2.33 (s, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.3, 138.0, 133.7, 132.7, 129.5, 129.4, 129.0, 128.7, 126.7, 122.8, 117.9, 110.0, 107.4, 26.3, 21.6, 11.9. HRMS (ESI) calcd for C₁₈H₁₆N₂ [M+H]⁺ 261.1386, found 261.1389

3-(2-isocyanobenzyl)-5-methoxy-1H-indole (11)

White solid, mp 119-120 °C, 84% yield; $R_f = 0.60$ (DCM/EtOAc, 5:1); ¹H NMR (400 MHz, CDCl₃) δ 7.78 (s, 1H), 7.42 – 7.34 (m, 1H), 7.22 – 7.14 (m, 3H), 7.08 – 7.01 (m, 1H), 6.84 – 6.73 (m, 2H), 4.14 (s, 2H), 3.76 (s, 3H), 2.37 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 154.0, 137.7, 133.3, 130.4, 129.5, 129.4, 129.2, 126.7, 126.6, 110.9, 110.8, 107.8, 100.6, 55.9, 26.4, 12.0. HRMS (ESI) calcd for C₁₈H₁₆N₂O [M+H]⁺ 277.1335, found 277.1337.

5-fluoro-3-(2-isocyanobenzyl)-2-methyl-1H-indole (1m)

White solid, mp 156-157 °C, 65% yield; $R_f = 0.40$ (DCM/EtOAc, 7:1); ¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 1H), 7.56 – 7.33 (m, 1H), 7.25 – 7.18 (m, 4H), 7.07 (dd, J = 8.8, 2.0 Hz, 1H), 7.03 – 6.97 (m, 1H), 4.13 (s, 2H), 2.39 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.4, 157.9 (d, J = 232.7Hz), 137.4, 134.5, 131.8, 129.4 (d, J = 4.1 Hz), 129.1 (d, J = 9.8 Hz), 126.9, 126.8, 110.8 (d, J = 9.6 Hz), 109.4, 109.2(d, J = 26.1 Hz), 108.2, 103.3 (d, J = 23.5 Hz), 26.5, 12.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -124.5 (td, J = 9.5, 4.3 Hz). HRMS (ESI) calcd for C₁₇H₁₃FN₂ [M+H]⁺ 265.1136, found 265.1134.

5-chloro-3-(2-isocyanobenzyl)-2-methyl-1H-indole (1n)

White solid, mp 140-141°C, 80% yield; $R_f = 0.40$ (DCM/EtOAc, 7:1); ¹H NMR (400 MHz, CDCl₃) δ 7.89 (s, 1H), 7.45 – 7.35 (m, 1H), 7.29 – 7.07 (m, 4H), 7.06 – 6.99 (m, 1H), 7.02 – 6.77 (m, 2H), 4.13 (s, 2H), 2.39 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 137.3, 134.2, 133.7, 129.8, 129.5, 129.3, 127.0, 126.8, 125.2, 121.5, 118.7, 117.7, 111.3, 107.7, 26.4, 12.0. HRMS (ESI) calcd for C₁₇H₁₃ClN₂ [M+H]⁺ 281.0840, found 281.0843.

5-bromo-3-(2-isocyanobenzyl)-2-methyl-1H-indole (10)

White solid, mp 171-172°C, 82% yield; $R_f = 0.40$ (DCM/EtOAc, 7:1); ^{Br} H NMR (400 MHz, CDCl₃) δ 7.94 (s, 1H), 7.45 – 7.34 (m, 1H), 7.24 – 7.13 (m, 1H), 7.04 – 6.84 (m, 1H), 4.13 (s, 1H), 2.38 (s, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 137.3, 134.0, 133.9, 130.5, 129.5, 129.3, 127.0, 126.8, 124.1, 120.7, 112.8, 111.8, 107.6, 26.3, 12.0. HRMS (ESI) calcd for C₁₇H₁₃BrN₂ [M+H]⁺ 325.0335, found 325.0330.

3-(2-isocyanobenzyl)-2-phenyl-1H-indole (1p)

White solid, mp 124-125°C, 77% yield; $R_f = 0.40$ (DCM/EtOAc, 10:1); ¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 1H), 7.49 – 7.40 (m, 2H), 7.40 – 7.31 (m, 1H), 7.25 – 7.13 (m, 1H), 7.13 – 6.97 (m, 1H), 4.38 (s, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.6, 137.7, 136.2, 136.1, 132.5, 129.5, 129.3, 129.2, 129.1, 128.1, 127.8, 126.8, 126.7, 122.7, 120.1, 119.3, 111.0, 108.6, 26.9. HRMS (ESI) calcd for C₂₂H₁₆N₂ [M+H]⁺ 309.1386, found 309.1387.

3. Synthesis of compounds 2 (2c and 2f were selected as examples)

Method 1: To a Shrek tube were added bromodifluoroacetate (10 mmol), cyclohexylamine (10 mmol), and the mixture was reacted at room temperature. When the reaction was complete as monitored by TLC, diluted hydrochloric acid (1M) was added, extracted with ethyl acetate three times. The combined organic layer was dried over anhydrous Na₂SO₄, filtered, and evaporated, and the resulting mixture was purified by column chromatography on silica gel to afford **2c** as a colorless oil 2.401 g, 99% yield.

2d-2e were synthesized using the similar method as 2c.

Method 2: To a 100 mL flask were added N-methyl piperazine (5 mmol), $La(OTf)_3$ (0.25 mmol), and anhydrous THF (20 mL), bromodifluoroacetate (6 mmol) was added to the mixture dropwise under agon atmosphere. Then, the reaction mixture was heated with heating mantle. When the reaction was complete as monitored by TLC, diluted hydrochloric acid (1M) was added, extracted with ethyl acetate three times. The combined organic layer was dried over anhydrous Na₂SO₄, filtered, and evaporated, and the resulting mixture was purified by column chromatography on silica gel to afford **2f** as a colorless oil 0.6975g, 55% yield.

2g-2k were synthesized using the similar method as 2f.

2-bromo-2,2-difluoro-1-(pyrrolidin-1-yl)ethan-1-one (2b)

2-bromo-2,2-difluoro-1-(piperidin-1-yl)ethan-1-one (2c)

Colorless oil, 99% yield; $R_f = 0.50$ (petroleum ether/EtOAc, 10:1); ¹H NMR (400 MHz, CDCl₃) δ 3.92 – 3.19 (m, 4H), 2.33 – 1.39 (m, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 157.6 (t, J = 30.8 Hz), 110.8 (t, J = 314.5 Hz), 47.7, 45.0, 25.8, 25.4, 24.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -53.9. HRMS (ESI) calcd for C₇H₁₀BrF₂NO [M+H]⁺ 241.9987, found 241.9984.

1-(azepan-1-yl)-2-bromo-2,2-difluoroethan-1-one (2d)

Colorless oil, 49% yield; $R_f = 0.60$ (petroleum ether/EtOAc, 10:1); ¹H Br \downarrow NMR (400 MHz, CDCl₃) δ 3.66 (t, J = 6.0 Hz, 2H), 3.57 (t, J = 6.0 Hz, 2H), 1.90 – 1.70 (m, 4H), 1.62 – 1.59 (m, 4H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 159.0, 111.2 (t, J = 314.7 Hz), 48.5 (t, J = 3.7 Hz), 48.4, 29.0, 27.5, 26.4, 25.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -53.6. HRMS (ESI) calcd for C₈H₁₂BrF₂NO [M+H]⁺ 256.0143, found 256.0144.

2-bromo-2,2-difluoro-1-morpholinoethan-1-one (2e)

Colorless oil, 99% yield; $R_f = 0.50$ (petroleum ether/EtOAc, 10:1); ¹H ^{Br} NMR (400 MHz, CDCl₃) δ 4.07 – 3.40 (m, 8H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 157.9 (t, J = 26.5 Hz), 110.5 (t, J = 314.4 Hz), 66.5, 66.1, 47.3, 43.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -54.5. HRMS (ESI) calcd for C₆H₈BrF₂NO₂ [M+H]⁺ 243.9769, found 243.9764.

2-bromo-2,2-difluoro-1-(4-methylpiperazin-1-yl)ethan-1-one (2f)

Colorless oil, 55% yield; $R_f = 0.60$ (petroleum ether/EtOAc, 15:1); ¹H NMR (400 MHz, CDCl₃) δ 3.76 – 3.63 (m, 4H), 2.55 – 2.42 (m, 4H), 2.34 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 157.6 (t, J = 26.3 Hz), 110.5 (t, J =314.3 Hz), 54.3, 54.2, 46.4 (t, J = 3.9 Hz), 45.7, 43.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -54.3. HRMS (ESI) calcd for C₇H₁₁BrF₂N₂O [M+H]⁺ 257.0096, found 257.0099.

2-bromo-2,2-difluoro-1-(4-phenylpiperazin-1-yl)ethan-1-one (2g)

White solid, mp 47-48°C, 53% yield; $R_f = 0.50$ (petroleum ether/EtOAc, 15:1); ¹H NMR (400 MHz, CDCl₃) δ 7.30 (t, J = 8.0 Hz, 2H), 7.13 – 6.88 (m, 3H), 3.99 – 3.74 (m, 4H), 3.35 – 3.07 (m,

4H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 157.8 (t, J = 26.4 Hz), 150.6, 129.4, 120.9, 116.8, 110.7 (t, J = 314.5 Hz), 49.2, 49.1, 46.6 (t, J = 3.8 Hz), 43.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -53.6. HRMS (ESI) calcd for C₁₂H₁₃BrF₂N₂O [M+H]⁺ 319.0252, found 319.0253.

2-bromo-2,2-difluoro-1-(4-(pyrimidin-2-yl)piperazin-1-yl)ethan-1-one(2h)

White solid, mp 107-108°C, 51% yield; $R_f = 0.50$ (petroleum ether/EtOAc, 8:1); ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, J = 4.8 Hz, 2H), 6.59 (t, J = 4.8 Hz, 1H), 4.15 – 3.83 (m, 4H), 3.83 – 3.55

(m, 4H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 161.4, 157.9, 110.9, 110.6(t, *J* = 312.5 Hz), 46.5, 43.7, 43.3, 43.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -54.2. HRMS (ESI) calcd for C₁₀H₁₁BrF₂N₄O [M+H]⁺ 321.0157, found 321.0157.

2-bromo-1-(3,4-dihydroisoquinolin-2(1H)-yl)-2,2-difluoroethan-1-one (2i)

4. Sythesis of compounds 3

To Shrek tube were added **1** (0.20 mmol, 1.0 equiv), *fac*-Ir(ppy)₃ (0.002 mmol), NaHCO₃ (0.4 mmol, 2.0 equiv), and dimethyl sulfoxide (2 mL). After degassing with argon and four evacuation/backfill cycles with argon, **2** (0.30 mmol, 1.5 equiv) was added, The reaction mixture was irradiated by a 3W blue LED bulb (approximately 2 cm away from the reaction vessel) at room temperature for 24 h before concentrating in vacuo. The reaction mixture was quenched with water and then extracted with EtOAc. The organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude mixture was purified by flash column chromatography to give the desired compound **3**.

ethyl 2,2-difluoro-2-(2-methyl-4'H-spiro[indole-3,3'-quinolin]-2'-yl)acetate (3a)

Colorless oil, 86% yield; $R_f = 0.30$ (petroleum ether/EtOAc, 3:1); ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 7.6 Hz, 1H), 7.54 (d, J = 7.6Hz, 1H), 7.41 (dd, J = 13.7, 7.2 Hz, 2H), 7.35 (t, J = 7.6 Hz, 1H), 7.18 – 7.13 (m, 2H), 7.09 (d, J = 7.6 Hz, 1H), 4.34 (q, J = 7.2 Hz, 2H), 3.18 – 3.05 (m, 2H), 2.27 (s, 3H), 1.34 (t, J = 7.2 Hz, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 179.7, 162.3, 158.4, 154.9, 140.9, 139.1, 130.1, 129.3, 128.6, 128.5, 128.1, 125.9, 125.2, 122.9, 120.6, 112.9(t, J = 253.2 Hz), 63.0, 59.0, 34.5, 17.7, 13.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -105.6 (d, J = 283.0 Hz), -107.0 (d, J = 282.6 Hz). HRMS (ESI) calcd for C₂₁H₁₈F₂N₂O₂ [M+H]⁺ 369.1409, found 369.1407.

2-ethyl-2,2-difluoro-2-(6'-fluoro-2-methyl-4'H-spiro[indole-3,3'-quinolin]-2'-yl)ac

etate (3b)

Colorless oil, 44% yield; $R_f = 0.30$ (petroleum ether/EtOAc, 3:1); ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.47 (m, 2H), 7.41 (t, J = 7.6 Hz, 1H), 7.34 (t, J = 7.2 Hz, 1H), 7.14 (d, J = 7.2 Hz, 1H), 7.10 – 7.01

(m, 1H), 6.75 (d, J = 7.6 Hz, 1H), 4.34 (q, J = 7.2 Hz, 2H), 3.25 – 2.96 (m, 2H), 2.22 (s, 3H), 1.33 (t, J = 7.2 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 179.6, 162.2, 158.7(d, J = 222.9 Hz), 151.0, 140.8, 140.7, 130.3, 128.7, 128.1, 124.7, 121.3, 121.2, 116.1, 115.8, 115.4, 112.9(t, J = 254.1 Hz), 110.3, 63.1, 59.3, 34.4, 17.7, 13.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -106.2 (d, J = 283.8 Hz), -107.3 (d, J = 283.8 Hz), -116.2 (dd, J = 13.2, 8.7 Hz). HRMS (ESI) calcd for C₂₁H₁₇F₃N₂O₂ [M+H]⁺ 387.1315, found 387.1310.

2-ethyl-2-(6'-chloro-2-methyl-4'H-spiro[indole-3,3'-quinolin]-2'-yl)-2,2-difluoroa cetate (3c)

Clorless oil, 67% yield; $R_f = 0.30$ (petroleum ether/EtOAc, 3:1); ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 7.6 Hz, 1H), 7.45 (d, J = 7.4 Hz, 1H), 4.30 (q, J = 7.2 Hz, 2H), 3.06 (q, J = 16.8 Hz, 2H), 2.22 (s, 3H), 1.31 (t, J = 7.2 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 179.2, 162.1, 158.9, 154.9, 139.5, 138.7, 135.6, 129.8, 129.5, 128.8, 128.2, 127.0, 126.0, 122.8, 120.7, 112.7(t, J = 255.1 Hz), 63.1, 58.7, 34.2, 17.7, 13.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -106.1 (d, J = 283.8 Hz), -107.3 (d, J = 283.8 Hz). HRMS (ESI) calcd for C₂₁H₁₇ClF₂N₂O₂ [M+H]⁺ 403.1019, found403.1015.. 2-ethyl-2-(6'-bromo-2-methyl-4'H-spiro[indole-3,3'-quinolin]-2'-yl)-2,2-difluoroa cetate (3d)

Br Colorless oil, 72% yield; $R_f = 0.20$ (petroleum ether/EtOAc, 3:1); ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 7.6 Hz, 1H), 7.51 (d, J = 0.20, CF_2CO_2Et 7.6 Hz, 1H), 7.44 – 7.35 (m, 2H), 7.32 (d, J = 1.2 Hz, 1H), 7.17 – 7.10 (m, 2H), 7.07 (s, 1H), 4.31 (q, J = 7.2 Hz, 2H), 3.09 (d, J = 5.2 Hz, 2H), 2.24 (s, 3H), 1.32 (t, J = 7.2 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 179.7, 162.3, 158.4, 154.9, 140.9, 139.1, 130.1, 129.3, 128.6, 128.5, 128.1, 125.9, 125.2, 122.9, 120.6, 113.0(t, J = 254.9 Hz), 63.0, 59.0, 34.5, 17.7, 13.9.¹⁹F NMR (376 MHz, CDCl₃) δ -105.6 (d, J = 283.5 Hz), -106.9 (d, J = 283.6 Hz). HRMS (ESI) calcd for C₂₁H₁₇BrF₂N₂O₂ [M+H]⁺447.0514, found 447.0508.

2-ethyl-2-(2,6'-dimethyl-4'H-spiro[indole-3,3'-quinolin]-2'-yl)-2,2-difluoroacetate (3e)

Colorless oil, 87% yield; $R_f = 0.30$ (petroleum ether/EtOAc, 3:1); ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 7.6 Hz, 1H), 7.38 (t, J = 7.6 Hz, 2H), 7.22 – 7.04 (m, 3H), 6.93 (s, 1H), 4.31 (q, J = 7.2 Hz, 2H), 3.04 (s, 2H), 2.37 (s, 3H), 2.24 (s, 3H), 1.31 (t, J = 7.2 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 180.0, 162.4, 157.0, 154.9, 140.5, 139.3, 138.8, 129.2, 129.1, 128.8, 128.5, 125.8, 124.9, 122.9, 120.5, 110.5(t, J = 252.6 Hz), 62.9, 59.1, 34.6, 21.5, 17.7, 13.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -105.2 (d, J = 282.8 Hz), -106.7 (d, J = 282.4 Hz). HRMS (ESI) calcd for C₂₂H₂₀F₂N₂O₂ [M+H]⁺ 383.1566, found 383.1562.

2-ethyl-2,2-difluoro-2-(6'-methoxy-2-methyl-4'H-spiro[indole-3,3'-quinolin]-2'-yl) acetate (3f)

Colorless oil, 91% yield; $R_f = 0.30$ (petroleum ether/EtOAc, 3:1); ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 7.6 Hz, 1H), 7.44 (d, J = 8.4Hz, 1H), 7.36 (t, J = 7.6 Hz, 1H), 7.18 – 7.03 (m, 2H), 6.93 – 6.83 (m, 1H), 6.64 (s, 1H), 4.30 (q, J = 7.2 Hz, 2H), 3.82 (s, 3H), 3.03 (s,

2H), 2.24 (s, 3H), 1.31 (t, J = 7.2 Hz, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 180.0, 162.5(t, J = 31.3 Hz), 160.7, 155.0 (t, J = 29.4 Hz), 154.9, 139.4, 134.7, 130.1, 129.2, 127.0, 125.8, 122.9, 120.5, 114.0, 113.1(t, J = 253.0 Hz), 112.9, 110.6, 62.9, 58.8, 55.5, 34.9, 17.7, 13.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -106.8 (d, J = 281.6 Hz), -108.4 (d, J = 281.6 Hz). HRMS (ESI) calcd for C₂₂H₂₀F₂N₂O₃ [M+H]⁺ 399.1515, found 399.1516.

2-ethyl-2-(2,8'-dimethyl-4'H-spiro[indole-3,3'-quinolin]-2'-yl)-2,2-difluoroacetate (3g)

Colorless oil, 84% yield; $R_f = 0.40$ (petroleum ether/EtOAc, 3:1); ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 7.6 Hz, 1H), 7.43 – 7.32 (m, 1H), 7.25 – 7.04 (m, 4H), 6.94 (d, J = 6.8 Hz, 1H), 4.40 – 4.22 (m, 2H), 3.06 (s, 2H), 2.46 (s, 3H), 2.23 (s, 3H), 1.32 (t, J = 7.2 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 179.8, 162.6 (t, J = 31.1 Hz), 156.8 (t, J = 30.2 Hz), 154.9, 139.3, 139.0, 137.0, 130.2, 129.7, 129.1, 125. 8, 125.7, 125.1, 122.9, 120.5, 113.4 (t, J =255.0 Hz), 62.9, 58.7, 34.8, 17.7, 17.1, 14.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -106.7 (d, J = 284.1 Hz), -108.9 (d, J = 284.1 Hz). HRMS (ESI) calcd for C₂₂H₂₀F₂N₂O₂ [M+H]⁺ 383.1566, found 383.1566.

2-ethyl-2,2-difluoro-2-(2,7',8'-trimethyl-4'H-spiro[indole-3,3'-quinolin]-2'-yl)acet ate (3h)

Colorless oil, 88% yield; $R_f = 0.30$ (petroleum ether/EtOAc, 3:1); ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 7.6 Hz, 1H), 7.41 – 7.31 (m, 1H), 7.20 – 7.02 (m, 3H), 6.84 (d, J = 7.6 Hz, 1H), 4.42 – 4.24 (m, 2H), 3.03 (s, 2H), 2.40 (s, 3H), 2.33 (s, 3H), 2.22 (s, 3H), 1.31

(t, J = 7.2 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 180.0, 162.7, 156.6, 154.9, 139.4, 138.8, 137.5, 135.9, 130.9, 129.1, 125.8, 125.0, 122.9, 122.4, 120.4, 113.5(t, J = 250.4 Hz), 62.9, 58.7, 34.9, 20.1, 17.8, 14.0, 13.2.¹⁹F NMR (376 MHz, CDCl₃) δ 141.6 (d, J = 283.5 Hz), 139.4 (d, J = 283.9 Hz). HRMS (ESI) calcd for C₂₃H₂₂F₂N₂O₂ [M+H]⁺ 397.1722, found 397.1723.

2-ethyl-2,2-difluoro-2-(5'-fluoro-2-methyl-4'H-spiro[indole-3,3'-quinolin]-2'-yl)ac etate (3i)

Colorless oil, 42% yield; $R_f = 0.30$ (petroleum ether/EtOAc, 3:1); ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 7.6 Hz, 1H), 7.49 – 7.30 (m, 3H), 7.22 – 7.00 (m, 3H), 4.31 (dd, J = 13.6, 6.8 Hz, 2H), 3.11 (d, J

= 4.8 Hz, 2H), 2.25 (s, 3H), 1.31 (t, J = 7.2 Hz, 4H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 180.3, 162.1, 157.3, 153.5, 140.8, 140.6, 131.5, 130.4, 129.5, 128.8, 128.1, 126.9 (t, J = 238 Hz), 125.1, 123.3, 121.4, 63.1, 59.3, 34.3, 17.7, 13.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -107.17 (d, J = 284.3 Hz), -108.8 (d, J = 284.2 Hz), -120.8. HRMS (ESI) calcd for C₂₁H₁₇F₃N₂O₂ [M+H]⁺ 387.1315, found 387.1322.

2-ethyl-2,2-difluoro-2-(2-methyl-7'-(trifluoromethyl)-4'H-spiro[indole-3,3'-quinol in]-2'-yl)acetate (3j)

Colorless oil, 34% yield; $R_f = 0.30$ (petroleum ether/EtOAc, 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.78 (s, 1H), 7.63 – 7.55 (m, 2H), 7.40 (t, J = 7.6 Hz, 1H), 7.28 (d, J = 8.8 Hz, 1H), 7.15 (t, J = 7.6 Hz, 1H), 7.03 (d, J = 7.6 Hz, 1H), 4.32 (q, J = 7.2 Hz, 2H), 3.24 – 3.05 (m,

2H), 2.27 (s, 3H), 1.32 (t, J = 7.2 Hz, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 178.9, 162.0, 160.6, 154.9, 141.1, 138.5, 131.3, 129.6, 129.3, 129.2, 128.7, 126.6, 126.1, 125.4, 122.8, 120.8, 120.6, 116.8(q, J = 331.2 Hz), 112.6 (d, J = 255.7 Hz), 63.2, 58.7, 34.2, 17.7, 13.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.1 (s), -106.1 (d, J = 284.6 Hz), -107.2 (d, J = 284.6 Hz). HRMS (ESI) calcd for C₂₂H₁₇F₅N₂O₂ [M+H]⁺ 437.1283, found 437.1285.

2-ethyl-2-(2,5-dimethyl-4'H-spiro[indole-3,3'-quinolin]-2'-yl)-2,2-difluoroacetate (3k)

7.17 (d, J = 7.2 Hz, 1H), 7.12 (d, J = 7.2 Hz, 1H) 6.89 (s, 1H), 4.31 (dd, J = 14.0, 7.2 Hz, 2H), 3.07 (s, 2H), 2.29 (s, 3H), 2.19 (s, 3H), 1.32 (t, J = 7.2 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 178.6, 162.4, 158.5, 152.8, 140.9, 139.4, 135.8, 130.1, 129.9, 128.6, 128.5, 128.1, 126.6, 125.2, 122.7, 120.1, 115.5(t, J = 254.7 Hz) 63.0, 58.9, 34.6, 21.4, 17.6, 13.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -105.2 (d, J = 283.1 Hz), -107.3 (d, J = 283.3 Hz). HRMS (ESI) calcd for C₂₂H₂₀F₂N₂O₂ [M+H]⁺ 383.1566, found 383.1570.

2-ethyl-2,2-difluoro-2-(5-methoxy-2-methyl-4'H-spiro[indole-3,3'-quinolin]-2'-yl) acetate (31)

6.88 (dd, J = 8.4, 2.0 Hz, 1H), 6.65 (s, 1H), 4.32 (q, J = 7.2 Hz, 2H), 3.71 (s, 3H), 3.07 (s, 2H), 2.18 (s, 3H), 1.32 (t, J = 7.2 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 177.2, 162.3 (t, J = 31.1 Hz), 158.4 (t, J = 29.0 Hz), 158.2, 148.7, 140.9, 140.3, 130.1, 128.5, 128.1, 125.1, 120.7, 113.7, 112.9 (t, J = 252.9 Hz), 109.7, 63.0, 59.1, 55.6, 34.7, 17.5, 17.5, 13.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -105.7 (d, J = 283.6 Hz), -107.6 (d, J = 283.6 Hz). HRMS (ESI) calcd for C₂₂H₂₀F₂N₂O₃ [M+H]⁺ 399.1515, found 399.1516.

2-ethyl-2,2-difluoro-2-(5-fluoro-2,8'-dimethyl-4'H-spiro[indole-3,3'-quinolin]-2'-y l)acetate (3m)

Colorless oil, 77% yield; $R_f = 0.30$ (petroleum ether/EtOAc, 3:1); ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.48 (m, 2H), 7.42 (t, J =7.3 Hz, 1H), 7.35 (t, J = 7.3Hz, 1H), 7.16 (d, J = 7.2 Hz, 1H), 7.08 (td, J = 8.8, 2.0 Hz, 1H), 6.77 (dd, J = 8.0, 2.0 Hz, 1H), 4.36 (q, J = 7.2 Hz, 2H), 3.18 – 3.03 (m, 2H), 2.24 (s, 3H), 1.35 (t, J = 7.2 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 179.6, 162.3, 158.7(d, J = 223.0 Hz), 157.6, 151.0, 140.9, 140.8, 130.3, 128.8, 128.7, 128.1, 124.7, 121.2, 116.1, 115.4, 112.9(t, J = 253.2 Hz), 110.8, 63.1, 59.4, 34.4, 17.7, 13.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -107.4 (d, J = 283.7 Hz), -108.5 (d, J = 283.8 Hz), -117.40. HRMS (ESI) calcd for C₂₁H₁₇F₃N₂O₂ [M+H]⁺ 387.1315, found 387.1322.

2-ethyl-2-(5-chloro-2-methyl-4'H-spiro[indole-3,3'-quinolin]-2'-yl)-2,2-difluoroac etate (3n)

Colorless oil, 78% yield; $R_f = 0.30$ (petroleum ether/EtOAc, 3:1); ¹H NMR (400 MHz, CDCl₃) δ 7.51 (t, J = 7.6 Hz, 2H), 7.44 – 7.31 (m, 3H), 7.18 – 7.10 (m, 1H), 7.03 (s, 1H), 4.34 (q, J = 7.2

Hz, 2H), 3.08 (dd, J = 24.8, 16.4 Hz, 2H), 2.22 (s, 3H), 1.33 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 180.3, 162.1, 157.3, 153.5, 140.8, 140.6, 131.5, 130.4, 129.5, 128.8, 128.1, 126.8, 124.6, 123.3, 121.4, 112.9(t, *J* =253.7 Hz), 63.1, 59.3, 34.3, 17.7, 13.9.¹⁹F NMR (376 MHz, CDCl₃) δ -107.3 (d, *J* = 283.4 Hz), -108.5 (d, *J* = 283.5 Hz). HRMS(ESI) calcd for C₂₁H₁₇ClF₂N₂O₂ [M+H]⁺ 403.1019, found 403.1027.

2-ethyl-2-(5-bromo-2-methyl-4'H-spiro[indole-3,3'-quinolin]-2'-yl)-2,2-difluoroac etate (30)

Colorless oil, 82% yield; $R_f = 0.30$ (petroleum ether/EtOAc, 3:1); ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.49 (m, 2H), 7.49 – 7.32 (m, 3H), 7.26 – 7.12 (m, 2H), 4.44 – 4.26 (m, 2H), 3.09 (s, 2H),

2.21 (s, 3H), 1.42 – 1.27 (m, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 180.4, 162.2, 157.2, 153.9, 141.2, 140.6, 132.4, 130.4, 128.8, 128.1, 126.2, 124.5, 121.9, 119.4, 112.8(t, *J* = 252.3 Hz), 63.2, 59.3, 34.3, 17.7, 13.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -105.6 (d, *J* = 283.5 Hz), -106.9 (d, *J* = 283.6 Hz). HRMS (ESI) calcd for C₂₁H₁₇BrF₂N₂O₂ [M+H]⁺447.0514, found 447.0511.

2-ethyl-2,2-difluoro-2-(2-phenyl-4'H-spiro[indole-3,3'-quinolin]-2'-yl)acetate (3p)

Colorless oil, 74% yield; $R_f = 0.30$ (petroleum ether/EtOAc, 3:1); ¹H NMR (400 MHz, CDCl₃) δ 8.13 (dd, J = 6.4, 1.6Hz, 2H), 7.76 (d, J = 7.6 Hz, 1H), 7.58 (d, J = 7.6 Hz, 1H), 7.51 – 7.38 (m, 6H), 7.35 – 7.26 (m, 1H), 7.08 – 6.99 (m, 2H), 6.84 (d, J = 7.2 Hz, 1H), 4.37 – 4.15 (m, 2H), 3.80 (d, J = 16.8 Hz, 1H), 2.60 (d, J = 16.8 Hz, 1H), 1.27 (t, J = 7.2 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 178.0, 162.4, 159.5, 154.0, 140.7, 139.3, 131.6, 131.2, 130.2, 129.7, 129.5, 129.0, 128.6, 128.5, 128.4, 127.8, 126.2, 124.8, 121.9, 121.7, 112.7(t, J = 252.7 Hz), 63.0, 57.4, 35.6, 13.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -103.5 (d, J = 276.0 Hz), -108.7 (d, J = 275.7 Hz). HRMS (ESI) calcd for C₂₁H₁₇F₂N₂O₂ [M+H]⁺431.1566, found 431.1561.

2,2-difluoro-2-(2-methyl-4'H-spiro[indole-3,3'-quinolin]-2'-yl)-1-(pyrrolidin-1-yl) ethanone (3q)

Colorless oil, 71% yield; $R_f = 0.30$ (petroleum ether/EtOAc, 3:1); ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.50 (m, 2H), 7.44 – 7.30 (m, 3H), 7.15 – 6.99 (m, 3H), 3.60 – 3.40 (m, 2H), 3.31 - 3.17 (m, 2H), 3.15 - 2.99 (m, 2H), 2.27 (s, 3H), 1.89 - 1.73 (m, 4H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 180.5, 162.8, 160.7, 155.2, 141.3, 139.0, 129.8, 129.2, 128.5, 128.4, 128.1, 125.5, 125.4, 123.1, 120.5, 114.1(t, *J* = 256.5 Hz), 59.2, 47.5, 46.6, 34.4, 26.4, 23.3, 17.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -100.5 (d, *J* = 284.7 Hz), -104.3 (d, *J* = 286.0 Hz). HRMS (ESI) calcd for C₂₃H₂₁F₂N₃O [M+H]⁺394.1725, found 394.1719.

2,2-difluoro-2-(2-methyl-4'H-spiro[indole-3,3'-quinolin]-2'-yl)-1-(piperidin-1-yl)e than-1-one (3r)

Colorless oil, 71% yield; $R_f = 0.30$ (petroleum ether/EtOAc, 3:2); ¹H NMR (400 MHz, CDCl₃) δ 7.56 (dd, J = 13.6, 7.6 Hz, 2H), 7.45 - 7.29 (m, 3H), 7.14 (d, J = 7.2 Hz, 1H), 7.02 (t, J = 7.6 Hz,

1H), 6.89 (d, J = 7.2 Hz, 1H), 3.74 (m, 1H), 3.43 – 3.32 (m, 1H), 3.28 (d, J = 16.4 Hz, 1H), 3.03 (m, 2H), 2.91 (d, J = 16.4 Hz, 1H), 2.34 (s, 3H), 1.69 – 1.49 (m, 4H), 1.32 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 179.4, 159.3, 157.5, 153.8, 140.3, 137.7, 128.8, 128.3, 127.6, 127.4, 127.3, 124.4, 124.3, 121.7, 119.6, 113.9(t, J = 250.6 Hz), 57.9, 45.8, 45.7, 43.3, 33.1, 24.8, 23.3, 16.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -96.1 (d, J = 289.1 Hz), -103.7 (d, J = 289.1 Hz). HRMS (ESI) calcd for C₂₄H₂₃F₂N₃O [M+H]⁺408.1882, found 408.1885.

1-(azepan-1-yl)-2,2-difluoro-2-(2-methyl-4'H-spiro[indole-3,3'-quinolin]-2'-yl)eth anone (3s)

Colorless oil, 72% yield; $R_f = 0.30$ (petroleum ether/EtOAc, 3:1); ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.52 (m, 2H), 7.45 – 7.29 (m, 3H), 7.14 (d, J = 7.6 Hz, 1H), 7.06 (t, J = 7.6 Hz, 1H), 6.98

(d, J = 7.6 Hz, 1H), 3.66 - 3.52 (m, 1H), 3.45 - 3.32 (m, 1H), 3.25 - 2.96 (m, 4H), 2.31 (s, 3H), 1.75 (d, J = 4.4 Hz, 2H), 1.58 - 1.31 (m, 6H). ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 180.5, 161.7, 158.8, 155.0, 141.3, 138.9, 129.8, 129.2, 128.5, 128.4, 128.2, 125.5, 125.4, 123.1, 120.6, 114.8(t, J = 255.7 Hz), 59.0, 47.3, 34.4, 31.0, 28.9, 27.8, 26.7, 25.8, 17.9. ${}^{19}F$ NMR (376 MHz, CDCl₃) δ -96.8 (d, J = 287.0 Hz), -104.5 (d, J = 287.1 Hz). HRMS (ESI) calcd for C₂₅H₂₅F₂N₃O [M+H]⁺422.2038, found 422.2044.

2,2-difluoro-2-(2-methyl-4'H-spiro[indole-3,3'-quinolin]-2'-yl)-1-morpholinoetha n-1-one (3t)

Colorless oil, 74% yield; $R_f = 0.30$ (petroleum ether/EtOAc, 3:1); ¹H NMR (400 MHz, CDCl₃) δ 7.50 (dd, J = 14.4, 7.6 Hz, 2H), 7.35 (t, J = 7.6 Hz, 1H), 7.27 (q, J = 16.0, 8.0 Hz, 2H), 7.07 (d, J = 7.2 Hz, 1H), 6.94 (t, J = 7.6 Hz, 1H), 6.76 (d, J = 7.6 Hz, 1H), 3.74 – 3.60 (m, 3H), 3.51 – 3.33 (m, 3H), 3.24 (d, J = 16.4 Hz, 1H), 3.08 (s, 2H), 2.82 (d, J = 16.4 Hz, 1H), 2.28 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 180.3, 154.9, 141.1, 138.5, 138.2, 130.2, 129.6, 128.7, 128.4, 125.5, 125.3, 122.4, 120.8, 120.0, 112.5(t, J = 246.5 Hz), 66.4, 58.9, 46.5, 43.4, 34.0, 29.3, 17.9.¹⁹F NMR (376 MHz, CDCl₃) δ -104.3 (d, J = 290.1 Hz), -111.4 (d, J = 290.1 Hz). HRMS (ESI) calcd for C₂₃H₂₁F₂N₃O₂ [M+H]⁺410.1675, found 410.1671.

2,2-difluoro-2-(2-methyl-4'H-spiro[indole-3,3'-quinolin]-2'-yl)-1-(4-methylpipera zin-1-yl)ethan-1-one (3u)

Yellow oil, 58% yield; $R_f = 0.40$ (petroleum ether/EtOAc, 3:1); ¹H NMR (400 MHz, CDCl₃) δ 7.57 (dd, J = 16.8, 8.0 Hz, 2H), 7.48 - 7.29 (m, 3H), 7.14 (d, J = 7.2 Hz, 1H), 7.02 (t, J = 7.2

Hz, 1H), 6.86 (d, J = 7.6 Hz, 1H), 3.84 – 3.69 (m, 1H), 3.61 – 3.50 (m, 1H), 3.31 (d, J = 16.4 Hz, 1H), 3.20 – 3.08 (m, 2H), 2.90 (d, J = 16.4 Hz, 1H), 2.43 (s, 2H), 2.36 (s, 3H), 2.26 (s, 3H), 2.22 – 2.08 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 180.3, 160.6, 158.5, 154.9, 141.2, 138.6, 130.0, 129.5, 128.6, 128.4, 128.3, 125.5, 125.4, 122.5, 120.8, 114.8(t, J = 252.5 Hz), 58.9, 54.5, 46.0, 45.7, 43.0, 41.0, 34.1, 18.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -98.3 (d, J = 290.1 Hz), -105.6 (d, J = 290.0 Hz). HRMS (ESI) calcd for C₂₄H₂₄F₂N₄O [M+H]⁺423.1991, found 423.1987.

2,2-difluoro-2-(2-methyl-4'H-spiro[indole-3,3'-quinolin]-2'-yl)-1-(4-phenylpipera zin-1-yl)ethanone (3v)

3.27 (m, 2H), 3.25 - 2.83 (m, 5H), 2.37 (s, 2H), 2.17 (s, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 180.3, 154.9, 150.8, 141.1, 138.7, 130.1, 129.6, 129.3, 128.7, 128.5, 128.4, 125.5, 125.3, 122.5, 120.8, 120.7, 119.5(t, J = 248.6 Hz), 116.8, 59.0, 49.3, 45.8, 43.1, 34.1, 29.3, 17.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -97.1 (d, J = 290.0 Hz), -104.2 (d, J = 289.9 Hz). HRMS (ESI) calcd for $C_{29}H_{26}F_2N_4O$ [M+H]⁺485.2147, found 485.2146.

2,2-difluoro-2-(2-methyl-4'H-spiro[indole-3,3'-quinolin]-2'-yl)-1-(4-(pyrimidin-2yl)piperazin-1-yl)ethan-1-one (3w)

Yellow oil, 52% yield; $R_f = 0.30$ (petroleum ether/EtOAc, 2:1); ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, J = 4.7 Hz, 2H), 7.57 (dd, J = 33.9, 7.7 Hz, 2H), 7.42 – 7.19 (m, 3H), 7.19 - 7.00 (m, 2H), 6.90 (d, J = 7.5 Hz, 1H), 6.54 (t, J =

4.7 Hz, 1H), 4.07 - 3.43 (m, 7H), 3.38 - 2.83 (m, 4H), 2.38 (s, 3H). ${}^{13}C{}^{1}H$ NMR $(100 \text{ MHz}, \text{CDCl}_3) \delta 180.2, 161.3, 157.8, 154.9, 141.1, 138.6, 130.1, 129.6, 128.7,$ 128.5, 128.4, 125.6, 125.4, 122.4, 120.8, 114.8(t, J = 250.4 Hz), 110.6, 59.0, 43.3, 43.2, 43.1, 34.0, 18.0, 17.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -97.1 (d, J = 290.4 Hz), -104.3 (d, J = 290.4 Hz). HRMS (ESI) calcd for $C_{27}H_{24}F_2N_6O$ [M+H]⁺487.2052, found 487.2055.

1-(3,4-dihydroisoquinolin-2(1H)-yl)-2,2-difluoro-2-(2-methyl-4'H-spiro[indole-3, 3'-quinolin]-2'-yl)ethan-1-one (3x)

Colorless oil (rotamer, ratio 1:1), 69% yield; $R_f = 0.20$ (petroleum ether/EtOAc, 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.58 (m, 1H), 7.55 – 7.45 (m, 1H), 7.42 – 7.28 m, 3H),

7.23 - 6.90 (m, 6H), 6.81 - 6.69 (dd, J = 13.6, 7.4 Hz, 1H), 4.85 - 4.57 (m, 1H), 4.29(s, 1H), 3.44 - 3.21 (m, 2H), 3.08 - 2.50 (m, 4H), 2.41 and 2.35 (s, 3H). ${}^{13}C{}^{1}H{}$ NMR (100 MHz, CDCl₃) δ 180.5, 161.5, 154.8, 141.2, 138.7, 134.6, 132.3, 130.0, 129.5, 128.9, 128.5, 128.4, 128.2, 126.9, 126.6, 126.3, 125.6, 125.4, 122.7, 120.8, 114.8 (t, J = 238.8 Hz), 59.0, 47.7, 45.6, 34.2, 30.9, 29.0, 18.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -91.9 (d, J = 288.0 Hz), -98.6 (d, J = 288.0 Hz). HRMS (ESI) calcd for C₂₈H₂₃F₂N₃O [M+H]⁺456.1882, found 456.1878.

2-(2,6'-dimethyl-4'H-spiro[indole-3,3'-quinolin]-2'-yl)-2,2-difluoro-1-(piperidin-1 -yl)ethan-1-one (3y)

Colorless oil, 77% yield; $R_f = 0.30$ (petroleum ether/EtOAc, 3:1); ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 7.6 Hz, 1H), 7.42 (d, J = 8.0 Hz, 1H), 7.34 (t, J = 7.6 Hz, 1H), 7.20 (d, J = 8.0 Hz, 1H), 7.02 (t, J = 7.6 Hz, 1H), 6.96 – 6.87 (m, 2H), 3.79 – 3.65 (m, 1H), 3.41 – 3.31 (m, 1H), 3.25 (d, J = 16.0 Hz, 1H), 3.10 – 2.94 (m, 2H), 2.84 (d, J = 16.0 Hz, 1H), 2.36 (d, J = 6.0 Hz, 6H), 2.17 (s, 2H), 1.69 – 1.47 (m, 4H), 1.36 – 1.28 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 180.6, 160.1, 157.2, 154.8, 140.2, 139.2, 139.0, 129.2, 129.1, 129.0, 128.3, 125.4, 125.2, 122.7, 120.6, 115.0(t, J = 249.6 Hz), 59.0, 46.8, 44.3, 34.3, 30.9, 25.8, 25.3, 24.3, 21.4, 17.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -96.7 (d, J = 288.9Hz), -104.4 (d, J = 288.8 Hz). HRMS (ESI) calcd for C₂₅H₂₅F₂N₃O [M+H]⁺422.2038, found 422.2044.

2-(2,6'-dimethyl-4'H-spiro[indole-3,3'-quinolin]-2'-yl)-2,2-difluoro-1-(piperidin-1 -yl)ethan-1-one (3z)

Colorless oil, 72% yield; $R_f = 0.40$ (petroleum ether/EtOAc, 3:1);¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 7.6 Hz, 1H), 7.42 (d, J = 8.0 Hz, 1H), 7.34 (t, J = 7.2 Hz, 1H), 7.19 (d, J =7.6 Hz, 1H), 7.04 (t, J = 7.2 Hz, 1H), 7.00 – 6.88 (m, 2H), 3.62 – 3.51 (m, 1H), 3.46 – 3.32 (m, 1H), 3.11 (dt, J = 18.8, 15.6 Hz, 3H), 2.92 (d, J = 16.4 Hz, 1H), 2.37 (s, 3H), 2.32 (s, 3H), 1.74 (d, J = 4.4 Hz, 2H), 1.62 – 1.36 (m, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 180.7, 161.8, 157.5, 154.9, 140.1, 139.2, 139.1, 129.1, 128.9, 128.3, 125.4, 125.2, 123.0, 120.5, 114.9(t, J = 255.2 Hz), 59.1, 47.3, 34.4, 28.8, 27.9, 26.7, 25.8, 21.4, 18.0, 17.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -95.8 (d, J = 287.1 Hz), -103.8 (d, J =287.0 Hz). HRMS (ESI) calcd for C₂₆H₂₇F₂N₃O [M+H]⁺436.2195, found 436.2195. 5. Reaction set-up for irradiation of mixture with blue LEDs

6. Free Radical Capture Experiments

Scheme 2S. Free radical capture experiments

Based on the general procedure, TEMPO or BHT (0.20 mmol, 1.0 equiv) were added before the inert gas protecting step. When one equivalent free radical inhibitor BHT (2,6-di-*tert*-butyl-4-methylphenol) was added to the reaction system, the yield of product **3a** was decreased dramatically to 20%. When TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) was added to the reaction system, the yield of product **3a** was reduced to 10%. Furthermore, BHT and TEMPO adducts of ethyl 2-fluoroacetate radical (generated in situ) were detected by LC–MS.

Figure 1S. LC-MS spectrum of adduct of TEMPO and CF_2CO_2Et

Figure 2S. LC-MS spectrum of adduct of BHT and CF₂CO₂Et

7. Light on/off experiments

Eight standard reaction mixtures in 10 mL Shrek tube were equipped with a magnetic stir bar, added 1f (0.2 mmol, 1.0 equiv), ethyl bromodifluoroacetate (0.3 mmol, 1.5 equiv) and fac-Ir(ppy)₃ (0.002 mmol) in DMSO (2.0 mL). Then the mixture was stirred and irradiated by 3W blue LEDs at room temperature. After 3 h, the blue LEDs were turned off, and one Shrek tube was removed from the irradiation setup for analysis. The remaining seven Shrek tubes were stirred in the absence of light for an additional 3 h. Then, one Shrek tube was removed for analysis, and the blue LEDs were turned back on to irradiate the remaining six reaction mixtures. After an additional 3 h of irradiation, the blue LEDs were turned off, and one Shrek tube was removed for analysis. The remaining five Shrek tubes were stirred in the absence of light for an additional 3 h. Then, Shrek tube was removed for analysis, and the blue LED s were turned back on to irradiate the remaining four reaction mixtures. After 3 h, the blue LEDs were turned off, and one Shrek tube was removed for analysis. The remaining three Shrek tubes were stirred in the absence of light for an additional 3 h, then, a Shrek tube was removed for analysis and the green LEDs were turned back on to 8 irradiate the remaining two reaction mixtures. After 3 h, the blue LEDs were turned off, and one Shrek tube was removed for analysis. The last Shrek tube was stirred in the absence of light for an additional 3 h, and then it was analyzed. The yield was determined by ¹H NMR spectroscopy.

light on/off experiments

Entry	Time(h)								Viald $(0/a)^a$
Linuy	3	6	9	12	15	18	21	24	1 leid(70)
1	On								32
2	On	Off			—		—		33
3	On	Off	On		—		—		48
4	On	Off	On	Off	—		—		48
5	On	Off	On	Off	On		—		62
6	On	Off	On	Off	On	Off			62
7	On	Off	On	Off	On	Off	On		68
8	On	Off	On	Off	On	Off	On	Off	68

Determined by ¹H NMR analysis.

8. NMR spectra of 1, 2, and 3

¹H NMR (400 MHz, CDCl₃) spectrum of 1a

¹H NMR (400 MHz, CDCl₃) spectrum of 1b

¹³C NMR (100 MHz, CDCl₃) spectrum of 1b

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 1b

¹³C NMR (100 MHz, CDCl₃) spectrum of 1f

¹³C NMR (100 MHz, CDCl₃) spectrum of 1g

2.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1. fl (ppm)

¹³C NMR (100 MHz, CDCl₃) spectrum of 1h

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 1i

¹H NMR (400 MHz, CDCl₃) spectrum of 1j

¹³C NMR (100 MHz, CDCl₃) spectrum of 1j

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 1j

¹H NMR (400 MHz, CDCl₃) spectrum of 1k

¹³C NMR (100 MHz, CDCl₃) spectrum of 1k

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 1m

¹H NMR (400 MHz, CDCl₃) spectrum of 1n

¹H NMR (400 MHz, CDCl₃) spectrum of 10

¹H NMR (400 MHz, CDCl₃) spectrum of 1p

¹³C NMR (100 MHz, CDCl₃) spectrum of 1p

¹H NMR (400 MHz, CDCl₃) spectrum of 2b

¹³C NMR (100 MHz, CDCl₃) spectrum of 2c

¹H NMR (400 MHz, CDCl₃) spectrum of 2d

¹³C NMR (100 MHz, CDCl₃) spectrum of 2e

¹H NMR (400 MHz, CDCl₃) spectrum of 2f

¹³C NMR (100 MHz, CDCl₃) spectrum of 2f

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 2f

¹H NMR (400 MHz, CDCl₃) spectrum of 2g

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 2g

¹H NMR (400 MHz, CDCl₃) spectrum of 2h

¹³C NMR (100 MHz, CDCl₃) spectrum of 2h

/113.718
/110.912
/110.593
/107.468

46. 472 43. 472 43. 136

¹³C NMR (100 MHz, CDCl₃) spectrum of 2i

260 240 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3a

-55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 3b

¹³C NMR (100 MHz, CDCl₃) spectrum of 3b

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3b

¹H NMR (400 MHz, CDCl₃) spectrum of 3c

¹³C NMR (100 MHz, CDCl₃) spectrum of 3c

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3c

55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -1 f1 (ppm)

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3d

-60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -1 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 3e

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3e

-60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -1 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 3f

¹³C NMR (100 MHz, CDCl₃) spectrum of 3f

55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -1 fi (ppm)

¹³C NMR (100 MHz, CDCl₃) spectrum of 3g

-179.754	1125-138 1155-534 1155-534 1155-534 1155-534 1155-534 1155-534 1155-534 1125-136 1122-136 1122-136 1122-136 1122-136 1122-136 1122-136 1122-136 1122-136 1122-136 1122-136 1122-136 1122-136 1123-137 1123-136 1123-1	62.940 58.742	34.823	L17.728 L17.697 L17.070 L13.991
----------	--	------------------	--------	--

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3g

is -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -1 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 3h

¹³C NMR (100 MHz, CDCl₃) spectrum of 3h

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3h

)0

is -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -1 fl (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 3i

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3i

is -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -1 fl (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 3j

¹H NMR (400 MHz, CDCl₃) spectrum of 3k

¹³C NMR (100 MHz, CDCl₃) spectrum of 3k

569	$\begin{array}{c} 676\\ 3655\\ 3656\\ 3365\\ 3365\\ 3365\\ 3369\\ $	54	75	34 02 04
m.		<u>c</u> , ∞	LO	9 6
22	111122222223333422222222222222222222222	ci ∞	4	3.71
		0.0	3	01
	WHY MUNKHH	1.1		111

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3k

is -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -1 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 31

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 31

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3m

is -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -1 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 3n

¹³C NMR (100 MHz, CDCl₃) spectrum of 3n

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3n

)0

is -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -1 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 30

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 30

is -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -1 f1 (ppm)

¹³C NMR (100 MHz, CDCl₃) spectrum of 3p

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3p

)0

iš -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -1 fi (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 3q

¹³C NMR (100 MHz, CDCl₃) spectrum of 3q

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3q

¹H NMR (400 MHz, CDCl₃) spectrum of 3r

¹³C NMR (100 MHz, CDCl₃) spectrum of 3r

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3r

iš -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -1 fi (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 3s

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3s

¹H NMR (400 MHz, CDCl₃) spectrum of 3t

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3t

¹H NMR (400 MHz, CDCl₃) spectrum of 3u

¹³C NMR (100 MHz, CDCl₃) spectrum of 3u

 $<^{17.964}_{17.915}$

-180. 255	L160.837 L160.362 L160.305 L168.305 L158.443 L158.443 L158.160 L154.909	-141.195 -138.624 -138.624 -129.697 -129.446 -128.436 -128.436 -128.436 -128.436 -128.436 -128.436 -128.436 -128.436 -128.436 -112.5376 -112.247	-58.918 54.529 -54.412	-45.966 -42.984	-34.090	
~						

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3u

is -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -1 fl (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 3v

¹³C NMR (100 MHz, CDCl₃) spectrum of 3v

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3w

¹H NMR (400 MHz, CDCl₃) spectrum of 3w

¹³C NMR (100 MHz, CDCl₃) spectrum of 3w

211	310 161 900 621 797 508 787 787 787 787 867	$\begin{array}{c} 054 \\ 5598 \\ 553 \\ 553 \\ 553 \\ 553 \\ 3386 \\ 668 \\ 668 \\ 668 \\ 3359 \\ 3359 \\ 3359 \\ 3359 \\ 3359 \\ 3359 \\ 3359 \\ 3359 \\ 600 \\ 6$	173	00 64 00 64 00 00	56
80.	$\begin{array}{c} 61. \\ 60. \\ 58. \\ 58. \\ 57. \\ 54. \end{array}$	$\begin{array}{c} 441. \\ 380. \\ 390. \\ 290. \\ 225. \\ 22$	8.9	4.0.13.25.67	8.0
7		17	Ĩ	4444 N	∇

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3w

¹H NMR (400 MHz, CDCl₃) spectrum of 3x

.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 = 0.99/0.41/0.00 2.96-4.01-6.5 6.0 5.5 f1 (ppm) 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1 5.0 3.0 4.5 3.5 4.0

¹³C NMR (100 MHz, CDCl₃) spectrum of 3x

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3x

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3y

is -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -1 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 3z

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3z

j5 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -1 f1 (ppm)