Supporting Information for

Gold/Lewis Acid Catalyzed Oxidative Cyclization Involving Activation of Nitriles

Ali Wang, Xin Xie, Chunli Zhang and Yuanhong Liu*

State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular
Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032,
People's Republic of China

Contents: Page
General Methods S1
Synthesis and characterization of (o-cyano)phenylpropargyl ethers 1 S2
Optimization studies S16
The results of Table 1, entry 21 S17
Synthesis and characterization of isoquinolin-1(2H)-ones 3 S18
Synthesis and characterization of isoquinolines 5 S30
Synthesis and characterization of compounds 6-9 S36
Gram scale reaction S42
Oxidative reaction of 6-phenylhex-5-ynenitrile S42
Mechanistic studies S43
Proposed reaction mechanism for the formation of $\mathbf{4}$ and 9 S46
References S47
X-ray crystal structure of compounds 3a, 5a and 7b S47
NMR spectra of all new compounds S49

General Methods. All reactions were carried out under Argon unless noted. DCM and DCE were distilled from CaH_{2}. Toluene was distilled from sodium and benzophenone. THF was distilled from sodium and benzophenone or purified using Innovative Technology Solvent Purifier (for the synthesis of substrates). MeCN was purified using Innovative Technology Solvent Purifier. 2-Cyanobenzaldehyde was purified by column chromatography before using.

Unless noted, all commercial reagents were used without further purification. (Acetonitrile)[(2-biphenyl)di-tert-butylphosphine]gold(I) hexafluoroantimonate (catalyst A) was purchased from Aldrich Chemical Company. AgNTf_{2} was purchased from TCI Company. $\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}$ was prepared by stirring the $[\mathrm{Au}(\mathrm{L}) \mathrm{Cl}]$ complex and AgNTf_{2} in DCM at room temperature. ${ }^{1}$ BuXphosAu(MeCN)SbF ${ }_{6}(\text { catalyst } \mathbf{B})^{2}$ and $\mathrm{IPrAuNTf}_{2}{ }^{3}$ and $\left.(\mathrm{ArO})\right)_{3} \mathrm{PAuCl}(\mathrm{Ar}=$ 2,4-di-tert-butylphenyl) ${ }^{4}$ were prepared according to the published methods. AuBr_{3} was purchased from Alfa Aesar.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at room temperature in CDCl_{3} (containing 0.03% TMS) or DMSO- d_{6} (containing 0.03% TMS), on Varian XL- 400 MHz spectrometer, Agilent 400 MHz NMR spectrometer or Bruker 400 MHz NMR spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra was recorded at $400 \mathrm{MHz},{ }^{13} \mathrm{C}$ NMR spectra was recorded at 100 MHz . ${ }^{1} \mathrm{H}$ NMR spectra was recorded with tetramethylsilane ($\delta=0.00 \mathrm{ppm}$) or $\mathrm{CDCl}_{3}(\delta=7.26 \mathrm{ppm})$ in CDCl_{3} or DMSO$d_{6}(\delta=2.50 \mathrm{ppm})$ as internal reference; ${ }^{13} \mathrm{C}$ NMR spectra was recorded with $\mathrm{CDCl}_{3}(\delta=77.00$ $\mathrm{ppm})$ or DMSO- $d_{6}(\delta=39.51 \mathrm{ppm})$ as internal reference. High-resolution mass spectra were obtained by using Waters Micromass GTC, Agilent Technologies 6224 TOF LC/MS. IR spectra were obtained by using a Nicolet iS10 spectrometer. Melting points were measured using a SGW-4 microscopic melting point apparatus and were uncorrected. Single crystal Xray diffraction data were collected at 293 K for (3a, 5a and 7b).

Typical procedure for the Synthesis and characterization of (o-cyano)phenylpropargyl

 ethers $1 .{ }^{5}$

To a solution of 1-ethynylbenzene ($33 \mathrm{mmol}, 3.6 \mathrm{~mL}$) in THF (60 mL) was added dropwise $\mathrm{EtMgBr}\left(30 \mathrm{mmol}, 3.0 \mathrm{M}\right.$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 10 \mathrm{~mL}\right)$ at $0^{\circ} \mathrm{C}$ under argon. Then the mixture was warmed up to room temperature and stirred for 1 h . The mixture was cooled to 0 ${ }^{\circ} \mathrm{C}$, and 2-cyanobenzaldehyde ($30 \mathrm{mmol}, 3.934 \mathrm{~g}$) was added. Then the reaction mixture was
warmed up to room temperature and stirred until the reaction was complete as monitored by TLC (1.0 h). The resulting reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and extracted with ethyl acetate. The combined organic extracts were washed with water and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under the reduced pressure to afford the crude alcohol which was used directly without further purification for the next step.

To a solution of the above crude alcohol in DCM (50 mL) were added imidazole (60 $\mathrm{mmol}, 4.09 \mathrm{~g})$ and $\mathrm{TBSCl}(45 \mathrm{mmol}, 6.78 \mathrm{~g})$ under argon. The reaction mixture was then stirred at room temperature for 3 h . Then the resulting mixture was quenched with saturated ammonium chloride solution and extracted with ethyl acetate, washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (petroleum ether : ethyl acetate $=50: 1$) to afford $\mathbf{1 a}$ in 79% overall yield $(8.236 \mathrm{~g})$ as a light-yellow sticky oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.35(\mathrm{~s}, 3 \mathrm{H})$, $0.41(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.55(\mathrm{~m}$, $2 \mathrm{H}), 7.67-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.1,-4.6$, 18.0, 25.6, 63.3, 86.6, 88.0, 110.3, 117.0, 122.1, 127.0, 128.1, 128.4, 131.4, 132.7, 132.8, 145.0. The spectroscopic data are in agreement with that previously reported. ${ }^{5}$

2-(1-((tert-Butyldimethylsilyl)oxy)-3-(4-chlorophenyl)prop-2-yn-1-yl)benzonitrile
First step: 1-chloro-4-ethynylbenzene ($5.5 \mathrm{mmol}, 751.2 \mathrm{mg}$) in THF (8 mL) was added $\operatorname{EtMgBr}\left(5 \mathrm{mmol}, 3.0 \mathrm{M}\right.$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 1.67 \mathrm{~mL}\right)$ at $0^{\circ} \mathrm{C}$. Then the mixture was stirred at room temperature for 1 h .2 -Cyanobenzaldehyde ($5.0 \mathrm{mmol}, 655.7 \mathrm{mg}$) was added at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred at room temperature for 1 h . Second step: To a solution of the above crude alcohol in DCM (10 mL) were added imidazole ($10.0 \mathrm{mmol}, 680.8 \mathrm{mg}$) and $\operatorname{TBSCl}(7.5 \mathrm{mmol}, 1.13 \mathrm{~g})$, and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum ether : ethyl acetate $=50: 1$ to $20: 1$) afforded the desired product in 82% overall yield $(1.56 \mathrm{~g})$ as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.22(\mathrm{~s}, 3 \mathrm{H}), 0.27(\mathrm{~s}$,
$3 \mathrm{H}), 0.96$ (s, 9H), 5.97 ($\mathrm{s}, 1 \mathrm{H}$), 7.25-7.27 (m, 2H), 7.35-7.41 (m, 3H), 7.61-7.67 (m, 2H), 7.85
$(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.0,-4.5,18.2,25.7,63.3,85.4,89.1$, 110.3, 117.1, 120.7, 127.1, 128.2, 128.6, 132.8, 133.0, 133.1, 134.6, 145.0. The spectroscopic data are in agreement with that previously reported. ${ }^{5}$

2-(1-((tert-butyldimethylsilyl)oxy)-3-(4-fluorophenyl)prop-2-yn-1-yl)benzonitrile (1c).
First step: 1-ethynyl-4-fluorobenzene ($5.5 \mathrm{mmol}, 660.7 \mathrm{mg}$) in THF (8 mL) was added $\operatorname{EtMgBr}\left(5 \mathrm{mmol}, 3.0 \mathrm{M}\right.$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 1.67 \mathrm{~mL}\right)$ at $0^{\circ} \mathrm{C}$. Then the mixture was stirred at room temperature for 1 h . 2-Cyanobenzaldehyde ($5.0 \mathrm{mmol}, 655.7 \mathrm{mg}$) was added at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred at room temperature for 1 h . Second step: To a solution of the above crude alcohol in DCM (10 mL) were added imidazole ($10.0 \mathrm{mmol}, 680.8 \mathrm{mg}$) and $\operatorname{TBSCl}(7.5 \mathrm{mmol}, 1.13 \mathrm{~g})$, and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum ether : ethyl acetate $=20: 1$) afforded the desired product in 85% overall yield $(1.556 \mathrm{~g})$ as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.22(\mathrm{~s}, 3 \mathrm{H}), 0.28(\mathrm{~s}, 3 \mathrm{H})$, $0.96(\mathrm{~s}, 9 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 6.96-7.00(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.61-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.1,-4.5,18.2,25.7,63.3,85.5,87.9\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}\right.$ $=1.5 \mathrm{~Hz}), 110.3,115.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22.0 \mathrm{~Hz}\right), 117.1,118.3\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3.8 \mathrm{~Hz}\right), 127.0,128.2$, $132.9,133.0,133.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=8.3 \mathrm{~Hz}\right), 145.1,162.6\left(\mathrm{~d},{ }^{1} J=248.7 \mathrm{~Hz}\right) .{ }^{19} \mathrm{~F}$ NMR $(376 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta-110.3(\mathrm{~m}, 1 \mathrm{~F})$. The spectroscopic data is in agreement with that previously reported. ${ }^{5}$

2-(1-((tert-butyldimethylsilyl)oxy)-3-(4-(trifluoromethyl)phenyl)prop-2-yn-1-
yl)benzonitrile (1d). First step: 1-ethynyl-4-(trifluoromethyl)benzene ($3.3 \mathrm{mmol}, 561.4 \mathrm{mg}$) in THF (5 mL) was added $\operatorname{EtMgBr}\left(3 \mathrm{mmol}, 3.0 \mathrm{M}\right.$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 1.0 \mathrm{~mL}\right)$ at $0{ }^{\circ} \mathrm{C}$. Then the mixture was stirred at room temperature for 1 h . 2-Cyanobenzaldehyde ($3.0 \mathrm{mmol}, 393.4$ mg) was added at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred at room temperature for 1 h . Second step: To a solution of the above crude alcohol in DCM (5 mL) were added imidazole ($6.0 \mathrm{mmol}, 408.5 \mathrm{mg}$) and $\mathrm{TBSCl}(4.5 \mathrm{mmol}, 678.2 \mathrm{mg}$), and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum ether to petroleum ether : ethyl acetate $=20: 1)$ afforded the desired product in 82% overall yield $(1.02 \mathrm{~g})$ as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.24(\mathrm{~s}, 3 \mathrm{H}), 0.30(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.64-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.0,-4.6,18.2,25.7,63.3,85.1,90.6,110.4,117.1,123.8(\mathrm{q}, J=270.7 \mathrm{~Hz})$, $125.2(\mathrm{q}, J=3.6 \mathrm{~Hz}), 126.1(\mathrm{~d}, J=1.2 \mathrm{~Hz}), 127.1,128.4,130.3(\mathrm{q}, ~ J=32.2 \mathrm{~Hz}), 131.8,133.0$, 133.1, 144.8. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.9(\mathrm{~s}, 3 \mathrm{~F})$. The spectroscopic data is in agreement with that previously reported. ${ }^{5}$

2-(1-((tert-butyldimethylsilyl)oxy)-3-(4-cyanophenyl)prop-2-yn-1-yl)benzonitrile (1e). First step: 1-ethynyl-4-(trifluoromethyl)benzene ($3.3 \mathrm{mmol}, 419.6 \mathrm{mg}$) in THF (5 mL) was added $\mathrm{EtMgBr}\left(3 \mathrm{mmol}, 3.0 \mathrm{M}\right.$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 1.0 \mathrm{~mL}\right)$ at $0^{\circ} \mathrm{C}$. Then the mixture was stirred at room temperature for 1 h .2 -Cyanobenzaldehyde ($3.0 \mathrm{mmol}, 393.4 \mathrm{mg}$) was added at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred at room temperature for 1 h . Second step: To a solution of the above crude alcohol in DCM (5 mL) were added imidazole ($6.0 \mathrm{mmol}, 408.5$ mg) and $\mathrm{TBSCl}(4.5 \mathrm{mmol}, 678.2 \mathrm{mg})$, and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum ether : ethyl acetate $=100: 1$ to $40: 1$ to $20: 1$) afforded the desired product in 78% overall yield (876 mg) as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.20(\mathrm{~s}, 3 \mathrm{H}), 0.26(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.43(\mathrm{~m}, 1 \mathrm{H})$, 7.49-7.58 (m, 4H), 7.62-7.68 (m, 2H), $7.83(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\delta-5.1,-4.7,18.1,25.5,63.2,84.6,92.4,110.2,111.8,116.9,118.1,126.9,127.0,128.4,131.8$, 132.0, 133.0, 133.1, 144.4. IR (neat): 2956, 2930, 2856, 2231, 1605, 1501, 1471, 1449, 1333, 1251, 1052, 986, 837, 780, 759, $716 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{ONaSi}[\mathrm{M}+\mathrm{Na}]^{+}$: 395.1550, found 395.1555 .

2-(1-((tert-Butyldimethylsilyl)oxy)-3-(p-tolyl)prop-2-yn-1-yl)benzonitrile (1f). First step: 1-ethynyl-4-methylbenzene ($5.5 \mathrm{mmol}, 697 \mu \mathrm{~L}$) in THF (8 mL) was added $\operatorname{EtMgBr}(5 \mathrm{mmol}$, 3.0 M solution in $\mathrm{Et}_{2} \mathrm{O}, 1.67 \mathrm{~mL}$) at $0^{\circ} \mathrm{C}$. Then the mixture was stirred at room temperature for 1 h . 2-Cyanobenzaldehyde ($5.0 \mathrm{mmol}, 655.7 \mathrm{mg}$) was added at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred at room temperature for 1 h . Second step: To a solution of the above crude alcohol in DCM $(10 \mathrm{~mL})$ were added imidazole $(10.0 \mathrm{mmol}, 680.8 \mathrm{mg})$ and $\mathrm{TBSCl}(7.5 \mathrm{mmol}$, 1.13 g), and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum ether to petroleum ether : ethyl acetate $=30: 1$) afforded the desired product in 82% overall yield $(1.48 \mathrm{~g})$ as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.24(\mathrm{~s}, 3 \mathrm{H}), 0.29(\mathrm{~s}$, $3 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.54-$ $7.58(\mathrm{~m}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.1,-4.6,18.0,21.2$, $25.6,63.3,86.8,87.3,110.3,117.0,119.0,127.0,128.0,128.8,131.3,132.7,132.8,138.5$, 145.1. The spectroscopic data is in agreement with that previously reported. ${ }^{5}$

2-(3-(4-(tert-butyl)phenyl)-1-((tert-butyldimethylsilyl)oxy)prop-2-yn-1-yl)benzonitrile

(1g). First step: 1-(tert-butyl)-4-ethynylbenzene ($5.5 \mathrm{mmol}, 870.3 \mathrm{mg}$) in THF (8 mL) was added $\mathrm{EtMgBr}\left(5 \mathrm{mmol}, 3.0 \mathrm{M}\right.$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 1.67 \mathrm{~mL}\right)$ at $0{ }^{\circ} \mathrm{C}$. Then the mixture was stirred at room temperature for 1 h. 2-Cyanobenzaldehyde ($5.0 \mathrm{mmol}, 655.7 \mathrm{mg}$) was added at
$0{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred at room temperature for 1 h . Second step: To a solution of the above crude alcohol in DCM (10 mL) were added imidazole (10.0 mmol , 680.8 mg) and $\mathrm{TBSCl}(7.5 \mathrm{mmol}, 1.13 \mathrm{~g})$, and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum ether to petroleum ether : ethyl acetate $=50: 1$ to $20: 1$) afforded the desired product in 82% overall yield (1.66 g) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.24(\mathrm{~s}, 3 \mathrm{H}), 0.28(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H}), 7.30-$ $7.39(\mathrm{~m}, 5 \mathrm{H}), 7.59-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.0$, $-4.4,18.2,25.7,31.1,34.7,63.5,86.9,87.5,110.5,117.2,119.3,125.2,127.2,128.1,131.3$, 132.9, 133.0, 145.4, 151.8. IR (film): 2958, 2924, 2857, 2225, 1692, 1600, 1505, 1471, 1463, 1449, 1391, 1363, 1252, 1108, 1068, 986, 834, 778, 759, $672 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{NONaSi}[\mathrm{M}+\mathrm{Na}]^{+}: 426.2224$, found 426.2217 .

2-(1-((tert-Butyldimethylsilyl)oxy)-3-(4-methoxyphenyl)prop-2-yn-1-yl)benzonitrile (1h). First step: 1-ethynyl-4-methoxybenzene ($5.5 \mathrm{mmol}, 713 \mu \mathrm{~L}$) in THF (8 mL) was added $\operatorname{EtMgBr}\left(5 \mathrm{mmol}, 3.0 \mathrm{M}\right.$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 1.67 \mathrm{~mL}\right)$ at $0^{\circ} \mathrm{C}$. Then the mixture was stirred at room temperature for 1 h .2 -Cyanobenzaldehyde ($5.0 \mathrm{mmol}, 655.7 \mathrm{mg}$) was added at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred at room temperature for 1 h . Second step: To a solution of the above crude alcohol in DCM (10 mL) were added imidazole ($10.0 \mathrm{mmol}, 680.8 \mathrm{mg}$) and $\mathrm{TBSCl}(7.5 \mathrm{mmol}, 1.13 \mathrm{~g})$, and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum ether : ethyl acetate $=100: 1$ to $20: 1$) afforded the desired product in 78% overall yield $(1.48 \mathrm{~g})$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.24(\mathrm{~s}, 3 \mathrm{H}), 0.29(\mathrm{~s}, 3 \mathrm{H})$, $0.96(\mathrm{~s}, 9 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 6.77-6.79(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.54-7.58(\mathrm{~m}$, $2 \mathrm{H}), 7.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.3,-4.7,17.9,25.5,54.7,63.3$, $86.5,86.6,110.2,113.6,113.9,116.8,126.9,127.9,132.6,132.7,145.0,159.5$. One carbon is overlapped with other signals. The spectroscopic data is in agreement with that previously reported. ${ }^{5}$

$1 i$
2-(1-((tert-butyldimethylsilyl)oxy)-3-(m-tolyl)prop-2-yn-1-yl)benzonitrile (1i). First step: 1-ethynyl-3-methylbenzene ($5.5 \mathrm{mmol}, 710 \mu \mathrm{~L}$) in THF (8 mL) was added $\operatorname{EtMgBr}(5 \mathrm{mmol}$, 3.0 M solution in $\mathrm{Et}_{2} \mathrm{O}, 1.67 \mathrm{~mL}$) at $0^{\circ} \mathrm{C}$. Then the mixture was stirred at room temperature for 1 h .2 -Cyanobenzaldehyde ($5.0 \mathrm{mmol}, 655.7 \mathrm{mg}$) was added at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred at room temperature for 1 h . Second step: To a solution of the above crude alcohol in DCM $(10 \mathrm{~mL})$ were added imidazole $(10.0 \mathrm{mmol}, 680.8 \mathrm{mg})$ and $\mathrm{TBSCl}(7.5 \mathrm{mmol}$, 1.13 g), and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum ether : ethyl acetate $=100: 1$ to $30: 1$) afforded the desired product in 89% overall yield (1.6 g) as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.24(\mathrm{~s}, 3 \mathrm{H}), 0.30(\mathrm{~s}, 3 \mathrm{H})$, $0.97(\mathrm{~s}, 9 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 7.05-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.24(\mathrm{~m}$, 2H), 7.30-7.33 (m, 1H), 7.55-7.59 (m, 2H), 7.86 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta-5.2,-4.6,18.0,20.9,25.6,63.3,86.8,87.6,110.3,116.9,121.9,127.0,127.97$, 128.03, 128.5, 129.3, 131.8, 132.7, 132.8, 137.7, 145.0. IR (neat): 2954, 2928, 2885, 2857, 2226, 1697, 1601, 1485, 1472, 1449, 1362, 1252, 1207, 1175, 1111, 1067, 1005, 939, 838, 779, 761, 690, $670 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NONaSi}[\mathrm{M}+\mathrm{Na}]^{+}: 384.1754$, found 384.1752.

2-(1-(tert-Butyldimethylsilyloxy)-3-o-tolylprop-2-ynyl)benzonitrile (1j). First step: 1-ethynyl-2-methylbenzene ($5.5 \mathrm{mmol}, 693 \mu \mathrm{~L}$) in THF (8 mL) was added $\operatorname{EtMgBr}(5 \mathrm{mmol}$, 3.0 M solution in $\mathrm{Et}_{2} \mathrm{O}, 1.67 \mathrm{~mL}$) at $0^{\circ} \mathrm{C}$. Then the mixture was stirred at room temperature for 1 h .2 -Cyanobenzaldehyde ($5.0 \mathrm{mmol}, 655.7 \mathrm{mg}$) was added at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred at room temperature for 1 h . Second step: To a solution of the above crude
alcohol in DCM (10 mL) were added imidazole ($10.0 \mathrm{mmol}, 680.8 \mathrm{mg}$) and $\mathrm{TBSCl}(7.5 \mathrm{mmol}$, 1.13 g), and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum ether : ethyl acetate $=100: 1$ to $30: 1$) afforded the desired product in 85% overall yield $(1.54 \mathrm{~g})$ as an orange oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.20(\mathrm{~s}, 3 \mathrm{H}), 0.88$ $(\mathrm{s}, 9 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 6.97-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.52(\mathrm{~m}, 2 \mathrm{H})$, $7.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.1,-4.6,18.1,20.5,25.6,63.4,85.5$, $92.0,110.2,117.0,121.9,125.3,126.9,128.0,128.5,129.3,131.8,132.7,132.9,140.1,145.4$. The spectroscopic data is in agreement with that previously reported. ${ }^{5}$

1k
2-(1-((tert-butyldimethylsilyl)oxy)-3-(naphthalen-1-yl)prop-2-yn-1-yl)benzonitri
First step: 1-ethynylnaphthalene ($2.75 \mathrm{mmol}, 391 \mu \mathrm{~L}$) in THF (8 mL) was added $\mathrm{EtMgBr}(2.5$ mmol, 3.0 M solution in $\mathrm{Et}_{2} \mathrm{O}, 0.83 \mathrm{~mL}$) at $0{ }^{\circ} \mathrm{C}$. Then the mixture was stirred at room temperature for 1 h .2 -Cyanobenzaldehyde ($2.5 \mathrm{mmol}, 327.8 \mathrm{mg}$) was added at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred at room temperature for 1 h . Second step: To a solution of the above crude alcohol in DCM (10 mL) were added imidazole ($5.0 \mathrm{mmol}, 340.4 \mathrm{mg}$) and $\mathrm{TBSCl}(3.75 \mathrm{mmol}, 565.2 \mathrm{mg})$, and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum to petroleum ether : ethyl acetate $=20: 1$) afforded the desired product in 43% overall yield (432 mg) as an orange oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.38$ (s, $3 \mathrm{H}), 0.44(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.80$ (m, 3H), 7.89-7.92 (m, 2H), $8.06(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.0,-4.4,18.2,25.7,63.6,84.9,93.0,110.4,117.2,119.9,125.0,126.0$, 126.4, 126.8, 127.2, 128.16, 128.22, 129.0, 130.6, 132.9, 133.0, 133.1, 133.2, 145.4. The spectroscopic data is in agreement with that previously reported. ${ }^{5}$

2-(1-((tert-Butyldimethylsilyl)oxy)-3-(cyclohex-1-en-1-yl)prop-2-yn-1-yl)benzonitrile (11). First step: 1-ethynylcyclohex-1-ene ($5.5 \mathrm{mmol}, 647 \mu \mathrm{~L}$) in THF (8 mL) was added $\mathrm{EtMgBr}(5$ mmol, 3.0 M solution in $\mathrm{Et}_{2} \mathrm{O}, 1.67 \mathrm{~mL}$) at $0{ }^{\circ} \mathrm{C}$. Then the mixture was stirred at room temperature for 1 h .2 -Cyanobenzaldehyde ($5.0 \mathrm{mmol}, 655.7 \mathrm{mg}$) was added at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred at room temperature for 1 h . Second step: To a solution of the above crude alcohol in DCM (10 mL) were added imidazole ($10.0 \mathrm{mmol}, 680.8 \mathrm{mg}$) and $\mathrm{TBSCl}(7.5 \mathrm{mmol}, 1.13 \mathrm{~g})$, and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum ether : ethyl acetate $=50: 1$ to $30: 1$) afforded the desired product in 85% overall yield $(1.5 \mathrm{~g})$ as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.20(\mathrm{~s}, 3 \mathrm{H}), 0.24(\mathrm{~s}$, $3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 1.53-1.61(\mathrm{~m}, 4 \mathrm{H}), 2.05-2.11(\mathrm{~m}, 4 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 6.09-6.11(\mathrm{~m}, 1 \mathrm{H})$, 7.34-7.37 (m, 1H), 7.57-7.62 (m, 2H), $7.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.1,-4.5,18.0,21.2,22.0,25.4,25.6,28.6,63.3,85.3,88.5,110.3,117.0,119.8,127.0$, $128.0,132.7,132.8,135.3,145.5$. The spectroscopic data is in agreement with that previously reported. ${ }^{5}$

2-(1-(tert-Butyldimethylsilyloxy)hept-2-ynyl)benzonitrile (1m). First step: hex-1-yne (5.5 mmol, $632 \mu \mathrm{~L}$) in THF (8 mL) was added $\mathrm{EtMgBr}\left(5 \mathrm{mmol}, 3.0 \mathrm{M}\right.$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 1.67 \mathrm{~mL}\right)$ at $0^{\circ} \mathrm{C}$. Then the mixture was stirred at room temperature for 1 h .2 -Cyanobenzaldehyde (5.0 mmol, 655.7 mg) was added at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred at room temperature for 1 h . Second step: To a solution of the above crude alcohol in DCM (10 mL) were added imidazole ($10.0 \mathrm{mmol}, 680.8 \mathrm{mg}$) and $\mathrm{TBSCl}(7.5 \mathrm{mmol}, 1.13 \mathrm{~g})$, and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum ether : ethyl acetate $=$ $50: 1$) afforded the desired product in 81% overall yield (1.333 g) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.17(\mathrm{~s}, 3 \mathrm{H}), 0.21(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 1.34-$ $1.52(\mathrm{~m}, 4 \mathrm{H}), 2.19-2.22(\mathrm{~m}, 2 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.79(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.1,-4.6,13.5,18.2,18.4,21.8,25.7,30.3$, $63.1,79.3,87.7,110.3,117.1,126.9,127.9,132.7,132.9,146.0$. The spectroscopic data is in agreement with that previously reported. ${ }^{5}$

2-(1-(tert-Butyldimethylsilyloxy)-5-phenylpent-2-ynyl)benzonitrile (1n). but-3-yn-1-yl benzene ($5.5 \mathrm{mmol}, 773 \mu \mathrm{~L}$) in THF (8 mL) was added $\operatorname{EtMgBr}(5 \mathrm{mmol}, 3.0 \mathrm{M}$ solution in $\mathrm{Et}_{2} \mathrm{O}, 1.67 \mathrm{~mL}$) at $0{ }^{\circ} \mathrm{C}$. Then the mixture was stirred at room temperature for 1 h .2 Cyanobenzaldehyde ($5.0 \mathrm{mmol}, 655.7 \mathrm{mg}$) was added at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred at room temperature for 1 h . Second step: To a solution of the above crude alcohol in DCM (10 mL) were added imidazole ($10.0 \mathrm{mmol}, 680.8 \mathrm{mg}$) and $\mathrm{TBSCl}(7.5 \mathrm{mmol}, 1.13 \mathrm{~g})$, and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum) afforded the desired product in 84% overall yield $(1.57 \mathrm{~g})$ as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 2.47(\mathrm{td}, J=7.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.75-$ $2.79(\mathrm{~m}, 2 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 7.12-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.50-$ $7.56(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.2,-4.6,18.1,20.8$, $25.6,34.5,63.0,80.1,86.7,110.2,117.1,126.1,127.0,127.9,128.2,128.3,132.6,132.8$, $140.2,145.8$. The spectroscopic data is in agreement with that previously reported. ${ }^{5}$

2-(1-(tert-Butyldimethylsilyloxy)-3-cyclopropylprop-2-ynyl)benzonitrile (10). ethynyl cyclopropane ($5.5 \mathrm{mmol}, 466 \mu \mathrm{~L}$) in THF (8 mL) was added $\mathrm{EtMgBr}(5 \mathrm{mmol}, 3.0 \mathrm{M}$ solution in $\mathrm{Et}_{2} \mathrm{O}, 1.67 \mathrm{~mL}$) at $0{ }^{\circ} \mathrm{C}$. Then the mixture was stirred at room temperature for 1 h .2 -

Cyanobenzaldehyde ($5.0 \mathrm{mmol}, 655.7 \mathrm{mg}$) was added at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred at room temperature for 1 h . Second step: To a solution of the above crude alcohol in DCM (10 mL) were added imidazole ($10.0 \mathrm{mmol}, 680.8 \mathrm{mg}$) and $\mathrm{TBSCl}(7.5 \mathrm{mmol}, 1.13 \mathrm{~g})$, and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum ether : ethyl acetate $=50: 1)$ afforded the desired product in 79% overall yield $(1.225 \mathrm{~g})$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.15$ (s, 3H), $0.20(\mathrm{~s}, 3 \mathrm{H}), 0.65-0.76(\mathrm{~m}, 4 \mathrm{H})$, $0.90(\mathrm{~s}, 9 \mathrm{H}), 1.21-1.25(\mathrm{~m}, 1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.1,-4.5,-0.6,8.0,18.1,25.7,63.1,74.4,90.6$, $110.2,117.1,127.0,127.9,132.8,132.9,145.9$. The spectroscopic data is in agreement with that previously reported. ${ }^{5}$

2-(1-((tert-butyldimethylsilyl)oxy)-4-phenoxybut-2-yn-1-yl)benzonitrile (1p). (prop-2-yn-1-yloxy) benzene ($5.5 \mathrm{mmol}, 706 \mu \mathrm{~L}$) in THF (8 mL) was added $\mathrm{EtMgBr}(5 \mathrm{mmol}, 3.0 \mathrm{M}$ solution in $\mathrm{Et}_{2} \mathrm{O}, 1.67 \mathrm{~mL}$) at $0^{\circ} \mathrm{C}$. Then the mixture was stirred at room temperature for 1 h . 2-Cyanobenzaldehyde ($5.0 \mathrm{mmol}, 655.7 \mathrm{mg}$) was added at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred at room temperature for 1 h . Second step: To a solution of the above crude alcohol in DCM (10 mL) were added imidazole ($10.0 \mathrm{mmol}, 680.8 \mathrm{mg}$) and $\mathrm{TBSCl}(7.5 \mathrm{mmol}, 1.13 \mathrm{~g})$, and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum ether to petroleum ether : ethyl acetate $=30: 1$) afforded the desired product in 63% overall yield (1.19 g) as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.19(\mathrm{~s}, 3 \mathrm{H})$, $0.92(\mathrm{~s}, 9 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 6.96-7.00(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.39(\mathrm{~m}$, $1 \mathrm{H}), 7.56-7.63(\mathrm{~m}, 2 \mathrm{H}) .7 .75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.2,-4.7$, 18.1, 25.6, 55.8, 62.8, 81.7, 86.2, 110.2, 114.9, 117.0, 121.3, 127.1, 128.2, 129.3, 132.8, 133.0, 144.7, 157.4. IR (neat): 2954, 2929, 2857, 2225, 1598, 1588, 1495, 1472, 1449, 1362, 1260, 1213, 1174, 1129, 1066, 1032, 1014, 837, 778, 752, 690, $671 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+}: 400.1703$, found 400.1703 .

4-bromo-2-(1-((tert-butyldimethylsilyl)oxy)-3-phenylprop-2-yn-1-yl)benzonitrile ethynylbenzene ($2.2 \mathrm{mmol}, 242 \mu \mathrm{~L}$) in THF (5 mL) was added $\mathrm{EtMgBr}(2 \mathrm{mmol}, 3.0 \mathrm{M}$ solution in $\mathrm{Et}_{2} \mathrm{O}, 0.67 \mathrm{~mL}$) at $0{ }^{\circ} \mathrm{C}$. Then the mixture was stirred at room temperature for 1 h . 4-Bromo-2-formylbenzonitrile ($2.0 \mathrm{mmol}, 420 \mathrm{mg}$) was added at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred at room temperature for 1 h . Second step: To a solution of the above crude alcohol in DCM $(6 \mathrm{~mL})$ were added imidazole $(4.0 \mathrm{mmol}, 272.3 \mathrm{mg})$ and $\mathrm{TBSCl}(3.0 \mathrm{mmol}$, 452.2 mg), and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum ether : ethyl acetate $=20: 1$) afforded the desired product in 52% overall yield $(443.6 \mathrm{mg})$ as an orange brown oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.24(\mathrm{~s}, 3 \mathrm{H}), 0.29(\mathrm{~s}, 3 \mathrm{H})$, $0.97(\mathrm{~s}, 9 \mathrm{H}), 5.93(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.43-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.56(\mathrm{~m}, 2 \mathrm{H}), 8.01(\mathrm{~d}, J$ $=1.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.0,-4.4,18.2,25.7,63.0,87.2,87.4,109.2$, $116.5,122.0,128.2,128.3,128.8,130.6,131.58,131.61,134.1,147.0$. IR (neat): 2954, 2929, 2884, 2857, 2227, 1587, 1490, 1471, 1401, 1254, 1203, 1174, 1116, 1087, 1065, 1002, 983, 836, 794, 779, 755, 733, 689, $672 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NONaSiBr}[\mathrm{M}+\mathrm{Na}]^{+}$: 448.0703, found 448.0692.

2-(1-((tert-butyldimethylsilyl)oxy)-3-phenylprop-2-yn-1-yl)-5-methoxybenzonitrile (1r). ethynylbenzene $3.3 \mathrm{mmol}, 362 \mu \mathrm{~L}$) in THF (6 mL) was added $\mathrm{EtMgBr}(3 \mathrm{mmol}, 3.0 \mathrm{M}$ solution in $\mathrm{Et}_{2} \mathrm{O}, 1.0 \mathrm{~mL}$) at $0^{\circ} \mathrm{C}$. Then the mixture was stirred at room temperature for 1 h .2 -Formyl-5-methoxybenzonitrile ($3.0 \mathrm{mmol}, 483.5 \mathrm{mg}$) was added at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred at room temperature for 1 h . Second step: To a solution of the above crude alcohol in DCM (8 mL) were added imidazole ($6.0 \mathrm{mmol}, 408.5 \mathrm{mg}$) and TBSCl $(4.5 \mathrm{mmol}$,
678.2 mg), and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum ether : ethyl acetate $=20: 1$) afforded the desired product in 69% overall yield (778 mg) as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.22(\mathrm{~s}, 3 \mathrm{H}), 0.27(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}$, $9 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 7.12-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.77$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.0,-4.5,18.2,25.7,55.5,63.0,86.4$, $88.5,111.2,117.1,117.2,119.4,122.3,128.2,128.5,128.8,131.5,137.5,158.9$. IR (neat): 2957, 2928, 2856, 2228, 1606, 1574, 1490, 1463, 1443, 1292, 1250, 1158, 1100, 1061, 1001, 982, 836, 778, 755, 690, $670 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+}$: 400.1703, found 400.1707.

1 s
2-(1-((tert-butyldimethylsilyl)oxy)-3-(trimethylsilyl)prop-2-yn-1-yl)benzonitrile
ethynyltrimethylsilane ($5.5 \mathrm{mmol}, 777 \mu \mathrm{~L}$) in THF (8 mL) was added $\operatorname{EtMgBr}(5 \mathrm{mmol}, 3.0$ M solution in $\mathrm{Et}_{2} \mathrm{O}, 1.67 \mathrm{~mL}$) at $0^{\circ} \mathrm{C}$. Then the mixture was stirred at room temperature for 1 h. 2-Cyanobenzaldehyde ($5.0 \mathrm{mmol}, 655.7 \mathrm{mg}$) was added at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred at room temperature for 1 h . Second step: To a solution of the above crude alcohol in DCM (10 mL) were added imidazole ($10.0 \mathrm{mmol}, 680.8 \mathrm{mg}$) and $\mathrm{TBSCl}(7.5 \mathrm{mmol}, 1.13 \mathrm{~g})$, and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum ether to petroleum ether : ethyl acetate $=40: 1$) afforded the desired product in 40% overall yield (680 mg) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.17(\mathrm{~s}, 9 \mathrm{H}), 0.20(\mathrm{~s}, 3 \mathrm{H})$, $0.24(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.0,-4.5,-0.4,18.2,25.7,63.4,92.0,104.1,110.7$, 117.0, 127.3, 128.2, 132.8, 132.9, 144.9. IR (neat): 2957, 2930, 2857, 2227, 1472, 1362, 1250, 1209, 1113, 1073, 1006, 837, 778, 759, 701, $676 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NONaSi}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 366.1680$, found 366.1678 .

2-(1-((tert-butyldimethylsilyl)oxy)-6-chlorohex-2-yn-1-yl)benzonitrile (1t). 5-chloropent-1 -yne ($5.5 \mathrm{mmol}, 583 \mu \mathrm{~L}$) in THF (8 mL) was added $\mathrm{EtMgBr}\left(5 \mathrm{mmol}, 3.0 \mathrm{M}\right.$ solution in $\mathrm{Et}_{2} \mathrm{O}$, 1.67 mL) in THF (8 mL) at $0^{\circ} \mathrm{C}$. Then the mixture was stirred at room temperature for 1 h .2 Cyanobenzaldehyde ($5.0 \mathrm{mmol}, 655.7 \mathrm{mg}$) was added at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred at room temperature for 1 h . Second step: To a solution of the above crude alcohol in DCM (8 mL) were added imidazole ($10.0 \mathrm{mmol}, 680.8 \mathrm{mg}$) and TBSCl ($7.5 \mathrm{mmol}, 1.13 \mathrm{~g}$), and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum ether to petroleum ether : ethyl acetate $=30: 1$) afforded the desired product in 72% overall yield (1.26 g) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.20(\mathrm{~s}, 3 \mathrm{H}), 0.91$ (s, 9H), 1.90-1.97 (m, 2H), 2.38-2.41 (m, 2H), 3.60 (t, J=6.4 Hz, 2H), 5.72 (s, 1H), 7.34-7.38 $(\mathrm{m}, 1 \mathrm{H}), 7.57-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-5.2,-$ 4.7, 16.0, 18.1, 25.6, 30.9, 43.4, 62.9, 80.3, 85.4, 110.1, 117.0, 126.7, 128.0, 132.7, 132.9, 145.6. The spectroscopic data is in agreement with that previously reported. ${ }^{5}$

2-(1-((tert-butyldimethylsilyl)oxy)-4-(methyl(phenyl)amino)but-2-yn-1-yl)benzonitrile (1u). N, N-dimethylprop-2-yn-1-amine ($3.3 \mathrm{mmol}, 479.2 \mathrm{mg}$) in THF (6 mL) was added $\operatorname{EtMgBr}\left(3 \mathrm{mmol}, 3.0 \mathrm{M}\right.$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 1.0 \mathrm{~mL}\right)$ at $0{ }^{\circ} \mathrm{C}$. Then the mixture was stirred at room temperature for 1 h . 2-Cyanobenzaldehyde ($3.0 \mathrm{mmol}, 393.4 \mathrm{mg}$) was added at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred at room temperature for 1 h . Second step: To a solution of the above crude alcohol in DCM (8 mL) were added imidazole ($6.0 \mathrm{mmol}, 408.5 \mathrm{mg}$) and TBSCl ($4.5 \mathrm{mmol}, 678.2 \mathrm{mg}$), and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum ether : ethyl acetate $=30: 1$) afforded the desired product in 78% overall yield (915 mg) as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H})$,
$0.87(\mathrm{~s}, 9 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}), 4.06(\mathrm{~s}, 2 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 6.76-6.82(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.24(\mathrm{~m}, 2 \mathrm{H})$, $7.29-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) δ-5.2, -4.7, 18.1, 25.6, 38.6, 42.7, 62.8, 82.7, 83.0, 110.2, 114.3, $117.0,118.1,127.0,128.0,128.9,132.7,132.9,145.2,149.0$. The spectroscopic data is in agreement with that previously reported. ${ }^{5}$

Optimization studies.

Table S1. Optimization of the Reaction Conditions

		$5 \mathrm{~mol} \%$ catalyst 2.0 equiv N -oxide (2) 2.0 equiv $\mathrm{H}_{2} \mathrm{O}$ 0.5 equiv Lewis acid Ph solvent, $100^{\circ} \mathrm{C}, 2 \mathrm{~h}$			
		C			
entry	catalyst	solvent	N -oxide	Lewis acid	yield (\%) ${ }^{\text {a }}$
1	$\mathrm{PPh}_{3} \mathrm{AuNTf}{ }_{2}$	DCE	2a	-	-b
2	A	DCE	2a	$\mathrm{Zn}(\mathrm{OTf})_{2}$	32
3	B	DCE	2a	$\mathrm{Zn}(\mathrm{OTf})_{2}$	-(22)
4	IPrAuNTf ${ }_{2}$	DCE	2a	$\mathrm{Zn}(\mathrm{OTf})_{2}$	57
5	$\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}$	DCE	2a	$\mathrm{Zn}(\mathrm{OTf})_{2}$	88
6	$\mathrm{PPh}_{3} \mathrm{AuCl}$	DCE	2a	$\mathrm{Zn}(\mathrm{OTf})_{2}$	77
7	$\mathrm{PPh}_{3} \mathrm{AuOTf}$	DCE	2a	$\mathrm{Zn}(\mathrm{OTf})_{2}$	83
8	AuBr_{3}	DCE	2a	$\mathrm{Zn}(\mathrm{OTf})_{2}$	-
9	$\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}$	DCE	2a	ZnCl_{2}	12(67)
10	$\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}$	DCE	2a	$\mathrm{Al}(\mathrm{OTf})_{3}$	31
11	$\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}$	DCE	2a	$\mathrm{Sc}(\mathrm{OTf})_{3}$	46
12	$\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}$	DCE	2b	$\mathrm{Zn}(\mathrm{OTf})_{2}$	67
13	$\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}$	DCE	2c	$\mathrm{Zn}(\mathrm{OTf})_{2}$	58
14	$\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}$	DCE	2d	$\mathrm{Zn}(\mathrm{OTf})_{2}$	68
15	$\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}$	toluene	2a	$\mathrm{Zn}(\mathrm{OTf})_{2}$	72
16	$\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}$	MeCN	2a	$\mathrm{Zn}(\mathrm{OTf})_{2}$	71
17	$\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}$	DCE	2a	$\mathrm{Zn}(\mathrm{OTf})_{2}$	$73^{\text {c }}$
18	$\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}$	DCE	2a	$\mathrm{Zn}(\mathrm{OTf})_{2}{ }^{\text {d }}$	77
19	AgNTf_{2}	DCE	2a	$\mathrm{Zn}(\mathrm{OTf})_{2}$	-(24)
20	HNTf_{2}	DCE	2a	$\mathrm{Zn}(\mathrm{OTf})_{2}$	-
21	-	DCE	2a	$\mathrm{Zn}(\mathrm{OTf})_{2}$	${ }^{e}$

${ }^{a}$ The yields were determined by ${ }^{1} \mathrm{H}$ NMR using 1,3,5-trimethoxybenzene as an internal standard. The yields of the unreacted $\mathbf{1 a}$ are shown in parentheses. ${ }^{b} 6 \mathrm{~h}$. ${ }^{c} 5.0$ equiv of $\mathrm{H}_{2} \mathrm{O}$ was used. ${ }^{d} 0.25$ equiv of $\mathrm{Zn}(\mathrm{OTf})_{2}$ was used. ${ }^{e} 12 \mathrm{~h}$. 2-(3-Oxo-3-phenylprop-1-yn-1-yl)benzonitrile was formed in ca. 34% yield.

The results of Table S1, entry 21.

To a sealable tube were added o-(cyano)phenyl propargyl ether $\mathbf{1 a}(0.5 \mathrm{mmol}, 173.8 \mathrm{mg})$, DCE (5 mL), 2,6-dichloropyridine N-oxide 2a ($1 \mathrm{mmol}, 164 \mathrm{mg}$), $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{mmol}, 18 \mu \mathrm{~L}$) and $\mathrm{Zn}(\mathrm{OTf})_{2}(0.25 \mathrm{mmol}, 90.9 \mathrm{mg})$ under Argon. Then the tube was sealed. After the reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 12 h as monitored by thin-layer chromatography, the mixture was filtered through a pad of silica gel and washed with ethyl acetate. The solvent was evaporated under the reduced pressure and the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=30: 1$ to $25: 1$ to $20: 1$) to afford 2-(3-oxo-3-phenylprop-1-yn-1-yl)benzonitrile in ca. 34% yield (39 mg) as a light yellow solid (containing small amount of impurity), along with a minor byproduct (11 mg), the structure of which was not defined yet. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52-7.61(\mathrm{~m}, 3 \mathrm{H})$, 7.63-7.68 (m, 2H), 7.75-7.82 (m, 2H), $8.33(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 86.9,91.1,116.2,117.1,124.0,128.8,129.9,130.8,132.7,132.9,134.3,134.6,136.3,177.4$. The spectroscopic data is in agreement with that previously reported. ${ }^{6}$

Typical procedures for the synthesis of 4-benzoylisoquinolin-1(2H)-one (3a).

To a sealable tube were added o-(cyano)phenyl propargyl ether $\mathbf{1 a}(0.3 \mathrm{mmol}, 104.3 \mathrm{mg})$, DCE (3 mL), 2,6-dichloropyridine N-oxide 2a ($0.6 \mathrm{mmol}, 98.4 \mathrm{mg}$), $\mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{mmol}, 10.8$ $\mu \mathrm{L}), \mathrm{Zn}(\mathrm{OTf})_{2}(0.15 \mathrm{mmol}, 54.5 \mathrm{mg})$ and $\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}(0.015 \mathrm{mmol}, 11.1 \mathrm{mg})$ under Argon. Then the tube was sealed. After the reaction mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 2 h as monitored by thin-layer chromatography, the reaction mixture was filtered through a pad of silica gel and washed with ethyl acetate. The solvent was evaporated under the reduced
pressure and the residue was purified by column chromatography on silica gel (wet loading, eluent: petroleum ether: acetone $=5: 2$) to afford $\mathbf{3 a}$ in 80% yield $(59.6 \mathrm{mg})$ as a light yellow solid.

4-Benzoylisoquinolin-1(2H)-one (3a). M.p. $192-194{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ 7.48-7.55 (m, 3H), 7.57-7.66 (m, 2H), 7.75-7.81 (m, 3H), $8.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 11.82(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 113.5,125.2$, 125.6, 127.1, 127.3, 128.6, 129.5, 132.3, 133.2, 135.1, 139.0, 139.3, 161.5, 193.6. IR (neat): $3181,3053,2869,1668,1631,1617,1596,1511,1473,1443,1333,1316,1284,1240,1145$, 1063, $927,874,795,790,763,746,711,694,684 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{NO}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}: 250.0863$, found 250.0863 .

3b
4-(4-Chlorobenzoyl)isoquinolin-1(2H)-one (3b). Following the typical procedure, 0.3 mmol scale, 1b ($0.3 \mathrm{mmol}, 114.6 \mathrm{mg}$), DCE (3 mL), 2a ($0.6 \mathrm{mmol}, 98.4 \mathrm{mg}$), $\mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{mmol}, 10.8$ $\mu \mathrm{L}), \mathrm{Zn}(\mathrm{OTf})_{2}(0.15 \mathrm{mmol}, 54.5 \mathrm{mg})$ and $\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}(0.015 \mathrm{mmol}, 11.1 \mathrm{mg})$ were stirred at $100{ }^{\circ} \mathrm{C}$ for 2 h . Column chromatography on silica gel (eluent: petroleum ether : acetone $=4: 1$ to $5: 2$) afforded the title product as a yellow solid in $73 \%(62 \mathrm{mg})$ isolated yield. M.p. 248$251{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.53-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.77-7.81(\mathrm{~m}, 3 \mathrm{H}), 8.29(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 11.86(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 113.2$,
125.12, 125.51, 127.1, 127.3, 128.6, 131.3, 133.1, 135.0, 137.2, 137.7, 139.5, 161.5, 192.3. IR (neat): $3291,3184,3050,1670,1637,1617,1474,1334,1296,1286,1260,1242,1087,1012$, 885, 876, 840, 799, 790, 772, 757, 747, 692, 684, $665 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}: 284.0473$, found 284.0474.

4-(4-Fluorobenzoyl)isoquinolin-1(2H)-one (3c). Following the typical procedure, 0.3 mmol scale, $1 \mathbf{c}(0.3 \mathrm{mmol}, 109.7 \mathrm{mg})$, DCE (3 mL), 2a $(0.6 \mathrm{mmol}, 98.4 \mathrm{mg}), \mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{mmol}, 10.8$ $\mu \mathrm{L}), \mathrm{Zn}(\mathrm{OTf})_{2}(0.15 \mathrm{mmol}, 54.5 \mathrm{mg})$ and $\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}(0.015 \mathrm{mmol}, 11.1 \mathrm{mg})$ were stirred at $100^{\circ} \mathrm{C}$ for 2 h . Column chromatography on silica gel (eluent: petroleum ether $:$ ethyl acetate $=$ 10:1 to $5: 1$ to $3: 1$) afforded the title product as a yellow solid in $83 \%(66.7 \mathrm{mg})$ isolated yield. M.p. 210-212 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.33-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.56-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.76-7.87(\mathrm{~m}, 3 \mathrm{H}), 8.29$ (dd, $J=8.0 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.39$ (d, $J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 11.82(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta 113.5,115.5,115.7$, $125.1,125.6,127.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=23.8 \mathrm{~Hz}\right), 132.4\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=9.7 \mathrm{~Hz}\right), 133.2,135.1,135.5\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}\right.$ $=3.0 \mathrm{~Hz}), 139.0,161.6,164.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=249.1 \mathrm{~Hz}\right), 192.2 .{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta$ -102.4 (m, 1F). IR (neat): $3181,3053,1669,1634,1618,1597,1474,1334,1301,1284,1239$, 1226, 1153, 1145, 1063, 868, 847, 775, 754, 738, 698, $684 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}: 268.0768$, found 268.0770.

3d

4-(4-(trifluoromethyl)benzoyl)isoquinolin- $\mathbf{1 (2 H}$)-one (3d). Following the typical procedure, 0.3 mmol scale, $1 \mathbf{d}(0.3 \mathrm{mmol}, 124.7 \mathrm{mg})$, DCE (3 mL), 2a ($0.6 \mathrm{mmol}, 98.4 \mathrm{mg}), \mathrm{H}_{2} \mathrm{O}(0.6$ $\mathrm{mmol}, 10.8 \mu \mathrm{~L}), \mathrm{Zn}(\mathrm{OTf})_{2}(0.15 \mathrm{mmol}, 54.5 \mathrm{mg})$ and $\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}(0.015 \mathrm{mmol}, 11.1 \mathrm{mg})$ were stirred at $100^{\circ} \mathrm{C}$ for 1.5 h . Column chromatography on silica gel (eluent: petroleum ether : ethyl acetate $=5: 1$ to $4: 1$ to $3: 1$) afforded the title product as a white solid in $66 \%(63.2 \mathrm{mg})$ isolated yield. M.p. $255-256{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.54-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.79-$ $7.95(\mathrm{~m}, 5 \mathrm{H}), 8.29(\mathrm{dd}, J=7.8 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 11.89(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 112.9,123.9(\mathrm{q}, J=271.4 \mathrm{~Hz}), 125.2,125.5(\mathrm{q}, J=$ $4.4 \mathrm{~Hz}), 127.1,127.4,130.0,131.6(\mathrm{q}, ~ J=31.3 \mathrm{~Hz}), 133.3,134.8,140.8,142.8,161.6,192.6$. ${ }^{19}$ F NMR (376 MHz, DMSO- d_{6}) δ-62.2 (s, 3F). IR (neat): 3183, 3050, 2876, 1669, 1642, $1619,1510,1474,1323,1309,1162,1142,1109,1067,1058,889,877,853,778,759,740$, $709,685,656 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{~F}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 318.0736$, found 318.0735.

4-(1-oxo-1,2-dihydroisoquinoline-4-carbonyl)benzonitrile (3e). Following the typical procedure, 0.3 mmol scale, $\mathbf{1 e}(0.3 \mathrm{mmol}, 111.8 \mathrm{mg})$, DCE (3 mL), 2a ($0.6 \mathrm{mmol}, 98.4 \mathrm{mg}$), $\mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{mmol}, 10.8 \mu \mathrm{~L}), \mathrm{Zn}(\mathrm{OTf})_{2}(0.15 \mathrm{mmol}, 54.5 \mathrm{mg})$ and $\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}(0.015 \mathrm{mmol}$, 11.1 mg) were stirred at $100{ }^{\circ} \mathrm{C}$ for 4 h . Column chromatography on silica gel (eluent: petroleum ether : ethyl acetate $=4: 1$ to $2: 1$ to $1: 1$) for three times to afford the title product (containing some amount of impurity) in 26% isolated yield. In another experiment, the yield of $\mathbf{3} \mathbf{e}$ was determined by ${ }^{1} \mathrm{H}$ NMR of the crude reaction mixture (67%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ 7.61-7.64 (m, 1H), 7.82-7.91 (m, 3H), 8.01-8.03 (m, 2H), $8.30(\mathrm{dd}, J=8.0 \mathrm{~Hz}$, $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.60(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 11.91(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 112.7,114.1,118.3,125.2,125.4,127.1,127.5,129.9,132.6,133.4,134.7,141.1,143.0$, 161.5, 192.5. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 275.0815$, found 275.0812.

4-(4-Methylbenzoyl)isoquinolin- $\mathbf{1 (2 H}$)-one (3f). Following the typical procedure, 0.3 mmol scale, 1d ($0.3 \mathrm{mmol}, 108.5 \mathrm{mg}$), DCE (3 mL), 2a ($0.6 \mathrm{mmol}, 98.4 \mathrm{mg}$), $\mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{mmol}, 10.8$ $\mu \mathrm{L}), \mathrm{Zn}(\mathrm{OTf})_{2}(0.15 \mathrm{mmol}, 54.5 \mathrm{mg})$ and $\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}(0.015 \mathrm{mmol}, 11.1 \mathrm{mg})$ were stirred at $100{ }^{\circ} \mathrm{C}$ for 2 h . Column chromatography on silica gel (eluent: petroleum ether : ethyl acetate : acetone $=8: 1: 1$ to $5: 1: 1$) afforded the title product as a light yellow solid in $84 \%(66.1 \mathrm{mg})$ isolated yield. M.p. 215-217 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 2.40(\mathrm{~s}, 3 \mathrm{H}), 7.34-7.36(\mathrm{~m}$, $2 \mathrm{H}), 7.47$ (d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.77-7.81(\mathrm{~m}, 1 \mathrm{H}), 8.29$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 11.77(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta 21.1,113.7,125.1,125.5,127.0,127.2,129.1,129.6,133.1,135.2,136.2,138.3$, 142.7, 161.5, 193.2. IR (neat): 3296, 3176, 3034, 2922, 2862, 1683, 1637, 1618, 1605, 1473, 1444, 1337, 1312, 1289, 1239, 1181, 1162, 1066, 891, 835, 771, 746, 739, $685 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 264.1019$, found 264.1019.

(4-(tert-Butyl)benzoyl)isoquinolin-1(2H)-one (3g). Following the typical procedure, 0.3 mmol scale, $\mathbf{1 e}(0.3 \mathrm{mmol}, 121.1 \mathrm{mg})$, $\mathrm{DCE}(3 \mathrm{~mL})$, 2a $(0.6 \mathrm{mmol}, 98.4 \mathrm{mg}), \mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{mmol}$, $10.8 \mu \mathrm{~L}), \mathrm{Zn}(\mathrm{OTf})_{2}(0.15 \mathrm{mmol}, 54.5 \mathrm{mg})$ and $\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}(0.015 \mathrm{mmol}, 11.1 \mathrm{mg})$ were stirred at $100{ }^{\circ} \mathrm{C}$ for 3 h . Column chromatography on silica gel (eluent: petroleum ether : acetone $=6: 1$ to $4: 1$) afforded the part product as a white solid in $63 \%(57.4 \mathrm{mg})$ isolated yield. Another part of product was separated by preparative TLC on silica gel in $7 \%(6.8 \mathrm{mg}$) yield. The combined yield of $\mathbf{3 e}$ was 70%. M.p. $228-231^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6})
$\delta 1.30(\mathrm{~s}, 9 \mathrm{H}), 7.49-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.70-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.77-7.80(\mathrm{~m}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 11.77(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 30.9,34.8$, 113.6, 125.1, 125.4, 125.6, 127.1, 127.2, 129.5, 133.1, 135.2, 136.2, 138.7, 155.4, 161.5, 193.1. IR (neat): $3184,3042,2965,2869,2744,1669,1631,1617,1603,1473,1335,1313$, 1284, 1239, 1187, 1145, 1109, 1063, 888, 847, 779, 762, 754, 707, 687, $665 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 306.1489$, found 306.1478.

(4-Methoxybenzoyl)isoquinolin-1(2H)-one (3h). Following the typical procedure, 0.3 mmol scale, $\mathbf{1 h}(0.3 \mathrm{mmol}, 113.4 \mathrm{mg})$, DCE (3 mL), 2a $(0.6 \mathrm{mmol}, 98.4 \mathrm{mg}), \mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{mmol}, 10.8$ $\mu \mathrm{L}), \mathrm{Zn}(\mathrm{OTf})_{2}(0.15 \mathrm{mmol}, 54.5 \mathrm{mg})$ and $\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}(0.015 \mathrm{mmol}, 11.1 \mathrm{mg})$ were stirred at $100^{\circ} \mathrm{C}$ for 2 h . Column chromatography on silica gel (eluent: petroleum ether : ethyl acetate $=$ 10:1 to $4: 1$ to 2:1) afforded the title product as a light yellow solid in $60 \%(50 \mathrm{mg})$ isolated yield. M.p. 190-192 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d_{6}$) $\delta 3.85$ (s, 3H), 7.06-7.08 (m, 2H), $7.46(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.75-7.80(\mathrm{~m}, 3 \mathrm{H}), 8.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.29$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 11.75(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 55.6,113.9$, 114.1, 125.1, 125.6, 127.0, 127.2, 131.2, 131.9, 132.9, 135.3, 137.1, 161.5, 162.8, 192.1. IR (neat): $3312,3181,3063,2917,2835,1681,1618,1598,1571,1501,1471,1456,1329,1289$, 1247, 1234, 1175, 1157, 1140, 1023, 888, 841, 780, 759, 699, $686 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 280.0968$, found 280.0971.

4-(3-Methylbenzoyl)isoquinolin- $\mathbf{1 (2 H}$)-one (3i). Following the typical procedure, 0.3 mmol scale, $\mathbf{1 g}(0.3 \mathrm{mmol}, 108.5 \mathrm{mg})$, DCE (3 mL), 2a ($0.6 \mathrm{mmol}, 98.4 \mathrm{mg}$), $\mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{mmol}, 10.8$ $\mu \mathrm{L}), \mathrm{Zn}(\mathrm{OTf})_{2}(0.15 \mathrm{mmol}, 54.5 \mathrm{mg})$ and $\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}(0.015 \mathrm{mmol}, 11.1 \mathrm{mg})$ were stirred at $100{ }^{\circ} \mathrm{C}$ for 2 h . Column chromatography on silica gel (eluent: petroleum ether : acetone $=4: 1$ to $5: 2$) afforded the title product as a yellow solid in $64 \%(50.8 \mathrm{mg}$) isolated yield. M.p. 184$187{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 2.37(\mathrm{~s}, 3 \mathrm{H}), 7.39-7.61(\mathrm{~m}, 6 \mathrm{H}), 7.78-7.81(\mathrm{~m}, 1 \mathrm{H})$, $8.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 11.77(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta 20.9,113.6,125.2,125.6,126.7,127.1,127.3,128.4,129.8,133.0,133.1,135.1$, 138.0, 139.0, 139.1, 161.6, 193.7. IR (neat): $3312,3173,3045,1636,1625,1586,1474,1444$, 1338, 1311, 1171, 886, 774, 734, 709, $686 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 286.0839$, found 286.0847 .

4
3-Amino-2-(2-methylbenzoyl)-1H-inden-1-one (4). Following the typical procedure, 0.3 mmol scale, $\mathbf{1 h}(0.3 \mathrm{mmol}, 108.5 \mathrm{mg})$, DCE (3 mL), 2a ($0.6 \mathrm{mmol}, 98.4 \mathrm{mg}$), $\mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{mmol}$, $10.8 \mu \mathrm{~L}), \mathrm{Zn}(\mathrm{OTf})_{2}(0.15 \mathrm{mmol}, 54.5 \mathrm{mg})$ and $\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}(0.015 \mathrm{mmol}, 11.1 \mathrm{mg})$ were stirred at $100^{\circ} \mathrm{C}$ for 4 h . Column chromatography on silica gel (eluent: petroleum ether : ethyl acetate $:$ acetone $=12: 1: 1$ to $8: 1: 1$) afforded the title product as a yellow solid in 17% (13.5 mg) isolated yield. M.p. $252-254{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 2.20(\mathrm{~s}, 3 \mathrm{H}), 7.12-$ $7.20(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.65(\mathrm{~m}, 2 \mathrm{H}), 8.08-8.10(\mathrm{~m}, 1 \mathrm{H})$, $10.17(\mathrm{~s}, 1 \mathrm{H}), 10.24(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) δ 19.0, 104.0, 121.3, 121.8,
124.8, 126.9, 128.3, 129.6, 132.5, 133.6, 133.9, 135.1, 135.7, 141.6, 171.5, 186.7, 192.0. IR (neat): $3306,3166,1675,1629,1612,1588,1474,1448,1310,1264,1231,1173,1160,1129$, $1114,978,866,776,763,735,699,663 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 286.0839 , found 286.0840 .

(2-Naphthoyl)isoquinolin-1(2H)-one (3k). Following the typical procedure, 0.3 mmol scale, 1i ($0.3 \mathrm{mmol}, 119.3 \mathrm{mg}$), DCE (3 mL), 2a ($0.6 \mathrm{mmol}, 98.4 \mathrm{mg}$), $\mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{mmol}, 10.8 \mu \mathrm{~L}$), $\mathrm{Zn}(\mathrm{OTf})_{2}(0.15 \mathrm{mmol}, 54.5 \mathrm{mg})$ and $\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}(0.015 \mathrm{mmol}, 11.1 \mathrm{mg})$ were stirred at 100 ${ }^{\circ} \mathrm{C}$ for 2 h . Column chromatography on silica gel (eluent: petroleum ether : ethyl acetate : acetone $=12: 1: 1$ to $6: 1: 1)$ afforded the title product as a pink solid in $43 \%(38.4 \mathrm{mg})$ isolated yield. M.p. 232-234 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.40(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.69$ (m, 5H), 7.88-7.97 (m, 2H), 8.05 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 9.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 11.76(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta 114.4,124.9,125.1,125.3,125.5,126.6,126.9,127.2,127.4,127.6,128.5,130.3,130.6$, 133.3, 133.6, 134.8, 137.3, 142.2, 161.6, 195.1. IR (neat): 3189, 3053, 2848, 2759, 1677, $1637,1622,1474,1335,1289,1256,1247,1173,1140,1111,890,773,749,741,726,688$, $681 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 300.1019$, found 300.1015 .

2-(Cyclohex-1-ene-1-carbonyl)isoquinolin-1(2H)-one (31). Following the typical procedure, 0.3 mmol scale, $\mathbf{1 j}$ ($0.3 \mathrm{mmol}, 105.5 \mathrm{mg}$), DCE (3 mL), 2a ($0.6 \mathrm{mmol}, 98.4 \mathrm{mg}$), $\mathrm{H}_{2} \mathrm{O}(0.6$
$\mathrm{mmol}, 10.8 \mu \mathrm{~L}), \mathrm{Zn}(\mathrm{OTf})_{2}(0.15 \mathrm{mmol}, 54.5 \mathrm{mg})$ and $\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}(0.015 \mathrm{mmol}, 11.1 \mathrm{mg})$ were stirred at $100^{\circ} \mathrm{C}$ for 1.5 h . Column chromatography on silica gel (eluent: petroleum ether : ethyl acetate $:$ acetone $=12: 1: 1$ to $6: 1: 1$) afforded the title product as a white solid in 60% $(45.5 \mathrm{mg})$ isolated yield. M.p. $169-171{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.70-1.77(\mathrm{~m}, 4 \mathrm{H})$, 2.28 (w, 2H), 2.47 (w, 2H), 6.70 (s, 1H), 7.55-7.61 (m, 2H), 7.73-7.77 (m, 1H), 8.21 (d, $J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 12.43(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.6,21.9$, 23.9, 26.1, 116.9, 125.4, 125.5, 127.2, 127.4, 133.3, 133.4, 135.9, 140.4, 143.3, 164.6, 195.2. IR (neat): 3309, 3181, 3034, 2926, 2865, 1670 ,1622, 1475, 1387, 1339, 1283, 1267, 1237, 1178, 1138, 1058, 930, 885, 829, 791, 772, 732, 684, $662 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 254.1176$, found 254.1177.

4-Pentanoylisoquinolin-1(2H)-one (3m). Following the typical procedure, 0.3 mmol scale, 1k ($0.3 \mathrm{mmol}, 98.3 \mathrm{mg}$), DCE (3 mL), 2a ($0.6 \mathrm{mmol}, 98.4 \mathrm{mg}$), $\mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{mmol}, 10.8 \mu \mathrm{~L}$), $\mathrm{Zn}(\mathrm{OTf})_{2}(0.15 \mathrm{mmol}, 54.5 \mathrm{mg})$ and $\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}(0.015 \mathrm{mmol}, 11.1 \mathrm{mg})$ were stirred at 100 ${ }^{\circ} \mathrm{C}$ for 1 h . Column chromatography on silica gel (eluent: petroleum ether : acetone $=5: 2$ to petroleum : ethyl acetate : acetone $=4: 1: 1$) afforded the title product as a light yellow solid in $62 \%(42.3 \mathrm{mg})$ isolated yield. M.p. $180-183{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 0.88-0.92$ $(\mathrm{t}, 3 \mathrm{H}), 1.29-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.62(\mathrm{~m}, 2 \mathrm{H}), 2.90-2.93(\mathrm{t}, 3 \mathrm{H}), 7.53-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.75-7.79$ (m, 1H), $8.18(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 11.92(\mathrm{~s}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 13.9,21.8,26.7,38.5,113.3,125.3,125.5,126.9$, 127.0, 133.2, 134.8, 138.1, 161.8, 199.0. IR (neat): 3309, 3178, 3042, 2912, 2862, 1691, 1646, $1619,1467,1437,1335,1268,1245,1164,1141,1076,1032,881,789,770,744,687 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 230.1176$, found 230.1178.

4-(3-Phenylpropanoyl)isoquinolin-1(2H)-one (3n). Following the typical procedure, 0.3 mmol scale, $1 \mathbf{1 1}(0.3 \mathrm{mmol}, 112.7 \mathrm{mg}), \mathrm{DCE}(3 \mathrm{~mL})$, 2a $(0.6 \mathrm{mmol}, 98.4 \mathrm{mg}), \mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{mmol}$, $10.8 \mu \mathrm{~L}), \mathrm{Zn}(\mathrm{OTf})_{2}(0.15 \mathrm{mmol}, 54.5 \mathrm{mg})$ and $\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}(0.015 \mathrm{mmol}, 11.1 \mathrm{mg})$ were stirred at $100^{\circ} \mathrm{C}$ for 2 h . Column chromatography on silica gel (eluent: petroleum ether : ethyl acetate $:$ acetone $=8: 1: 1$ to $6: 1: 1$ to $4: 1: 1$) afforded the title product as a white solid in 62% (51.2 mg) isolated yield. M.p. $193-195{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ 2.92-2.95 (t, $3 H), 3.26-3.30(\mathrm{t}, 3 \mathrm{H}), 7.15-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.53-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.75-7.79(\mathrm{~m}$, $1 \mathrm{H}), 8.21-8.25(\mathrm{~m}, 2 \mathrm{H}), 8.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 11.94(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 30.1,40.1,113.2,125.3,125.5,125.8,126.9,127.0,128.2,128.5,133.2$, 134.7, 138.4, 141.3, 161.8, 197.9. IR (neat): 3184, 3013, 2924, 2867, 1674, 1646, 1620, 1474, 1341, 1296, 1261, 1244, 1138, 1113, 932, 880, 784, 765, 751, 694, $683 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 278.1176$, found 278.1176.

4-(Cyclopropanecarbonyl)isoquinolin-1(2H)-one (3o). Following the typical procedure, 0.3 mmol scale, $1 \mathrm{~m}(0.3 \mathrm{mmol}, 93.5 \mathrm{mg})$, DCE (3 mL), 2a ($0.6 \mathrm{mmol}, 98.4 \mathrm{mg}$), $\mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{mmol}$, $10.8 \mu \mathrm{~L}), \mathrm{Zn}(\mathrm{OTf})_{2}(0.15 \mathrm{mmol}, 54.5 \mathrm{mg})$ and $\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}(0.015 \mathrm{mmol}, 11.1 \mathrm{mg})$ were stirred at $100{ }^{\circ} \mathrm{C}$ for 1 h . Column chromatography on silica gel (eluent: petroleum ether : acetone $=5: 2$ to petroleum ether $:$ ethyl acetate $:$ acetone $=4: 1: 1$) afforded the title product as a white solid in $53 \%(33.8 \mathrm{mg})$ isolated yield. M.p. $260-263^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right) \delta$ 0.94-1.01 (m, 4H), 2.66-2.70 (m, 1H), 7.53-7.56 (m, 1H), 7.73-7.77 (m, 1H), $8.25(\mathrm{~d}, J=$ S27
$7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H}), 8.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 11.98(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta 10.6,17.8,114.5,125.3,125.5,126.9,127.1,133.1,134.5,137.9,161.8,197.8$. IR (neat): 3369, 3181, 3040, 2859, 1686, 1637, 1618, 1471, 1404, 1334, 1268, 1168, 1142, 1117, 1081, 1032, 945, 892, 873, 859, 778, 753, $686 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{NO}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}: 214.0863$, found 214.0862 .

4-(2-Phenoxyacetyl)isoquinolin- $\mathbf{1 (2 H}$)-one (3p). Following the typical procedure, 0.3 mmol scale, $1 \mathbf{n}(0.3 \mathrm{mmol}, 113.3 \mathrm{mg})$, DCE (3 mL), 2a($0.6 \mathrm{mmol}, 98.4 \mathrm{mg}$), $\mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{mmol}, 10.8$ $\mu \mathrm{L}), \mathrm{Zn}(\mathrm{OTf})_{2}(0.15 \mathrm{mmol}, 54.5 \mathrm{mg})$ and $\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}(0.015 \mathrm{mmol}, 11.1 \mathrm{mg})$ were stirred at $100^{\circ} \mathrm{C}$ for 2 h . Column chromatography on silica gel (eluent: petroleum ether : ethyl acetate $=$ 15:1 to $8: 1$ to $5: 1$ to $3: 1$) afforded the title product as a white solid in $34 \%(28.5 \mathrm{mg})$ isolated yield. M.p. 226-228 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 5.40(\mathrm{~s}, 2 \mathrm{H}$), 6.91-6.98 (m, 3H), 7.26-7.30 (m, 2H), 7.55-7.59 (m, 1H), 7.77-7.81 (m, 1H), $8.26(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~s}$, $1 \mathrm{H}), 8.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 12.12(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta 69.8,110.7$, 114.6, 120.8, 125.0, 125.4, 126.9, 127.2, 129.4, 133.4, 134.5, 138.7, 158.0, 161.7, 193.2. IR (neat): $3312,3178,3047,2922,2881,2754,1659,1625,1599,1489,1474,1337,1217,1171$, 1141, 1064, 915, 785, 772, 758, 737, $691 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 280.0968 , found 280.0968 .

$3 q$

4-Benzoyl-6-bromoisoquinolin- $\mathbf{1 (2 H)}$-one (3q). Following the typical procedure, 0.3 mmol scale, $\mathbf{1 0}(0.3 \mathrm{mmol}, 127.9 \mathrm{mg})$, DCE (3 mL), 2a ($0.6 \mathrm{mmol}, 98.4 \mathrm{mg}$), $\mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{mmol}, 10.8$ $\mu \mathrm{L}), \mathrm{Zn}(\mathrm{OTf})_{2}(0.15 \mathrm{mmol}, 54.5 \mathrm{mg})$ and $\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}(0.015 \mathrm{mmol}, 11.1 \mathrm{mg})$ were stirred at $100^{\circ} \mathrm{C}$ for 2 h . Column chromatography on silica gel (eluent: petroleum ether : ethyl acetate $=$ 10:1 to $5: 1$ to $3: 1$) afforded the title product as a white solid in $74 \%(72.8 \mathrm{mg})$ isolated yield. M.p. 223-225 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d_{6}$) $\delta 7.52-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.63-7.67(\mathrm{~m}, 1 \mathrm{H})$, 7.74-7.76(m, 3H), $8.18(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.72(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 11.92(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) δ 112.1, 124.4, 127.5, 127.7, 128.5, 129.3, 129.4, 130.2, 132.3, 136.5, 138.7, 141.1, 161.0, 193.4. IR (neat): 3291, 3173, 3053, 2919, 1679, 1631, 1617, 1591, 1446, $1424,1316,1286,1231,1172,1059,888,827,802,781,750,722,689,681,653 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}: 327.9968$, found 327.9971 .

5-Benzoyl-7-methoxyisoquinolin-1(2H)-one (3r). Following the typical procedure, 0.16 mmol scale, $\mathbf{1 p}(0.16 \mathrm{mmol}, 60.4 \mathrm{mg})$, DCE $(1.6 \mathrm{~mL})$, 2a ($0.32 \mathrm{mmol}, 52.5 \mathrm{mg}$), $\mathrm{H}_{2} \mathrm{O}(0.32$ $\mathrm{mmol}, 5.8 \mu \mathrm{~L}), \mathrm{Zn}(\mathrm{OTf})_{2}(0.08 \mathrm{mmol}, 29.1 \mathrm{mg})$ and $\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}(0.008 \mathrm{mmol}, 5.9 \mathrm{mg})$ were stirred at $100^{\circ} \mathrm{C}$ for 2 h . Column chromatography on silica gel (eluent: petroleum ether : ethyl acetate $=10: 1$ to $8: 1$ to $5: 1$ to $3: 1$) afforded the title product as a white solid in $40 \%(17.8 \mathrm{mg})$ isolated yield. M.p. $249-251^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 3.90(\mathrm{~s}, 3 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H})$, 7.43-7.46 (m, 1H), 7.52-7.56 (m, 2H), 7.63-7.76 (m, 4H), 8.45 (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 11.76$ (s, 1H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 55.4,107.7,113.5,122.4,127.0,127.1,128.5,128.7$, 129.3, 132.2, 137.2, 139.0, 158.3, 161.1, 193.6. IR (neat): 3178, 3060, 3032, 2940, 2917, 2848, 1660, 1630, 1613, 1597, 1512, 1490, 1451, 1345, 1285, 1266, 1241, 1213, 1178, 1068, 1027, 889, 876, 841, 785, 752, 707, $687 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 280.0968, found 280.0967 .

1-Oxo-1,2-dihydroisoquinoline-4-carbaldehyde (3s). Following the typical procedure, 0.3 mmol scale, $\mathbf{1 q}(0.3 \mathrm{mmol}, 103.1 \mathrm{mg})$, DCE (3 mL), 2a $(0.6 \mathrm{mmol}, 98.4 \mathrm{mg}), \mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{mmol}$, $10.8 \mu \mathrm{~L}), \mathrm{Zn}(\mathrm{OTf})_{2}(0.15 \mathrm{mmol}, 54.5 \mathrm{mg})$ and $\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}(0.015 \mathrm{mmol}, 11.1 \mathrm{mg})$ were stirred at $100^{\circ} \mathrm{C}$ for 1 h . Column chromatography on silica gel (eluent: petroleum ether : ethyl acetate $:$ acetone $=12: 1: 1$ to $6: 1: 1$) afforded the title product as a brown solid in 23% (11.8 mg) isolated yield. M.p. 225-228 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.59-7.62(\mathrm{~m}, 1 \mathrm{H})$, 7.82-7.85 (m, 1H), 8.15 (d, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $9.76(\mathrm{~s}, 1 \mathrm{H}), 12.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) δ 113.7, 124.2, 124.7, 127.0, 127.6, 133.4, 133.7, 146.9, 161.7, 189.9. IR (neat): 3176, 3053, 2931, 2858, 2736, 1652, 1625, $1511,1479,1446,1386,1329,1270,1230,1139,1071,839,814,764,709,689,654 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{NO}_{2}[M]^{+}: 173.0471$, found 173.0468. The spectroscopic data is in agreement with that previously reported. ${ }^{7}$

Typical procedures for the synthesis of (1-methoxyisoquinolin-4-yl)(phenyl)methanone (5a).

To a sealable tube were added o-(cyano)phenyl propargyl ether $\mathbf{1 a}(0.3 \mathrm{mmol}, 104.3 \mathrm{mg})$, DCE (3 mL), 2,6-dichloropyridine N-oxide 2a ($0.6 \mathrm{mmol}, 98.4 \mathrm{mg}$), MeOH (6 mmol , $243 \mu \mathrm{~L}), \mathrm{Zn}(\mathrm{OTf})_{2}(0.15 \mathrm{mmol}, 54.5 \mathrm{mg}),(\mathrm{ArO})_{3} \mathrm{PAuCl}(\mathrm{Ar}=2,4$-di-tert-butylphenyl) (0.03 $\mathrm{mmol}, 26.4 \mathrm{mg})$ and $\mathrm{AgNTf}_{2}(0.03 \mathrm{mmol}, 11.6 \mathrm{mg})$ under Argon. Then the tube was sealed. After the reaction mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 2 h as monitored by thin-layer
chromatography, the reaction mixture was filtered through a pad of silica gel and washed with ethyl acetate. The solvent was evaporated under the reduced pressure and the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=$ $25: 1$) to afford $\mathbf{5 a}$ in 70% yield (55.4 mg) as a white solid.

5a
(1-methoxyisoquinolin-4-yl)(phenyl)methanone (5a). M.p. $96-98{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 4.20(\mathrm{~s}, 3 \mathrm{H}), 7.46-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.87-7.89(\mathrm{~m}$, $2 \mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 54.3,119.4,123.6,124.4,125.0,127.3,128.4,130.2,131.8,132.8,135.9,138.9$, 145.5, 163.0, 196.0. IR (neat): 2982, 2945, 2919, 1644, 1597, 1577, 1561, 1502, 1465, 1444, $1373,1323,1316,1308,1252,1203,1167,1101,1066,1025,980,923,871,764,746,717$, 698, 678, $655 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 264.1019$, found 264.1020.

5b
(1-Ethoxyisoquinolin-4-yl)(phenyl)methanone (5b). Following the typical procedure, 0.3 mmol scale, 1a ($0.3 \mathrm{mmol}, 104.3 \mathrm{mg}$), DCE (3 mL), 2a ($0.6 \mathrm{mmol}, 98.4 \mathrm{mg}$), EtOH (6 mmol , $0.35 \mathrm{~mL}), \mathrm{Zn}(\mathrm{OTf})_{2}(0.15 \mathrm{mmol}, 54.5 \mathrm{mg}),(\mathrm{ArO})_{3} \mathrm{PAuCl}(\mathrm{Ar}=2,4$-di-tert-butylphenyl$)$ ($0.03 \mathrm{mmol}, 26.4 \mathrm{mg}$) and $\mathrm{AgNTf}_{2}\left(0.03 \mathrm{mmol}, 11.6 \mathrm{mg}\right.$) were stirred at $100{ }^{\circ} \mathrm{C}$ for 2 h . Column chromatography on silica gel (eluent: petroleum ether to : petroleum ether : ethyl acetate $=30: 1)$ afforded the title product as a white waxy solid in $65 \%(54 \mathrm{mg})$ isolated yield.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.52-1.55(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 4.61-4.67(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.46-7.50 (m, 2H), 7.58-7.62 (m, 2H), 7.72-7.76 (m, 1H), 7.86-7.88 (m, 2H), $8.24(\mathrm{~s}, 1 \mathrm{H})$, $8.36(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.5,62.8$, $119.5,123.3,124.4,125.0,127.2,128.3,130.2,131.8,132.7,135.9,138.9,145.8,162.7$, 196.1. IR (neat): $3053,2977,2927,1647,1579,1563,1500,1446,1413,1378,1345,1312$, 1246, 1161, 1091, 1065, 1026, 858, 767, 717, 698, 678, $657 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 278.1176$, found 278.1174.

5c
Phenyl(1-propoxyisoquinolin-4-yl)methanone (5c). Following the typical procedure, 0.3 mmol scale, 1a ($0.3 \mathrm{mmol}, 104.3 \mathrm{mg}$), DCE (3 mL), 2a ($0.6 \mathrm{mmol}, 98.4 \mathrm{mg}$), ${ }^{n} \operatorname{PrOH}(6 \mathrm{mmol}$, $449 \mu \mathrm{~L}), \mathrm{Zn}(\mathrm{OTf})_{2}(0.15 \mathrm{mmol}, 54.5 \mathrm{mg}),(\mathrm{ArO})_{3} \mathrm{PAuCl}(\mathrm{Ar}=2,4$-di-tert-butylphenyl) (0.03 $\mathrm{mmol}, 26.4 \mathrm{mg})$ and $\mathrm{AgNTf}_{2}(0.03 \mathrm{mmol}, 11.6 \mathrm{mg})$ were stirred at $100^{\circ} \mathrm{C}$ for 3 h . Column chromatography on silica gel (eluent: petroleum ether to : petroleum ether : ethyl acetate $=$ 40:1 to $25: 1$) afforded the title product as a white waxy solid in $56 \%(49 \mathrm{mg})$ isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.10-1.14(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.90-1.99(\mathrm{~m}, 2 \mathrm{H}), 4.52-4.55(\mathrm{t}, J$ $=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.86-7.88(\mathrm{~m}, 2 \mathrm{H})$, $8.24(\mathrm{~s}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.6,22.2,68.5,119.5,123.3,124.4,125.0,127.2,128.3,130.2,131.7,132.7,135.9,138.9$, 145.8, 162.9, 196.0. IR (neat): 3055, 2966, 2932, 2872, 1649, 1579, 1563, 1500, 1446, 1413, $1359,1335,1314,1251,1161,1091,1065,946,879,804,767,716,698,678,657 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 292.1332$, found 292.1336.

(1-Butoxyisoquinolin-4-yl)(phenyl)methanone (5d). Following the typical procedure, 0.3 mmol scale, 1a ($0.3 \mathrm{mmol}, 104.3 \mathrm{mg}$), DCE (3 mL), 2a ($0.6 \mathrm{mmol}, 98.4 \mathrm{mg}$), ${ }^{n} \mathrm{BuOH}$ (6 mmol, $550 \mu \mathrm{~L}$), $\mathrm{Zn}(\mathrm{OTf})_{2}(0.15 \mathrm{mmol}, 54.5 \mathrm{mg}),(\mathrm{ArO})_{3} \mathrm{PAuCl}(\mathrm{Ar}=2,4$-di-tert-butylphenyl) $(0.03 \mathrm{mmol}, 26.4 \mathrm{mg})$ and $\mathrm{AgNTf}_{2}(0.03 \mathrm{mmol}, 11.6 \mathrm{mg})$ were stirred at $100{ }^{\circ} \mathrm{C}$ for 4 h . Column chromatography on silica gel (eluent: petroleum ether to : petroleum ether : ethyl acetate $=50: 1)$ afforded the title product as a light yellow oil in $66 \%(60.8 \mathrm{mg})$ isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.01-1.05(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.54-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.94(\mathrm{~m}$, $2 \mathrm{H}), ~ 4.56-4.60(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.76(\mathrm{~m}, 1 \mathrm{H})$, 7.86-7.88 (m, 2H), $8.24(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 13.9,19.4,30.9,66.8,119.5,123.3,124.4,125.0,127.2,128.3,130.2$, 131.8, 132.7, 135.9, 138.9, 145.8, 162.9, 196.0. IR (neat): 3050, 2957, 2927, 2867, 1650, $1579,1563,1500,1446,1412,1364,1349,1313,1248,1161,1092,1064,1026,878,804$, 767, 716, 698, 678, $658 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 306.1489$, found 306.1482 .

(1-(Allyloxy)isoquinolin-4-yl)(phenyl)methanone (4e). Following the typical procedure, 0.3 mmol scale, 1a ($0.3 \mathrm{mmol}, 104.3 \mathrm{mg}$), DCE (3 mL), 2a ($0.6 \mathrm{mmol}, 98.4 \mathrm{mg}$), $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{OH}(6 \mathrm{mmol}, 410 \mu \mathrm{~L}), \mathrm{Zn}(\mathrm{OTf})_{2}(0.15 \mathrm{mmol}, 54.5 \mathrm{mg}),(\mathrm{ArO})_{3} \mathrm{PAuCl}(\mathrm{Ar}=$ 2,4-di-tert-butylphenyl) ($0.03 \mathrm{mmol}, 26.4 \mathrm{mg}$) and $\operatorname{AgNTf}_{2}(0.03 \mathrm{mmol}, 11.6 \mathrm{mg})$ were
stirred at $100^{\circ} \mathrm{C}$ for 4 h . Column chromatography on silica gel (eluent: petroleum ether to : petroleum ether : ethyl acetate $=30: 1$ to $10: 1$) afforded the title product as a light yellow oil in $45 \%(39 \mathrm{mg})$ isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.64(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.19(\mathrm{~d}, J$ $=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.91-6.01(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.55-7.63(\mathrm{~m}$, $2 \mathrm{H}), 7.71-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.79-7.81(\mathrm{~m}, 2 \mathrm{H}), 8.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 51.1,115.8,118.8,125.4,125.5,127.7,128.1,128.5,129.8$, 132.0, 132.7, 133.1, 134.5, 138.8, 139.9, 161.6, 193.8. IR (neat): 3055, 2922, 1728, 1664, 1637, 1597, 1577, 1484, 1446, 1395, 1380, 1318, 1250, 974, 870, 785, 765, 719, 697, $660 \mathrm{~cm}^{-}$ ${ }^{1}$. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 290.1176$, found 290.1180 .

$5 f$
(1-Isopropoxyisoquinolin-4-yl)(phenyl)methanone (5f). Following the typical procedure, 0.3 mmol scale, 1a ($0.3 \mathrm{mmol}, 104.3 \mathrm{mg}$), DCE (3 mL), 2a ($0.6 \mathrm{mmol}, 98.4 \mathrm{mg}$), ${ }^{i} \operatorname{PrOH}(6$ $\mathrm{mmol}, 459 \mu \mathrm{~L}), \mathrm{Zn}(\mathrm{OTf})_{2}(0.15 \mathrm{mmol}, 54.5 \mathrm{mg}), 3 \AA \mathrm{MS}(30 \mathrm{mg}),(\mathrm{ArO})_{3} \mathrm{PAuCl}(\mathrm{Ar}=2,4-$ di-tert-butylphenyl) ($0.03 \mathrm{mmol}, 26.4 \mathrm{mg}$) and $\operatorname{AgNTf}_{2}(0.03 \mathrm{mmol}, 11.6 \mathrm{mg})$ were stirred at $100^{\circ} \mathrm{C}$ for 3.5 h . Column chromatography on silica gel (eluent: petroleum ether to : petroleum ether : ethyl acetate $=30: 1$) afforded the title product as a white waxy solid in $44 \%(38.2 \mathrm{mg})$ isolated yield. M.p. 88-90 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.48-1.50(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H})$, 5.60-5.69 (m, 1H), 7.46-7.50 (m, 2H), 7.58-7.61 (m, 2H), 7.71-7.76 (m, 1H), 7.86-7.88 (m, $2 \mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H}), 8.35-8.37(\mathrm{~m}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $22.0,69.6,119.8,123.0,124.5,125.0,127.0,128.3,130.2,131.7,132.6,136.0,139.1,146.0$, 162.4, 196.1. IR (neat): 3079, 3045, 2974, 2917, 1647, 1578, 1560, 1498, 1411, 1396, 1372, $1316,1306,1260,1108,1086,1065,930,921,883,824,790,766,715,695,679,657 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{NO}_{2}\left[\mathrm{M}+\mathrm{H}-\mathrm{C}_{3} \mathrm{H}_{7}\right]^{+}: 250.0863$, found 250.0863.

$5 g$
(1-Cyclobutoxyisoquinolin-4-yl)(phenyl)methanone (5g). Following the typical procedure, 0.3 mmol scale, 1a ($0.3 \mathrm{mmol}, 104.3 \mathrm{mg}$), DCE (3 mL), 2a ($0.6 \mathrm{mmol}, 98.4 \mathrm{mg}$), cyclobutanol ($6 \mathrm{mmol}, 470 \mu \mathrm{~L}$), $\mathrm{Zn}(\mathrm{OTf})_{2}(0.15 \mathrm{mmol}, 54.5 \mathrm{mg}), 3 \AA \mathrm{MS}(30 \mathrm{mg})$, $(\mathrm{ArO})_{3} \mathrm{PAuCl}\left(\mathrm{Ar}=2,4\right.$-di-tert-butylphenyl) $(0.03 \mathrm{mmol}, 26.4 \mathrm{mg})$ and $\mathrm{AgNTf}_{2}(0.03 \mathrm{mmol}$, 11.6 mg) were stirred at $100^{\circ} \mathrm{C}$ for 3.5 h . Column chromatography on silica gel (eluent: petroleum ether to : petroleum ether : ethyl acetate $=40: 1$) afforded the title product as a white solid in $57 \%(51.6 \mathrm{mg})$ isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.71-1.79(\mathrm{~m}, 1 \mathrm{H})$, 1.88-1.96 (m, 1H), 2.25-2.35 (m, 2H), 2.54-2.61 (m, 2H), 5.45-5.52 (m, 1H), 7.46-7.50 (m, 2H), 7.58-7.63 (m, 2H), 7.72-7.76 (m, 1H), 7.86-7.88 (m, 2H), 8.22 (s, 1H), 8.37 (d, $J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.7,30.8,71.0,119.4$, 123.4, 124.5, 125.0, 127.2, 128.4, 130.2, 131.7, 132.7, 136.0, 139.0, 145.9, 162.0, 196.1. IR (neat): 2992, 2940, 2922, 1646, 1578, 1561, 1499, 1413, 1396, 1336, 1314, 1260, 1162, 1098, 938, 876, 805, 771, 723, 703, $678 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 304.1332$, found 304.1330.

(1-(2-Ethoxyethoxy)isoquinolin-4-yl)(phenyl)methanone (5h). Following the typical procedure, 0.3 mmol scale, $\mathbf{1 a}(0.3 \mathrm{mmol}, 104.3 \mathrm{mg})$, DCE (3 mL), 2a $(0.6 \mathrm{mmol}, 98.4 \mathrm{mg})$, $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OEt}(6 \mathrm{mmol}, 580 \mu \mathrm{~L}), \mathrm{Zn}(\mathrm{OTf})_{2}(0.15 \mathrm{mmol}, 54.5 \mathrm{mg}), 3 \AA \mathrm{MS}(30 \mathrm{mg})$,
$(\mathrm{ArO})_{3} \mathrm{PAuCl}\left(\mathrm{Ar}=2,4\right.$-di-tert-butylphenyl) $(0.03 \mathrm{mmol}, 26.4 \mathrm{mg})$ and $\mathrm{AgNTf}_{2}(0.03 \mathrm{mmol}$, 11.6 mg) were stirred at $100^{\circ} \mathrm{C}$ for 2.5 h . Column chromatography on silica gel (eluent: petroleum ether to : petroleum ether : ethyl acetate $=40: 1$ to 20:1) afforded the title product as a light yellow sticky oil in $62 \%(59.7 \mathrm{mg})$ isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.24-$ $1.27(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.62-3.67(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.91-3.93(\mathrm{t}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}), 4.73-4.75$ ($\mathrm{t}, J=4.4 \mathrm{~Hz}, 3 \mathrm{H}$), 7.45-7.49 (m, 2H), 7.57-7.62 (m, 2H), 7.71-7.75 (m, 1H), 7.85-7.87 (m, $2 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 8.38-8.40(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.2,66.2,66.7,68.6$, 119.4, 123.6, 124.5, 124.9, 127.2, 128.3, 130.1, 131.8, 132.8, 135.9, 138.8, 145.3, 162.5, 196.0. IR (neat): 3053, 2969, 2862, 1744, 1651, 1579, 1564, 1500, 1446, 1399, 1340, 1314, 1250, 1122, 1092, 1026, 860, 768, 717, 698, 678, $658 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 322.1438$, found 322.1437 .

Synthesis and characterization of 2-(2-formylphenoxy)acetonitrile

To a Schlenk tube were added salicylaldehyde ($30 \mathrm{mmol}, 3.664 \mathrm{~g}$), DMF (20 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}(45 \mathrm{mmol}, 6.219 \mathrm{~g})$ under Argon. Yellow Precipitate was observed after the reaction mixture was stirred at rt for 15 min , then $\mathrm{BrCH}_{2} \mathrm{CN}(36 \mathrm{mmol}, 4.318 \mathrm{~g})$ was added drop by drop at rt and stirred for another 4 h . The resulting reaction mixture was diluted with a large amount of ethyl acetate and quenched with water, then extracted with ethyl acetate for 3 times. The combined organic extracts were washed with water and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was purified by column chromatography on silica gel (petroleum ether : ethyl acetate $=2: 1$ to $1: 1$) to afford 2-(2-formylphenoxy)acetonitrile in $99 \%(4.8 \mathrm{~g})$ overall yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.94(\mathrm{~s}, 2 \mathrm{H}), 7.08-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.66$ (m, 1H), 7.89-7.91 (m, 1H), $10.43(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 53.7,112.6,114.4$, $123.2,125.6,129.4,136.0,158.2,188.6$. The spectroscopic data is in agreement with that previously reported. ${ }^{8}$

Synthesis and characterization of (o-phenoxyacetonitrile)propargyl ethers 6.

First step: 1-ethynylbenzene ($3.3 \mathrm{mmol}, 362 \mu \mathrm{~L}$) in THF (6 mL) was added dropwise $\operatorname{EtMgBr}\left(3 \mathrm{mmol}, 3.0 \mathrm{M}\right.$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 1 \mathrm{~mL}\right)$ at $0{ }^{\circ} \mathrm{C}$ under argon. Then the reaction mixture was warmed up to room temperature and stirred for 1 h . 2-(2-Formylphenoxy) acetonitrile ($3.0 \mathrm{mmol}, 483.5 \mathrm{mg}$) was added at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred at room temperature for 1 h . The resulting reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and extracted with ethyl acetate. The combined organic extracts were washed with water and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under the reduced pressure to afford the crude alcohol which was used directly without further purification for the next step.

To a solution of the above crude alcohol in DCM (6 mL) were added imidazole (6.0 $\mathrm{mmol}, 408.5 \mathrm{mg}$) and $\mathrm{TBSCl}(4.5 \mathrm{mmol}, 678.2 \mathrm{mg})$. The reaction mixture was then stirred at room temperature for 2 h . Then the resulting mixture was quenched with saturated ammonium chloride solution and extracted with dichloromethane, washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (eluent: petroleum ether to petroleum ether : ethyl acetate $=50: 1$ to $30: 1$) afforded the desired product in 75% overall yield (847.2 mg) as a light-yellow oil.

2-(2-(1-((tert-Butyldimethylsilyl)oxy)-3-phenylprop-2-yn-1-yl)phenoxy)acetonitrile (6a). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.26(\mathrm{~s}, 3 \mathrm{H}), 0.31(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 4.82(\mathrm{~s}, 2 \mathrm{H}), 6.05(\mathrm{~s}$, $1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.47(\mathrm{~b}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=$
$7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.9,-4.5,18.2,25.8,53.7,59.6,84.6,89.7$, $112.0,115.1,122.7,123.2,128.0,128.17,128.21,129.0,131.3,131.5,152.9$. IR (neat): 2954, 2929, 2884, 2856, 1591, 1489, 1471, 1456, 1252, 1218, 1180, 1112, 1055, 1001, 980, 939, 834, 777, 752, 690, $670 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+}: 400.1703$, found 400.1699.

2-(2-(1-((tert-Butyldimethylsilyl)oxy)-3-(thiophen-2-yl)prop-2-yn-1-

yl)phenoxy)acetonitrile ($\mathbf{6 b}$). First step: 2-ethynylthiophene ($3.3 \mathrm{mmol}, 330 \mu \mathrm{~L}$) in THF (6 $\mathrm{mL})$ was added $\mathrm{EtMgBr}\left(3 \mathrm{mmol}, 3.0 \mathrm{M}\right.$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 1 \mathrm{~mL}\right)$ at $0^{\circ} \mathrm{C}$. Then the reaction mixture was stirred at room temperature for 1 h .2 -(2-Formylphenoxy) acetonitrile (3.0 mmol , 483.5 mg) was added at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred at room temperature for 1 h . Second step: To a solution of the above crude alcohol in DCM (6 mL) were added imidazole ($6.0 \mathrm{mmol}, 408.5 \mathrm{mg}$) and $\mathrm{TBSCl}(4.5 \mathrm{mmol}, 678.2 \mathrm{mg}$), and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum ether to petroleum ether : ethyl acetate $=50: 1$ to $30: 1$) afforded the desired product in 54% overall yield (621.2 mg) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.19(\mathrm{~s}, 3 \mathrm{H}), 0.23(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 4.84(\mathrm{~d}, J=$ $4.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 6.94-6.99(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.36$ $(\mathrm{m}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.9,-4.5,18.3,25.8,54.0$, $59.8,78.0,93.5,112.1,115.1,122.8,123.4,126.9,127.0,128.0,129.1,131.2,132.0,153.0$. IR (neat): 2952, 2930, 2883, 2854, 1600, 1590, 1488, 1456, 1289, 1258, 1218, 1177, 1117, 1064, 1036, 858, 840, 826, 776, 751, 699, 677, $668 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{SNaSi}[\mathrm{M}+\mathrm{Na}]^{+}: 406.1268$, found 406.1262 .

Transformation of various alkyne-nitriles.

(Z)-2-(2-(1-Hydroxy-3-oxo-3-phenylprop-1-en-2-yl)phenoxy)acetonitrile (7a). To a Schlenk tube were added (o-phenoxyacetonitrile)propargyl ether $\mathbf{6 a}(0.3 \mathrm{mmol}, 113.3 \mathrm{mg}$), DCE (3 mL), 2,6-dichloropyridine N-oxide 2a ($0.6 \mathrm{mmol}, 98.4 \mathrm{mg}$), $\mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{mmol}, 10.8$ $\mu \mathrm{L}), \mathrm{Zn}(\mathrm{OTf})_{2}(0.3 \mathrm{mmol}, 109 \mathrm{mg}),(\mathrm{ArO})_{3} \mathrm{AuCl}(\mathrm{Ar}=2,4-$ di-tert-butylphenyl$)(0.015 \mathrm{mmol}$, $13.2 \mathrm{mg})$ and $\mathrm{AgNTf}_{2}(0.015 \mathrm{mmol}, 5.8 \mathrm{mg})$ under Argon. After the reaction mixture was stirred at room temperature for 4 h as monitored by thin-layer chromatography, it was diluted with ethyl acetate. Then the saturated NaOH solution was added. After shaking, the water phase was separated. The addition of saturated NaOH solution and washing with ethyl acetate were repeated by another two times. The water phase were combined. Then 3 M HCl solution was added to the water phase until the $\mathrm{pH}=7$, and the resulting mixture was extracted with dichloromethane for several times. The mixture was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under the reduced pressure and the residue was purified by preparative TLC on silica gel (eluent: petroleum ether: ethyl acetate $=10: 1$) to afford $7 \mathbf{7 a}$ in 66% yield (55.2 mg) yield (containing trace amount of aldehyde form) as a light brown oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.30(\mathrm{~s}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.21-$ $7.26(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.38(\mathrm{~m}, 4 \mathrm{H}), 8.41(\mathrm{~s}, 1 \mathrm{H}), 15.77(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $53.0,111.0,112.2,114.6,123.5,125.8,127.86,127.94,129.5,131.4,132.1,136.3,154.0$, 182.2, 187.4. IR (neat): 3060, 2927, 2851, 1727, 1621, 1601, 1491, 1448, 1374, 1276, 1211, $1179,1122,1058,1034,1018,897,753,705,692 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}_{3}$ $[\mathrm{M}]^{+}: 279.0890$, found 279.0885.

(Z)-2-(2-(1-Hydroxy-3-ox0-3-(thiophen-2-yl)prop-1-en-2-yl)phenoxy)acetonitrile

Following the above typical procedure, 0.3 mmol scale, $\mathbf{6 b}$ ($0.3 \mathrm{mmol}, 115.1 \mathrm{mg}$), DCE (3 mL), 2a ($0.6 \mathrm{mmol}, 98.4 \mathrm{mg}$), $\mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{mmol}, 10.8 \mu \mathrm{~L}), \mathrm{Zn}(\mathrm{OTf})_{2}(0.3 \mathrm{mmol}, 109 \mathrm{mg})$, $(\mathrm{ArO})_{3} \mathrm{AuCl}\left(\mathrm{Ar}=2,4\right.$-di-tert-butylphenyl) $(0.015 \mathrm{mmol}, 13.2 \mathrm{mg})$ and $\mathrm{AgNTf}_{2}(0.015 \mathrm{mmol}$, 5.8 mg) were stirred at rt for 4 h . Purification of the crude product by preparative TLC on silica gel (eluent: petroleum ether : ethyl acetate $=5: 1$) afforded the title product as a brown solid in $62 \%(53.1 \mathrm{mg})$ yield (containing trace amount of aldehyde form). M.p. $97-99{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 4.62(\mathrm{~s}, 2 \mathrm{H}), ~ 6.90-6.92(\mathrm{~m}, 1 \mathrm{H}), 7.03-7.07(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.21(\mathrm{~m}$, 1H), 7.33-7.34 (m, 1H), 7.47-7.51 (m, 2H), 8.13 (s, 1H), $15.72(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 53.3,109.6,112.5,114.6,123.7,124.9,127.7,130.5,132.4,133.2,133.4,139.9$, 155.2, 179.2, 180.2. IR (neat): 3097, 3084, 2972, 2937, 1611, 1596, 1491, 1455, 1414, 1375, $1268,1210,1192,1122,1059,1034,989,912,896,912,896,853,786,753,725,685 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}]^{+}: 285.0454$, found 285.0461.

Synthesis and characterization of (o-cyano)phenylpropargyl ether 8.

2-(3-((tert-Butyldimethylsilyl)oxy)-3-phenylprop-1-yn-1-yl)benzonitrile (8). First step: 2ethynylbenzonitrile ($16.5 \mathrm{mmol}, 2.098 \mathrm{~g}$) in THF (20 mL) was added $\operatorname{EtMgBr}(15 \mathrm{mmol}, 3.0$ M solution in $\mathrm{Et}_{2} \mathrm{O}, 5.0 \mathrm{~mL}$) at $0{ }^{\circ} \mathrm{C}$. Then the reaction mixture was stirred at room temperature for 1 h . Benzaldehyde ($15.0 \mathrm{mmol}, 1.52 \mathrm{~mL}$) was added at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred at room temperature for 1.5 h . Second step: To a solution of the above crude alcohol in DCM (20 mL) were added imidazole ($30.0 \mathrm{mmol}, 2.042 \mathrm{~g}$) and $\mathrm{TBSCl}(22.5$
mmol, 3.391 g), and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum ether to petroleum ether : ethyl acetate $=40: 1$) afforded the desired product in 42% overall yield (2.2 g) as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.26$ $(\mathrm{s}, 3 \mathrm{H}), 0.29(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.62-$ $7.66(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.0,-4.5,18.2,25.7,65.0,81.5,96.5,115.1$, 117.3, 126.1, 126.5, 127.8, 128.3, 128.4, 132.2, 132.4, 132.5, 140.8. IR (neat): 2954, 2928, 2856, 2226, 1733, 1563, 1482, 1472, 1463, 1451, 1252, 1090, 1065, 1028, 842, 776, 762, 735, $703,671 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NONaSi}[\mathrm{M}+\mathrm{Na}]^{+}: 370.1598$, found 370.1602.

Formation of indanone compound 9.

3-Amino-2-phenyl-1H-inden-1-one (9). To a sealable tube were added o-(cyano)phenyl propargyl ether $\mathbf{8}(0.3 \mathrm{mmol}, 104.3 \mathrm{mg})$, DCE (3 mL), 8 -methylquinoline N-oxide 2d (0.6 $\mathrm{mmol}, 95.5 \mathrm{mg}), \mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{mmol}, 10.8 \mu \mathrm{~L}), \mathrm{Zn}(\mathrm{OTf})_{2}(0.15 \mathrm{mmol}, 54.5 \mathrm{mg}), \mathrm{PPh}_{3} \mathrm{AuCl}$ ($0.03 \mathrm{mmol}, 14.8 \mathrm{mg}$) and $\mathrm{AgSbF}_{6}(0.03 \mathrm{mmol}, 10.3 \mathrm{mg})$ under Argon. After the reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 3 h as monitored by thin-layer chromatography, the mixture was filtered through a pad of silica gel and washed with ethyl acetate. The solvent was evaporated under the reduced pressure and the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=20: 1$ to $5: 1$ to $2: 1$) to afford 9 in 51% yield (34 mg) as a brown solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.17(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.52(\mathrm{~m}, 7 \mathrm{H}), 7.73(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.09$ (broad, 2H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 103.2,118.9,119.5,124.9,128.1,128.2,130.4,131.1,133.0,135.1,138.3$, 161.9, 189.8. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 222.0913$, found 222.0908. The spectroscopic data are in agreement with that previously reported. ${ }^{9}$

Gram scale reaction.

To a sealable tube were added o-(cyano)phenyl propargyl ether 1a ($6.0 \mathrm{mmol}, 2.09 \mathrm{~g}$), DCE (60 mL), 2,6-dichloropyridine N-oxide 2a ($12.0 \mathrm{mmol}, 1.97 \mathrm{~g}$), $\mathrm{H}_{2} \mathrm{O}(12.0 \mathrm{mmol}, 216$ $\mu \mathrm{L}), \mathrm{Zn}(\mathrm{OTf})_{2}(3.0 \mathrm{mmol}, 1.09 \mathrm{~g})$ and $\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}(0.3 \mathrm{mmol}, 221.8 \mathrm{mg})$ under Argon. Then the tube was sealed. After the reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 2 h as monitored by thin-layer chromatography, the reaction mixture was filtered through a pad of silica gel and washed with ethyl acetate. The solvent was evaporated under the reduced pressure and the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=10: 1$ to $8: 1$ to $5: 1$ to $3: 1$) to afford $\mathbf{3 a}$ in 72% yield (1.08 g) as a light yellow solid.

Oxidative reaction of 6-phenylhex-5-ynenitrile.

To a sealable tube were added 6-phenylhex-5-ynenitrile ($0.3 \mathrm{mmol}, 50.8 \mathrm{mg}$), DCE (3 mL), 2,6-dichloropyridine N-oxide 2a ($0.6 \mathrm{mmol}, 98.4 \mathrm{mg}$), $\mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{mmol}, 10.8 \mu \mathrm{~L}$), $\mathrm{Zn}(\mathrm{OTf})_{2}(0.15 \mathrm{mmol}, 54.5 \mathrm{mg})$ and $\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}(0.015 \mathrm{mmol}, 11.1 \mathrm{mg})$ under Argon. Then the tube was sealed. After the reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 1 h as monitored by thin-layer chromatography, the reaction mixture was filtered through a pad of silica gel and washed with ethyl acetate. The solvent was evaporated under the reduced pressure and the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=15: 1$ to $10: 1$ to $5: 1$) to afford (E)-6-oxo-6-phenylhex-4-enenitrile in 83% yield (46 mg) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.55-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.68(\mathrm{~m}, 2 \mathrm{H})$, 6.91-7.04 (m, 2H), 7.45-7.48 (m, 2H), 7.54-7.58 (m, 1H), 7.92-7.94 (m, 2H). ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 16.2,28.2,118.5,127.9,128.5,128.6,133.0,137.2,143.0,189.8$. The spectroscopic data is in agreement with that previously reported. ${ }^{10}$

Mechanistic studies

To a Schlenk tube were added 1a ($0.6 \mathrm{mmol}, 208.5 \mathrm{mg}$), DCE (6 mL), 2a (1.2 mmol , $196.8 \mathrm{mg}), \mathrm{PPh}_{3} \mathrm{AuNTf}_{2}(0.03 \mathrm{mmol}, 22.2 \mathrm{mg})$ at room temperature for 4 h under argon. After the reaction was complete as monitored by thin-layer chromatography, 0.5 M NaOH aqueous solution was added. After shaking, the water phase was separated. Repeating this procedure until the product were disappeared in organic phase according to TLC analysis. The water phase was washed with DCM by three times. Then 1 M HCl solution was added to the water phase until the $\mathrm{pH}=2-3$, and the resulting mixture was extracted with dichloromethane for three times. The organic phase was combined and washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, the mixture was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Then the solution is gently concentrated (ca. 6 mL). $\mathrm{PhNHNH}_{2}(1.8 \mathrm{mmol}, 194.7 \mathrm{mg})$ was added and the mixture was stirred at room temperature for 6 h . The solvent was evaporated and the residue was purified by column chromatography on silica gel (eluent: petroleum ether to petroleum ether : ethyl acetate $=20: 1$ to $10: 1$) to afford the product 11 in 54% overall yield (104.6 mg , containing small amount of impurity). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.04-7.07$ (m, 2H), 7.15 (dd, $J=7.8 \mathrm{~Hz}, 0.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.197.32 (m, 9H), $7.40(\mathrm{td}, J=7.2 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1$ H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) δ 112.2, 118.3, 118.9, 125.1, 127.1, $127.5,128.5,128.6$, 128.7, 129.0, 130.1, 130.9, 132.3, 133.3, 136.6, 139.4, 140.1, 140.7. IR (neat): 3110, 2922, $2217,1595,1569,1554,1494,1444,1382,1072,956,916,877,787,771,759,693,660 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 322.1339$, found 322.1337 .

To a sealable tube were added o-(cyano)phenyl propargyl ether 1a ($0.2 \mathrm{mmol}, 69.5 \mathrm{mg}$), DCE (2 mL), 2,6-dichloropyridine N-oxide 2a ($0.4 \mathrm{mmol}, 65.6 \mathrm{mg}$) and $\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}(0.01$ $\mathrm{mmol}, 7.4 \mathrm{mg}$) under Argon. Then the tube was sealed. After the reaction mixture was stirred at room temperature for $4 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}(0.4 \mathrm{mmol}, 7.2 \mu \mathrm{~L})$ and $\mathrm{Zn}(\mathrm{OTf})_{2}(0.1 \mathrm{mmol}, 36.4 \mathrm{mg})$ were added to the reaction mixture. Then the tube was put in an oil bath preheated at $100^{\circ} \mathrm{C}$ and the mixture was stirred for 2 h . The reaction mixture was filtered through a pad of silica gel and washed with ethyl acetate. The solvent was evaporated under the reduced pressure and the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=10: 1$ to $8: 1$ to $5: 1$ to $3: 1$) to afford $\mathbf{3 a}$ in 69% yield (34.6 mg) as a light yellow solid.

To a sealable tube were added o-(cyano)phenyl propargyl ether $1 \mathrm{a}(0.2 \mathrm{mmol}, 69.5 \mathrm{mg})$, DCE (2 mL), 2,6-dichloropyridine N-oxide 2a ($0.4 \mathrm{mmol}, 65.6 \mathrm{mg}$) and $\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}(0.01$ $\mathrm{mmol}, 7.4 \mathrm{mg}$) under Argon. Then the tube was sealed. After the reaction mixture was stirred at room temperature for 4 h as monitored by thin-layer chromatography, $\mathrm{H}_{2} \mathrm{O}(0.4 \mathrm{mmol}, 7.2$ $\mu \mathrm{L}$) was added to the reaction mixture. Then the tube was put in an oil bath preheated at 100 ${ }^{\circ} \mathrm{C}$ and the mixture was stirred for 2 h . The product 3a was not observed by TLC. This result indicated that without a Lewis acid, no cyclization occurred.

To a sealable tube were added o-(cyano)phenyl propargyl ether 1a ($0.2 \mathrm{mmol}, 69.5 \mathrm{mg}$), DCE (2 mL), 2,6-dichloropyridine N-oxide 2a ($0.4 \mathrm{mmol}, 65.6 \mathrm{mg}$), (ArO$)_{3} \mathrm{PAuCl}(0.02$ $\mathrm{mmol}, 17.6 \mathrm{mg})$ and $\mathrm{AgNTf}_{2}(0.02 \mathrm{mmol}, 7.8 \mathrm{mg})$ under Argon. Then the tube was sealed. After the reaction mixture was stirred at room temperature for 4 h , $\mathrm{MeOH}(4 \mathrm{mmol}, 162 \mu \mathrm{~L}$) and $\mathrm{Zn}(\mathrm{OTf})_{2}(0.1 \mathrm{mmol}, 36.4 \mathrm{mg})$ were added to the reaction mixture. Then the tube was put in an oil bath preheated at $100{ }^{\circ} \mathrm{C}$ and the mixture was stirred for 2 h . The reaction mixture was filtered through a pad of silica gel and washed with ethyl acetate. The solvent was evaporated under the reduced pressure and the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=20: 1$ to afford 5a in 60% yield (31.6 mg) as a white solid.

Synthesis of 4-benzoylisoquinolin- $\mathbf{1 (2 H)}$-one- ${ }^{18} \mathrm{O}\left({ }^{18} \mathrm{O}-3 a\right)$.

To a sealed tube were added o-(cyano)phenyl propargyl ether $\mathbf{1 a}(0.3 \mathrm{mmol}, 104.3 \mathrm{mg})$, DCE (3 mL), 2,6-dichloropyridine N-oxide 2a ($0.6 \mathrm{mmol}, 98.4 \mathrm{mg}$), $\mathrm{H}_{2}{ }^{18} \mathrm{O}(0.6 \mathrm{mmol}$, $10.8 \mu \mathrm{~L},{ }^{18} \mathrm{O}=94 \%$, determined by $\left.\mathrm{GC}-\mathrm{MS}\right), \mathrm{Zn}(\mathrm{OTf})_{2}(0.15 \mathrm{mmol}, 54.5 \mathrm{mg})$ and $\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}(0.015 \mathrm{mmol}, 11.1 \mathrm{mg})$ under Argon. After the reaction mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 2 h as monitored by thin-layer chromatography, the mixture was filtered through a pad of silica gel and washed with ethyl acetate. The solvent was evaporated under the reduced pressure and the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=15: 1$ to $10: 1$ to $5: 1)$ to afford ${ }^{18} \mathrm{O}-\mathbf{3 a}$ in 79% yield $(59.7 \mathrm{mg})$ as a light yellow solid and the ${ }^{18} \mathrm{O}$ content of ${ }^{18} \mathrm{O}-3 \mathrm{a}$ was 66% as determined by HRMS (ESI).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) δ 7.49-7.66 (m, 5H), 7.75-7.82 (m, 3H), $8.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 11.80(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 113.5,125.2$, 125.5, 127.1, 127.3, 128.5, 129.4, 132.3, 133.1, 135.1, 139.0, 139.2, 161.5, 161.5, 193.6. In ${ }^{13} \mathrm{C}$ NMR, two peaks were observed for the carbon attached with carbonyl group of the amide moiety ($161.48,161.51 \mathrm{ppm}$), the upfield one being due to the carbon substituted with ${ }^{18} \mathrm{O}$. IR (neat): $3291,3184,3050,2922,2848,1668,1630,1617,1596,1473,1443,1333,1316,1284$, $1235,1145,1063,927,874,790,763,711,694,684$. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{NO}^{18} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+}: 252.0905$, found 252.0904 .

Possible reaction mechanism for the formation of 4.

Scheme S1. Possible reaction mechanism for the formation of $\mathbf{4}$

$$
\overline{\mathrm{O}}-\stackrel{+}{Z}=N \text {-oxide }
$$

Scheme S2. Possible reaction mechanism for the formation of 9

References:

(1) Mézailles, N.; Ricard, L.; Gagosz, F. Org. Lett. 2005, 7, 4133.
(2) Nieto-Oberhuber, C.; López, S.; Muñoz, M. P.; Cárdenas, D. J.; Buñuel, E.; Nevado, C.; Echavarren, A. M. Angew. Chem. Int. Ed. 2005, 44, 6146.
(3) Chen, M.; Sun, N.; Chen H.; Liu, Y. Chem. Commun., 2016, 52, 6324.
(4) Lee, Y.; Knauer, L.; Louven, K.; Golz, C.; Strohmann, C.; Waldmann, H.; Kumar, K. Eur. J. Org. Chem. 2018, 5688.
(5) Xiong, M.; Xie, X.; Liu, Y. Org. Lett. 2017, 19, 3398.
(6) Wang, P.-F.; Feng, Y.-S.; Cheng, Z.-F.; Wu, Q.-M.; Wang, G.-Y.; Liu, L.-L.; Dai, J.-J.; Xu, J.; Xu, H.-J. J. Org. Chem. 2015, 80, 9314.
(7) Sercel, A. D.; Sanchez, J. P.; Showalter, H. D. H. Synthetic Communications. 2007, 37, 4199.
(8) Vedachalam, S.; Zeng, J.; Gorityala, B. K.; Antonio, M.; Liu, X. Org. Lett. 2010, 12, 352.
(9) Kayaleh, N. E.; Gupta, R. C.; Johnson, F. J. Org. Chem. 2000, 65, 4515.
(10) Agapious, K.; Cauble, D. F.; Krische, M. J. J. Am. Chem. Soc. 2004, 126, 4528.

Figure S1. X-ray crystal structure of compound 3a

Figure S2. X-ray crystal structure of compound 5a

Figure S3. X-ray crystal structure of compound 7b
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1a

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1b

${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1c

${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3})

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1 e

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$1 i$

OTBS

CN

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3})

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1k

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1 m

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{\square} \end{aligned}$	\mid		$\begin{aligned} & \circ \\ & \stackrel{\circ}{\dot{o}} \\ & \stackrel{\circ}{\circ} \\ & \mid \end{aligned}$	$\stackrel{8}{8}$	$\stackrel{\text { êen }}{\substack{0 \\ 1}}$	$\left.\right\|_{\mid} ^{\text {®. }}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

19

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3})

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\begin{gathered} \text { §. } \\ \stackrel{\omega}{\ddagger} \\ \underset{\ddagger}{2} \end{gathered}$		$\stackrel{\text { İ }}{\stackrel{\text { O}}{+}}$	$\begin{aligned} & \text { 毋. } \\ & \stackrel{0}{\Gamma} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\stackrel{\hat{0}}{\stackrel{\hat{O}}{\circ}}$		$\begin{aligned} & \bar{m} \\ & { }_{0}^{0} \\ & \tilde{0}_{0} \end{aligned}$	$\stackrel{\circ}{\stackrel{\circ}{4}}$	$\stackrel{\text { ® }}{\stackrel{\circ}{\infty}}$	$\left.\right\|_{1} ^{\infty}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6})

3a

${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6})

200
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6})

3 g

${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6})

3 g

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6})

3h

${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6})

4

${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6})

+
$\stackrel{\widehat{\oplus}}{\stackrel{\otimes}{\infty}}$

4
 $\stackrel{\circ}{\circ}$
()
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6})

3k

${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

®.

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6})

\curvearrowleft
\sim

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6})
$\stackrel{\text { N/ }}{\text { N. }}$

${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6})

$3 s$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

5d

 (

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3})

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	E
	$\stackrel{\circ}{\circ}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

		$\begin{aligned} & \stackrel{\circ}{\dot{c}} \\ & \stackrel{y}{0} \\ & \stackrel{y}{0} \end{aligned}$			

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(l)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\oplus}{\mathrm{@}} \end{aligned}$	둗	$\overbrace{\text { + }}^{\substack{\text { + }}}$		+iom	$\stackrel{e_{0}^{\circ}}{0}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\stackrel{\omega}{e}} \\ & \end{aligned}$	$\begin{aligned} & \text { İ } \\ & \stackrel{0}{\infty} \\ & \end{aligned}$	$\sqrt{\text { O }}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

8

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6)

9

${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- $d 6$)

-

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

11

