Electronic Supplementary Information

Tuning the configuration of the flexible metal-alkene-framework affords pure cycloisomers in solid state photodimerization[†]

Yong Wang,‡^a Meng-Fan Wang,‡^{a,b} David James Young, Hua Zhu, ^b Fei-Long Hu,^{*a} Yan Mi,^a Zhen Qin,^a Shu Li Chen,^a Jian-Ping Lang^{*b}

^a Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, 530006, People's Republic of China.

^b College of Chemistry, Chemical Engineering and Materials Science, Soochow University,
Suzhou 215123, People's Republic of China.

^c College of Engineering, IT and Environment, Charles Darwin University, Darwin, NT 0909, Australia

‡ These authors contributed equally to this work and should be considered co-first authors.

Table of Contents

General Procedures	
Scheme S1 The carboxylic acids used in this work	
Experimental	
Synthesis	
Synthesis of ligand bpvp	
Synthesis of CP ₁ -CP ₅ S5	
Photo-irradiation experiment	
Separation of Isomer α and Isomer β	
Single Crystal structure determination:	
Table S1 Summary of Crystal Data and Structure Refinement Parameters for CP ₁ -CP ₅ ,	
Isomer α and Isomer β	
Fig. S1 The ¹ H (a), and ¹³ C (b) NMR spectra of bpvp in CDCl ₃	
Fig. S2 Thermogravimetric analysis plots of CP1 (a), CP2 (b), CP3 (c), CP4 (d), CP5 (e).S14	
Fig. S3 PXRD patterns of CP ₁ (a), CP ₂ (b), CP ₃ (c), CP ₄ (d), CP ₅ (e)S16	
Fig. S4 View of the coordination environments of Cd(II) centers in CP ₁ S17	
Fig. S5 The adjacent zigzag chains are connected to form a 2D network	
Fig. S6 View of the 2D network showing hexagonal windows	
Fig. S7 Cartoon showing the 2D network in CP ₁ -CP ₃	
Fig. S8 (a) 3D polypseudo-threading network; (b) A schematic illustration of three	
adjacent 2D layers; (c) A schematic illustration of the mutual polypseudo-threading of	
three layers	
Fig. S9 Fourteen L ₂ (or HL ₂) molecules were embedded in the hexagonal window in	
CP ₂	
Fig. S10 View of the 1D chain structures of CP ₄ (a) and CP ₅ (b)S20	

Fig. S11 View of the distances between each pair of C=C in CP ₄ (a) and CP ₅ (b), showing
the face-to-face alignment of each bpvp pair in CP4 and CP5
Fig. S12 (a) The ¹ H NMR spectrum of CP ₁ ; (b) The ¹ H NMR spectrum of CP ₁ '
(DMSO- <i>d</i> ₆)
Fig. S13 (a) The ¹ H NMR spectrum of CP ₂ ; (b) The ¹ H NMR spectrum of CP ₂ '
(DMSO- <i>d</i> ₆)
Fig. S14 (a) The ¹ H NMR spectrum of CP ₃ ; (b) The ¹ H NMR spectrum of CP ₃ '
(DMSO- <i>d</i> ₆)
Fig. S15 (a) The ¹ H NMR spectrum of CP ₄ ; (b) The ¹ H NMR spectrum of CP ₄ '
(DMSO- <i>d</i> ₆)
Fig. S16 (a) The ¹ H NMR spectrum of CP ₅ ; (b) The ¹ H NMR spectrum of CP ₅ '
(DMSO- <i>d</i> ₆)
Fig. S17 The CPMAS ¹³ C NMR spectra of CP ₁ to CP ₁ ' (a), CP ₂ to CP ₂ ' (b), CP ₃ to CP ₃ '
(c), CP ₄ to CP ₄ ' (d), CP ₅ to CP ₅ ' (e)
Fig. S18 The crystal structure of Isomer αS29
Fig. S19 The ¹ H (a), ¹³ C (b), H-H COSY (c), HSQC (d), HMBC (e), NOESY (f) NMR
spectra of Isomer α in CDCl ₃ S32
Fig. S20 The mass spectrum of Isomer αS33
Fig. S21 The crystal structu of Isomer β
Fig. S22 The ¹ H (a), ¹³ C (b), H-H COSY (c), HSOC (d), HMBC (e), NOESY (f) NMR
spectra of Isomer β in CDCl ₃
Fig. S23 The mass spectrum of Isomer βS37
Table S2 A summary of isomer ratios, number of guest molecules, dimensions of
framework structures and dimensions of guest molecules in CP ₁ -CP ₃
Table S3 The relative Gibbs free energies (kcal/mol) for Isomer α and Isomer βS37
Fig. S24 Photograph of filter papers impregnated with solution of CP ₁ -CP ₅ and
CP ₁ '-CP ₅ ' in DMF (365 nm)S38
References

General Procedures.

The ligand 3,5-bis-(2-(pyridin-4-yl)vinyl)pyridine (bpvp) was prepared according to literature methods¹. Other reagents were obtained commercially and used without further purification. Powder X-ray diffraction (PXRD) patterns were acquired on a PANalyticalX'Pert PRO MPD system (PW3040/60) using Cu K α radiation (λ = 1.5406Å) from 5° to 50° with a scanning step size of 0.02°. Single-crystal X-ray diffraction data for CP1, CP2, CP3, CP4 and CP5 were recorded on a Bruker Smart CCD diffractometer or Agilent Xcalibur E. ¹H NMR chemical shifts were referenced to the solvent signal in CDCl₃ or DMSO- d_6 . ¹³C-NMR spectra were recorded at a resonance frequency of 101.6 MHz on a Bruker AVANCE 400M spectrometer. Cross-polarization magic angle spinning (CPMAS) ¹³C NMR spectra were recorded at a resonance frequency of 101.6 MHz on a BRUKER ADVANCE DSX 400 MHz spectrometer at ambient temperature. IR spectra were recorded on a Varian 1000 FT-IR spectrometer (4000-400 cm⁻¹). Elemental analyses (C, H, N) were performed using a PE 2400 II elemental analyzer. The mass spectra were recorded at Bruker micrOTOF-Q III mass spectrometer. Thermogravimetric analyses (TGA) were performed on a Mettler Toledo Star System under a nitrogen atmosphere at a heating rate of 10°C/min. Photo-irradiation experiments were conducted with a high-pressure mercury lamp at a wavelength of 365 nm. The fluorescence spectra were acquired on a JASCO FP-6500 fluorescence spectrophotometer with powdered samples.

Computational studies

All calculations were performed using Gaussian 09.2 The geometry optimizations

were optimized using B3LYP functional³ with the triple zeta basis set 6-311++G(d,p).⁴ No symmetry constraints were imposed. Analytical frequencies were calculated to verify the nature of all stationary points as minima.

Scheme S1 The carboxylic acids used in this work.

Experimental

Synthesis

Synthesis of ligand bpvp: ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.69 (d, 2H, Ph-H),

8.63 (d, 4H, Py-H), 8.00 (s, 1H, Ph-H), 7.41 (d, 4H, Py-H), 7.33 and 7.17 (d, 4H,

CH=CH). ¹³C NMR (100 MHz, CDCl₃, ppm): *δ* 150.50, 148.59, 143.77, 132.04,

130.44, 129.08, 128.89, 121.05 (Fig. S1).

Synthesis of CP₁-CP₅

Preparation of $[Cd_3(bpvp)_2(L_1)_6] \cdot 0.5HL_1 \cdot H_2O$ (CP₁): Bpvp (6 mg, 0.021 mmol), CdSO₄·8/3H₂O (26.0 mg, 0.101 mmol) and HL₁ (13.6 mg, 0.010 mmol) were placed in a thick Pyrex test tube. To this mixture was added 2 mL of solvent (DMF / H₂O = 1:2) and one drop of concentrated nitric acid. The tube was then sealed and heated at 140 °C for 10 hours. Cooling to room temperature resulted in yellow crystals of **CP**₁, that were washed with EtOH and H₂O and dried in air. Yield: 80% based on bpvp. mp. 299.1°C - 302.2°C. Anal. calcd for C₉₀H₇₈Cd₃N₆O₁₄: C, 59.89; H, 4.36; N, 4.66; found: C, 59.72; H, 4.39; N, 4.71. IR (KBr, cm⁻¹): 3436m, 30354m, 2919m, 1932w, 1704w, 1608s, 1531s, 1400s, 1288w, 1222w, 1176s, 1106w, 1068w, 1018s, 767s, 620m, 555m, 420m. ¹H NMR (400 MHz, DMSO-*d*₆ ppm): δ (bpvp) 8.76 (d, 4H, Ph-H), 8.63 (d, 8H, Py-H), 8.47 (s, 2H, Ph-H), 7.62 (d, 8H, Py-H), 7.66 and 7.53 (d, 8H, CH=CH); δ (L₁) 7.87 (d, 8H, Ph-H), 7.23 (d, 8H, Ph-H), 2.34 (s, 12, CH₃) (**Fig. S12a**).

Preparation of [Cd₃(bpvp)₂(L₂)₆]·HL₂·2H₂O (CP₂): CP₂ (yellow) was prepared in a similar manner to that of CP₁, but HL₂ (12.0 mg, 0.060 mmol) was used instead of HL₁. Yield: 75% based on bpvp. mp. 313.1^{\circ}C-314.5^{\circ}C. Anal. calcd for C₈₇H₅₉Br₇Cd₃N₆O₁₆: C, 44.64; H, 2.54; N, 3.59; found: C, 44.60; H, 2.43; N, 3.61. IR (KBr, cm⁻¹): 3428m, 3054w, 1928w, 1704w, 1670w, 1596s, 1535s, 1403s,1276w, 1226w, 1168m, 1141s, 1068s, 1010s, 971m, 852s, 802m, 771s, 690m, 663w, 560m, 532m. ¹H NMR (400 MHz, DMSO-*d***₆ ppm):** *δ* **(bpvp) 8.76 (d, 4H, Ph-H), 8.62 (d, 8H, Py-H), 8.46 (s, 2H, Ph-H), 7.62 (d, 8H, Py-H), 7.66 and 7.53 (d, 8H, CH=CH); δ (L₂) 7.96 (d, 8H, Ph-H), 7.49 (d, 8H, Ph-H) (Fig. S13a**).

Preparation of [Cd₃(bpvp)₂(L₃)₆]·HL₃·CH₃OH (CP₃): CP₃ (yellow) was obtained in a similar manner to that of CP₁, but HL₃ (11.0 mg, 0.071 mmol) was used instead of HL₁.Yield: 90% based on bpvp. mp. 313.5° C- 316.1° C. Anal. calcd for C₈₈H₆₃Cd₃Cl₁₇N₆O₁₅: C, 52.07; H, 3.13; N, 4.14; found: C, 52.12; H, 3.06; N, 4.21. IR (KBr, cm⁻¹): 3440m, 3066w, 1589s, 1542s, 1396s, 1276w, 1222w, 1168w, 1095s, 1014s, 968m, 852s, 775s, 690m, 536s, 470w. ¹H NMR (400 MHz, DMSO-*d*₆, ppm): δ (bpvp) 8.76 (d, 4H, Ph-H), 8.62 (d, 8H, Py-H), 8.46 (s, 2H, Ph-H), 7.62 (d, 8H, Py-H), 7.66 and 7.53 (d, 8H, CH=CH); δ (HL₃) 7.96 (d, 8H, Ph-H), 7.49 (d, 8H, Ph-H) (**Fig. S14a**).

Preparation of [Cd₂(bpvp)₂(L₄)₄] (CP₄): CP₄ (yellow) was obtained in a similar manner to that of CP₁, but HL₄ (13.4 mg, 0.085 mmol) was used to instead of HL₁. Yield: 75.3% based on bpvp. mp. 318.3°C-321.7°C. Anal. calcd for C₆₆H₄₂Cd₂F₈N₆O₈: C, 55.67; H, 2.97; N, 5.90; found: C, 55.61; H, 3.02; N, 5.95. IR (KBr, cm⁻¹): 3434m, 1612s, 1558s, 1469m, 1434s, 1388s, 1295m, 1222m, 1118s, 894m, 859s, 806m, 775s, 698m, 667m, 559m, 532m. ¹H NMR (400 MHz, DMSO-*d***₆, ppm): δ (bpvp) 8.76 (d, 4H, Ph-H), 8.62 (d, 8H, Py-H), 8.46 (s, 2H, Ph-H), 7.61 (d, 8H, Py-H), 7.66 and 7.52 (d, 8H, CH=CH); δ (HL₄) 7.54 (m, 8H, Ph-H), 7.37 (m, 4H, Ph-H) (Fig. S15a**).

Preparation of [Cd₃(bpvp)₃(L₅)₆(H₂O)] (CP₅): CP₅ (red) was obtained in a similar manner to that of CP₁, but HL₅ (12.0 mg, 0.072 mmol) was used instead of HL₁. Yield: 85% based on bpvp. mp. 311.4°C-313.2 °C. Anal. calcd for C₉₉H₇₁Cd₃N₁₅O₂₅: C, 53.85; H, 3.24; N, 9.52; found: C, 53.94; H, 3.18; N, 9.48. IR (KBr, cm⁻¹): 3452w, 3074w, 1614s, 1515s, 1403s, 1346s, 1222w, 1106m, 1014s, 971s, 836s, 725s, 618m, 559m, 520s. ¹H NMR (400 MHz, DMSO-*d***₆, ppm): δ (bpvp) 8.76 (d, 4H, Ph-H), 8.62 (d, 8H, Py-H), 8.45 (s, 2H, Ph-H), 7.61 (d, 8H, Py-H), 7.65 and 7.52 (d, 8H, CH=CH);** δ (HL₅) 8.27 (d, 8H, Ph-H), 8.19 (d, 8H, Ph-H) (Fig. S16a).

Photo-irradiation experiment

Crystals (*ca* 0.5 g) of **CP**₁, **CP**₂, **CP**₃, **CP**₄ or **CP**₅ were placed between glass plates and exposed to a 100W high-pressure mercury lamp ($\lambda = 365$ nm) for 2h to form the corresponding photoproducts of **CP**₁', **CP**₂', **CP**₃', **CP**₄' or **CP**₅', respectively.

Separation of Isomer α and Isomer β

Isomer a: CP₄' (500 mg) was mixed with 30 mL of NaOH solution (4 M) and stirred at room temperature for 2 h. The solution was extracted with CHCl₃ (3×30 mL) and the combined organic extracts were concentrated *in vacuo* to produce **Isomer** α as a white powder. Yield: 94% based on **CP**₄'. mp. 225.6°C-226.0°C. ¹H NMR (400 MHz, CDCl₃, ppm): δ (Isomer α) 8.49 (d, 8H, Py-H), 7.87 (m, 4H,Py-H), 7.66 (s, 2H, Py-H), 7.10 (d, 8H, Py-H), 4.73~4.60 (d, 8H, -C4H4-); ¹³C NMR (100 MHz, CDCl₃): δ 149.21, 147.27, 147.17, 134.58, 131.55, 122.18, 49.01, 42.05 (**Fig. S19**).

Isomer β: Isomer β (white powder) was obtained in a similar manner to that of Isomer α but **CP**₁' (500 mg) was used instead of **CP**₄'.Yield: 97% based on **CP**₁'. mp. 244.5°C-245.1°C. ¹H NMR (400 MHz, CDCl₃, ppm): δ (**Isomer β**) 8.50~8.46 (m, 8H, Py-H), 8.07 and 7.85 (s, 4H,Py-H), 7.30 (s, 2H, Py-H), 7.14~7.05 (m, 8H, Py-H), 4.77~4.75 (m, 8H, -C₄H₄-); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 149.23, 149.12, 147.01, 146.79, 144.18, 137.94, 131.78, 131.67, 122.17, 122.03, 48.82, 48.14, 41.92, 41.88 (**Fig. S22**).

Single crystal structure determination: Structures were solved by Direct methods and refined by full-matrix least-squares techniques using the *SHELXL*-2014, SHELXL-2017 or SHELXL-2018 programs. Non-hydrogen atoms were refined with anisotropic displacement parameters. The H atoms were introduced at the calculated positions and included in the structure-factor calculations. The SQUEEZE program was used to remove the contribution of the highly disordered lattice solvent (for **CP**₁). A summary of key crystallographic information for **CP**₁-**CP**₅, Isomer α and Isomer β is given in Table 1. The CCDC codes for these compounds are 2033936-2033942.

Table S1 Summary of Crystal Data and Structure Refinement Parameters for CP1-CP5, Isomer

α and Isomer	f	3
--------------	---	---

	CP ₁ (2033939)	CP ₂ (2033938)	CP ₃ (2033937)	CP ₄ (2033936)
Empirical formula	C ₉₀ H ₇₈ Cd ₃ N ₆ O ₁₄	C ₈₇ H ₅₉ Br ₇ Cd ₃ N ₆ O ₁₆	$C_{88}H_{63}Cd_3C_{17}N_6O_{15}$	$C_{66}H_{42}Cd_2F_8N_6O_8$
Formula weight	1804.78	2340.97	2029.79	1423.85
Crystal system	Triclinic	Triclinic	Triclinic	Triclinic
Space group	P-1	P-1	P-1	P-1
a/Å	11.308(5)	11.2823(7)	11.3948(13)	11.5990(6)
b/Å	20.365(8)	19.7270(13)	19.656(2)	12.8851(9)
c/Å	20.908(9)	21.7507(15)	21.412(3)	21.3522(12)
$\alpha/^{\circ}$	110.484(5)	67.5530(10)	67.534(2)	101.600(5)
β/°	100.264(6)	90.2020(10)	90.301(3)	103.465(4)
γ/°	96.098(6)	73.3800	73.1500	94.762(5)
$V/Å^3$	4364(3)	4252.5(5)	4204.8(9)	3011.7(3)
$D_c/\mathrm{g~cm^{-3}}$	1.374	1.828	1.603	1.570
Ζ	2	2	2	2
μ (Mo-Ka)/mm ⁻¹	0.788	4.102	1.044	0.793
Total reflections	23755	42492	36877	24099
Unique reflections	15144	14898	14361	10598
No. observations	10888	10698	8718	6289
No. parameters	1058	1087	1074	811
<i>F</i> (000)	1832	2280	2032	1424
\mathbf{R}_1^a	0.0432 (10888)	0.0674 (10698)	0.0783 (8718)	0.0554 (6289)
wR_2^b	0.1321 (15144)	0.2160 (14898)	0.2481 (14361)	0.1361 (10598)
GOF ^c	1.014	1.043	1.047	1.031

to be continued for Table S1

	CP ₅ (2033940)	Isomer α (2033941)	Isomer β (2033942)
Empirical formula	C99H71Cd3N15O25	C ₃₉ H ₃₅ Cl ₃ N ₆ O ₂	C ₃₈ H ₃₆ N ₆ O ₃
Formula weight	2201.89	726.08	624.73
Crystal system	Monoclinic	Triclinic	Monoclinic
Space group	C2/c	P-1	$P2_{1}/c$
a/Å	41.888(16)	12.2763(11)	10.8951(5)
<i>b</i> /Å	13.237(5)	12.7413(12)	18.6016(8)
c/Å	37.521(13)	13.7157(13)	19.3051(9)
<i>α</i> /°	90	76.210(8)	90
$\beta/^{\circ}$	102.236(13)	67.384(9)	90.318(6)
γ/°	90	63.288(9)	90
$V/\text{\AA}^3$	20332(13)	1763.4(3)	3912.4(3)
$D_c/\mathrm{g~cm^{-3}}$	1.439	1.367	10.61
Ζ	8	2	4
μ/mm^{-1}	0.701	0.305	0.551
Total reflections	66726	12673	43859
Unique reflections	17740	6219	7129
No. observations	14996	4097	4490
No. parameters	1288	451	478
<i>F</i> (000)	8880	756	1320.0
R_1^a	0.0500(14996)	0.0788(4097)	0.0378(4490)
wR_2^b	0.1440(17740)	0.2138(6219)	0.1032(7129)
GOF ^c	1.107	1.064	1.047

 ${}^{a}R_{1} = \Sigma ||F_{0}| - |F_{c}||/\Sigma |F_{0}|. \ {}^{b}wR_{2} = \{\Sigma w (F_{0}^{2} - F_{c}^{2})^{2} / \Sigma w (F_{0}^{2})^{2}\}^{1/2}. \ {}^{c}\text{GOF} = \{\Sigma w ((F_{0}^{2} - F_{c}^{2})^{2}) / (n - p)\}^{1/2}, \text{ where } n = 0$

number of reflections and p = total number of parameters refined.

Fig. S1 The 1 H (a), and 13 C (b) NMR spectra of **bpvp** in CDCl₃.

(a)

(b)

(c)

(d)

(e)

 $Fig. \ S2 \ {\rm Thermogravimetric\ analysis\ plots\ of\ } (CP_1(a),\ CP_2(b),\ CP_3(c),\ CP_4(d),\ CP_5(e).$

Fig. S3 PXRD patterns of $CP_1(a)$, $CP_2(b)$, $CP_3(c)$, $CP_4(d)$, $CP_5(e)$.

Fig. S4 View of the coordination environments of Cd(II) centers in CP₁.

Fig. S5 The adjacent zigzag chains are connected to form a 2D network.

Fig. S6 View of the 2D network showing hexagonal windows.

Fig. S7 Cartoon showing the 2D network in CP₁-CP₃.

(a)

(b)

Fig. S8 (a) 3D polypseudo-threading network; (b) A schematic illustration of three adjacent 2D layers; (c) A schematic illustration of the mutual polypseudo-threading of three layers.

Fig. S9 Fourteen L₂ (or HL₂) molecules were embedded in the hexagonal window in CP₂.

(a)

(c)

Fig. S11 View of the distances between each pair of C=C in CP₄ (a) and CP₅ (b), showing the

face-to-face alignment of each bpvp pair in CP4 and CP5.

Fig. S12 (a) The ¹H NMR spectrum of CP₁; (b) The ¹H NMR spectrum of CP₁' (DMSO-*d*₆).

Fig. S13 (a) The ¹H NMR spectrum of CP₂; (b) The ¹H NMR spectrum of CP₂' (DMSO-*d*₆).

Fig. S14 (a) The ¹H NMR spectrum of CP₃; (b) The ¹H NMR spectrum of CP₃' (DMSO-*d₆*).

Fig. S15 (a) The ¹H NMR spectrum of CP₄; (b) The ¹H NMR spectrum of CP₄' (DMSO-*d₆*).

Fig. S16 (a) The ¹H NMR spectrum of CP₅; (b) The ¹H NMR spectrum of CP₅' (DMSO-*d₆*).

(d)

(e)

Fig. S17 The CPMAS ¹³C NMR spectra of CP₁ to CP₁' (a), CP₂ to CP₂' (b), CP₃ to CP₃' (c),

CP₄ to **CP**₄' (d), **CP**₅ to **CP**₅' (e).

Fig. S18 The crystal structure of Isomer α .

×>

(b)

Fig. S19 The ¹H (a), ¹³C (b), H-H COSY (c), HSQC (d), HMBC (e), NOESY (f) NMR spectra of

Isomer *α* in CDCl₃.

Fig. S20 The mass spectrum of Isomer α .

Fig. S21 The crystal structure of Isomer β .

(d)

S35

Fig. S22 The ¹H (a), ¹³C (b), H-H COSY (c), HSQC (d), HMBC (e), NOESY (f) NMR spectra of

Isomer β in CDCl₃.

Fig. S23 The mass spectrum of Isomer β .

Table S2 A summary of isomer ratios, number of guest molecules, dimensions of framework

	Number of guest molecules	Dimensions of guest molecules ⁵	Dimensions of framework structures	Ratios of Isomer α to Isomer β from irradiation of CP ₁ and CP ₃
CP ₁	14	6.57 Å × 4.02 Å × 10.07 Å	36.493 Å × 33.910 Å	Isomer α : Isomer β = 0 : 1
CP ₂	14	6.55 Å × 3.66 Å × 10.57 Å	36.157 Å × 34.154 Å	Isomer α : Isomer $\beta = 3 : 7$
СР3	14	6.55 Å × 3.50 Å × 10.33 Å	35.959 Å × 35.520 Å	Isomer α : Isomer β = 1 : 1

structures and dimensions of guest molecules in CP1-CP3

Table S3 The relative Gibbs free energies (kcal/mol) for Isomer α and Isomer β

Compound	Isomer α	Isomer β
Relative Gibbs free energies (kcal/mol)	0	0.94

Fig. S24 Photograph of filter papers impregnated with solution of CP1-CP5 and CP1'-CP5' in

DMF (365 nm).

References

- 1. Y. X. Shi, F. L. Hu, W. H. Zhang and J. P. Lang, CrystEngComm, 2015, 17, 9404-9412.
- 2. C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785-789.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Gaussian 09, Revision C.01*, Gaussian, Inc., Wallingford CT, 2010.

- 4. M. P. Andersson and P. Uvdal, J. Phys. Chem. A, 2005, 109, 2937-2941.
- M. Mantina, A. C. Chamberlin, R. Valero, C. J. Cramer and D. G. Truhlar, *J. Phys. Chem. A*, 2009, 113, 5806-5812.