Supporting information

Synthesis of TEMPO Radical Decorated Hollow Porous

Aromatic Frameworks for Selective Oxidation of Alcohols

Yan-Ming Shen,^{a,†} Yun Xue,^{a,†} Mi Yan,^a Hui-Ling Mao,^a Hu Cheng,^a Zhuo Chen,^a Zhi-Wei Sui,^{*b} Shao-Bin Zhu,^{*c} Xiu-Jun Yu, ^{a,d} Jin-Liang Zhuang^{*a,c}

a: School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, 116 Baoshan Road North, Guiyang 550001, P. R. China

b: Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China.

c: Institute for Inorganic and Analytical chemistry, University of Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/M. (Germany)

d: NanoFCM INC., Xiamen Pioneering Park for Overseas Chinese Scholars, Xiamen, 361005, PR China

Table of contents

1. General Methods and Materials	S2	
2. Experimental Sections	S 3	
3. Characterization of hollow and non-hollow PAFs-TEMPO	S6	
4. References	S13	

1. General Methods and Materials

All the chemicals were obtained from commercial sources, unless otherwise noted, and used without further purification (Innochem, J&K, TCI, and Aladdin). All of the reactions and manipulations were carried out under nitrogen with the use of standard inert atmosphere and Schlenk technique unless otherwise indicated. Column chromatography was performed with 200-300 mesh neutral silica gels. The sorption isotherm measurements were performed on an ASAP (Accelerated Surface Area and Porosimetry) 2020 System. The Brunauer-Emmett-Teller (BET) method was utilized to calculate the specific surface areas. The pore volume and pore size distribution were derived from the sorption curve by using the non-local density functional theory (NLDFT) model. Before gas adsorption measurement, sample was dried again using the "outgas" function of the surface area analyzer for 5 h at 313 K. Powder X-ray diffractions (PXRD) were recorded on a Rigaku Ultima IV diffractometer using Cu K α 1 (1.5418 Å) radiation, from 3-50°. Thermogravimetric analysis (TGA) was carried out with a NETZSCH STA449F3 in a nitrogen or oxygen atmosphere at a heating rate of 5 °/min. EPR spectra were measured by Bruker EMX-10/12 spectrometer at ambient temperature. SEM images were recorded using Hitachi S-4800. TEM images were obtained with a JEM-2100 microscope operated at 200 kV. FT-IR spectra were collected with a NICOLET 6700 Fourier Transform Infrared Spectrometer at a resolution 4 cm⁻¹. GC analysis was measured on GC-9160. General GC conditions for: Restek column, 30 m x 0.32 mm x 0.5 mm; FID detector; carrier gas: N₂; area normalization. Column Conditions for a benzyl alcohol, 5-HMF, 4-methoxybenzyl alcohol, 4-tert-butylbenzyl alcohol, 4-fluorobenzyl alcohol, 4-nitrobenzyl alcohol, α-methylbenzyl alcohol, benzhydrol, 2-thiophenemethanol, furfury alcohol, 1-indanol, 3-pyridinemethanol, and their corresponding carbonyl compounds: column temperature: 80 °C for 5 min, rising to 250 °C at a rate of 20 °C/min.

2. Experimental sections

2.1 Synthesis of tetrakis(4-ethynylphenyl) methane and 2, 5-dibromo-(2,2,6,6-tetramethylpiperidine) benzamide

tetrakis(4-ethynylphenyl) methane (2) was synthesized according to previous report with modification^[1]

Scheme S1. Reaction conditions: (a) Br₂, stirring at room temperature for 20 minutes;
(b) PPh₃, Pd(PPh₃)₂Cl₂, CuI, diisopropylamine, 24 h reflux; (c) TBAF, THF, stirring at room temperature for 2 h.

2, 5-dibromo-(2,2,6, 6-tetramethylpiperidine) benzamide, was based on our previous report[2]:

Scheme S2. Reaction conditions: (a) SOCl₂, 80 °C, 1.5 hours; (b) dry DCM, triethylamine, 4-NH₂-TEMPO, room temperature, 24 hours.

2.2 Synthesis of HPAF-TEMPO

Silica nanospheres (500 mg g, 215 nm), $Pd(PPh_3)_2Cl_2$ (8.4 mg) and CuI (2.3 mg) were added in a round bottle under N₂, followed by the addition of toluene (15 mL) and triethylamine (15 mL). The mixture was sonicated for 15 min under N₂. Tetrakis(4-ethynylphenyl)methane (50 mg, 0.12 mmol) and 2,5-dibromo-(2,2,6,6-tetramethylpiperidine)benzamide (103 mg, 0.24mmol) were added to the mixture under N₂. The mixture was heat slowly from room temperature to 100 °C in an oil bath, and kept in this temperature for 48 h with gentle stirring. The mixture was cooled down to room temperature, and the yellowish precipitate was isolated by centrifugation. After being successively washed with excess CH₃Cl, acetone, and methanol, the obtained SiO₂@PAF-TEMPO were dried under vacuum at 60 °C. The removal of SiO₂ was done by adding the SiO2@PAF-TEMPO (0.30 g) into a HF solution (20 mL, 10% aqueous solution) and stirred for 2 h. The resultant hollow PAF-TEMPO were collected by centrifugation, washed successively with water and ethanol, and dried at oven under 60 °C. For the preparation of non-hollow PAF-TEMPO, the same procedure was used but without the use of SiO₂ nanospheres.

2.3 Catalysis studies of HPAF-TEMPO

Typical procedure for aerobic oxidation of alcohols. To a 10 mL screw capped vial was added 5-HMF (0.28 mmol), catalysts (10 mg, 0.014 mmol of TEMPO based on the calculation of element analysis, 5 mol%), benzotrifluoride (PhCF₃, 0.5 mL, saturated with O₂), and TBN (0.05 mmol), the vial was sealed and placed in oven (80 °C) for desired time. After cooling to room temperature, 0.5 mL DCM and p-nitrobenzene (internal standard, 0.28 mmol) were added and the catalysts were removed by centrifugation. The clear solution was dried with Na₂SO₄, and analyzed by GC without further purification. For cycling experiments, the catalysts were collected by centrifugation, washed with ethanol twice and dried in oven.

3. Characterizations of hollow and non-hollow PAFs-TEMPO

	SiO ₂	Щ	Br O	Temp.	TEA	Toluene		
			H H		mL	mL		
			Т Br					
		ılı						
S1	500	0.12 mmol	0.24mmol	100 °C	15	15		
	mg	50 mg	103 mg					
S2	300	0.12 mmol	0.24mmol	100 °C	15	15		
	mg	50 mg	103 mg					
S3	50	0.12 mmol	0.24mmol	100 °C	15	15		
	mg	50 mg	103 mg					
S4	500	0.12 mmol	0.24mmol	100 °C	20	20		
	mg	50 mg	103 mg					
S5	500	0.12 mmol	0.12mmol	70 °C 15		15		
	mg	50 mg	52mg					
S 6	500	0.12 mmol	0.24mmol	100 °C	3	15		
	mg	50 mg	103 mg					

Table S1. Various conditions for the synthesis of HPAF-TEMPO.

Figure S1. SEM images of HPAF-TEMPO.

Figure S2. SEM images of HPAF-TEMPO synthesis by using the conditions listed in Table S1.

Figure S3. SEM images of original SiO₂ nanoparticles and treated in the mixture of toluene and triethylamine at 100 °C for varied time. The size of SiO₂ nanospheres dramatically decreases to 191 nm within 30 min, then slowly decreases to 183 nm after 3 h, and this size does not change during the rest of reaction time. These results indicate that despite the slightly etching effect of SiO₂ nanospheres in basic solvents, they are stable enough to serve as templates for the growth of PAF-TEMPO shells. Scale bar = 200 nm.

Figure S4. Power X-ray pattern of the HPAF-TEMPO.

Figure S5. ¹HNMR spectrum of the oxidation of 5-HMF by HPAF-TEMPO after 4 h.

Figure S6. Plots of GC conversion (%) versus time for the oxidation of 5-HMF catalyzed by HPAF-TEMPO. (red squares) and non-hollow PAF-TEMPO microspheres (black dots),

Figure S7. EPR spectra of (a) filtrated solution after catalysis and (b) monomer **2** solution with concentration of 0.5 mM. Assuming the catalytic reaction leads to 10% of TEMPO leached from the solid catalyst to the solution. Simple calculation suggests that there is 2.8 mM of free TEMPO radicals in the solution (0.014 mmol x 10% / 0.5 mL = 2.8 mM), which should be detectable by the EPR spectra, since the 0,5 mM of monomer **2** shows clear triple-peak pattern. However, no peak was observed in the EPR spectrum of the filtrated solution, indicating that the no detectable free TEMPO leached from the HPAF-TEMPO after catalysis.

Figure S8. FT-IR spectra of the original HPAF-TEMPO (black) and the one after used for 3 cycles (red). In order to see the increased C=O group, the benzyl alcohol was used as substrates for the recycling experiments. The increased intensity of C=O (1785-1850 cm⁻¹, yellow strip) after catalysis hints the partial blockage of HPAF-TEMPO by benzaldehyde.

Figure S9. SEM image of the HPAF-TEMPO used for 3 cycles.

Figure S 10. (a) SEM image and (b, c) TEM images of non-hollow PAF-TEMPO microspheres

Figure S11. (a) N_2 adsorption/desorption isotherms (Black: adsorption, Red: Desorption), and (b) NLDFT pore size distribution of non-hollow PAF-TEMPO microspheres.

Figure S12. FT-IR spectra of hollow and non-hollow PAFs-TEMPO.

	<u> </u>	<u> </u>		–	-	. .		
Catalyst	Sub.	501.	moi	Temp.	I	Br-cont	Con.	кет.
			%	°C	h	ain	(%)	
HPAF-TEMPO	benzhydrol	PhCF₃	5	80	9	-	>99	This
								work
UiO-66-14%	benzhydrol	DCE	1	80	24	-	71	Ref3
UiO-67-38%	benzhydrol	DCE	1	80	24	-	74	Ref3
UiO-67-100%	benzhydrol	DCE	1	80	24	-	>99	Ref3
UiO-68-TEMPO	benzhydrol	DCE	5	80	24	-	88	Ref2
		+H ₂ O						
UiO-67-bpy-Eu	benzhydrol	PhCH₃	2	60	18	-	49	Ref4
&TEMPO		+HOAc						
SBA-15	benzhydrol	HOAc	1	50	6	Bu₄NBr	0	Ref5
igo-tempo	benzhydrol	DCM+	1	25	20	-	9	Ref6
		HOAc						
GO-TEMPO	benzhydrol	DCM+	1	25	20	-	25	Ref6
		HOAc						
TEMPO-CMP-4	2-hexanol	HOAc	5	25	6	-	64	Ref7
TEMPO-CMP-4	2-hexanol	HOAc	5	25	6	DBDMH	95	Ref7
FRPCP	2-hexanol	$C_2D_2CI_4$	3.5	80	96	-	94	Ref8

Table S2. Summary of TEMPO-based heterogeneous catalysts for the oxidation of alcohols.

Bu4NBr: tetrabuylammonium bromide; DBDMH: 1,3,-dibromo-5,5-dimethylhydantoin

Refernces:

[1] O. Plietzsch, C. I. Schilling, M. Tolev, M. Nieger, C. Richert, T. Muller, S. Brase, Org. Biomol. Chem. 2009, 7, 4734-4743.

[2] J. L. Zhuang, X. Y. Liu, Y. Zhang, C. Wang, H. L. Mao, J. Guo, X. Du, S. B. Zhu, B. Ren, A. Terfort, *ACS Appl Mater Interfaces* **2019**, *11*, 3034-3043.

[3] K. M. Zwolinski, M. J. Chmielewski, ACS Appl Mater Interfaces 2017, 9, 33956-33967.

- [4] S. Kim, J. Lee, S. Jeoung, H. R. Moon, M. Kim, Dalton Trans., 2020,49, 8060-8066.
- [5] B. Karimi, A. Biglari, J. H. Clark, V. Budarin, Angew Chem Int Ed. 2007, 46, 7210-7213.
- [6] A. J. Shakir, D. C. Culita, J. Calderon-Moreno, A. Musuc, O. Carp, G. Ionita, P. Ionita, *Carbon* **2016**, *105*, 607-614.

[7] M. Liu, B. Zhou, L. Zhou, Z. Xie, S. Li, L. Chen, *Journal of Materials Chemistry A* 2018, 6, 9860-9865.

[8] L. Li, R. Matsuda, I. Tanaka, H. Sato, P. Kanoo, H. J. Jeon, M. L. Foo, A. Wakamiya, Y. Murata, S. Kitagawa, J. Am. Chem. Soc., 2014, 136, 7543-7546.