Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Table of Contents

1. General Information	1
2. Optimization of the reaction condition	1
3. Investigation of the reaction mechanism	
4. General procedure for the preparation of Morita-Baylis-Hillman adducts	5
5. General procedure for reaction of NHC-Borane with Morita–Baylis–Hillman Esters	5
6. Synthetic applications and gram scale experiment.	6
7. Characterization of products	
References	
NMR spectra	
1	

1. General Information

All the reactions were conducted in oven-dried Schlenk tubes under Argon atmosphere unless otherwise noted. All solvents and chemicals were obtained from commercial suppliers and used without further purification. Flash column chromatographic purification of products was accomplished using forced-flow chromatography on Silica Gel (300-400 mesh). ¹H NMR, ¹³C NMR, ¹¹B NMR and ¹⁹F NMR spectra were recorded on 400 MHz and 500 MHz spectrometer in CDCl₃ at room temperature. Chemical shifts (δ) are reported in ppm downfield from tetramethylsilane. High resolution mass spectra were obtained on a high–resolution mass spectrometer in the ESI positive mode. The 45 W blue LEDs light was purchased from Kessil (A360NE/WE) and the 36 W fluorescent light bulb were purchased from the supermarket. All NHC-boranes were known compounds and prepared according to the literature procedures.¹

2. Optimization of the reaction conditions.

Table 2.1: Screening of photocatalyst

Table 2.2: Screening of additives

F BocO	Ph O OEt	+ $H_3\bar{B}$ + $H_$	$ \underbrace{\overset{Ne}{\underset{Ne}{\overset{N}}{\overset{N}{\overset{N}}}}}}}}}$		$(B) = \underbrace{\begin{array}{c} H \\ 3 \\ 3 \\ 4 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
	1a	2a		3a	
	Entry	Base	Equiv.	Yield ^a	Z/E
	1	TEA	0.2	47%	4.0/1
	2	K ₂ HPO ₄	0.2	trace	-
	3	K ₂ HPO ₄	0.5	trace	-
	4	$TEA:K_2HPO_4 = 1:1$	0.4	60%	4.0/1
	5	$TEA:K_2HPO_4 = 1:1$	1.0	78%	4.2/1
	6	$TEA:K_2HPO_4 = 1:1$	2.0	49%	4.2/1
	7	$TEA:K_3PO_4 = 1:1$	1.0	63%	3.3/1
	8	$TEA:KH_2PO_4 = 1:1$	1.0	56%	1.7/1
	9	$TEA:KHCO_3 = 1:1$	1.0	59%	1.5/1
	10	$TEA:K_2CO_3 = 1:1$	1.0	55%	1.4/1
	11	TEA:NaHCO ₃ = 1:1	1.0	56%	1/1
	12	TEA:KF = 1:1	1.0	47%	3.3/1
	13	$TEA:Cs_2CO_3 = 1:1$	1.0	trace	-
	14	TEA:Pyridine = 1:1	1.0	50%	1.3/1

^aYield of isolated.

Entry	Solvent	Yield ^a	Z/E
1	CH ₃ CN	58%	4.0/1
2	THF	78%	4.2/1
3	DMA	trace	-
4	DCM	trace	-
5	Toluene	trace	-
6	1,4-Dioxane	trace	-
ax_{7} 11	0.1 + 1		

^{*a*}Yield of isolated.

Table 2.4: Another changes

BocO Ph	$ \begin{array}{c} O \\ H_{3}\overline{B} \\ H_{3}\overline{B} \\ H_{4} \\ H_{3}\overline{B} \\ H_{4} $	r(ppy) ₂ (dtbbpy)PF ₆ (1 mol%) additives (1.0 equiv.) THF (1.0 mL), rt, CFL	Ph ^{ref} OEt	
1a	2a		3a	
Entry	Base	Equiv.	Solvent	Yield ^a
1	$TEA:K_2HPO_4 = 1:1$	0.4	CH ₃ CN	42%
2	$TEA:K_2HPO_4 = 1:1$	1.0	CH ₃ CN:THF	50%
			(1:1)	

^aYield of isolated.

3. Investigation of the reaction mechanism

3.1 Radical inhibition experiments and ESR experiments

The reaction was completely inhibited by TEMPO, 1,4-Dinitrobenzene. The compounds **10** detected by HRMS suggested that the reaction might produce boron radical. For furture demonstrated the possible reaction mechanism, electron paramagnetic resonance (EPR) experiments with *N*-tert-butyl- α -phenylnitrone (PBN) as the electron-spin trapping reagent were carried out. A significant EPR signal was observed for the model reaction. Combining the above results indicating that the reaction probably proceeded via a radical process.²

Figure S1. HRMS data of the reaction mixture.

3.2 The CV data of NHC-BH₃ (2a)

Redox potentials generally provide a starting point for the evaluation of the thermodynamic accessibility of a reaction, but solvent effects and errors in measurements always mean these should be taken only as guidelines. The oxidation potentials of NHC-BH₃ (**2a**) ($E_{1/2}^{\text{oxidation}} = 0.915$ V vs SCE), the mixture of **2a** and K₂HPO₄ (0.5 eq.) ($E_{1/2}^{\text{oxidation}} = 0.801$ V vs SCE). These results indicated that K₂HPO₄ probably can decrease the oxidation potentials of NHC-BH₃. It seems that Ir(III)* cannot oxidize NHC-BH₃. However, some parts of overlap between the excited Ir(ppy)₂(dtbbpy)PF₆ (E1/2^{oxidation} = 0.66V vs SCE) with NHC-BH₃ was observed. Thus, the first sluggish oxidation of NHC-BH₃ is reasonable.

Figure S2. The CV data of NHC-BH₃ (2a), the mixture of 2a and K_2 HPO₄ (0.5 eq.) measured in acetonitrile containing 0.1 mol/L tetrabutylammonium hexafluorophosphate.

4. General procedure for the preparation of Morita-Baylis-Hillman adducts³

To a solution of aldehyde (10 mmol) and acrylate (30 mmol) in Dioxane : $H_2O = (1 : 1)$ (10 mL), DABCO (10 mmol) was added at room temperature. The stirring continued all starting materials had been consumed (monitored by TLC). The reaction was quenched by H_2O , and water layer was extracted with ethyl acetate (20 mL × 3). Combined organic layers, then dried over Na₂SO₄. The residue was purified by column chromatography on silica gel to obtain the desired product **15**.

To a solution of **15** (0.5 mmol) and $(Boc)_2O$ (0.55 mmol) in DCM (10 mL), DMAP (0.1 mmol) was added at room temperature. The stirring continued all starting materials had been consumed (monitored by TLC). The reaction was quenched by H₂O, and water layer was extracted with DCM (10 mL × 3). Combined organic layers and dried over Na₂SO₄. The residue was purified by column chromatography on silica gel to obtain the desired product **1**.

5. General procedure for reaction of NHC-Borane with Morita–Baylis–Hillman Esters

An oven-dried Schlenk tube (10 mL) was equipped with a magnetic stir bar, Morita– Baylis–Hillman Esters (1) (1.0 equiv., 0.2 mmol), NHC-borane (2a) (1.5 equiv., 0.3 mmol), $Ir(ppy)_2(dtbbpy)PF_6$ (1 mol%), TEA (0.5 equiv., 0.1 mmol), K_2HPO_4 (0.5 equiv., 0.1 mmol). The flask was evacuated and backfilled with Ar for 3 times. 1 mL THF was added with syringe under Ar. The tube was placed exposed to 36 W fluorescent light bulb at room temperature. After the reaction was finished, the reaction was quenched by water (2 mL), extracted by ethyl acetate (3 × 10 mL), dried by anhydrous Na₂SO₄, filtered and collected organic solvent. The organic solvent was removed under the reduced pressure. The residue was purified by column chromatography on silica gel to obtain the desired product **3**.

6. Synthetic applications and gram scale experiment.^[4]

(*Z*)-(1,3-dimethyl-1H-imidazol-3-ium-2-yl)(2-(ethoxycarbonyl)-3phenylallyl)dihydroborate ((*Z*)-**3a**, 1.0 mmol, 298 mg) and pinacol (1.3 mmol, 138 mg) in CH₃CN (5 mL) was added 2 M aqueous HCl (1.5 mL, 3.0 mmol), and the resulting mixture was stirred at 50 °C for 12 h. After finish, the reaction was quenched by water (5 mL), extracted by ethyl acetate (3 \times 10 mL), dried by anhydrous Na₂SO₄, filtered and collected organic solvent. The residue was purified by column chromatography on silica gel to obtain the desired product 7.

The product 7 can be converted into arylallyl alcohol **8** in 85% yields by using H_2O_2 as the oxidant. Moreover, 7 could react with benzaldehyde use $Sc(OTf)_3$ as catalyst, and the resulting homoallylic alcohol intermediate cyclizes in situ with the carboxy ester group to form a lactone product **9** in 80% isolated yields.

The gram scale experiment was carried out with the standard conditions in 8 mmol scale. After normal work-up can give the titled product 3v as 1.83 g (70% yield).

ethyl (*Z*)-3-phenyl-2-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)acrylate (**7**). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.31 – 7.27 (m, 1H), 7.26 – 7.19 (m, 4H), 6.74 (d, *J* = 1.6 Hz, 1H), 4.08 (q, *J* = 7.1 Hz, 2H), 2.04 (d, *J* = 1.4 Hz, 2H), 1.26 (s, 12H), 1.09 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 169.5, 136.9, 134.4, 131.2, 128.4, 127.8, 127.3, 83.6, 60.5, 24.8, 13.8.¹¹B NMR (160 MHz, Chloroform-*d*) δ 38.6. HRMS (ESI): m/z Calcd for $C_{18}H_{25}BNaO_4^+$ [M+Na⁺]: 339.1738, found 339.1731.

ethyl (Z)-2-(hydroxymethyl)-3-phenylacrylate (**8**). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.37 – 7.27 (m, 5H), 6.99 (s, 1H), 4.43 (s, 2H), 4.16 (q, *J* = 7.1 Hz, 2H), 2.28 (s, 1H), 1.12 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 168.2, 136.6, 135.4, 132.8, 128.6, 128.3, 128.0, 65.4, 60.9, 13.8.

3-methylene-4,5-diphenyldihydrofuran-2(3H)-one (9). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.41 – 7.36 (m, 2H), 7.36 – 7.32 (m, 4H), 7.23 – 7.19 (m, 2H), 7.19 – 7.16 (m, 2H), 6.45 (d, J = 3.3 Hz, 1H), 5.46 (d, J = 3.0 Hz, 1H), 5.38 (d, J = 7.7 Hz, 1H), 4.05 (dt, J = 7.8, 3.1 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 169.6, 139.9, 138.3, 138.2, 129.2, 128.8, 128.7, 128.5, 128.0, 125.5, 124.1, 85.9, 55.5.

7. Characterization of products

Note: In the ¹H NMR spectral data, the protons on boron are not listed due to quadrupole broadening and spin–spin coupling with boron.

(1,3-dimethyl-1H-imidazol-3-ium-2-yl)(2-(ethoxycarbonyl)-3-

phenylallyl)dihydroborate (**3a**). 0.2 mmol scale, light yellow oil; (47.0 mg, 78%, *Z* : *E* = 4.2 : 1 (detected by ¹H NMR)); Rf = 0.25 (petroleum ether/ethyl acetate 2:1). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.64 – 7.59 (m, 0.5H), 7.33 (t, *J* = 7.7 Hz, 0.5H), 7.24 – 7.17 (m, 2.75H), 7.14 – 7.10 (m, 1H), 7.08 (dd, *J* = 7.8, 1.2 Hz, 2H), 6.80 (s, 2H), 6.72 (s, 0.5H), 6.09 (s, 1H), 4.08 – 3.97 (m, 2.5H), 3.76 (s, 6H), 3.70 (s, 1.5H), 1.96 (s, 0.5H), 1.76 (s, 2H), 1.23 (t, *J* = 7.1 Hz, 0.75H), 1.08 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 172.1, 170.5, 143.6, 142.0, 137.9, 137.7, 130.7, 129.8, 128.0, 127.5, 126.9, 126.2, 125.2, 120.2, 120.1, 60.2, 60.1, 36.0, 35.9, 14.4, 13.9. ¹¹B NMR (160 MHz, Chloroform-*d*) δ -22.3, -22.5. HRMS (ESI): m/z Calcd for C₁₇H₂₃BN₂NaO₂⁺ [M+Na⁺]: 321.1745, found 321.1743.

(1,3-dimethyl-1H-imidazol-3-ium-2-yl)(2-(ethoxycarbonyl)-3-(p-

tolyl)allyl)dihydroborate (**3b**). 0.2 mmol scale, colorless oil; (41.0 mg, 66%, Z : E = 1.3 : 1 (separated)); Rf = 0.25 (petroleum ether/ethyl acetate 2:1).

(*Z*-**3b**). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.00 (q, J = 8.2 Hz, 4H), 6.80 (s, 2H), 6.04 (s, 1H), 4.04 (q, J = 7.1 Hz, 2H), 3.77 (s, 6H), 2.28 (s, 3H), 1.75 (s, 2H), 1.12 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 172.2, 142.7, 135.8, 135.0, 128.6, 127.4, 125.2, 120.1, 60.0, 36.0, 21.1, 14.0. ¹¹B NMR (160 MHz, Chloroform-*d*) δ -22.3. HRMS (ESI): m/z Calcd for C₁₈H₂₅BN₂NaO₂⁺ [M+Na⁺]: 335.1901, found 335.1899. (*E*-**3b**). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.56 (d, J = 7.9 Hz, 2H), 7.18 (d, J = 5.0 Hz, 2H), 7.15 (s, 1H), 6.73 (s, 2H), 4.00 (q, J = 7.1 Hz, 2H), 3.73 (s, 6H), 2.35 (s, 3H), 1.96 (s, 2H), 1.22 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 170.5, 141.0, 136.8, 134.8, 131.0, 129.9, 128.8, 120.0, 60.1, 35.9, 21.3, 14.4. ¹¹B NMR (160 MHz, Chloroform-*d*) δ -22.6. HRMS (ESI): m/z Calcd for C₁₈H₂₅BN₂NaO₂⁺ [M+Na⁺]: 335.1901, found 335.1896.

(1,3-dimethyl-1H-imidazol-3-ium-2-yl)(2-(ethoxycarbonyl)-3-(4-

ethylphenyl)allyl)dihydroborate (**3c**). 0.2 mmol scale, yellow oil; (40.0 mg, 61%, Z : E = 3 : 1 (separated)); Rf = 0.25 (petroleum ether/ethyl acetate 2:1).

(*Z*-**3**c). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.02 (q, *J* = 8.3 Hz, 4H), 6.80 (s, 2H), 6.05 (s, 1H), 4.03 (q, *J* = 7.1 Hz, 2H), 3.77 (s, 6H), 2.58 (q, *J* = 7.6 Hz, 2H), 1.75 (s, 2H), 1.19 (t, *J* = 7.6 Hz, 3H), 1.10 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 172.2, 142.7, 142.2, 135.2, 127.5, 127.4, 125.3, 120.1, 60.0, 36.0, 28.5, 15.5, 13.9. ¹¹B NMR (160 MHz, Chloroform-*d*) δ -22.3. HRMS (ESI): m/z Calcd for C₁₉H₂₇BN₂NaO₂⁺ [M+Na⁺]: 349.2058, found 349.2052.

(*E*-3c). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.57 (d, *J* = 8.1 Hz, 2H), 7.22 – 7.17 (m, 3H), 6.73 (s, 2H), 4.00 (q, *J* = 7.1 Hz, 2H), 3.72 (s, 6H), 2.65 (q, *J* = 7.6 Hz, 2H), 1.97

(s, 2H), 1.26 - 1.20 (m, 6H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 170.6, 143.1, 141.0, 135.0, 131.0, 130.0, 127.6, 120.0, 60.1, 35.9, 28.7, 15.6, 14.4. ¹¹B NMR (160 MHz, Chloroform-*d*) δ -22.6. HRMS (ESI): m/z Calcd for C₁₉H₂₇BN₂NaO₂⁺ [M+Na⁺]: 349.2058, found 349.2055.

(3-(4-(tert-butyl)phenyl)-2-(ethoxycarbonyl)allyl)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)dihydroborate (**3d**). 0.2 mmol scale, colorless oil; (42.0 mg, 59%,*Z*:*E*= 2.6 : 1 (separated)); Rf = 0.25 (petroleum ether/ethyl acetate 2:1).

(*Z*-3d). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.22 (d, *J* = 8.4 Hz, 2H), 7.02 (d, *J* = 8.3 Hz, 2H), 6.80 (s, 2H), 6.06 (s, 1H), 4.03 (q, *J* = 7.1 Hz, 2H), 3.77 (s, 6H), 1.74 (s, 2H), 1.27 (s, 9H), 1.09 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 172.2, 149.0, 142.8, 135.0, 127.2, 125.2, 124.8, 120.1, 60.0, 36.0, 34.4, 31.3, 13.9. ¹¹B NMR (160 MHz, Chloroform-*d*) δ -22.3. HRMS (ESI): m/z Calcd for C₂₁H₃₁BN₂NaO₂⁺ [M+Na⁺]: 377.2371, found 377,2368.

(*E*-3d). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.59 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H), 7.18 (s, 1H), 6.72 (s, 2H), 4.00 (q, J = 7.2 Hz, 2H), 3.71 (s, 6H), 1.98 (s, 2H), 1.33 (s, 9H), 1.22 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 170.6, 149.9, 141.2, 134.8, 130.9, 129.7, 125.0, 120.0, 60.1, 35.9, 34.6, 31.3, 14.4. ¹¹B NMR (160 MHz, Chloroform-*d*) δ -22.6. HRMS (ESI): m/z Calcd for C₂₁H₃₁BN₂NaO₂⁺ [M+Na⁺]: 377.2371, found 377.2370.

(3-(4-chlorophenyl)-2-(ethoxycarbonyl)allyl)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)dihydroborate (3e). 0.2 mmol scale, light yellow oil; (34.0 mg, 51%, Z : E = 2.4 : 1 (separated)); Rf = 0.25 (petroleum ether/ethyl acetate 2:1).

(Z-**3e**). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.17 (d, *J* = 8.5 Hz, 2H), 7.02 (d, *J* = 8.3 Hz, 2H), 6.81 (s, 2H), 6.06 (s, 1H), 4.03 (q, *J* = 7.2 Hz, 2H), 3.76 (s, 6H), 1.74 (s, 2H),

1.11 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 171.7, 144.5, 136.4, 131.8, 128.8, 128.0, 124.0, 120.2, 60.2, 36.0, 14.0. ¹¹B NMR (160 MHz, Chloroform-*d*) δ -22.4. HRMS (ESI): m/z Calcd for C₁₇H₂₂BClN₂NaO₂⁺ [M+Na⁺]: 355.1355, found 355.1352.

(E-3e). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.59 (d, J = 8.5 Hz, 2H), 7.31 (d, J = 8.6 Hz, 2H), 7.13 (s, 1H), 6.75 (s, 2H), 4.01 (q, J = 7.1 Hz, 2H), 3.73 (s, 6H), 1.92 (s, 2H), 1.23 (q, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 170.2, 142.6, 136.1, 132.6, 131.2, 129.4, 128.2, 120.1, 60.3, 35.92, 14.4. ¹¹B NMR (160 MHz, Chloroform-*d*) δ -22.7. HRMS (ESI): m/z Calcd for C₁₇H₂₂BClN₂NaO₂⁺ [M+Na⁺]: 355.1355, found 355.1352.

(1,3-dimethyl-1H-imidazol-3-ium-2-yl)(2-(ethoxycarbonyl)-3-(4-

fluorophenyl)allyl)dihydroborate (**3f**). 0.2 mmol scale, light yellow oil; (45.0 mg, 71%, Z : E = 2 : 1 (detected by ¹H NMR)); Rf = 0.25 (petroleum ether/ethyl acetate 2:1). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.63 (dd, J = 8.6, 5.7 Hz, 1H), 7.15 (s, 0.5H), 7.08 – 6.98 (m, 3H), 6.88 (t, J = 8.8 Hz, 2H), 6.80 (s, 2H), 6.75 (s, 1H), 6.08 (s, 1H), 4.05 – 3.96 (m, 3H), 3.76 (s, 6H), 3.72 (s, 3H), 1.91 (s, 1H), 1.72 (s, 2H), 1.21 (t, J = 7.2 Hz, 1.5H), 1.09 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 171.9, 170.3, 161.7 (d, J = 245.4 Hz), 161.4 (d, J = 245.1 Hz) 143.6, 141.6, 134.0 (d, J = 3.2 Hz), 133.7 (d, J = 3.3 Hz), 131.6 (d, J = 7.7 Hz), 129.7, 129.1 (d, J = 7.9 Hz), 124.2, 120.2, 120.1, 120.0, 115.0, 114.8, 114.6, 60.2, 60.1, 36.0, 35.9, 14.4, 13.9. ¹¹B NMR (160 MHz, Chloroform-*d*) δ -22.4, -22.6. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -114.9, -116.5. HRMS (ESI): m/z Calcd for C₁₇H₂₂BFN₂NaO₂⁺ [M+Na⁺]: 339.1651, found 339.1645.

(3-(2-chlorophenyl)-2-(ethoxycarbonyl)allyl)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)dihydroborate (**3g**). 0.2 mmol scale, colorless oil; (40.0 mg, 60%, <math>Z : E = 3 : 1 (separated)); Rf = 0.25 (petroleum ether/ethyl acetate 2:1).

(Z-3g). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.32 – 7.25 (m, 1H), 7.16 – 7.07 (m, 3H), 6.82 (s, 2H), 6.19 (s, 1H), 3.98 (q, J = 7.1 Hz, 2H), 3.79 (s, 6H), 1.85 (s, 2H), 1.03 (t, J= 7.1 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 171.1, 145.9, 136.8, 132.6, 129.7, 128.8, 127.5, 126.2, 122.8, 120.3, 60.0, 36.1, 13.8. ¹¹B NMR (160 MHz, Chloroform-*d*) δ -22.5. HRMS (ESI): m/z Calcd for C₁₇H₂₂BClN₂NaO₂⁺ [M+Na⁺]: 355.1355, found 355.1354.

(*E*-3g). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.91 (dd, J = 7.8, 1.7 Hz, 1H), 7.31 (dd, J = 8.0, 1.3 Hz, 1H), 7.26 – 7.23 (m, 2H), 7.14 (td, J = 7.7, 1.7 Hz, 1H), 6.69 (s, 2H), 4.10 (q, J = 15.4, 7.2 Hz, 2H), 3.67 (s, 6H), 1.90 (s, 2H), 1.30 – 1.25 (m, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 170.2, 143.7, 135.8, 133.8, 131.2, 129.1, 127.9, 126.8, 126.2, 120.2, 60.3, 35.9, 14.4. ¹¹B NMR (160 MHz, Chloroform-*d*) δ -22.4. HRMS (ESI): m/z Calcd for C₁₇H₂₂BClN₂NaO₂⁺ [M+Na⁺]: 355.1355, found 355.1352.

(3-(3-chlorophenyl)-2-(ethoxycarbonyl)allyl)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)dihydroborate (**3h**). 0.2 mmol scale, light yellow oil; (46.0 mg, 69%,*Z*:*E*= 3.6 : 1 (separated)); Rf = 0.25 (petroleum ether/ethyl acetate 2:1).

(*Z*-**3h**). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.13 (t, *J* = 7.6 Hz, 1H), 7.11 – 7.05 (m, 2H), 6.97 (d, *J* = 7.5 Hz, 1H), 6.82 (s, 2H), 6.05 (s, 1H), 4.04 (q, *J* = 7.2 Hz, 2H), 3.77 (s, 6H), 1.75 (s, 2H), 1.11 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 171.6, 145.3, 139.8 133.7, 129.1, 127.5, 126.1, 125.7, 123.7 120.2, 60.3 36.0, 13.9. ¹¹B NMR (160 MHz, Chloroform-*d*) δ -22.3. HRMS (ESI): m/z Calcd for C_{17H22}BClN₂NaO₂⁺ [M+Na⁺]: 355.1355, found 355.1350.

(E-3h). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.56 (s, 1H), 7.45 (d, J = 7.9 Hz, 1H), 7.28 – 7.24 (m, 1), 7.18 (ddd, J = 8.0, 2.1, 1.0 Hz, 1H), 7.09 (s, 1H), 6.75 (s, 2H), 4.09 (q, J = 7.1 Hz, 2), 3.74 (s, 6), 1.91 (s, 2), 1.28 – 1.17 (m, 3). ¹³C NMR (126 MHz, Chloroform-*d*) δ 170.2, 143.6, 139.6, 133.7, 129.3, 129.2, 128.8, 128.0, 126.72, 120.1,

60.4, 35.9, 14.4. ¹¹B NMR (160 MHz, Chloroform-*d*) δ -22.7. HRMS (ESI): m/z Calcd for C₁₇H₂₂BClN₂NaO₂⁺ [M+Na⁺]: 355.1355, found 355.1352.

(2-(butoxycarbonyl)-3-(4-(methoxycarbonyl)phenyl)allyl)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)dihydroborate (**3i**). 0.2 mmol scale, light yellow oil; (46.0 mg, 60%, Z : E = 1.4 : 1 (detected by ¹H NMR)); Rf = 0.25 (petroleum ether/ethyl acetate 2:1). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.99 (d, J = 8.4 Hz, 1.4H), 7.87 (d, J = 8.4 Hz, 2H), 7.65 (d, J = 8.4 Hz, 1.4H), 7.15 (s, 0.7H), 7.12 (d, J = 8.4 Hz, 2H), 6.81 (s, 2H), 6.73 (s, 1.4H), 6.08 (s, 1H), 4.01 – 3.95 (m, 3.4H), 3.90 (s, 2.1H), 3.87 (s, 3H), 3.76 (s, 6H), 3.71 (s, 4.2H), 1.95 (s, 1.4H), 1.77 (s, 2H), 1.64 – 1.57 (m, 1.4H), 1.47 – 1.36 (m, 3.4H), 1.20 – 1.11 (m, 2H), 0.94 (t, J = 7.4 Hz, 2.1H), 0.80 (t, J = 7.4 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 171.8, 170.1, 167.1, 167.0, 146.5, 144.6, 142.8, 142.5, 129.6, 129.4, 129.3, 129.1, 127.6, 127.3, 127.0, 123.9, 120.2, 120.1, 64.4, 64.3, 52.0, 51.9, 36.0, 35.9, 30.8, 30.4, 19.3, 19.0, 13.8, 13.7. ¹¹B NMR (160 MHz, Chloroform-*d*) δ -22.3, -22.6. HRMS (ESI): m/z Calcd for C₂₁H₂₉BN₂NaO₄⁺ [M+Na⁺]: 407.2113, found 407.2109.

(2-(butoxycarbonyl)-3-(perfluorophenyl)allyl)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)dihydroborate (**3j**). 0.2 mmol scale, light yellow oil; (46.5 mg, 56%,*Z*:*E*= 1 : 1.7 (detected by ¹H NMR)); Rf = 0.25 (petroleum ether/ethyl acetate 2:1). ¹H NMR (500 MHz, Chloroform-*d* $) <math>\delta$ 6.82 (s, 1.2H), 6.72 (s, 2H), 6.60 (d, *J* = 1.8 Hz, 1H), 5.76 (d, *J* = 1.8 Hz, 0.6H), 4.06 (t, *J* = 6.7 Hz, 2H), 3.95 (t, *J* = 6.7 Hz, 1.2H), 3.74 (s, 3.6H), 3.63 (s, 6H), 1.87 (s, 1.2H), 1.69 (s, 2H), 1.65 – 1.60 (m, 2H), 1.51 – 1.44 (m, 1.2H), 1.44 – 1.38 (m, 2H), 1.23 – 1.19 (m, 1.2H), 0.94 (t, *J* = 7.4 Hz, 3H), 0.86 (t, *J* = 7.4 Hz, 1.8H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 169.1, 168.5, 151.6, 150.7, 145.9 – 142.1 (m), 137.4 (d, J = 251.2 Hz), 120.3, 120.2, 112.9, 109.5, 64.6, 64.4, 35.9, 35.7, 30.7, 30.4, 19.2, 19.1, 13.8, 13.6. ¹¹B NMR (160 MHz, Chloroform-*d*) δ -22.1, -22.6. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -138.1 – -138.2 (m), -141.6 – -141.7 (m), -157.2 (t, J = 20.9 Hz), -158.3 (t, J = 20.8 Hz), -163.2 (td, J = 22.3, 7.4 Hz), -164.0 (td, J = 22.3, 7.4 Hz). HRMS (ESI): m/z Calcd for C₁₉H₂₂BF₅N₂NaO₂⁺ [M+Na⁺]: 439.1587, found 439.1586.

(3-([1,1'-biphenyl]-4-yl)-2-(ethoxycarbonyl)allyl)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)dihydroborate (**3k**). 0.2 mmol scale, light yellow oil; (34.0 mg, 51%,*Z*:*E*= 2.4 : 1 (separated)); Rf = 0.25 (petroleum ether/ethyl acetate 2:1).

(Z-**3k**). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.58 – 7.55 (m, 2H), 7.46 (d, *J* = 8.3 Hz, 2H), 7.41 (t, *J* = 7.7 Hz, 2H), 7.34 – 7.29 (m, 1H), 7.17 (d, *J* = 8.3 Hz, 2H), 6.82 (s, 2H), 6.12 (s, 1H), 4.07 (q, *J* = 7.1 Hz, 2H), 3.79 (s, 6H), 1.80 (s, 2H), 1.13 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 172.1, 143.9, 140.9, 138.8, 136.9, 128.7, 128.0, 127.1, 126.9, 126.6, 124.8, 120.2, 60.2, 36.1, 14.0. ¹¹B NMR (160 MHz, Chloroform-*d*) δ -22.3. HRMS (ESI): m/z Calcd for C₂₃H₂₇BN₂NaO₂⁺ [M+Na⁺]: 397.2058, found 397.2055.

(*E*-**3**k). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.73 (d, J = 8.4 Hz, 2H), 7.65 – 7.57 (m, 4H), 7.44 (t, J = 7.7 Hz, 2H), 7.37 – 7.31 (m, 1H), 7.23 (s, 1H), 6.74 (s, 2H), 4.03 (q, J = 7.1 Hz, 2H), 3.74 (s, 6H), 2.02 (s, 2H), 1.24 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 170.4, 142.1, 140.9, 139.5, 136.73, 130.4 130.4, 128.8, 127.2, 127.0, 126.7, 120.1, 60.2, 36.0, 14.4. ¹¹B NMR (160 MHz, Chloroform-*d*) δ -22.5. HRMS (ESI): m/z Calcd for C₂₃H₂₇BN₂NaO₂⁺ [M+Na⁺]: 397.2058, found 397.2056.

(1,3-dimethyl-1H-imidazol-3-ium-2-yl)(2-(ethoxycarbonyl)-3-(naphthalen-2-

yl)allyl)dihydroborate (**3l**). 0.2 mmol scale, colorless oil; (44.0 mg, 63%, Z : E = 2.2 : 1 (separated)); Rf = 0.25 (petroleum ether/ethyl acetate 2:1).

(Z-**31**) ¹H NMR (500 MHz, Chloroform-*d*) δ 7.76 – 7.70 (m, 2H), 7.68 (d, *J* = 8.5 Hz, 1H), 7.53 (s, 1H), 7.46 – 7.35 (m, 2H), 7.27 – 7.22 (m, 1H), 6.80 (s, 2H), 6.26 (s, 1H), 4.06 (q, *J* = 7.1 Hz, 2H), 3.78 (s, 6H), 1.83 (s, 2H), 1.07 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 172.1, 144.2, 135.5, 133.4, 132.1, 127.8, 127.5, 127.3, 126.2, 126.1, 125.9, 125.4, 125.2, 120.2, 60.2, 36.0, 14.0. ¹¹B NMR (160 MHz, Chloroform-*d*) δ -22.2. HRMS (ESI): m/z Calcd for C₂₁H₂₅BN₂NaO₂⁺ [M+Na⁺]: 371.1901, found 371.1897.

(*E*-**31**). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.10 (s, 1H), 7.88 – 7.69 (m, 4H), 7.49 – 7.40 (m, 2H), 7.34 (s, 1H), 6.79 (s, 2H), 4.07 (q, J = 7.2 Hz, 2H), 3.73 (s, 6H), 2.06 (s, 2H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 170.4, 142.5, 135.3, 133.4, 132.4, 130.7, 128.8, 128.3, 128.1, 127.5, 127.3, 125.8, 125.8, 120.0, 60.2, 35.9, 14.4. ¹¹B NMR (160 MHz, Chloroform-*d*) δ -22.5. HRMS (ESI): m/z Calcd for C₂₁H₂₅BN₂NaO₂⁺ [M+Na⁺]: 371.1901, found 371.1900.

(2-(butoxycarbonyl)-3-(4-vinylphenyl)allyl)(1,3-dimethyl-1H-imidazol-3-ium-2yl)dihydroborate (**3m**). 0.2 mmol scale, light yellow oil; (45.0 mg, 58%, Z : E = 1 : 1.7 (detected by ¹H NMR)); Rf = 0.25 (petroleum ether/ethyl acetate 2:1). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.61 (d, J = 8.3 Hz, 0.8H), 7.41 – 7.38 (m, 0.8H), 7.27 – 7.23 (m, 2H), 7.17 (s, 0.4H), 7.04 (d, J = 8.3 Hz, 2H), 6.80 (s, 2H), 6.72 (s, 0.8H), 6.72 – 6.69 (m, 0.4H), 6.65 (dd, J = 17.6, 10.9 Hz, 1H), 6.03 (s, 1H), 5.75 (dd, J = 17.6, 1.0 Hz, 1H), 5.23 (dd, J = 10.9, 0.9 Hz, 0.4H), 5.17 (dd, J = 10.8, 1.0 Hz, 1H), 4.00 – 3.93 (m, 2.8H), 3.76 (s, 6H), 3.72 (s, 2.4H), 1.98 (s, 0.8H), 1.75 (s, 2H), 1.62 – 1.55 (m, 0.8H), 1.49 – 1.44 (m, 2H), 1.42 – 1.36 (m, 0.8H), 1.21 – 1.14 (m, 2H), 0.94 (t, J = 7.4 Hz, 1.2H), 0.82 (t, J = 7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.2, 170.4, 143.9, 142.1, 137.6, 137.3, 136.7, 136.6, 136.1, 135.5, 130.4, 130.1, 127.6, 125.9, 125.9, 124.7, 120.2, 120.1, 113.6, 113.0, 64.2, 64.1, 36.0, 35.9, 30.9, 30.4, 19.3, 19.1, 13.8, 13.7. ¹¹B NMR (160 MHz, Chloroform-*d*) δ -22.3, -22.5. HRMS (ESI): m/z Calcd for C₂₁H₂₉BN₂NaO₂⁺ [M+Na⁺]: 375.2214, found 375.2209.

(1,3-dimethyl-1H-imidazol-3-ium-2-yl)(2-(ethoxycarbonyl)-3-(4-

ethynylphenyl)allyl)dihydroborate (**3n**). 0.2 mmol scale, light yellow oil; (34.0 mg, 53%, Z : E = 7.5 : 1 (separated)); Rf = 0.25 (petroleum ether/ethyl acetate 2:1). (*Z*-**3n**). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.33 (d, J = 8.3 Hz, 2H), 7.03 (d, J = 8.2 Hz, 2H), 6.81 (s, 2H), 6.07 (s, 1H), 4.03 (q, J = 7.1 Hz, 2H), 3.76 (s, 6H), 3.05 (s, 1H), 1.75 (s, 2H), 1.10 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 171.8, 145.0, 138.5, 131.8, 131.7, 129.7, 127.4, 124.3, 120.2, 120.1, 119.6, 83.9, 77.1, 60.3, 36.0, 13.9. ¹¹B NMR (160 MHz, Chloroform-*d*) δ -22.3. HRMS (ESI): m/z Calcd for C₁₉H₂₃BN₂NaO₂⁺ [M+Na⁺]: 345.1745, found 345.1745.

(E-3n). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.59 (d, J = 8.2 Hz, 2H), 7.46 (d, J = 8.3 Hz, 2H), 7.14 (s, 1H), 6.74 (s, 2H), 4.02 (q, J = 7.1 Hz, 2H), 3.72 (s, 6H), 3.10 (s, 1H), 1.95 (s, 2H), 1.25 – 1.22 (m, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 170.7, 138.3, 131.8, 129.7, 120.1, 83.31, 58.9, 35.9, 14.9. ¹¹B NMR (160 MHz, Chloroform-*d*) δ - 22.7. HRMS (ESI): m/z Calcd for C₁₉H₂₃BN₂NaO₂⁺ [M+Na⁺]: 345.1745, found 345.1747.

(Z)-(1,3-dimethyl-1H-imidazol-3-ium-2-yl)(2-(ethoxycarbonyl)-3-(3-fluoro-4methylphenyl)allyl)dihydroborate (**30**). 0.2 mmol scale, colorless oil; (40.0 mg, 61%, Z : E = 3 : 1 (separated)); Rf = 0.25 (petroleum ether/ethyl acetate 2:1). (Z-**30**). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.03 – 6.97 (m, 1H), 6.81 (s, 2H), 6.77 – 6.71 (m, 2H), 5.99 (s, 1H), 4.05 (q, J = 7.1 Hz, 2H), 3.76 (s, 6H), 2.20 (d, J = 1.8 Hz, 3H), 1.73 (s, 2H), 1.13 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 171.8, 161.0 (d, J = 243.3 Hz), 144.1, 137.4 (d, J = 7.7 Hz), 130.8 (d, J = 5.6 Hz), 123.9, 123.1 (d, J = 2.9 Hz), 122.5 (d, J = 17.4 Hz), 120.2, 113.8 (d, J = 22.6 Hz), 60.2, 36.0, 14.3 (d, J = 3.4 Hz), 14.0. ¹¹B NMR (160 MHz, Chloroform-*d*) δ -22.4. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -118.8. HRMS (ESI): m/z Calcd for C₁₈H₂₄BFN₂NaO₂⁺ [M+Na⁺]: 353.1807, found 353.1805.

(*E*-30). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.35 (dd, J = 11.6, 1.7 Hz, 1H), 7.29 – 7.24 (m, 1H), 7.17 – 7.09 (m, 2H), 6.75 (s, 2H), 4.04 (q, J = 7.1 Hz, 2H), 3.75 (s, 6H), 2.27 (d, J = 1.8 Hz, 3H), 1.92 (s, 2H), 1.24 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 170.3, 161.03 (d, J = 243.3 Hz), 142.3, 137.2 (d, J = 7.9 Hz), 130.8 (d, J = 5.7 Hz), 129.6 (d, J = 2.4 Hz), 125.5 (d, J = 3.0 Hz), 120.1, 116.0, 115.8, 60.3, 35.9, 14.5 (d, J = 3.3 Hz), 14.4. ¹¹B NMR (160 MHz, Chloroform-*d*) δ -22.7. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -118.5. HRMS (ESI): m/z Calcd for C₁₈H₂₄BFN₂NaO₂⁺ [M+Na⁺]: 353.1807, found 353.1804.

(3-(2-chloro-4-methylphenyl)-2-(ethoxycarbonyl)allyl)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)dihydroborate (**3p**). 0.2 mmol scale, light yellow oil; (48.0 mg, 69%,*Z*:*E*= 2.2 : 1 (separated)); Rf = 0.25 (petroleum ether/ethyl acetate 2:1).

(Z-3p) ¹H NMR (500 MHz, Chloroform-*d*) δ 7.08 (s, 1H), 7.00 (d, J = 7.9 Hz, 1H), 6.90 – 6.86 (m, 1H), 6.79 (s, 2H), 6.12 (s, 1H), 3.99 (q, J = 7.1 Hz, 2H), 3.77 (s, 6H), 2.25 (s, 3H), 1.82 (s, 2H), 1.06 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 171.3, 145.2, 137.7, 133.7, 132.3, 129.4, 129.3, 127.0, 122.7, 120.3, 60.0, 36.1, 20.8, 13.9. ¹¹B NMR (160 MHz, Chloroform-*d*) δ -22.5. HRMS (ESI): m/z Calcd for C₁₈H₂₄BClN₂NaO₂⁺ [M+Na⁺]: 369.1512, found 369.1511.

(*E*-**3p**). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.85 (d, J = 7.9 Hz, 1H), 7.25 (s, 1H), 7.15 (d, J = 1.0 Hz, 1H), 7.06 (dd, J = 7.9, 1.7 Hz, 1H), 6.71 (s, 2H), 4.06 (q, J = 7.1 Hz, 2H), 3.69 (s, 6H), 2.32 (s, 3H), 1.89 (s, 2H), 1.25 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 170.3, 142.9, 138.1, 133.7, 132.7, 131.0, 129.6, 127.0, 126.9, 120.1, 60.3, 35.9, 21.0, 14.4. ¹¹B NMR (160 MHz, Chloroform-*d*) δ -22.4. HRMS (ESI): m/z Calcd for C₁₈H₂₄BClN₂NaO₂⁺ [M+Na⁺]: 369.1512, found 369.1509.

(3-(5-bromo-2-fluorophenyl)-2-(ethoxycarbonyl)allyl)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)dihydroborate (**3q**). 0.2 mmol scale, light yellow oil; (45.0 mg, 57%,*Z*:*E*= 3.5 : 1 (separated)); Rf = 0.25 (petroleum ether/ethyl acetate 2:1).

(*Z*-**3q**). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.24 – 7.18 (m, 2H), 6.82 (t, *J* = 9.0 Hz, 1H), 6.81 (s, 2H), 6.02 (s, 1H), 4.02 (q, *J* = 7.1 Hz, 2H), 3.76 (s, 6H), 1.80 (s, 2H), 1.10 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 170.7, 158.8 (d, *J* = 246.5 Hz), 147.6, 132.3 (d, *J* = 3.6 Hz), 130.4 (d, *J* = 8.4 Hz), 128.2 (d, *J* = 16.1 Hz), 120.3, 120.2, 116.9 (d, *J* = 2.7 Hz), 116.8, 116.6, 115.9 (d, *J* = 3.2 Hz), 60.3, 36.0, 13.9. ¹¹B NMR (160 MHz, Chloroform-*d*) δ -22.3. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -118.7. HRMS (ESI): m/z Calcd for C₁₇H₂₁BBrFN₂NaO₂⁺ [M+Na⁺]: 417.0756, found 417.0751. (*E*-**3q**). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.02 (dd, *J* = 6.8, 2.6 Hz, 1H), 7.30 – 7.27 (m, 1H), 7.12 (s, 1H), 6.88 (dd, *J* = 9.8, 8.7 Hz, 1H), 6.74 (s, 2H), 4.15 (q, *J* = 7.1 Hz, 2H), 3.75 (s, 6H), 1.85 (s, 2H), 1.29 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 169.7, 159.4 (d, *J* = 248.6 Hz), 145.4, 133.5 (d, *J* = 3.3 Hz), 130.9 (d, *J* = 8.4 Hz), 127.7 (d, *J* = 14.3 Hz), 120.3 (d, *J* = 4.6 Hz), 120.2, 116.7 (d, *J* = 23.8 Hz), 116.0 (d, *J* = 3.7 Hz), 60.5, 36.0, 14.4. ¹¹B NMR (160 MHz, Chloroform-*d*) δ -22.6. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -117.2. HRMS (ESI): m/z Calcd for C₁₇H₂₁BBrFN₂NaO₂⁺ [M+Na⁺]: 417.0756, found 417.0756.

(3-(2-chloro-6-fluorophenyl)-2-(ethoxycarbonyl)allyl)(1,3-dimethyl-1H-imidazol-3ium-2-yl)dihydroborate (**3r**). 0.2 mmol scale, light yellow oil; (44.0 mg, 63%, Z : E =1 : 3 (separated)); Rf = 0.25 (petroleum ether/ethyl acetate 2:1).(Z-**3r**). ¹H NMR (500 MHz, Chloroform-*d* $) <math>\delta$ 7.11 – 7.07 (m, 1H), 7.07 – 7.03 (m, 1H), 6.86 (ddd, *J* = 9.5, 7.9, 1.5 Hz, 1H), 6.79 (s, 2H), 6.00 (s, 1H), 3.95 (q, *J* = 7.2 Hz, 2H), 3.76 (s, 6H), 1.91 (s, 2H), 1.03 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, Chloroform*d*) δ 169.6, 160.2 (d, J = 247.4 Hz), 148.1, 134.0 (d, J = 5.3 Hz), 127.6 (d, J = 9.5 Hz), 126.0 (d, J = 18.9 Hz), 124.6 (d, J = 3.4 Hz), 120.3, 117.5, 113.5 (d, J = 23.7 Hz), 60.0, 36.1, 13.8. ¹¹B NMR (160 MHz, Chloroform-*d*) δ -22.1. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -110.8. HRMS (ESI): m/z Calcd for C₁₇H₂₁BClFN₂NaO₂⁺ [M+Na⁺]: 373.1261, found 373.1259.

(*E*-3r). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.11 (td, J = 3.7, 2.6 Hz, 2H), 6.96 – 6.90 (m, 1H), 6.79 (s, 1H), 6.65 (s, 2H), 4.16 (q, J = 7.1 Hz, 2H), 3.56 (s, 6H), 1.71 (s, 2H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 169.4, 159.6 (d, J = 249.3 Hz), 147.4, 134.7 (d, J = 5.5 Hz), 128.0 (d, J = 9.3 Hz), 125.3 (d, J = 19.6 Hz), 124.8 (d, J = 3.4 Hz), 120.2, 120.1, 113.9 (d, J = 23.2 Hz), 60.4, 35.7, 14.4. ¹¹B NMR (160 MHz, Chloroform-*d*) δ -22.6. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -107.3. HRMS (ESI): m/z Calcd for C₁₇H₂₁BClFN₂NaO₂⁺ [M+Na⁺]: 373.1261, found 373.1260.

(3-(3,5-dichlorophenyl)-2-(ethoxycarbonyl)allyl)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)dihydroborate (3s). 0.2 mmol scale, light yellow oil; (35.0 mg, 48%, Z : E = 2.5 : 1 (separated)); Rf = 0.25 (petroleum ether/ethyl acetate 2:1).

(Z-3s) ¹H NMR (500 MHz, Chloroform-*d*) δ 7.11 (t, *J* = 1.9 Hz, 1H), 6.99 – 6.94 (m, 2H), 6.82 (s, 2H), 6.00 (s, 1H), 4.06 (q, *J* = 7.1 Hz, 2H), 3.76 (s, 6H), 1.74 (s, 2H), 1.14 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 171.2, 147.0, 140.9, 134.3, 126.0, 125.9, 122.3, 120.3, 60.4, 36.0, 13.9. ¹¹B NMR (160 MHz, Chloroform-*d*) δ - 22.4. HRMS (ESI): m/z Calcd for C₁₇H₂₁BCl₂N₂NaO₂⁺ [M+Na⁺]: 389.0965, found 389.0968.

(E-3s). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.46 (d, J = 1.9 Hz, 2H), 7.19 (t, J = 1.9 Hz, 1H), 7.01 (s, 1H), 6.77 (s, 2H), 4.13 (q, J = 7.2 Hz, 2H), 3.76 (s, 6H), 1.85 (s, 2H), 1.28 (t, J = 7.1 Hz, 3H). ¹¹B NMR (160 MHz, Chloroform-*d*) δ -22.7. HRMS (ESI): m/z Calcd for C₁₇H₂₁BCl₂N₂NaO₂⁺ [M+Na⁺]: 389.0965, found 389.0966.

(3-(1-((l1-boranyl)carbonyl)pyrrolidin-2-yl)-2-(ethoxycarbonyl)allyl)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)dihydroborate (**3t**). 0.2 mmol scale, light yellow oil; (64.0 mg, 82%, Z : E = 9 : 1 (detected by ¹H NMR)); Rf = 0.25 (petroleum ether/ethyl acetate 2:1). ¹H NMR (500 MHz, Chloroform-*d*) δ 6.76 (s, 2H), 6.13 (d, J = 9.0 Hz, 1H), 4.61 (s, 1H), 3.97 – 3.88 (m, 2H), 3.73 (s, 6H), 3.40 – 3.34 (m, 1H), 2.25 – 2.16 (m, 1H), 1.92 – 1.82 (m, 1H), 1.82 – 1.75 (m, 1H), 1.73 – 1.67 (m, 2H), 1.36 (s, 9H), 1.14 (t, J = 7.1Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 169.6, 139.2 135.8 120.0, 79.1 59.7, 56.5, 55.5 46.4 35.9 33.2, 28.5, 24.0, 14.3. ¹¹B NMR (160 MHz, Chloroform-*d*) δ -21.9, 22.2. HRMS (ESI): m/z Calcd for C₂₀H₃₄BN₃NaO₄⁺ [M+Na⁺]: 414.2535, found 414.2530.

(2-(butoxycarbonyl)-3-phenylallyl)(1,3-dimethyl-1H-imidazol-3-ium-2-

yl)dihydroborate (**3u**). 0.2 mmol scale, light yellow oil; (45.0 mg, 69%, Z : E = 2.4 : 1 (detected by 1H NMR)); Rf = 0.25 (petroleum ether/ethyl acetate 2:1). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.60 (d, J = 7.5 Hz, 0.85H), 7.33 (t, J = 7.7 Hz, 0.89H), 7.23 – 7.18 (m, 2.46H), 7.17 (s, 0.43H), 7.13 – 7.09 (m, 1H), 7.06 (d, J = 7.7 Hz, 2H), 6.80 (s, 2H), 6.71 (s, 0.82H), 6.06 (s, 1H), 3.99 – 3.92 (m, 2.87H), 3.76 (s, 6H), 3.70 (s, 2.47H), 1.96 (s, 0.87H), 1.75 (s, 2H), 1.62 – 1.56 (m, 0.88H), 1.45 – 1.41 (m, 2H), 1.40 – 1.36 (m, 0.89H), 1.20 – 1.11 (m, 2H), 0.94 (t, J = 7.4 Hz, 1.36H), 0.81 (t, J = 7.4 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 172.2, 170.5, 143.8, 142.1, 138.0, 137.7, 130.6, 129.8, 128.0, 127.9, 127.4, 126.9, 126.1, 125.1, 120.2, 120.1, 77.3, 77.1, 76.8, 64.2, 64.1, 36.0, 35.9, 30.9, 30.4, 19.3, 19.0, 13.8, 13.7. ¹¹B NMR (160 MHz, Chloroform-*d*) δ -22.3, -22.5. HRMS (ESI): m/z Calcd for C₁₉H₂₇BN₂O₂⁺ [M+Na⁺]: 349.2059, found 349.2055.

(2-(*tert-butoxycarbonyl*)-3-*phenylallyl*)(1,3-*dimethyl*-1*H*-*imidazol*-3-*ium*-2*yl*)*dihydroborate* (**3v**). 0.2 mmol scale, light yellow oil; (48.0 mg, 74%, *Z* : *E* = 3.7 : 1 (detected by ¹H NMR)); Rf = 0.25 (petroleum ether/ethyl acetate 2:1). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.56 (d, *J* = 7.3 Hz, 0.58H), 7.31 (t, *J* = 7.7 Hz, 0.6H), 7.22 – 7.17 (m, 2.27H), 7.13 – 7.11 (m, 1H), 7.11 – 7.08 (m, 2H), 6.81 (s, 2H), 6.70 (s, 0.52H), 5.89 (s, 1H), 3.77 (s, 6H), 3.68 (s, 1.66H), 1.94 (s, 0.58H), 1.80 – 1.65 (m, 2H), 1.41 (s, 2.64H), 1.35 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 171.2, 169.7, 145.2, 143.7, 138.3, 137.9, 129.8, 129.7, 127.9, 127.8, 127.6, 126.6, 126.0, 123.8, 120.2, 120.1, 80.1, 79.2, 36.0, 35.9, 28.2, 27.9, 27.8. ¹¹B NMR (160 MHz, Chloroform-*d*) δ -22.4. HRMS (ESI): m/z Calcd for C₁₉H₂₇BN₂NaO₂⁺ [M+Na⁺]: 349.2058, found 349.2054.

(2-(butoxycarbonyl)-3-phenylallyl)(3-butyl-1-methyl-1H-imidazol-3-ium-2-

yl)dihydroborate (**3w**). 0.2 mmol scale, colorless oil; (68.0 mg, 92%, Z : E = 2.5 : 1 (detected by ¹H NMR)); Rf = 0.25 (petroleum ether/ethyl acetate 2:1). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.60 (d, J = 7.3 Hz, 0.8H), 7.32 (t, J = 7.7 Hz, 0.8H), 7.22 – 7.20 (m, 0.4H), 7.20 – 7.17 (m, 2.5H), 7.13 – 7.10 (m, 1H), 7.10 – 7.06 (m, 2H), 6.82 (dd, J = 14.3, 1.9 Hz, 2H), 6.74 (dd, J = 13.1, 2.0 Hz, 0.8H), 6.08 (s, 1H), 4.16 – 4.10 (m, 2H), 4.08 – 4.04 (m, 0.8H), 4.02 – 3.94 (m, 2.8H), 3.75 (s, 3H), 3.72 (s, 1.2H), 1.93 (s, 0.8H), 1.75 – 1.67 (m, 3.3H), 1.64 – 1.56 (m, 1H), 1.47 – 1.40 (m, 3H), 1.39 – 1.29 (m, 4H), 1.21 – 1.10 (m, 2H), 1.02 – 0.87 (m, 5.6H), 0.81 (t, J = 7.4 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 172.2, 170.4, 143.6, 141.4, 138.0, 137.7, 131.9, 130.8, 129.9, 128.0, 127.9, 127.6, 126.8, 126.1, 125.2, 120.3, 120.2, 118.7, 118.5, 60.1, 48.7, 36.0, 35.8, 31.9, 30.7, 30.5, 29.6, 29.5, 29.4, 29.2, 26.6, 22.7, 14.4, 14.1, 13.9.

(160 MHz, Chloroform-*d*) δ -22.4. HRMS (ESI): m/z Calcd for C₂₂H₃₃BN₂NaO₂⁺ [M+Na⁺]: 391.2527, found 391.2527.

(3-dodecyl-1-methyl-1H-imidazol-3-ium-2-yl)(2-(ethoxycarbonyl)-3-

phenylallyl)dihydroborate (**3x**). 0.2 mmol scale, light yellow oil; (71.0 mg, 78%, *Z* : *E* = 2 : 1 (detected by ¹H NMR)); Rf = 0.25 (petroleum ether/ethyl acetate 2:1). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.62 (d, *J* = 7.4 Hz, 1H), 7.33 (t, *J* = 7.7 Hz, 1H), 7.23 – 7.18 (m, 3H), 7.15 – 7.11 (m, 1H), 7.11 – 7.08 (m, 2H), 6.82 (dd, *J* = 15.5, 1.9 Hz, 2H), 6.76 (dd, *J* = 13.1, 1.9 Hz, 1H), 6.11 (s, 1H), 4.16 – 4.10 (m, 2H), 4.08 – 4.05 (m, 1H), 4.05 – 4.00 (m, 3H), 3.77 (s, 3H), 3.74 (s, 1.5H), 1.94 (s, 1H), 1.82 – 1.69 (m, 2H), 1.60 (s, 6H), 1.27 – 1.18 (m, 24H), 1.09 (t, *J* = 7.1 Hz, 1.5H), 0.87 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 172.2, 170.4, 143.6, 141.4, 138.0, 137.7, 131.9, 130.8, 129.9, 128.0, 127.9, 127.6, 126.8, 126.1, 125.2, 120.3, 120.2, 118.7, 118.5, 60.1, 60.1, 48.7, 36.0, 35.8, 31.9, 30.7, 30.5, 29.6, 29.6, 29.5, 29.4, 29.2, 26.6, 22.7, 14.4, 14.1, 13.9. ¹¹B NMR (160 MHz, Chloroform-*d*) δ -22.4. HRMS (ESI): m/z Calcd for C_{28H45}BN₂NaO₂⁺ [M+Na⁺]: 475.3466, found 475.3467.

(1-benzyl-3-methyl-1H-imidazol-3-ium-2-yl)(2-(butoxycarbonyl)-3-

phenylallyl)dihydroborate (**3y**). 0.2 mmol scale, colorless oil; (57.0 mg, 71%, Z : E = 3 : 1 (detected by ¹H NMR)); Rf = 0.25 (petroleum ether/ethyl acetate 2:1). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.62 (d, J = 7.6 Hz, 0.7H), 7.35 – 7.28 (m, 5H), 7.28 – 7.18 (m, 5.5H), 7.18 – 7.12 (m, 1H), 7.11 – 7.08 (m, 2H), 6.81 (d, J = 2.0 Hz, 1H), 6.72 (d, J = 2.0 Hz, 0.33H), 6.69 (d, J = 2.0 Hz, 1H), 6.60 (d, J = 2.0 Hz, 0.33H), 6.09 (s, 1H), 5.36 (s, 2H), 5.29 (s, 0.7H), 4.04 – 3.95 (m, 2.7H), 3.81 (s, 3H), 3.77 (s, 1H), 2.02 (s, 1H), 2.02 (s, 1H), 5.29 (s, 0.7H), 4.04 – 3.95 (m, 2.7H), 3.81 (s, 3H), 3.77 (s, 1H), 2.02 (s, 1H), 5.29 (s, 0.7H), 4.04 – 3.95 (m, 2.7H), 3.81 (s, 3H), 3.77 (s, 1H), 2.02 (s, 1H), 5.29 (s, 0.7H), 4.04 – 3.95 (m, 2.7H), 3.81 (s, 3H), 3.77 (s, 1H), 2.02 (s, 1H), 5.29 (s, 0.7H), 4.04 – 3.95 (m, 2.7H), 3.81 (s, 3H), 3.77 (s, 1H), 2.02 (s, 1H), 5.20 (s

0.7H), 1.78 (s, 2H), 1.64 – 1.57 (m, 1H), 1.48 – 1.36 (m, 2.7H), 1.23 – 1.06 (m, 2H), 0.94 (t, J = 7.4 Hz, 1H), 0.79 (t, J = 7.4 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 172.4, 170.5, 143.8, 142.0, 138.0, 137.7, 135.9, 135.8, 130.8, 129.8, 128.9, 128.5, 128.4, 128.3, 128.0, 127.9, 127.5, 126.9, 126.2, 125.0, 120.7, 120.6, 118.8, 118.6, 64.2, 64.1, 52.1, 52.0, 36.0, 35.9, 30.9, 30.4, 19.3, 19.1, 13.9, 13.7. ¹¹B NMR (160 MHz, Chloroform-*d*) δ -22.2. HRMS (ESI): m/z Calcd for C₂₅H₃₁BN₂NaO₂⁺ [M+Na⁺]: 425.2371, found 425.2367.

(1,3-diisopropyl-1H-imidazol-3-ium-2-yl)(2-(ethoxycarbonyl)-3-

phenylallyl)dihydroborate (**3z**). 0.2 mmol scale, light yellow oil; (56.0 mg, 79%, *Z* : *E* = 2 : 1 (detected by ¹H NMR)); Rf = 0.25 (petroleum ether/ethyl acetate 2:1). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.61 (d, *J* = 7.3 Hz, 1H), 7.32 (t, *J* = 7.7 Hz, 1H), 7.27 (s, 0.5H), 7.23 (t, *J* = 1.3 Hz, 0.5H), 7.21 – 7.17 (m, 2H), 7.14 – 7.08 (m, 3H), 6.95 (s, 2H), 6.92 (s, 1H), 6.14 (s, 1H), 5.32 – 5.08 (m, 3H), 4.23 – 3.96 (m, 3H), 1.87 (s, 1H), 1.71 (s, 2H), 1.40 – 1.35 (m, 15H), 1.27 – 1.22 (m, 1.6H), 1.11 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 172.4, 170.4, 143.6, 142.0, 137.9, 137.8, 130.6, 129.9, 127.9, 127.8, 127.6, 126.8, 126.1, 124.9, 115.3, 115.2, 60.1, 49.1, 49.1, 23.3, 23.2, 14.4, 13.9. ¹¹B NMR (160 MHz, Chloroform-*d*) δ -22.5. HRMS (ESI): m/z Calcd for $C_{21}H_{31}BN_2NaO_2^+$ [M+Na⁺]: 377.2371, found 377.2371.

(1,3-dicyclohexyl-1H-imidazol-3-ium-2-yl)(2-(ethoxycarbonyl)-3-

phenylallyl)dihydroborate (**3aa**). 0.2 mmol scale, light yellow oil; (68.0 mg, 78%, Z : E = 2.2 : 1 (detected by ¹H NMR)); Rf = 0.25 (petroleum ether/ethyl acetate 2:1). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.59 (d, J = 7.3 Hz, 0.9H), 7.32 (t, J = 7.7 Hz, 0.9H),

7.23 (s, 0.5H), 7.22 – 7.21 (m, 0.5H), 7.21 – 7.17 (m, 2H), 7.14 – 7.14 (m, 1H), 7.13 – 7.08 (m, 2H), 6.91 (s, 2H), 6.88 (s, 0.9H), 6.14 (s, 1H), 4.94 – 4.64 (m, 3.2H), 4.21 – 3.97 (m, 3.2H), 2.10 – 1.97 (m, 6H), 1.86 – 1.77 (m, 6H), 1.77 – 1.66 (m, 6H), 1.52 – 1.36 (m, 14H), 1.31 – 1.21 (m, 1.3H), 1.13 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 172.4, 170.4, 143.7, 142.2, 137.9, 137.8, 130.2, 129.8, 127.9, 127.8, 127.6, 126.7, 126.0, 124.7, 115.7, 115.6, 60.1, 56.6, 56.4, 33.9, 33.8, 25.5, 25.4, 25.3, 25.2, 14.5, 14.0. ¹¹B NMR (160 MHz, Chloroform-*d*) δ -22.4. HRMS (ESI): m/z Calcd for C₂₇H₃₉BN₂O₂⁺ [M+Na⁺]: 457.2997, found 457.3001.

(2-(butoxycarbonyl)-3-phenylallyl)(1,3,5-trimethyl-1H-imidazol-3-ium-2yl)dihydroborate (**3bb**). 0.2 mmol scale, colorless oil; (50.0 mg, 73%, Z : E = 2.5 : 1 (detected by ¹H NMR)); Rf = 0.25 (petroleum ether/ethyl acetate 2:1). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.56 (d, J = 7.3 Hz, 0.8H), 7.31 (t, J = 7.7 Hz, 0.8H), 7.19 (t, J = 7.5 Hz, 2.5H), 7.14 (s, 0.4H), 7.13 – 7.09 (m, 1H), 7.08 – 7.05 (m, 2H), 6.54 (d, J = 1.2 Hz, 1H), 6.44 (d, J = 1.4 Hz, 0.4H), 6.06 (s, 1H), 4.03 – 3.90 (m, 2.8H), 3.70 (s, 3H), 3.64 (s, 3H), 3.63 (s, 1.2H), 3.54 (s, 1.2H), 2.16 (d, J = 1.1 Hz, 3H), 2.08 (d, J = 1.2 Hz, 1.2H), 1.96 (s, 0.8H), 1.73 (s, 2H), 1.64 – 1.55 (m, 1H), 1.45 – 1.37 (m, 3H), 1.21 – 1.10 (m, 2H), 0.94 (t, J = 7.4 Hz, 1.2H), 0.81 (t, J = 7.4 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 170.6, 143.1, 141.0, 135.0, 131.0, 130.0, 127.6, 120.0, 60.1, 35.9, 28.7, 15.6, 14.4. ¹¹B NMR (160 MHz, Chloroform-*d*) δ -22.1, -22.2. HRMS (ESI): m/z Calcd for C₂₀H₂₉BN₂NaO₂⁺ [M+Na⁺]: 363.2214, found 363.2213.

(2-(*butoxycarbonyl*)-3-*phenylallyl*)(4,5-*dichloro*-1,3-*dimethyl*-1*H*-*imidazol*-3-*ium*-2*yl*)*dihydroborate* (**3cc**). 0.2 mmol scale, colorless oil; (60.0 mg, 82%, Z : E = 5 : 1(detected by ¹H NMR)); Rf = 0.25 (petroleum ether/ethyl acetate 2:1). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.53 – 7.46 (m, 0.4H), 7.32 (t, J = 7.7 Hz, 0.4H), 7.22 (dd, J =8.2, 6.7 Hz, 2H), 7.17 (s, 0.2H), 7.16 – 7.12 (m, 1H), 7.08 (dd, J = 7.7, 1.3 Hz, 2H), 6.21 (s, 1H), 4.09 (q, J = 7.1 Hz, 0.4H), 3.99 (q, J = 7.1 Hz, 2H), 3.77 (s, 6H), 3.65 (s, 1.2H), 1.99 (s, 0.4H), 1.75 (s, 2H), 1.28 – 1.25 (m, 0.6H), 1.06 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 171.9, 170.3, 143.0, 141.5, 137.8, 137.4, 130.9, 129.4, 128.0, 127.9, 127.5, 126.9, 126.3, 126.0, 116.2, 116.0, 60.2, 33.8, 33.6, 14.4, 13.8. ¹¹B NMR (160 MHz, Chloroform-*d*) δ -21.3, -21.8. HRMS (ESI): m/z Calcd for C₁₇H₂₁BCl₂N₂NaO₂⁺ [M+Na⁺]: 389.0965, found 389.0962.

References

(1) (a) Brahmi, M. M.; Monot, J.; Desage-El Murr, M.; Curran, D. P.; Fensterbank, L.; Lacôte, E.; Malacria, M. Preparation of NHC Borane Complexes by Lewis Base Exchange with Amine– and Phosphine–Boranes. *J. Org. Chem.* **2010**, *75*, 6983; (b) Solovyev, A.; Ueng, S.H.; Monot, J.; Fensterbank, L.; Malacria, M.; Lacôte, E.; Curran, D. P. Estimated Rate Constants for Hydrogen Abstraction from N-Heterocyclic Carbene–Borane Complexes by an Alkyl Radical[†]. *Org. Lett.* **2010**, *12*, 2998; (c) Kawamoto, T.; Geib, S. J.; Curran, D. P. Radical Reactions of N-Heterocyclic Carbene Boranes with Organic Nitriles: Cyanation of NHC-Boranes and Reductive Decyanation of Malononitriles. *J. Am. Chem. Soc.* **2015**, *137*, 8617.

(2) Frogneux, X.; Hippolyte, L.; Mercier, D.; Portehault, D.; Chanac, C.; Sanchez, C.; Marcus, P.; Ribot, F.; Fensterbank, L.; Carenco, S. Direct Synthesis of N-Heterocyclic Carbene-Stabilized Copper Nanoparticles from an N-Heterocyclic Carbene–Borane. *Chem. Eur. J.* **2019**, *25*, 11481.

(3) Feng, J.; Lu, X.; Kong, A.; Han, X. A highly regio- and stereo-selective [3+2] annulation of allylic compounds and 2-substituted 1,1-dicyanoalkenes through a catalytic carbon–phosphorus ylide reaction. *Tetrahedron.* **2007**, *63*, 6035.

(4) (a) Mann, G.; John, K. D.; Baker, R. T. Platinum-Catalyzed Diboration Using a Commercially Available Catalyst: Diboration of Aldimines to α -Aminoboronate Esters. *Org. Lett.* **2000**, *2*, 2105; (b) Cho, H. Y.; Yu, Z.Y.; Morken, J. P. Stereoselective Borylative Ketone-Diene Coupling. *Org. Lett.* **2011**, *13*, 5267. (c) Kennedy, J. W. J.; Hall, D. G. Lewis Acid Catalyzed Allylboration: Discovery, Optimization, and Application to the Formation of Stereogenic Quaternary Carbon Centers. *J. Org. Chem.* **2004**, *69*, 4412.

¹H -¹H Noesy Spectra of *E*-3e

¹H -¹H Noesy Spectra of **Z**-3e

50 240 230 220 210 200 190 190 190 10 10 10 10 10 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5 fl (ppm)

50 240 250 220 210 200 190 180 170 160 150 140 150 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -50 -40 -f f1 (ppm)

/ -114.8741 / -116.4910

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

10 f1 (ppm) 90 80 70 60 50 40 30 20 -10 -20 -30 -40 -70 -80 0 -50 -60

130 -132 -134 -136 -138 -140 -142 -144 -146 -148 -150 -152 -154 -156 -158 -160 -162 -164 -166 -168 -1 f1 (ppm)

 $< \frac{-22.3117}{-22.5240}$

-111, 8208 -146, 6499 -146, 6499 -146, 6499 -146, 6499 -108, 5204 -108, 5204 -108, 5204 -103, 5460 -60, 2594 -60, 2594 -13, 9100

10 f1 (ppm) -40 90 80 60 50 40 30 20 -30 -70 -80 70 0 -10 -20 -50 -60

50 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 f1 (ppm) 40 30 20 10

-111, 2643 -144, 1367 -144, 1367 -144, 1367 -114, 1367 -110, 2033 -100, 2043 -60, 0202 -60, 0202 -20, 8116 -13, 0900

10 f1 (ppm) 90 30 -30 -80 80 70 60 50 40 20 0 -10 -20 -40 -50 -60 -70

50 240 250 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 70 FI (ppm)

i in disariya aniyi miniyarina ya kara da da di ajinda ya da di ajinda ya kara ya da da ya kara ya kara ya kar

80

60

 $\frac{1}{70}$

50

40

30

90

10 f1 (ppm) 20 -10 -20 0

-30

-40

-50

-60

-70

-80

10 f1 (ppm) 90 40 30 20 -40 -80 80 70 60 50 0 -10 -20 -30 -50 -60 -70

50 240 230 220 210 200 190 180 170 180 150 140 130 120 110 100 90 80 70 80 50 40 30 20 10 0 -10 -20 -30 -40 -5 F1 (ppm)

50 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5 f1 (ppm)

10 f1 (ppm) 90 40 30 -30 -80 80 70 60 50 20 0 -10 -20 -40 -50 -60 -70

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 r1 (ppm)

fl (ppm)

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 F1 (ppm)

50 240 250 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 70 FI (ppm)

10 f1 (ppm) 90 40 30 -20 -30 -80 80 70 60 50 20 0 -10 -40-50 -60 -70

50 240 230 220 210 200 190 180 170 160 150 140 150 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -50 -40 -5 f1 (ppm)

50 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -ξ Γ1 (ppm)