# Efficient unified synthesis of diverse bridged polycyclic scaffolds using a complexity-generating 'stitching' annulation approach 

Scott Rice, Daniel J. Cox, Stephen P. Marsden* and Adam Nelson*

## Supporting Information

## Contents

General Experimental ..... 1
General Procedures ..... 2
Synthesis of Scaffolds ..... 4
Scaffold and Virtual Library Analysis ..... 44
NMR Spectra ..... 51
References ..... 99

## General Experimental

Commercially available starting materials were obtained from Sigma-Aldrich, Fluorochem and Alfa Aesar. All non-aqueous reactions were performed under nitrogen atmosphere unless otherwise stated. Water-sensitive reactions were performed in anhydrous solvents in ovendried glassware cooled under nitrogen before use. Anhydrous dichloromethane (DCM), anhydrous tetrahydrofuran (THF), anhydrous toluene, anhydrous ethanol, anhydrous methanol and anhydrous acetonitrile were obtained from a PureSolv MD5 Purification System. Anhydrous dimethylformamide (DMF) was obtained from SureSeal bottles from SigmaAldrich. All other solvents used were of chromatography or analytical grade. An IKA RV 10 rotary evaporator was used to remove the solvents under reduced pressure. Thin layer chromatography (TLC) was performed using aluminium backed silica (Merck silica gel 60 F254) plates obtained from Merck. Ultraviolet lamp ( $\lambda_{\max }=254 \mathrm{~nm}$ ) and $\mathrm{KMnO}_{4}$ were used for visualization. Flash column chromatography was performed using silica gel 60 (35-70 $\mu \mathrm{m}$ particles) supplied by Merck. Analytical LC-MS was performed using an Ultimate3000 HPLC instrument with a UV diode array detector and an MS detector Bruker Amazon Speeds with electrospray ionisation run positive and negative switching mode. The system used a Phenomenex Kinetex C18 $2.1 \times 50 \mathrm{~mm} 2.6$ micron column and two solvent systems: $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}+0.1 \%$ Formic acid or $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$. A Bruker MaXis Impact spectrometer with electrospray (ES) ionisation source was used for high-resolution mass spectrometry (HRMS). A Bruker Alpha-P ATR FR-IR spectrometer was used to analyse the infrared spectra. Proton $\left({ }^{1} \mathrm{H}\right)$, carbon $\left({ }^{13} \mathrm{C}\right)$ and fluorine ( ${ }^{19} \mathrm{~F}$ ) NMR data was collected on a Bruker 500 MHz spectrometer. Data was collected at 300 K unless otherwise stated. Chemical shifts ( $\delta$ ) are given in parts per million ( ppm ) and they are referenced to the residual solvent peak. Coupling constants $(J)$ are reported in Hertz $(\mathrm{Hz})$ and splitting patterns are reported in an abbreviated manner: app. (apparent), s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad). Assignments were made using COSY, DEPT, HSQC, HMBC and NOESY experiments.

## General Procedures

TDG $=$ 2-hydroxynicotinaldehyde (CAS 36404-89-4)
TDG2 $=2$-chloro-6-hydroxybenzaldehyde (CAS 18362-30-6)
L1 $=$ 2-hydroxy-5-trifluoromethylpyridine (CAS 33252-63-0)

## General Procedure A

$\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%)$, 2-hydroxynicotinaldehyde ( $10 \mathrm{~mol} \%$ ), aryl iodide ( 2.00 eq ) and AgTFA (2.00 eq) were added to HFIP-AcOH 19:1 ( 0.25 M ). Then amine derivative ( 1.00 eq ) and $\mathrm{H}_{2} \mathrm{O}$ ( 10.0 eq ) were added and the reaction mixture allowed to stir at rt for 10 mins . The reaction mixture was then stirred at $120^{\circ} \mathrm{C}$ for 24 h . The dark brown suspension was allowed to cool to rt and filtered through celite, with the celite being subsequently washed with THF ( $3 \times(3 \mathrm{ml}$ per mmol of amine derivative)). The filtrate was concentrated under reduced pressure and the resulting residue was dissolved in $\operatorname{THF}(0.25 \mathrm{M}) .1 \mathrm{M} \mathrm{HCl}(4 \mathrm{ml}$ per mmol of amine derivative) was added and the light brown suspension was left to stir for 1 h at rt . The mixture was basified with 2 M NaOH and $\mathrm{Boc}_{2} \mathrm{O}(3.00 \mathrm{eq})$ was added with the reaction mixture then being left to stir for 4 h at rt . EtOAc ( 10 ml per mmol of amine derivative) was added and the layers were separated. The organic layer was passed through a plug of silica, then the aqueous layer was extracted with EtOAc ( $3 \mathrm{x}(4 \mathrm{ml}$ per mmol of amine derivative) ). The organic layers were then combined, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a crude material.

## General procedure B

$\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%)$, 2-hydroxynicotinaldehyde ( $10 \mathrm{~mol} \%$ ), aryl iodide ( 2.00 eq ) and AgTFA (2.00 eq) were added to HFIP-AcOH 19:1 ( 0.50 M ). Then amine derivative ( 1.00 eq ) and $\mathrm{H}_{2} \mathrm{O}$ ( 10.0 eq ) were added and the reaction mixture allowed to stir at rt for 10 mins . The reaction mixture was then stirred at $120^{\circ} \mathrm{C}$ for 24 h . The dark brown suspension was allowed to cool to rt and filtered through celite, with the celite being subsequently washed with THF ( 3 x ( 3 ml per mmol of amine derivative)). The filtrate was concentrated under reduced pressure and the resulting residue was dissolved in $\operatorname{THF}(0.25 \mathrm{M}) .1 \mathrm{M} \mathrm{HCl}(4 \mathrm{ml}$ per mmol of amine derivative) was added and the light brown suspension was left to stir for 1 h at rt . The mixture was basified with 2 M NaOH and $\mathrm{Ac}_{2} \mathrm{O}$ (3.00 eq) was added with the reaction mixture then being left to stir
for 4 h at rt . EtOAc ( 10 ml per mmol of amine derivative) was added and the layers were separated. The organic layer was passed through a plug of silica, then the aqueous layer was extracted with EtOAc ( $3 \mathrm{x}(4 \mathrm{ml}$ per mmol of amine derivative) ). The organic layers were then combined, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a crude material.

## General procedure C

Picolinic acid ( 1.10 eq ) was dissolved in DMF ( 0.40 M ) and CDI ( 1.10 eq ) was subsequently added portionwise. The mixture was then allowed to stir at rt for 90 mins. Amine derivative ( 1.00 eq ) was added and the mixture stirred at rt for a further 16 h . Water ( 1 ml per mmol of amine derivative) was added followed by 5 M NaOH solution ( 2 ml per mmol of amine derivative). The mixture was then extracted with DCM ( 3 x ( 2 ml per mmol of amine derivative) ), organic layers combined, washed with water ( $5 \times(2 \mathrm{ml}$ per mmol of amine derivative)), dried ( $\mathrm{MgSO}_{4}$ ), filtered and concentrated under reduced pressure to give a crude material.

## General procedure D

Picolinamide derivative ( 1.00 eq ) was added to a pressure vial covered with aluminium foil at rt. Then $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ ( 1.10 eq), 2,6-dimethylbenzoic acid ( 0.25 eq ), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ( $10 \mathrm{~mol} \%$ ), aryl iodide ( 6.00 eq ) and DMF $(0.27 \mathrm{M})$ were added sequentially. The vial was then flushed with nitrogen, sealed with a screw-cap and heated to $120^{\circ} \mathrm{C}$ for 24 h . Upon cooling to rt , the reaction mixture was filtered through a pad of Celite, eluting with DCM. The filtrate was then concentrated under reduced pressure to give a crude material.

## General procedure $\mathbf{E}$

A tube was charged with picolinamide derivative ( 1.00 eq ), $\mathrm{CuBr}_{2}(10 \mathrm{~mol} \%), \mathrm{Pd}(\mathrm{OAc})_{2}$ (5 $\mathrm{mol} \%$ ), $\mathrm{CsOAc}(4.00 \mathrm{eq}),{ }^{t} \mathrm{AmOH}(1.00 \mathrm{M})$ and aryl iodide (4.00 eq). The tube was sealed and heated at $140^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was allowed to cool to rt, filtered through celite (eluting with EtOAc) then the filtrate was concentrated under reduced pressure to give a crude material.

## General procedure $\mathbf{F}$

To a pressure vial was added picolinamide derivative ( 1.00 eq ), $\mathrm{PivOH}(0.30 \mathrm{eq}), \mathrm{Pd}(\mathrm{OAc})_{2}$ ( 5 $\mathrm{mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(2.00 \mathrm{eq})$, aryl iodide ( 1.10 eq ) and toluene $(0.60 \mathrm{M})$. The mixture was stirred at $130{ }^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was cooled to rt then filtered through celite, eluting with EtOAc and MeOH . The filtrate was concentrated under reduced pressure to give a crude material.

## Synthesis of scaffolds

$\left(1 R^{*}, 3 \mathrm{a} R^{*}, 4 R^{*}, 10 \mathrm{~b} S^{*}\right)-\mathbf{2 , 3 , 3 a}, 4,5,10 \mathrm{~b}-h e x a h y d r o-1,4-$ methanobenzo[c]cyclopenta[e]azepin-6(1H)-one (7)

$\operatorname{Pd}(\mathrm{OAc})_{2}(51.0 \mathrm{mg}, 5 \mathrm{~mol} \%)$, 2-hydroxynicotinaldehyde ( $55.0 \mathrm{mg}, 10 \mathrm{~mol} \%$ ), methyl-2iodobenzoate $(1.32 \mathrm{ml}, 9.00 \mathrm{mmol})$ and AgTFA $(1.99 \mathrm{~g}, 9.00 \mathrm{mmol})$ were added to HFIPAcOH 19:1 ( 10 ml ). Then exo-2-aminonorbornane ( $0.50 \mathrm{~g}, 4.50 \mathrm{mmol}$ ) and $\mathrm{H}_{2} \mathrm{O}(0.90 \mathrm{ml})$ were added sequentially and the reaction mixture allowed to stir at rt for 10 mins. The reaction mixture was then stirred at $120^{\circ} \mathrm{C}$ for 24 h . The dark brown suspension was allowed to cool to rt and filtered through celite, with the celite being washed with THF ( $3 \times 15 \mathrm{ml}$ ). The filtrate was concentrated under reduced pressure and the resulting residue was dissolved in THF (20 $\mathrm{ml}) .1 \mathrm{M} \mathrm{HCl}(20 \mathrm{ml})$ was added and the light brown suspension was left to stir for 1 h at rt . The mixture was basified with 2 M NaOH and left to stir for 18 h at rt . EtOAc ( 50 ml ) was added and the layers were separated. The organic layer was passed through a plug of silica, then the aqueous layer was extracted with $\operatorname{EtOAc}(3 \times 20 \mathrm{ml}$ ). The organic layers were combined, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a crude material. This was then purified via column chromatography, eluting EtOAc-hexane 35:65 to give lactam derivative $7(0.58 \mathrm{~g}, 60 \%)$ as a white solid. $R_{\mathrm{f}} 0.21$ (EtOAc-hexane 30:70).
$\nu_{\text {max }} / \mathrm{cm}^{-1}: 3170,3055,2947,2870,1639,1445,1343,1251,1131 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.35$ ( 1 H , br. d, $J 7.2 \mathrm{~Hz}, \mathrm{NH}$ ), $8.30(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, 7-\mathrm{H}), 7.35(1 \mathrm{H}, \mathrm{td}, J 7.8$ and $1.2 \mathrm{~Hz}, 9-\mathrm{H})$, 7.27-7.21 $(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}$ and $10-\mathrm{H}), 3.30-3.24(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.98(1 \mathrm{H}$, app. s, $10 \mathrm{~b}-\mathrm{H}), 2.37(1 \mathrm{H}$, d, J $3.9 \mathrm{~Hz}, 3 \mathrm{a}-\mathrm{H}$ ), 2.32 (1H, br. t, J $4.0 \mathrm{~Hz}, 1-\mathrm{H}), 1.81-1.61\left(4 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}_{2}\right.$ and $\left.2-\mathrm{H}_{2}\right), 1.37-$ $1.30\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{A}}\right), 1.22-1.14\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 169.2(\mathrm{C}-6), 141.0(\mathrm{C}-$ 10a), 132.0 (C-7), 131.6 (C-6a), 131.1 (C2-9,10), 125.9 (C-8), 57.4 (C-10b), 54.7 (C-4), 48.1 (C-1), 43.1 (C-3a), 38.0 (C-11), 27.7 (C-2), 27.4 (C-3); HRMS found $\mathrm{MNa}^{+} 236.1050$. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}$ requires $M N a$, 236.1046.

## $\left(6 R^{*}, 6 \mathrm{a} R^{*}, 9 R^{*}, 9 \mathrm{aS}{ }^{*}\right)-6,6 \mathrm{a}, 7,8,9,9 \mathrm{a}-h e x a h y d r o-5 H-6,9-$ methanocyclopenta $[c][1,8]$ naphthyridine (8)


$\operatorname{Pd}(\mathrm{OAc})_{2}(51.0 \mathrm{mg}, 5 \mathrm{~mol} \%)$, TDG2 ( $70.0 \mathrm{mg}, 10 \mathrm{~mol} \%$ ), L1 ( $183 \mathrm{mg}, 25 \mathrm{~mol} \%$ ), 2-fluoro-3iodopyridine ( $2.00 \mathrm{~g}, 9.00 \mathrm{mmol}$ ) and AgTFA ( $2.00 \mathrm{~g}, 9.00 \mathrm{mmol}$ ) were dissolved in HFIP (10 $\mathrm{ml})$ at rt . Then exo-2-aminonorbornane $(0.50 \mathrm{~g}, 4.50 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(0.90 \mathrm{ml})$ were added and the resulting mixture allowed to stir at rt for 10 mins . Then the mixture has stirred at $120{ }^{\circ} \mathrm{C}$ for 24 h . $\mathrm{AcOH}(1 \mathrm{ml})$ was added and the reaction mixture left to stir for a further 24 h at 120 ${ }^{\circ} \mathrm{C}$. The mixture was cooled to rt, filtered through celite (washed with $\mathrm{MeOH}-\mathrm{CHCl}_{3} 1: 4$ ) and the filtrate concentrated under reduced pressure to give a crude material. This was then purified via column chromatography, eluting EtOAc to give the fused-ring pyridine derivative $\mathbf{8}^{1}(0.55$ $\mathrm{g}, 65 \%$ ) as a light brown oil. $R_{\mathrm{f}} 0.19$ ( EtOAc ). $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.49(1 \mathrm{H}, \mathrm{dd}, J 6.4$ and $1.4 \mathrm{~Hz}, 3-\mathrm{H}), 7.42(1 \mathrm{H}, \mathrm{dd}, J 7.1$ and $1.4 \mathrm{~Hz}, 1-\mathrm{H}), 6.54(1 \mathrm{H}$, app. t, $J 6.7 \mathrm{~Hz}, 2-\mathrm{H}), 3.65(1 \mathrm{H}$, app. d, J $6.2 \mathrm{~Hz}, 6-\mathrm{H}), 2.71(1 \mathrm{H}$, br. t, $J 4.1 \mathrm{~Hz}, 9 \mathrm{a}-\mathrm{H}), 2.65$ ( $1 \mathrm{H}, \mathrm{br} . \mathrm{t}, J 1.2 \mathrm{~Hz}, 6 \mathrm{a}-\mathrm{H}$ ), 2.19 ( 1 H , app. d, J $5.0 \mathrm{~Hz}, 9-\mathrm{H}$ ), 1.94-1.86 ( $1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{\mathrm{A}}$ ), $1.86-1.80\left(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}_{\mathrm{A}}\right), 1.69-1.59(2 \mathrm{H}$, $\mathrm{m}, 10-\mathrm{H}_{\mathrm{B}}$ and $\left.7-\mathrm{H}_{\mathrm{A}}\right), 1.42\left(1 \mathrm{H}\right.$, ddd, $\left.J 13.4,9.1 \mathrm{and} 6.3 \mathrm{~Hz}, 8-\mathrm{H}_{\mathrm{B}}\right), 1.28-1.24\left(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}$ ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 152.7 (C-4a), 139.4 (C-1), 133.8 (C-3), 126.3 (C-9b), 110.9 (C-2), 54.5
(C-6), 49.2 (C-6a), 48.5 (C-9a), 40.0 (C-10), 36.6 (C-9), 29.9 (C-7), 23.4 (C-8). All data is consistent with known literature values. ${ }^{1}$

## $N-\left[\left(1 R^{*}, 2 R^{*}, 4 R^{*}, 7 R^{*}\right)\right.$-7-(3-methoxyphenyl)bicyclo[2.2.1]heptan-2-yl]acetamide (9)



Prepared according to General procedure B, exo-2-aminonorbornane ( $0.50 \mathrm{~g}, 4.50 \mathrm{mmol}$ ) and 3-iodoanisole ( $1.07 \mathrm{ml}, 9.00 \mathrm{mmol}$ ) gave a crude material. This was then purified via column chromatography, eluting EtOAc-hexane 50:50 to give arylated derivative 9 ( $0.81 \mathrm{~g}, 70 \%, d r$ $>95:<5$ by ${ }^{1} \mathrm{H}$ NMR) as an off-white solid. $R_{\mathrm{f}} 0.14$ (EtOAc-hexane 50:50). $v_{\max } / \mathrm{cm}^{-1}: 3271$, 2961, 2897, 2870, 1637, 1555, 1433, 1294, 1044; $\delta_{\text {н }}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.22(1 \mathrm{H}, \mathrm{t}, J 7.9 \mathrm{~Hz}$, phenyl $5-\mathrm{H}), 6.88(1 \mathrm{H}$, app. d, $J 7.6 \mathrm{~Hz}$, phenyl 6-H), $6.84-6.82(1 \mathrm{H}$, m, phenyl $2-\mathrm{H}), 6.73(1 \mathrm{H}$, dd, $J 8.2$ and 2.6 Hz , phenyl 4-H), $4.56(1 \mathrm{H}, \mathrm{br} . \mathrm{d}, J 7.2 \mathrm{~Hz}, \mathrm{NH}), 3.83(1 \mathrm{H}, \mathrm{td}, J 8.5$ and 4.0 Hz, 2-H), 3.77 (3H, s, OMe), 2.95 (1H, app. s, 7-H), 2.70 ( $1 \mathrm{H}, \mathrm{t}, J 4.0 \mathrm{~Hz}, 4-\mathrm{H}$ ), 2.66 ( $1 \mathrm{H}, \mathrm{d}, ~ J$ $4.4 \mathrm{~Hz}, 1-\mathrm{H}), 1.85\left(1 \mathrm{H}, \mathrm{dd}, J 13.4\right.$ and $\left.8.5 \mathrm{~Hz}, 3-\mathrm{H}_{\mathrm{A}}\right), 1.75\left(1 \mathrm{H}, \mathrm{tt}, J 11.7\right.$ and $\left.4.4 \mathrm{~Hz}, 6-\mathrm{H}_{\mathrm{A}}\right)$, $1.70-1.61\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right), 1.55-1.46\left(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}\right.$ and acetyl), $1.40-1.34\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{B}}\right), 1.29-$ $1.22\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 168.6$ (acetyl C=O), 159.8 (phenyl C-3), 142.3 (phenyl C-1), 129.5 (phenyl C-5), 120.7 (phenyl C-6), 114.3 (phenyl C-2), 111.2 (phenyl C-4), 55.2 (OMe), 53.2 (C-2), 52.8 (C-7), 46.7 (C-1), 37.9 (C-3), 37.6 (C-4), 28.6 (C-5), 27.8 (C-6), 23.3 (acetyl $\mathrm{CH}_{3}$ ); HRMS found $\mathrm{MH}^{+} 260.1644$. $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{2}$ requires $M H, 260.1645$.

## tert-butyl $N$-[(1R*,2R*,4R*, $7 R^{*}$ )-7-[2-(hydroxymethyl)phenyl]bicyclo[2.2.1]heptan-2yl]carbamate (10)



Prepared according to General procedure A, exo-2-aminonorbornane ( $0.50 \mathrm{~g}, 4.50 \mathrm{mmol}$ ) and 2-iodobenzyl alcohol ( $2.10 \mathrm{~g}, 9.00 \mathrm{mmol}$ ) gave a crude material. This was then purified via column chromatography, eluting EtOAc-hexane 25:75 to give arylated derivative 10 ( 0.42 g , $30 \%, d r>95:<5$ by ${ }^{1} \mathrm{H}$ NMR) as a white solid. $R_{\mathrm{f}} 0.36$ (EtOAc-hexane $30: 70$ ). $v_{\text {max }} / \mathrm{cm}^{-1}: 3485$, 3433 , 2962, 2869, 1693, 1504, 1451, 1346, 1275, 1007; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.46(1 \mathrm{H}$, app br. d, J 4.1 Hz, phenyl 6-H), 7.27-7.18 (3H, m, phenyl 3-H, phenyl 4-H and phenyl 5-H), 4.75$4.64\left(2 \mathrm{H}, \mathrm{m}\right.$, hydroxymethyl 1- $\mathrm{H}_{2}$ ), 3.57-3.46 ( $2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and NH ), $2.94(1 \mathrm{H}$, app. s, $7-\mathrm{H})$, $2.72-2.62(3 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}, 4-\mathrm{H}$ and OH$), 1.87\left(1 \mathrm{H}, \mathrm{dd}, J 13.7\right.$ and $\left.8.0 \mathrm{~Hz}, 3-\mathrm{H}_{\mathrm{A}}\right), 1.82-1.72(2 \mathrm{H}$, $\mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}$ and $\left.6-\mathrm{H}_{\mathrm{A}}\right), 1.69-1.61\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right), 1.39-1.18\left(11 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}, 6-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.{ }^{t} \mathrm{Bu}\right) ; \delta_{\mathrm{C}}(125$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 155.2 ( $\mathrm{Boc} \mathrm{C}=\mathrm{O}$ ), 140.1 (phenyl C-2), 138.0 (phenyl C-1), 128.4 (phenyl C-6), 127.6 (phenyl C-5), 127.4 (phenyl C-3), 126.6 (phenyl C-4), 78.7 ( ${ }^{( }{ }^{(B u} \mathrm{C}_{1}$ ), 62.5 (hydroxymethyl C-1), 54.9 (C-2), 50.9 (C-7), 47.0 (C-1), 38.3 (C-4), 38.2 (C-3), 28.6 (C-5), 28.3 ( ${ }^{( } \mathrm{Bu} \mathrm{C}_{3}$ ), 27.6 (C-6); HRMS found $\mathrm{MNa}^{+} 340.1885 . \mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{3}$ requires $M N a, 340.1883$.

## $\left(3 R^{*}, 4 \mathrm{a} R^{*}, 10 \mathrm{~b} S^{*}\right)$-9-methoxy-6-methyl-2,3,4,4a-tetrahydro-1H-3,10bmethanophenanthridine (S1)



Arylated derivative 9 ( $100 \mathrm{mg}, 0.39 \mathrm{mmol}$ ) was dissolved in $\mathrm{MeCN}(5 \mathrm{ml})$ at $\mathrm{rt} . \mathrm{POCl}_{3}(0.28$ $\mathrm{ml}, 3.09 \mathrm{mmol}$ ) was added to the solution dropwise over 5 mins . The resulting solution was then stirred and heated at $100{ }^{\circ} \mathrm{C}$ for 4 h . The reaction mixture was allowed to cool to rt and the volatiles removed under reduced pressure. $\mathrm{DCM}(20 \mathrm{ml})$ and water $(20 \mathrm{ml})$ were added to the residue and this solution was then basified to pH 12 with 2 M NaOH . This was then extracted
with DCM (4 x 20 ml ), organic layers combined, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a crude material. This was then purified via column chromatography, eluting DCM-MeOH 95:5 to give the cyclised imine derivative S1 ( 31.0 mg , $33 \%, d r>95:<5$ by ${ }^{1} \mathrm{H}$ NMR) as a colourless oil. $R_{\mathrm{f}} 0.15$ (DCM-MeOH 95:5). $\delta_{\mathrm{H}}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 7.57(1 \mathrm{H}, \mathrm{d}, J 8.6 \mathrm{~Hz}, 7-\mathrm{H}), 7.05(1 \mathrm{H}, \mathrm{d}, J 2.4 \mathrm{~Hz}, 10-\mathrm{H}), 6.80(1 \mathrm{H}, \mathrm{dd}, J 8.6$ and 2.4 Hz, 8-H), 3.86 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$ ), 3.46 ( 1 H , app. br. s, $4 \mathrm{a}-\mathrm{H}$ ), 2.45 ( $3 \mathrm{H}, \mathrm{s}$, methyl), 2.33 ( 1 H , app. br. t, J $3.9 \mathrm{~Hz}, 3-\mathrm{H}), 2.26\left(1 \mathrm{H}, \mathrm{td}, J 12.3\right.$ and $\left.4.1 \mathrm{~Hz}, 1-\mathrm{H}_{\mathrm{A}}\right), 2.21-2.14\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}\right), 2.09-$ $2.03\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}\right), 1.83-1.75\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}\right), 1.58\left(1 \mathrm{H}\right.$, app. d, $\left.J 9.5 \mathrm{~Hz}, 11-\mathrm{H}_{\mathrm{A}}\right), 1.40-1.33$ $\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}\right), 1.30-1.24\left(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\mathrm{B}}\right), 1.22\left(1 \mathrm{H}\right.$, app. d, $\left.J 9.5 \mathrm{~Hz}, 11-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ): 162.4 (C-9), 161.3 (C-6), 142.8 (C-10a), 129.1 (C-6a), 121.2 (C-7), 111.3 (C-8), 111.0 (C-10), 62.6 (C-4a), 55.6 (OMe), 46.3 (C-10b), 44.2 (C-11), 41.7 (C-4), 35.6 (C-3), 31.7 (C1), 29.4 (C-2), 23.0 (methyl $\mathrm{CH}_{3}$ ); HRMS found $\mathrm{MH}^{+} 242.1557 . \mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}$ requires MH , 242.1539.
$\left(3 R^{*}, 4 \mathrm{a} R^{*}, 6 S^{*}, 10 \mathrm{~b} S^{*}\right)$-9-methoxy-6-methyl-2,3,4,4a,5,6-hexahydro-1H-3,10bmethanophenanthridine (5)


Cyclised imine derivative $\mathbf{S 1}$ ( $30.0 \mathrm{mg}, 0.12 \mathrm{mmol}$ ) was dissolved in $\mathrm{MeOH}(2 \mathrm{ml})$ and $\mathrm{NaBH}_{4}$ $(9.00 \mathrm{mg}, 0.24 \mathrm{mmol}$ ) was added at rt . The reaction mixture was left to stir at rt for 18 h .1 M $\mathrm{HCl}(5 \mathrm{ml})$ was added to quench the reaction and 2 M NaOH to basify the reaction mixture to pH 12. This solution was subsequently extracted with DCM (4 x 10 ml ), organic layers combined, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give the amine derivative 5 ( $21.0 \mathrm{mg}, 74 \%, d r>95:<5$ by ${ }^{1} \mathrm{H}$ NMR) as a colourless oil. $R_{\mathrm{f}} 0.63(\mathrm{DCM}-\mathrm{MeOH}$ $80: 20) . \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; 7.13(1 \mathrm{H}, \mathrm{d}, J 8.6 \mathrm{~Hz}, 7-\mathrm{H}), 6.90(1 \mathrm{H}, \mathrm{d}, J 2.7 \mathrm{~Hz}, 10-\mathrm{H}), 6.71$ ( $1 \mathrm{H}, \mathrm{dd}, J 8.6$ and $2.7 \mathrm{~Hz}, 8-\mathrm{H}$ ), 3.99 ( $1 \mathrm{H}, \mathrm{q}, J 6.6 \mathrm{~Hz}, 6-\mathrm{H}$ ), 3.80 (3H, s, OMe), 2.91 ( 1 H , dd, $J 7.8$ and $4.0 \mathrm{~Hz}, 4 \mathrm{a}-\mathrm{H}), 2.29(1 \mathrm{H}$, app. br. t, J $4.0 \mathrm{~Hz}, 3-\mathrm{H}), 2.01-1.88\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}\right.$ and $1-$
$\left.\mathrm{H}_{\mathrm{A}}\right), 1.86-1.78\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}\right), 1.63\left(1 \mathrm{H}, \mathrm{dd}, J 10.0\right.$ and $\left.1.6 \mathrm{~Hz}, 11-\mathrm{H}_{\mathrm{A}}\right), 1.52(1 \mathrm{H}, \mathrm{dd}, J 10.0$ and $\left.1.6 \mathrm{~Hz}, 11-\mathrm{H}_{\mathrm{B}}\right), 1.45\left(3 \mathrm{H}, \mathrm{d}, J 6.6 \mathrm{~Hz}\right.$, methyl), 1.41-1.24 $\left(4 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}, 1-\mathrm{H}_{\mathrm{B}}, 2-\mathrm{H}_{\mathrm{B}}\right.$ and NH ); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 158.1$ (C-9), 140.6 (C-10a), 134.1 (C-6a), 125.9 (C-7), 112.6 (C10), 111.3 (C-8), 60.8 (C-4a), 55.4 (OMe), 52.4 (C-6), 48.9 (C-10b), 44.8 (C-11), 40.8 (C-4), 36.8 (C-3), 35.2 (C-1), 30.3 (C-2), 21.8 (methyl $\mathrm{CH}_{3}$ ); HRMS found $\mathrm{MH}^{+} 244.1708 . \mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}$ requires $M H, 244.1696$. The relative configuration was determined from nOe interaction observed between $4 \mathrm{a}-\mathrm{H}$ and $6-\mathrm{H}$.

## $N-\left[\left(1 R^{*}, 2 R^{*}, 4 R^{*}, 7 R^{*}\right)\right.$-7-(2-bromo-5-methoxyphenyl)bicyclo[2.2.1]heptan-2-

## yl]acetamide (S2)



Arylated derivative 9 ( $100 \mathrm{mg}, 0.39 \mathrm{mmol}$ ) was dissolved in $\mathrm{MeCN}(5 \mathrm{ml})$ at rt . Then NBS $(76.0 \mathrm{mg}, 0.43 \mathrm{mmol}$ ) was added at rt . The resulting solution was stirred at rt for 18 h and then concentrated under reduced pressure to give a crude material. This was then purified via column chromatography, eluting EtOAc-hexane 50:50 to give the brominated derivative $\boldsymbol{S} \mathbf{2}$ ( $118 \mathrm{mg}, 89 \%$ ) as a white powder. $R_{\mathrm{f}} 0.20$ (EtOAc-hexane $50: 50$ ). $v_{\max } / \mathrm{cm}^{-1}: 3303,2952,2906$, $2868,1639,1533,1463,1287,1175 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; 7.46(1 \mathrm{H}, \mathrm{d}, J 8.7 \mathrm{~Hz}$, phenyl 3H), $6.90(1 \mathrm{H}, \mathrm{d}, J 2.5 \mathrm{~Hz}$, phenyl 6-H), $6.64(1 \mathrm{H}$, dd, $J 8.7$ and 2.5 Hz , phenyl 4-H), $4.48(1 \mathrm{H}$, br. d, $J 5.4 \mathrm{~Hz}, \mathrm{NH}$ ), $3.82(1 \mathrm{H}, \mathrm{td}, J 8.1$ and $2.9 \mathrm{~Hz}, 2-\mathrm{H}), 3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.08(1 \mathrm{H}, \mathrm{d}, J 4.3$ Hz, 1-H), 2.88 (1H, app. s, 7-H), 2.64 (1H, br. t, J3.9 Hz, 4-H), 1.99-1.91 (1H, m, 3-HA), 1.89$1.80\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.6-\mathrm{H}_{\mathrm{A}}\right), 1.72-1.64\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right), 1.48(3 \mathrm{H}, \mathrm{s}$, acetyl), 1.41-1.32(1H, m, $6-\mathrm{H}_{\mathrm{B}}$ ), 1.30-1.22 $\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ): 168.7 (acetyl C=O), 158.9 (phenyl C5), 141.4 (phenyl C-1), 134.2 (phenyl C-3), 116.2 (phenyl C-6), 115.8 (phenyl C-2), 112.5 (phenyl C-4), 55.6 (OMe), 54.1 (C-7), 53.3 (C-2), 46.4 (C-1), 38.8 (C-3), 38.2 (C-4), 28.9 (C5), 27.4 (C-6), 23.2 (acetyl $\mathrm{CH}_{3}$ ); HRMS found $\mathrm{MH}^{+}$338.0748. $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{BrNO}_{2}$ requires MH , 338.0750 .

## $1-\left[\left(1 R^{*}, 3 \mathrm{a} R^{*}, 4 R^{*}, 9 \mathrm{~b} S^{*}\right)-8-m e t h o x y-1,2,3,3 \mathrm{a}, 4,9 \mathrm{~b}-\right.$ hexahydro-5H-1,4-methanocyclopenta[c]quinoline-5-yl]ethanone (S3)



Brominated derivative $\mathbf{S 2}(110 \mathrm{mg}, 0.33 \mathrm{mmol})$ was dissolved in toluene ( 10 ml ) and $\mathrm{Pd}(\mathrm{OAc})_{2}$ ( $3.71 \mathrm{mg}, 5 \mathrm{~mol} \%$ ), rac-BINAP ( $15.0 \mathrm{mg}, 7.5 \mathrm{~mol} \%$ ) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(215 \mathrm{mg}, 0.66 \mathrm{mmol})$ were added sequentially at rt . The reaction mixture was then stirred at $100^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was allowed to cool to rt and concentrated under reduced pressure to give a crude material. This was then purified via column chromatography, eluting EtOAc-hexane $20: 80 \rightarrow 50: 50$ to give cyclised acetamide derivative S3 $\left(71.0 \mathrm{mg}, 85 \%\right.$, rotamers $60: 40$ by ${ }^{1} \mathrm{H}$ NMR) as a white solid. $R_{\mathrm{f}} 0.54$ (EtOAc-hexane $\left.50: 50\right) . \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, broad peaks due to unresolved rotamers); $8.10\left(1 \mathrm{H}\right.$, app. br. s, $\left.6-\mathrm{H}^{\text {maj }}\right), 6.95\left(1 \mathrm{H}\right.$, app. br. s, $\left.6-\mathrm{H}^{\text {min }}\right), 6.71(2 \mathrm{H}$, app. d, $J 8.8 \mathrm{~Hz}, 7-\mathrm{H}), 6.65(2 \mathrm{H}$, app. br. s, $9-\mathrm{H}), 5.11\left(1 \mathrm{H}\right.$, app. br. s, 4-H $\left.{ }^{\min }\right)$, 4.19-4.01 ( 1 H , $\mathrm{m}, 4-\mathrm{H}^{\text {maj }}$ ), 3.77 ( $6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$ ), 2.71 ( 2 H, app. s, $9 \mathrm{~b}-\mathrm{H}$ ), 2.44-2.34 ( $2 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H}$ ), $2.28(6 \mathrm{H}, \mathrm{s}$, acetyl), $2.19(2 \mathrm{H}$, app. br. s, $1-\mathrm{H}), 1.84\left(2 \mathrm{H}\right.$, app. br. s, $\left.2-\mathrm{H}_{\mathrm{A}}\right), 1.62\left(4 \mathrm{H}\right.$, app. br. s, $10-\mathrm{H}_{\mathrm{A}}$ and $\left.3-\mathrm{H}_{\mathrm{A}}\right), 1.49\left(2 \mathrm{H}\right.$, app. br. s, $\left.3-\mathrm{H}_{\mathrm{B}}\right), 1.32\left(2 \mathrm{H}\right.$, app. br. s, $\left.2-\mathrm{H}_{\mathrm{B}}\right), 1.31-1.20\left(2 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}$ ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 169.7 (acetyl $\mathrm{C}=\mathrm{O}^{\text {min }}$ ), 168.5 (acetyl $\mathrm{C}=\mathrm{O}^{\text {maj }}$ ), $156.3\left(\mathrm{C}-8^{\text {min }}\right), 155.7(\mathrm{C}-$ $\left.8^{\text {maj }}\right), 134.3\left(\mathrm{C}-9 \mathrm{a}^{\text {min }}\right), 132.4\left(\mathrm{C}-9 \mathrm{a}^{\text {maj }}\right), 130.2\left(\mathrm{C}-5 \mathrm{a}^{\mathrm{min}}\right), 129.4\left(\mathrm{C}-5 \mathrm{a}^{\mathrm{maj}}\right), 124.8\left(\mathrm{C}-6^{\text {maj }}\right), 124.4$ $\left(\mathrm{C}-6^{\mathrm{min}}\right), 113.9(\mathrm{C}-9), 111.5(\mathrm{C}-7), 60.5\left(\mathrm{C}-4^{\mathrm{maj}}\right), 59.7\left(\mathrm{C}-4^{\mathrm{min}}\right), 55.5(\mathrm{OMe}), 50.8(\mathrm{C}-9 \mathrm{~b}), 46.5$ (C-3a), $40.1\left(\mathrm{C}-1^{\text {min }}\right), 39.1\left(\mathrm{C}-1^{\text {maj }}\right), 34.5\left(\mathrm{C}-3^{\text {maj }}\right), 32.8\left(\mathrm{C}-3^{\text {min }}\right), 29.2(\mathrm{C}-10), 25.1(\mathrm{C}-2), 24.5$ (acetyl $\mathrm{CH}_{3}$ ); HRMS found $\mathrm{MNa}^{+}$280.1312. $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}$ requires MNa , 280.1308.
$\left(1 R^{*}, 3 \mathrm{a} R^{*}, 4 R^{*}, 9 \mathrm{bS} S^{*}\right)-8$-methoxy-1,2,3,3a,4,9b-hexahydro-5H-1,4methanocyclopenta[c]quinoline (11)


Cyclised acetamide derivative $\mathbf{S 3}(70.0 \mathrm{mg}, 0.27 \mathrm{mmol})$ was dissolved in $\mathrm{EtOH}-\mathrm{HCl} 1: 1(10$ ml ) and stirred at $80^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was allowed to cool to rt and concentrated under reduced pressure to give the aniline derivative 11 ( $64.0 \mathrm{mg}, 94 \%$ ) as a white powder. $R_{\mathrm{f}}$ 0.84 (DCM-MeOH 90:10). $v_{\text {max }} / \mathrm{cm}^{-1}: 3483,3434,2961,2868,1504,1446,1268,1034 ; \delta_{\mathrm{H}}$ (500 MHz, MeOD); 7.19 ( $1 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}, 6-\mathrm{H}$ ), 6.97-6.92 ( $2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}$ and $9-\mathrm{H}$ ), 3.94-3.91 ( $1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ ), $3.83(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.97(1 \mathrm{H}$, app. s, $9 \mathrm{~b}-\mathrm{H}), 2.53(2 \mathrm{H}$, app. d, J $3.9 \mathrm{~Hz}, 3 \mathrm{a}-\mathrm{H}$ and $1-\mathrm{H}), 2.03-1.94\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}\right), 1.86-1.77\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{A}}\right), 1.77-1.72\left(2 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}_{2}\right), 1.50-1.39$ ( $2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}$ and $3-\mathrm{H}_{\mathrm{B}}$ ); $\delta_{\mathrm{C}}(125 \mathrm{MHz}, \mathrm{MeOD}): 161.6(\mathrm{C}-8), 136.8(\mathrm{C}-9 \mathrm{a}), 125.3(\mathrm{C}-6), 120.2$ (C-5a), 116.2 (C-9), 115.0 (C-7), 57.6 (C-4), 56.2 (OMe), 49.5 (C-9b), 46.7 (C-3a), 40.8 (C1), 32.0 (C-10), 30.4 (C-3), 24.8 (C-2); HRMS found $\mathrm{MH}^{+} 216.1394$. $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}$ requires $M H$, 216.1383. The product was isolated as the corresponding HCl salt.

## $\left(1 R^{*}, 3 \mathrm{a} R^{*}, 4 R^{*}, 10 \mathrm{~b} S^{*}\right)-\mathbf{1 , 2 , 3 , 3 a}, 4,5,6,10 \mathrm{~b}-o c t a h y d r o-1,4-$ methanobenzo $[c]$ cyclopenta $[e]$ azepine (12)



Arylated derivative $\mathbf{1 0}(310 \mathrm{mg}, 0.98 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.27 \mathrm{ml}, 1.96 \mathrm{mmol})$ and $\mathrm{MsCl}(0.09 \mathrm{ml}$, $1.17 \mathrm{mmol})$ were dissolved in $\mathrm{DCM}(10 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was then stirred at rt for 18 h . A saturated solution of $\mathrm{NaHCO}_{3}(10 \mathrm{ml})$ was added and the phases separated. The aqueous phase was extracted with $\operatorname{DCM}(3 \times 10 \mathrm{ml})$, organic layers combined, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give the mesylate intermediate. This intermediate was then dissolved in DCM ( 10 ml ) and TFA ( 3 ml ) was added dropwise at rt and
the reaction mixture left to stir for 18 h at rt. The TFA and solvent were removed under reduced pressure to give a crude material. This was then purified via column chromatography, eluting $\mathrm{EtOAc} \rightarrow \mathrm{MeOH}-\mathrm{EtOAc}$ 10:90 to give the cyclised amine derivative 12 ( $279 \mathrm{mg}, 91 \%$ ) as a colourless hygroscopic solid. $R_{\mathrm{f}} 0.08$ (EtOAc). $v_{\text {max }} / \mathrm{cm}^{-1}: 3400,3254,2976,2884,1669,1513$, $1472,1398,1179,1132 ; \delta_{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.43$ ( 1 H , app. d, J $7.3 \mathrm{~Hz}, 10-\mathrm{H}$ ), $7.34-7.27$ ( $3 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}, 8-\mathrm{H}$ and $9-\mathrm{H}$ ), $4.80\left(1 \mathrm{H}, \mathrm{d}, J 11.8 \mathrm{~Hz}, 6-\mathrm{H}_{\mathrm{A}}\right), 4.62\left(1 \mathrm{H}, \mathrm{d}, J 11.8 \mathrm{~Hz}, 6-\mathrm{H}_{\mathrm{B}}\right), 3.28-$ $3.22(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $10 \mathrm{~b}-\mathrm{H}), 2.98(1 \mathrm{H}, \mathrm{d}, J 4.3 \mathrm{~Hz}, 3 \mathrm{a}-\mathrm{H}), 2.84(1 \mathrm{H}, \mathrm{br}$ t. J $4.1 \mathrm{~Hz}, 1-\mathrm{H}), 2.19$ $\left(1 \mathrm{H}, \mathrm{dd}, J 14.7\right.$ and $\left.2.8 \mathrm{~Hz}, 11-\mathrm{H}_{\mathrm{A}}\right), 2.05-1.93\left(2 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.3-\mathrm{H}_{\mathrm{A}}\right), 1.81-1.71(1 \mathrm{H}, \mathrm{m}, 3-$ $\mathrm{H}_{\mathrm{B}}$ ), 1.39-1.28 ( $2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}$ ); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ): 162.4 (q, J 35.2 Hz, TFA C=O), 137.4 (C-10a), 136.7 (C-6a), 132.4 (C-10), 129.9 (C-7), 128.6 (C-9), 128.1 (C-8), 116.5 (q, J 290.7 $\mathrm{Hz}, \mathrm{TFA} \mathrm{CF} 3$ ), 55.6 (C-4), 50.4 (C-10b), 45.5 (C-3a), 44.2 (C-6), 38.7 (C-1), 35.8 (C-11), 28.3 (C-3), 27.7 (C-2); HRMS found $\mathrm{MH}^{+}$200.1428. $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}$ required $M H$, 200.1434. The product was isolated as the corresponding TFA salt.

## tert-butyl $N$-[(1R*,3S*)-3-(3-methoxyphenyl)cyclohexyl]carbamate (13)



Prepared according to General procedure A, cyclohexylamine ( $0.50 \mathrm{~g}, 5.00 \mathrm{mmol}$ ) and 3iodoanisole ( $1.17 \mathrm{~g}, 10.0 \mathrm{mmol}$ ) gave a crude material. This was then purified via column chromatography, eluting EtOAc-hexane 5:95 to give arylated derivative 13 ( $1.43 \mathrm{~g}, 93 \%, d r$ $>95:<5$ by ${ }^{1} \mathrm{H}$ NMR) as a white solid. $R_{\mathrm{f}} 0.48$ (EtOAc-hexane 20:80). $\nu_{\max } / \mathrm{cm}^{-1}: 3345,2975$, $2929,2855,1687,1584,1494,1390,1266,1241,1159,1049 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.23-$ $7.18(1 \mathrm{H}, \mathrm{m}$, phenyl $5-\mathrm{H}), 6.79(1 \mathrm{H}, \mathrm{dt}, J 7.7$ and 1.2 Hz , phenyl $4-\mathrm{H}), 6.75-6.71(2 \mathrm{H}, \mathrm{m}$, phenyl 2-H and phenyl 6-H), 4.43 ( 1 H , br. s, NH), 3.79 (3H, s, OMe), 3.64-3.54 ( $1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ ), 2.61 $(1 \mathrm{H}, \mathrm{tt}, J 12.2$ and $3.1 \mathrm{~Hz}, 3-\mathrm{H}), 2.19\left(1 \mathrm{H}, \mathrm{d}, J 12.2 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{A}}\right), 2.08-2.01\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{A}}\right), 1.93-$ $1.80\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.4-\mathrm{H}_{\mathrm{A}}\right), 1.54-1.39\left(10 \mathrm{H}, \mathrm{m},{ }^{\mathrm{t}} \mathrm{Bu}\right.$ and $\left.5-\mathrm{H}_{\mathrm{B}}\right), 1.33(1 \mathrm{H}, \mathrm{qd}, J 12.4$ and 3.2 $\left.\mathrm{Hz}, 4-\mathrm{H}_{\mathrm{B}}\right), 1.22\left(1 \mathrm{H}, \operatorname{app} . \mathrm{q}, J 12.2 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{B}}\right), 1.09\left(1 \mathrm{H}, \mathrm{qd}, J 12.4\right.$ and $\left.3.4 \mathrm{~Hz}, 6-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}(125$
$\mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 159.8 (phenyl C-3), 155.3 (Boc C=O), 148.2 (phenyl C-1), 129.4 (phenyl C-5), 119.3 (phenyl C-4), 112.9 (phenyl C-2), 111.4 (phenyl C-6), 79.3 ( ${ }^{( } \mathrm{Bu} \mathrm{C}_{1}$ ), 55.3 (OMe), 50.1 (C-1), 43.4 (C-3), 41.5 (C-2), 33.4 (C-6), 33.2 (C-4), 28.6 ( ${ }^{( } \mathrm{Bu} \mathrm{C}_{3}$ ), 25.3 (C-5); HRMS found $\mathrm{MNa}^{+}$328.1876. $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{3}$ requires $M N a, 328.1883$.

## tert-butyl $N-\left[\left(1 R^{*}, 3 S *\right)\right.$-3-(2-bromo-5-methoxyphenyl)cyclohexyl]carbamate (S4)



Arylated derivative 13 ( $100 \mathrm{mg}, 0.33 \mathrm{mmol}$ ) was dissolved in MeCN ( 5 ml ) then NBS ( 64.0 $\mathrm{mg}, 0.36 \mathrm{mmol}$ ) was added to the solution at rt . The resulting solution was stirred overnight for 18 h at rt . The solvent was then removed under reduced pressure to give a crude material. This was then purified via column chromatography, eluting EtOAc-hexane 5:95 to give the brominated derivative $\boldsymbol{S} \boldsymbol{4}$ ( $101 \mathrm{mg}, 79 \%$ ) as a white solid. $R_{\mathrm{f}} 0.50$ (EtOAc-hexane 20:80). $\delta_{\mathrm{H}}$ ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $7.40(1 \mathrm{H}, \mathrm{d}, J 8.7 \mathrm{~Hz}$, phenyl $3-\mathrm{H}), 6.75(1 \mathrm{H}, \mathrm{d}, J 3.0 \mathrm{~Hz}$, phenyl 6-H), $6.60(1 \mathrm{H}, \mathrm{dd}, J 8.7$ and 3.0 Hz , phenyl 4-H), $4.48(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{NH}), 3.75(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, 3.66-3.50 $(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 3.02(1 \mathrm{H}, \mathrm{tt}, J 11.9$ and $2.9 \mathrm{~Hz}, 3-\mathrm{H}), 2.17\left(1 \mathrm{H}\right.$, app. d, $\left.J 11.9 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{A}}\right), 2.06$ $\left(1 \mathrm{H}\right.$, app. d, $\left.J 11.9 \mathrm{~Hz}, 6-\mathrm{H}_{\mathrm{A}}\right), 1.91-1.82\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.5-\mathrm{H}_{\mathrm{A}}\right), 1.51(1 \mathrm{H}, \mathrm{qt}, J 13.2$ and 3.0 $\left.\mathrm{Hz}, 5-\mathrm{H}_{\mathrm{B}}\right), 1.43\left(9 \mathrm{H}, \mathrm{s},{ }^{t} \mathrm{Bu}\right), 1.28-1.14\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.4-\mathrm{H}_{\mathrm{B}}\right), 1.09(1 \mathrm{H}, \mathrm{qd}, J 12.7$ and 3.6 $\left.\mathrm{Hz}, 6-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 159.2$ (phenyl C-5), 155.2 (Boc $\mathrm{C}=\mathrm{O}$ ), 145.8 (phenyl C-1), 133.4 (phenyl C-3), 114.9 (phenyl C-2), 113.7 (phenyl C-6), 112.6 (phenyl C-4), 79.2 ( ${ }^{\left({ }^{B} \mathrm{Bu} \mathrm{C}_{1}\right) \text { ), }}$ 55.5 (OMe), 49.9 (C-1), 42.1 (C-3), 39.8 (C-2), 33.3 (C-6), 32.2 (C-4), 28.5 ( ${ }^{\text {(Bu C }}{ }_{3}$ ), 25.1 (C5); HRMS found $\mathrm{MNa}^{+} 406.0984 . \mathrm{C}_{18} \mathrm{H}_{26} \mathrm{BrNO}_{3}$ requires $M N a$, 406.0988.

## tert-butyl ( $2 R^{*}, 6 S^{*}$ )-8-methoxy-3,4,5,6-tetrahydro-2,6-methanobenzo[b]azocine-1(2H)-

 carboxylate (4)

Brominated derivative $\mathbf{S 4}(95.0 \mathrm{mg}, 0.25 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(3.00 \mathrm{mg}, 5 \mathrm{~mol} \%)$ and rac -BINAP $(12.0 \mathrm{mg}, 7.5 \mathrm{~mol} \%)$ were added to toluene $(5 \mathrm{ml})$ and heated until all solids had dissolved. $\mathrm{Cs}_{2} \mathrm{CO}_{3}(163 \mathrm{mg}, 0.50 \mathrm{mmol})$ was then added and the resulting suspension stirred and heated at $100{ }^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was cooled to rt then filtered through a small plug of silica (washed with EtOAc). The filtrate was concentrated under reduced pressure to give a crude material. This was then purified via column chromatography, eluting EtOAc-hexane 5:95 to give cyclised bridged derivative $4(46.0 \mathrm{mg}, 62 \%)$ as a colourless oil. $R_{\mathrm{f}} 0.62$ (EtOAchexane 20:80). $v_{\max } / \mathrm{cm}^{-1}: 2973,2930,2852,1695,1494,1325,1245,1163,1048 ; \delta_{\mathrm{H}}(500$ MHz, CDCl $)^{2}$ : $8.27(1 \mathrm{H}, \mathrm{d}, J 9.2 \mathrm{~Hz}, 10-\mathrm{H}), 6.72(1 \mathrm{H}, \mathrm{dd}, J 9.2$ and $3.1 \mathrm{~Hz}, 9-\mathrm{H}), 6.59(1 \mathrm{H}, \mathrm{d}$, $J 3.1 \mathrm{~Hz}, 7-\mathrm{H}), 4.56(1 \mathrm{H}$, br. t, J3.1 Hz, 2-H), 3.77 (3H, s, OMe), 2.96-2.92 (1H, m, 6-H), 2.05 ( 1 H app. d, $J 13.4 \mathrm{~Hz}, 3-\mathrm{H}_{\mathrm{A}}$ ), $1.87\left(2 \mathrm{H}\right.$, app. t, $\left.J 2.6 \mathrm{~Hz}, 11-\mathrm{H}_{2}\right), 1.78-1.72\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right), 1.54$ $\left(9 \mathrm{H}, \mathrm{s},{ }^{t} \mathrm{Bu}\right), 1.50\left(1 \mathrm{H}, \mathrm{ddd}, J 13.4,4.7\right.$ and $\left.2.8 \mathrm{~Hz}, 3-\mathrm{H}_{\mathrm{B}}\right), 1.45-1.37\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}\right), 1.33-1.20$ $\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 154.2(\mathrm{C}-8), 153.8(\mathrm{Boc} \mathrm{C}=\mathrm{O}), 133.7(\mathrm{C}-10 \mathrm{a}), 132.8(\mathrm{C}-$ 6a), 121.5 (C-10), 113.6 (C-7), 111.7 (C-9), 80.6 ('Bu C 1 ), 55.5 (OMe), $50.0(\mathrm{C}-2), 34.7$ (C-6), 33.9 (C-5), 32.1 (C-3), 30.3 (C-11), 28.6 ( ${ }^{( } \mathrm{Bu} \mathrm{C}_{3}$ ), 17.7 (C-4); HRMS found $\mathrm{MNa}^{+} 326.1728$. $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{3}$ requires $M N a$, 326.1727.


Prepared according to General procedure A, cyclohexylamine ( $0.50 \mathrm{~g}, 5.00 \mathrm{mmol}$ ) and 2bromoiodobenzene $(2.83 \mathrm{~g}, 10.0 \mathrm{mmol})$ gave a crude material. This was then purified via column chromatography, eluting EtOAc-hexane 5:95 to give arylated derivative $\mathbf{1 4}^{2}(1.00 \mathrm{~g}$, $57 \%, d r>95:<5$ by ${ }^{1} \mathrm{H} N \mathrm{NR}$ ) an off-white solid. $R_{\mathrm{f}} 0.50$ (EtOAc-hexane 20:80). $\delta_{\mathrm{H}}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 7.53(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and 0.8 Hz , phenyl 3-H), $7.28-7.23(1 \mathrm{H}, \mathrm{m}$, phenyl $5-\mathrm{H}), 7.20(1 \mathrm{H}$, dd, $J 8.0$ and 1.7 Hz , phenyl 6-H), 7.03 ( 1 H , td, $J 8.0$ and 1.7 Hz , phenyl 4-H), 4.45 ( 1 H , br. s, $\mathrm{NH}), 3.69-3.50(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 3.10(1 \mathrm{H}, \mathrm{t}, J 11.6 \mathrm{~Hz}, 3-\mathrm{H}), 2.24-2.15\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}\right), 2.08(1 \mathrm{H}$, d, $\left.J 12.0 \mathrm{~Hz}, 6-\mathrm{H}_{\mathrm{A}}\right), 1.92-1.83\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.5-\mathrm{H}_{\mathrm{A}}\right), 1.53(1 \mathrm{H}$, app. qt, $J 13.2$ and 3.2 Hz , $\left.5-\mathrm{H}_{\mathrm{B}}\right), 1.44\left(9 \mathrm{H}, \mathrm{s},{ }^{t} \mathrm{Bu}\right), 1.32-1.17\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.4-\mathrm{H}_{\mathrm{B}}\right), 1.11(1 \mathrm{H}, \mathrm{qd}, J 12.6$ and 3.8 Hz , $6-\mathrm{H}_{\mathrm{B}}$ ); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 155.2(\mathrm{Boc} \mathrm{C}=\mathrm{O}), 144.8$ (phenyl C-1), 133.1 (phenyl C-3), 127.7 (phenyl C-4), 127.6 (phenyl C-5), 127.3 (phenyl C-6), 124.6 (phenyl C-2), 79.3 ( ${ }^{\text {'Bu } \mathrm{C}_{1} \text { ), } 50.0 ~}$ (C-1), 42.0 (C-3), 39.9 (C-2), 33.4 (C-6), 32.3 (C-4), 28.6 ( ${ }^{\text {'Bu C }} \mathrm{C}_{3}$ ), 25.2 (C-5). All data is consistent with known literature values. ${ }^{2}$
tert-butyl $\left(2 R^{*}, 6 S^{*}\right)$-3,4,5,6-tetrahydro-2,6-methanobenzo $[b]$ azocine-1( $2 H$ )-carboxylate (15)


Arylated derivative 14 ( $100 \mathrm{mg}, 0.30 \mathrm{mmol}$ ), $\mathrm{Pd}(\mathrm{OAc})_{2}(4.00 \mathrm{mg}, 5 \mathrm{~mol} \%)$ and rac -BINAP $(14.0 \mathrm{mg}, 7.5 \mathrm{~mol} \%)$ were added to toluene $(5 \mathrm{ml})$ and heated until all solids had dissolved. $\mathrm{Cs}_{2} \mathrm{CO}_{3}(194 \mathrm{mg}, 0.60 \mathrm{mmol})$ was then added and the resulting suspension stirred and heated at $100{ }^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was cooled to rt then filtered through a small plug of silica (washed with EtOAc). The filtrate was concentrated under reduced pressure to give a crude material. This was then purified via column chromatography, eluting EtOAc-hexane 2:98 to give cyclised bridged derivative $\mathbf{1 5}(33.0 \mathrm{mg}, 40 \%)$ as a colourless oil. $R_{\mathrm{f}} 0.57$ (EtOAchexane 20:80). $v_{\max } / \mathrm{cm}^{-1}: 2973,2930,2852,1705,1488,1454,1366,1318,1277,1254,1160$, $1130 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.32(1 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}, 10-\mathrm{H}), 7.15(1 \mathrm{H}, \mathrm{ddd}, J 8.5,7.5$ and 1.8 Hz, 9-H), 7.03 (1H, dd, J 7.5 and $1.8 \mathrm{~Hz}, 7-\mathrm{H}), 6.91(1 \mathrm{H}, \mathrm{td}, J 7.5$ and $1.0 \mathrm{~Hz}, 8-\mathrm{H}), 4.60-4.56$ $(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.00-2.95(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.09-2.02\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{A}}\right), 1.92-1.84\left(2 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}_{2}\right), 1.76$
( $2 \mathrm{H}, \mathrm{dt}, J 10.6$ and $3.5 \mathrm{~Hz}, 5-\mathrm{H}_{2}$ ), $1.55\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.54-1.50\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}\right), 1.45-1.39(1 \mathrm{H}$, $\left.\mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}\right), 1.31-1.22\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 153.9(\mathrm{Boc} \mathrm{C=O}), 140.2(\mathrm{C}-10 \mathrm{a})$, 131.3 (C-6a), 128.6 (C-7), 126.5 (C-9), 121.7 (C-8), 120.3 (C-10), $80.8\left({ }^{( } \mathrm{Bu} \mathrm{C}_{1}\right), 50.3$ (C-2), 34.5 (C-6), 33.9 (C-5), 32.1 (C-3), 30.2 (C-11), 28.6 ( ${ }^{\text {t Bu C }} 3$ ), 17.6 (C-4); HRMS found $\mathrm{MNa}^{+}$ 296.1619. $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{2}$ requires $M N a, 296.1621$.

## $N-[(1 R, 2 S, 4 R)-1,7,7-$ trimethylbicyclo[2.2.1]heptan-2-yl]pyridine-2-carboxamide (S5)



Prepared according to General procedure C, $(R)$-bornylamine ( $400 \mathrm{mg}, 2.61 \mathrm{mmol}$ ) gave a crude material. This was then purified via column chromatography, eluting EtOAc-hexane 40:60 to give the picolinamide derivative $\mathbf{S 5}^{3}(604 \mathrm{mg}, 90 \%)$ as a white solid. $R_{\mathrm{f}} 0.41$ (EtOAchexane $40: 60) . \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.48(1 \mathrm{H}, \mathrm{ddd}, J 4.8,1.7$ and 0.9 Hz , pyridinyl $6-\mathrm{H})$, $8.11(2 \mathrm{H}$, app. br. d, $J 7.7 \mathrm{~Hz}$, pyridinyl 3-H and NH), $7.75(1 \mathrm{H}, \mathrm{td}, J 7.7$ and 0.9 Hz , pyridinyl $4-\mathrm{H}), 7.33(1 \mathrm{H}$, dd, $J 7.0$ and 4.8 Hz , pyridinyl $5-\mathrm{H}), 4.40-4.33(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.38-2.30(1 \mathrm{H}$, $\left.\mathrm{m}, 3-\mathrm{H}_{\mathrm{A}}\right), 1.73\left(1 \mathrm{H}, \mathrm{ddd}, J 16.0,8.1\right.$ and $\left.3.8 \mathrm{~Hz}, 6-\mathrm{H}_{\mathrm{A}}\right), 1.67-1.59\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}\right.$ and $\left.5-\mathrm{H}_{\mathrm{A}}\right), 1.39-$ $1.31\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right), 1.27-1.20\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{B}}\right), 0.95-0.88\left(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}\right.$ and methyl), $0.82(3 \mathrm{H}$, s, methyl), $0.80\left(3 \mathrm{H}, \mathrm{s}\right.$, methyl); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 164.1(\mathrm{C}=\mathrm{O}), 150.1$ (pyridinyl C-1), 147.9 (pyridinyl C-6), 137.2 (pyridinyl C-4), 125.9 (pyridinyl C-5), 122.1 (pyridinyl C-3), 53.7 (C-2), 49.8 (C-7), 48.2 (C-1), 45.0 (C-4), 37.5 (C-3), 28.4 (C-6), 28.1 (C-5), 19.8 (methyl), 18.7 (methyl), 13.7 (methyl). All data is consistent with known literature values. ${ }^{3}$

## $N-[(1 R, 2 S, 4 R, 6 S)-6-(3-m e t h o x y p h e n y l)-1,7,7-t r i m e t h y l b i c y c l o[2.2 .1] h e p t a n-2-$ yl]pyridine-2-carboxamide (S6)



Prepared according to General procedure E, picolinamide derivative S5 ( $400 \mathrm{mg}, 1.55 \mathrm{mmol}$ ) and 3-iodoanisole ( $0.76 \mathrm{ml}, 6.20 \mathrm{mmol}$ ) gave a crude material. This was then purified via column chromatography, eluting EtOAc-hexane 25:75 to give arylated derivative $\mathbf{S 6}^{3}$ ( 276 mg , $50 \%, d r>95:<5$ by ${ }^{1} \mathrm{H} N \mathrm{NR}$ ) as a colourless oil. $R_{\mathrm{f}} 0.23$ (EtOAc-hexane $30: 70$ ). $\delta_{\mathrm{H}}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 8.23(1 \mathrm{H}, \mathrm{d}, J 4.4 \mathrm{~Hz}$, pyridinyl 6-H), $7.95(1 \mathrm{H}, \mathrm{d}, J 7.8 \mathrm{~Hz}$, pyridinyl 3-H), $7.85(1 \mathrm{H}$, br. d, $J 8.9 \mathrm{~Hz}, \mathrm{NH}), 7.69(1 \mathrm{H}, \mathrm{td}, J 7.8$ and 1.7 Hz , pyridinyl 4-H), $7.28-7.25(1 \mathrm{H}, \mathrm{m}$, pyridinyl $5-\mathrm{H}), 7.22(1 \mathrm{H}, \mathrm{t}, J 7.9 \mathrm{~Hz}$, methoxyphenyl $5-\mathrm{H}), 7.02(1 \mathrm{H}, \mathrm{s}$, methoxyphenyl $2-\mathrm{H}), 7.00(1 \mathrm{H}$, d, $J 7.9 \mathrm{~Hz}$, methoxyphenyl 6-H), $6.75(1 \mathrm{H}$, dd, $J 7.9$ and 2.3 Hz , methoxyphenyl 4-H), 4.57$4.50(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.32(1 \mathrm{H}, \mathrm{dd}, J 11.6$ and $5.4 \mathrm{~Hz}, 6-\mathrm{H}), 2.59-2.51(1 \mathrm{H}$, $\left.\mathrm{m}, 3-\mathrm{H}_{\mathrm{A}}\right), 2.30-2.22\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right), 2.03\left(1 \mathrm{H}, \mathrm{dd}, J 13.3\right.$ and $\left.5.4 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{B}}\right), 1.93(1 \mathrm{H}, \mathrm{t}, J 4.6$ $\mathrm{Hz}, 4-\mathrm{H}), 1.29\left(1 \mathrm{H}, \mathrm{dd}, J 13.3\right.$ and $\left.5.9 \mathrm{~Hz}, 3-\mathrm{H}_{\mathrm{B}}\right), 1.10(3 \mathrm{H}, \mathrm{s}$, methyl), $1.09(3 \mathrm{H}, \mathrm{s}$, methyl), $1.07\left(3 \mathrm{H}, \mathrm{s}\right.$, methyl); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 164.5(\mathrm{C}=\mathrm{O}), 160.3$ (methoxyphenyl C-3), 150.1 (pyridinyl C-1), 147.3 (pyridinyl C-6), 143.9 (methoxyphenyl C-1), 136.9 (pyridinyl C-4), 129.9 (methoxyphenyl C-5), 125.6 (pyridinyl C-5), 121.8 (pyridinyl C-3 and methoxyphenyl C-6), 114.2 (methoxyphenyl C-2), 111.6 (methoxyphenyl C-4), 55.2 (OMe), 54.4 (C-2 and C1), 51.2 (C-7), 47.9 (C-6), 43.7 (C-4), 37.2 (C-3), 32.9 (C-5), 20.3 (methyl), 20.0 (methyl), 13.9 (methyl). All data is consistent with known literature values. ${ }^{3}$

## $N-[(1 R, 2 S, 4 R, 6 S)-6-(3-m e t h o x y p h e n y l)-1,7,7-t r i m e t h y l b i c y c l o[2.2 .1] h e p t a n-2-$ yl]acetamide (16)



Water ( 7.6 ml ) and $\mathrm{HCl}(1.9 \mathrm{ml}, 37 \%)$ were added to a solution of arylated derivative $\mathbf{S 6}$ (276 $\mathrm{mg}, 0.76 \mathrm{mmol}$ ) in THF ( 7.6 ml ) and the solution was stirred at rt for 5 mins . Zinc dust ( 741 $\mathrm{mg}, 11.4 \mathrm{mmol}$ ) was then added portionwise over 30 mins and the resulting suspension was stirred at rt for 18 h . The reaction mixture was filtered through celite (eluting with DCM) and then saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{ml})$ was added to the filtrate. The phases were separated and the aqueous phase was extracted with DCM ( $3 \times 20 \mathrm{ml}$ ). The organic phases were combined, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give the crude amine intermediate. This intermediate was dissolved in THF ( 10 ml ) and the solution was then basified with 2 M NaOH . $\mathrm{Ac}_{2} \mathrm{O}(0.22 \mathrm{ml}, 2.28 \mathrm{mmol})$ was added to this solution and the reaction mixture was then stirred at rt for 4 h . Water ( 20 ml ) was added and the mixture was then extracted with DCM ( $3 \times 30 \mathrm{ml}$ ). The organic layers were combined, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a crude material. This was then purified via column chromatography, eluting EtOAc-hexane 50:50 to give the acetamide derivative 16 ( $181 \mathrm{mg}, 79 \%$ ) as a colourless oil. $R_{\mathrm{f}} 0.42$ (EtOAc-hexane 80:20). $\left[\alpha_{\mathrm{D}}{ }^{20}\right]+30.2$ (c $0.01, \mathrm{MeOH}$ ); $\nu_{\max } / \mathrm{cm}^{-1}: 3425,2951,1661,1598,1580,1518,1490,1457,1378,1267,1150,1041 ; \delta_{\mathrm{H}}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.31(1 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}$, methoxyphenyl $5-\mathrm{H}), 7.04(1 \mathrm{H}, \mathrm{d}, J 7.4 \mathrm{~Hz}$, methoxyphenyl $6-\mathrm{H}), 6.94(1 \mathrm{H}, \mathrm{s}$, methoxyphenyl $2-\mathrm{H}), 6.81(1 \mathrm{H}$, dd, J 8.0 and 2.4 Hz , methoxyphenyl 4-H), $5.24(1 \mathrm{H}, \mathrm{br} . \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{NH}), 4.28-4.21(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.82(3 \mathrm{H}, \mathrm{s}$, OMe), $3.26(1 \mathrm{H}, \mathrm{dd}, J 11.5$ and $5.1 \mathrm{~Hz}, 6-\mathrm{H}), 2.48-2.39\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{A}}\right), 2.24-2.15(1 \mathrm{H}, \mathrm{td}, J$ 13.2 and $\left.4.0 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{A}}\right), 1.96\left(1 \mathrm{H}, \mathrm{dd}, J 13.2\right.$ and $\left.5.8 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{B}}\right), 1.87(1 \mathrm{H}, \mathrm{t}, J 4.7 \mathrm{~Hz}, 4-\mathrm{H})$, $1.35\left(3 \mathrm{H}, \mathrm{s}\right.$, acetyl), $1.07\left(1 \mathrm{H}, \mathrm{dd}, J 13.4\right.$ and $\left.5.8 \mathrm{~Hz}, 3-\mathrm{H}_{\mathrm{B}}\right), 1.04(3 \mathrm{H}, \mathrm{s}$, methyl) $1.01(6 \mathrm{H}, \mathrm{s}$, dimethyl); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ): 169.6 (C=O), 160.1 (methoxyphenyl $\mathrm{C}-3$ ), 144.8 (methoxyphenyl C-1), 129.8 (methoxyphenyl C-5), 122.2 (methoxyphenyl C-6), 115.4 (methoxyphenyl C-2), 111.6 (methoxyphenyl C-4), 55.4 (OMe), 54.4 (C-2), 54.2 (C-1), 50.9
(C-7), 47.7 (C-6), 43.7 (C-4), 37.1 (C-3), 32.3 (C-5), 23.1 (acetyl), 20.2 (methyl), 19.9 (methyl), 13.9 (methyl); HRMS found $\mathrm{MH}^{+} 302.2119 . \mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{2}$ requires $M H, 302.2115$.

## 1-[(2R,3aS,9R,9aR)-7-methoxy-1,1,9a-trimethyl-1,2,3,3a,9,9a-hexahydro-4H-2,9-methanocyclopenta[b]quinilin-4-yl]ethanone (S7)



NBS ( $59 \mathrm{mg}, 0.33 \mathrm{mmol}$ ) was added to a solution of acetamide derivative $\mathbf{1 6}(91.0 \mathrm{mg}, 0.30$ $\mathrm{mmol})$ in $\mathrm{MeCN}(5 \mathrm{ml})$ at rt and stirred at rt for 4 h . The reaction mixture was concentrated under reduced pressure to give the crude $p$-bromo intermediate. This intermediate was dissolved in toluene ( 5 ml ) and $\mathrm{Pd}(\mathrm{OAc})_{2}(3.00 \mathrm{mg}, 5 \mathrm{~mol} \%)$, rac-BINAP ( $14.0 \mathrm{mg}, 7.5 \mathrm{~mol} \%$ ) and $\mathrm{NaO}^{t} \mathrm{Bu}$ ( $57.6 \mathrm{mg}, 0.60 \mathrm{mmol}$ ) were then added sequentially at rt . The reaction mixture was then stirred at $100^{\circ} \mathrm{C}$ for 24 h , cooled to rt and filtered through celite (eluting with DCM). The filtrate was then concentrated under reduced pressure to give a crude material. This was purified via column chromatography, eluting EtOAc-hexane 20:80 to give the cyclised acetamide derivative $\boldsymbol{S} 7(42.0 \mathrm{mg}, 47 \%)$ as a colourless oil. $R_{\mathrm{f}} 0.55$ (EtOAc-hexane 50:50). $\left[\alpha_{D^{20}}\right]+2.00(\mathrm{c} 0.01, \mathrm{MeOH}) ; v_{\max } / \mathrm{cm}^{-1}: 2949,2878,1652,1500,1462,1369,1301,1273,1240$, $1145,1110,1048 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 6.72(1 \mathrm{H}, \mathrm{dd}, J 9.0$ and $2.9 \mathrm{~Hz}, 6-\mathrm{H}), 6.64(1 \mathrm{H}, \mathrm{d}, J$ $2.9 \mathrm{~Hz}, 8-\mathrm{H}), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.87(1 \mathrm{H}, \mathrm{dt}, J 9.3$ and $2.4 \mathrm{~Hz}, 9-\mathrm{H}), 2.45-2.33\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.10-\mathrm{H}_{\mathrm{A}}\right), 2.32(3 \mathrm{H}, \mathrm{s}$, acetyl), $1.65(1 \mathrm{H}, \mathrm{t}, J 4.2 \mathrm{~Hz}, 2-\mathrm{H}), 1.02(3 \mathrm{H}, \mathrm{s}$, methyl), 1.00-0.93 $\left(5 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}, 10-\mathrm{H}_{\mathrm{B}}\right.$ and methyl), $0.77\left(3 \mathrm{H}, \mathrm{s}\right.$, methyl); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 171.1(\mathrm{C}=\mathrm{O})$, 156.3 (C-7), 133.6 (C-4a), 126.7 (C-8a), 124.9 (C-5), 114.3 (C-8), 111.6 (C-6), 56.4 (C-3a), 55.5 (OMe), 48.9 (C-9a), 45.2 (C-1), 42.9 (C-2), 42.4 (C-9), 40.8 (C-3 and C-10), 24.6 (acetyl $\mathrm{CH}_{3}$ ), 19.7 (methyl), 18.9 (methyl), 12.4 (methyl); HRMS found $\mathrm{MNa}^{+} 322.1777 . \mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{2}$ requires $M N a, 322.1778 .5-\mathrm{H}$ and $3 \mathrm{a}-\mathrm{H}$ are not observed by ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.
(2R,3aS,9R,9aR)-7-methoxy-1,1,9a-trimethyl-1,2,3,3a,9,9a-hexahydro-1H-2,9methanocyclopenta[b]quiniline (17)


Cyclised acetamide derivative $\mathbf{S 7}(40.0 \mathrm{mg}, 0.13 \mathrm{mmol})$ was dissolved in 1:1 $\mathrm{HCl}-\mathrm{EtOH}$ ( 10 $\mathrm{ml})$ and stirred at $80{ }^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was allowed to cool to rt then concentrated under reduced pressure to give a crude material. This was purified via column chromatography, eluting EtOAc-MeOH 95:5 to give the amine derivative 17 ( $21.0 \mathrm{mg}, 67 \%$ ) as an off-white solid. $R_{\mathrm{f}} 0.67$ (EtOAc-MeOH 90:10). $\left[\alpha_{D^{20}}\right]+6.00$ (c $0.01, \mathrm{MeOH}$ ); $v_{\text {max }} / \mathrm{cm}^{-1}$ : $3339,2918,2850,1504,1462,1256,1072 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 6.66-6.60(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$ and $8-\mathrm{H}), 6.51(1 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, 6-\mathrm{H}), 3.74(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.50-3.43(1 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H}), 2.78(1 \mathrm{H}, \mathrm{dt}, J$ 9.0 and $2.8 \mathrm{~Hz}, 9-\mathrm{H}), 2.45-2.38\left(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}_{\mathrm{A}}\right), 2.31-2.23\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{A}}\right), 1.52(1 \mathrm{H}, \mathrm{t}, J 4.3$ Hz. 2-H), $1.24\left(1 \mathrm{H}\right.$, br. s, NH), 1.04-0.95 $\left(5 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}_{\mathrm{B}}, 3-\mathrm{H}_{\mathrm{B}}\right.$ and methyl), $0.93(3 \mathrm{H}, \mathrm{s}$, methyl), 0.73 ( $3 \mathrm{H}, \mathrm{s}$, methyl); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ): 151.7 (C-7), 143.7 (C-4a), 124.9 (C-8a), 115.3 (C-8), 114.3 (C-6), 113.2 (C-5), 55.9 (OMe), 55.8 (C-3a), 48.9 (C-9a), 42.8 (C-1), 41.7 (C-9), 41.3 (C-2), 40.0 (C-10), 38.8 (C-3), 19.8 (methyl), 19.2 (methyl), 12.8 (methyl); HRMS found $\mathrm{MH}^{+}$258.1867. $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}$ requires $M H, 258.1852$. The product was isolated as the HCl salt.
(2R,3aS,5S,10S,10aR)-8-methoxy-1,1,5,10a-tetramethyl-1,2,3,3a,4,5,10,10a-octahydro-2,10-methanobenzo $[e]$ cyclopenta $[b]$ azepine (18)


Acetamide derivative 16 ( $80.0 \mathrm{mg}, 0.27 \mathrm{mmol}$ ) was dissolved in $\mathrm{MeCN}(4 \mathrm{ml})$ and $\mathrm{POCl}_{3}(0.25$ $\mathrm{ml}, 2.70 \mathrm{mmol}$ ) was added dropwise at rt . The resulting solution was stirred and heated at 100 ${ }^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was cooled to rt and then all the volatiles were removed under reduced pressure. The residue was dissolved in $\mathrm{DCM}(10 \mathrm{ml})$ then water $(5 \mathrm{ml})$ and 5 M NaOH was added to basify the solution. This was then extracted with DCM ( $3 \times 20 \mathrm{ml}$ ), organic layers combined, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give the crude imine intermediate. This intermediate was dissolved in $\mathrm{MeOH}(4 \mathrm{ml})$ and $\mathrm{NaBH}_{4}$ ( 21.0 mg , 0.54 mmol ) was added at rt . The solution was allowed to stir for 2 h then $1 \mathrm{M} \mathrm{HCl}(5 \mathrm{ml})$ was added to quench the reaction. This solution was basified with 5 M NaOH then extracted with DCM ( $3 \times 20 \mathrm{ml}$ ). The organic layers were combined, dried ( $\mathrm{MgSO}_{4}$ ), filtered and concentrated under reduced pressure to give a crude material. This was then purified via column chromatography, eluting EtOAc-MeOH 95:5 to give the cyclised amine derivative 18 (47.0 $\mathrm{mg}, 62 \%, d r>95:<5$ by ${ }^{1} \mathrm{H}$ NMR) as a white solid. $R_{\mathrm{f}} 0.10$ (EtOAc-MeOH 95:5). $\left[\alpha_{\mathrm{D}}{ }^{20}\right]+39.7$ (c $0.01, \mathrm{MeOH}$ ); $v_{\max } / \mathrm{cm}^{-1}: 3332,2944,2833,1606,1580,1506,1461,1282,1239,1147,1089 ;$ $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.16(1 \mathrm{H}, \mathrm{d}, J 9.2 \mathrm{~Hz}, 6-\mathrm{H}), 6.70-6.65(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}$ and $9-\mathrm{H}), 4.42(1 \mathrm{H}$, q, $J 6.5 \mathrm{~Hz}, 5-\mathrm{H}), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.48(1 \mathrm{H}, \mathrm{d}, J 9.7 \mathrm{~Hz}, 3 \mathrm{a}-\mathrm{H}), 2.98(1 \mathrm{H}, \mathrm{dd}, J 10.6$ and 7.9 $\mathrm{Hz}, 10-\mathrm{H}), 2.35-2.07\left(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{A}}, 11-\mathrm{H}_{\mathrm{A}}\right.$ and NH$), 1.82(1 \mathrm{H}, \mathrm{t}, J 4.1 \mathrm{~Hz}, 2-\mathrm{H}), 1.72-1.62(2 \mathrm{H}$, $\mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}$ and $\left.11-\mathrm{H}_{\mathrm{B}}\right), 1.50(3 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}, 5-m e t h y l), 1.00(3 \mathrm{H}, \mathrm{s}$, methyl), $0.94(3 \mathrm{H}, \mathrm{s}$, methyl), 0.66 (3H, s, methyl); $\delta_{\text {c }}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 157.9$ (C-8), 142.9 (C-9a), 138.4 (C-5a), 125.4 (C-6), 119.4 (C-9), 110.1 (C-7), 63.6 (C-3a), 55.3 (OMe), 52.5 (C-10), 49.2 (C-10a), 48.4 (C-1), 45.1 (C-5), 43.3 (C-2), 33.5 (C-3), 32.1 (C-11), 21.6 (methyl C-5), 19.9 (methyl), 19.8 (methyl), 13.0 (methyl); HRMS found $\mathrm{MH}^{+}$286.2171. $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}$ requires $M H, 286.2165$. The configuration was determined through NOESY ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ). nOe observed between $5-\mathrm{H}$ and $3-\mathrm{H}_{\mathrm{B}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.
methyl 2-[(1R,2S,4R,6S)-6-(pyridine-2-carboxyamidyl)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl]benzoate (19)


Prepared according to General procedure E, picolinamide derivative S5 (200 mg, 0.78 mmol ) and methyl 2-bromobenzoate ( $670 \mathrm{mg}, 3.10 \mathrm{mmol}$ ) gave a crude material. This was then purified via column chromatography, eluting EtOAc-hexane 30:60 to give the arylated ester derivative 19 ( $160 \mathrm{mg}, 53 \%, d r>95:<5$ by ${ }^{1} \mathrm{H} N \mathrm{NR}$ ) as a white solid. $R_{\mathrm{f}} 0.29$ (EtOAc-hexane 40:60). $\left[\alpha_{D^{20}}^{20}\right]+16.2(\mathrm{c} 0.01, \mathrm{MeOH}) ; v_{\text {max }} / \mathrm{cm}^{-1}: 3364,2948,1713,1663,1595,1569,1508$, 1437, 1428, 1395, 1385, 1255, 1210, 1128, 1040; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.22$ ( $1 \mathrm{H}, \mathrm{ddd}, J 4.1$, 1.7 and 1.0 Hz , pyridinyl $6-\mathrm{H}), 7.95(1 \mathrm{H}$, dt, $J 7.8$ and 1.0 Hz , pyridinyl $3-\mathrm{H}), 7.87(1 \mathrm{H}, \mathrm{d}, J$ 7.7 Hz , phenyl 6-H), $7.70(1 \mathrm{H}, \mathrm{td}, J 7.8$ and 1.7 Hz , pyridinyl 4-H), 7.67 ( 1 H , br. s, NH), 7.63 (1H, dd, J 7.7 and 1.5 Hz , phenyl 3-H), $7.55(1 \mathrm{H}$, td, J 7.7 and 1.5 Hz , phenyl $5-\mathrm{H}$ ), 7.30-7.27 ( $1 \mathrm{H}, \mathrm{m}$, phenyl 4-H), 7.27-7.24 (1H, m, pyridinyl $5-\mathrm{H}$ ), $4.65(1 \mathrm{H}, \mathrm{dd}, J 11.8$ and $5.7 \mathrm{~Hz}, 2-\mathrm{H})$, $4.48(1 \mathrm{H}$, app. dddd, $J 11.2,9.2,6.3$ and $1.7 \mathrm{~Hz}, 6-\mathrm{H}), 3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 2.58(1 \mathrm{H}$, app. dddd, $J 13.5,11.2,4.6$ and $\left.3.3 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{A}}\right), 2.35\left(1 \mathrm{H}, \mathrm{tt}, J 13.1\right.$ and $\left.3.8 \mathrm{~Hz}, 3-\mathrm{H}_{\mathrm{A}}\right), 2.03(1 \mathrm{H}$, dd, $J 13.1$ and $\left.5.7 \mathrm{~Hz}, 3-\mathrm{H}_{\mathrm{B}}\right), 1.97(1 \mathrm{H}, \mathrm{t}, J 4.6 \mathrm{~Hz}, 4-\mathrm{H}), 1.39\left(1 \mathrm{H}, \mathrm{dd}, J 13.5\right.$ and $\left.6.3 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{B}}\right)$, 1.13 ( $3 \mathrm{H}, \mathrm{s}$, methyl), 1.08 ( 3 H , s, methyl), 0.83 ( $3 \mathrm{H}, \mathrm{s}$, methyl); $\delta_{\mathrm{c}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ): 170.1 ( $\mathrm{C}=\mathrm{O}$ ester), 164.5 ( $\mathrm{C}=\mathrm{O}$ amide), 149.9 (pyridinyl C-2), 147.3 (pyridinyl C-6), 142.4 (phenyl C-1), 137.0 (pyridinyl C-4), 133.4 (phenyl C-2), 132.3 (phenyl C-5), 130.6 (phenyl C-3), 129.5 (phenyl C-6), 125.7 (pyridinyl C-5), 125.6 (phenyl C-4), 121.9 (pyridinyl C-3), 55.8 (C-1), 55.2 (C-6), $52.1\left(\mathrm{CO}_{2} \mathrm{Me}\right), 51.4$ (C-7), 44.0 (C-4), 41.1 (C-2), 36.7 (C-5), 33.9 (C-3), 20.4 (methyl), 20.1 (methyl), 12.6 (methyl); HRMS found $\mathrm{MH}^{+}$393.2182. $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $M H, 393.2173$. The configuration was determined through NOESY ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ). nOe observed between 2-H and 7-methyl and nOe observed between 6-H and 7-methyl ( 500 MHz , $\mathrm{CDCl}_{3}$ ).

## (2R,3aS,10S,10aR)-1,1,10a-trimethyl-2,3,3a,4,10,10a-hexahydro-2,10methanobenzo $[e]$ cyclopenta[b]azepin-5(1H)-one (20)



Water ( 4.3 ml ) and $\mathrm{HCl}(0.96 \mathrm{ml}, 37 \%)$ were added to a solution of arylated ester derivative 19 ( $150 \mathrm{mg}, 0.38 \mathrm{mmol}$ ) in THF ( 15 ml ). The reaction mixture was stirred at rt for 5 mins then
zinc powder ( $373 \mathrm{mg}, 5.74 \mathrm{mmol}$ ) was added portionwise over 30 mins . The resulting suspension was stirred at rt for 18 h . The reaction mixture was filtered through celite (eluting with THF) then the filtrate was basified with 5 M NaOH solution and the resulting solution allowed to stir at rt for a further 18 h . This was then extracted with DCM ( $3 \times 30 \mathrm{ml}$ ), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a crude material. This was then purified via column chromatography, eluting EtOAc-hexane 40:60 to give the lactam derivative 20 ( $69.0 \mathrm{mg}, 71 \%$ ) as a white solid. $R_{\mathrm{f}} 0.46$ (EtOAc-hexane 70:30). [ $\left.\alpha_{\mathrm{D}}{ }^{20}\right]+17.7$ (c $0.01, \mathrm{MeOH}) ; \nu_{\max } / \mathrm{cm}^{-1}: 3283,3050,2950,2875,1645,1452,1392,1372,1353,1259,1208$, $1161,1129,1029 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.51(1 \mathrm{H}, \mathrm{dd}, J 8.1$ and $1.6 \mathrm{~Hz}, 6-\mathrm{H}), 7.41(1 \mathrm{H}, \mathrm{td}, J$ 7.7 and $1.6 \mathrm{~Hz}, 8-\mathrm{H}), 7.30(1 \mathrm{H}, \mathrm{ddd}, J 8.1,7.7$ and $1.4 \mathrm{~Hz}, 7-\mathrm{H}), 7.18(1 \mathrm{H}, \mathrm{dd}, J 7.7$ and 1.4 $\mathrm{Hz}, 9-\mathrm{H}), 6.44(1 \mathrm{H}$, br. d, $J 5.7 \mathrm{~Hz}, \mathrm{NH}), 3.71-3.65(1 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H}), 3.48$ ( 1 H , ddd, J 12.6, 6.2 and $2.6 \mathrm{~Hz}, 10-\mathrm{H}), 2.53\left(1 \mathrm{H}, \mathrm{tt}, J 12.6\right.$ and $\left.4.0 \mathrm{~Hz}, 11-\mathrm{H}_{\mathrm{A}}\right), 2.45-2.38\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{A}}\right), 1.73(1 \mathrm{H}$, $\mathrm{t}, J 4.7 \mathrm{~Hz}, 2-\mathrm{H}), 1.19\left(1 \mathrm{H}, \mathrm{dd}, J 13.0\right.$ and $\left.5.6 \mathrm{~Hz}, 3-\mathrm{H}_{\mathrm{B}}\right), 1.14(1 \mathrm{H}, \mathrm{dd}, J 12.6$ and $6.2 \mathrm{~Hz}, 11-$ $\mathrm{H}_{\mathrm{B}}$ ), $1.09\left(3 \mathrm{H}, \mathrm{s}\right.$, methyl), $0.99\left(3 \mathrm{H}, \mathrm{s}\right.$, methyl), 0.91 ( $3 \mathrm{H}, \mathrm{s}$, methyl); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ): 167.9 (C=O), 143.8 (C-9a), 133.7 (C-6), 132.4 (C-9), 132.1 (C-8), 128.8 (C-5a), 126.1 (C-7), 59.0 (C-3a), 51.5 (C-10), 50.4 (C-10a), 47.8 (C-1), 41.3 (C-2), 40.9 (C-11), 39.5 (C-3), 20.0 (methyl), 19.9 (methyl), 13.1 (methyl); HRMS found $\mathrm{MH}^{+} 256.1692$. $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}$ requires $M H$, 256.1696.

## $N$-[(1R,2S,4R,6R)-6-(2-fluoropyridin-3-yl)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-

 yl]pyridine-2-carboxamide (21)

Prepared according to General procedure E, picolinamide derivative S5 (200 mg, 0.78 mmol ) and 2-fluoro-3-iodopyridine ( $691 \mathrm{mg}, 3.10 \mathrm{mmol}$ ) gave a crude material. This was then purified via column chromatography, eluting EtOAc-hexane 35:65 to give arylated derivative 21 (118 $\mathrm{mg}, 42 \%, d r>95:<5$ by ${ }^{1} \mathrm{H}$ NMR) as a colourless oil. $R_{\mathrm{f}} 0.17$ (EtOAc-hexane 40:60). [ $\left.\alpha_{\mathrm{D}}{ }^{20}\right]$
$+2.50(\mathrm{c} 0.01, \mathrm{MeOH}) ; \nu_{\max } / \mathrm{cm}^{-1}: 3387,3057,2957,1676,1595,1570,1517,1461,1398,1345$, $1279,1241,1163,1070 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.23(1 \mathrm{H}, \mathrm{d}, J 4.5 \mathrm{~Hz}$, pyridinyl 6-H), 8.06 ( $1 \mathrm{H}, \mathrm{d}, J 4.8 \mathrm{~Hz}$, fluoropyridinyl 6-H), $8.03(1 \mathrm{H}, \mathrm{t}, J 7.9 \mathrm{~Hz}$, fluoropyridinyl 4-H), 7.98 ( $1 \mathrm{H}, \mathrm{d}$, $J 7.8 \mathrm{~Hz}$, pyridinyl 3-H), $7.72(1 \mathrm{H}$, td, J 7.8 and 1.6 Hz , pyridinyl $4-\mathrm{H}), 7.69(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{NH})$, $7.30(1 \mathrm{H}$, ddd, $J 7.8,4.5$ and 0.8 Hz , pyridinyl $5-\mathrm{H}), 7.22-7.18(1 \mathrm{H}, \mathrm{m}$, fluoropyridinyl $5-\mathrm{H})$, 4.53-4.47 ( $1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ ), $3.57(1 \mathrm{H}, \mathrm{dd}, J 11.8$ and $5.6 \mathrm{~Hz}, 6-\mathrm{H}), 2.66-2.58\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{A}}\right), 2.29$ $\left(1 \mathrm{H}, \mathrm{tt}, J 12.9\right.$ and $\left.3.7 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{A}}\right), 2.00-1.93\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.4-\mathrm{H}\right), 1.36(1 \mathrm{H}, \mathrm{dd}, J 13.5$ and $\left.6.0 \mathrm{~Hz}, 3-\mathrm{H}_{\mathrm{B}}\right), 1.12\left(3 \mathrm{H}, \mathrm{s}\right.$, methyl), $1.11\left(3 \mathrm{H}, \mathrm{s}\right.$, methyl), $1.06\left(3 \mathrm{H}, \mathrm{d}, J 4.0 \mathrm{~Hz}\right.$, methyl); $\delta_{\mathrm{C}}$ ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 164.3 (C=O), 162.5 (d, $J 239.4 \mathrm{~Hz}$, fluoropyridinyl C-2), 149.6 (pyridinyl C-2), 147.4 (pyridinyl C-6), 144.8 (d, $J 15.2 \mathrm{~Hz}$, fluoropyridinyl C-6), 141.2 (d, J 5.0 Hz , fluoropyridinyl C-4), 137.2 (pyridinyl C-4), 125.9 (pyridinyl C-5), 124.8 (d, J 29.0 Hz , fluoropyridinyl C-3), 122.1 (d, J 4.1 Hz , fluoropyridinyl 5-H), 121.9 (pyridinyl C-3), 55.5 (C1), 54.9 (C-2), 51.4 (C-7), 43.8 (C-4), 41.2 (C-6), 36.9 (C-3), 33.2 (C-5), 20.3 (methyl), 19.9 (methyl), 13.5 (methyl); $\delta_{\mathrm{F}}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ): -66.3 (pyridinyl CF); HRMS found $\mathrm{MH}^{+}$ 354.1993. $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{FN}_{3} \mathrm{O}$ requires $M H, 354.1976$. The configuration was determined through NOESY ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ). nOe observed between 2-H and 7-methyl and nOe observed between $6-\mathrm{H}$ and 7 -methyl ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ).

## (5R,5aR,7R,8aS)-5a,6,6-trimethyl-5a,6,7,8,8a,9-hexahydro-5H-5,7methanocyclopenta[b][1,8]naphthyridine (22)



Water ( 3.5 ml ) and $\mathrm{HCl}(0.78 \mathrm{ml}, 37 \%)$ were added to a solution of arylated derivative 21 (110 $\mathrm{mg}, 0.31 \mathrm{mmol})$ in THF ( 15 ml ) at rt . The solution was stirred at rt for 5 mins then zinc powder $(304 \mathrm{mg}, 4.67 \mathrm{mmol})$ was added portionwise over 30 mins . The resulting suspension was stirred at rt for 18 h . The reaction mixture was filtered through celite (eluting with EtOAc) and saturated aqueous $\mathrm{NaHCO}_{3}$ solution ( 10 ml ) was added to the filtrate. This was then extracted
with DCM ( $3 \times 20 \mathrm{ml}$ ), organic layers combined, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a crude material. This was purified via column chromatography, eluting EtOAc to give the fused-ring pyridine derivative 22 ( $40.0 \mathrm{mg}, 55 \%$ ) as a white solid. $R_{\mathrm{f}} 0.26$ (EtOAc). $\left[\alpha_{\mathrm{D}^{20}}\right]+34.8$ (c $0.01, \mathrm{MeOH}$ ); $v_{\max } / \mathrm{cm}^{-1}: 3329,2948,2928,2871,1602,1537$, $1456,1389,1323,1289,1162,1077 ; \delta_{\text {н }}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.86(1 \mathrm{H}, \mathrm{dd}, J 5.1$ and $1.0 \mathrm{~Hz}, 2-$ H), 7.27-7.23 ( $1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$, overlaps with residual chloroform peak), 6.52 ( $1 \mathrm{H}, \mathrm{dd}, J 6.8$ and $5.1 \mathrm{~Hz}, 3-\mathrm{H}), 5.80(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{NH}), 3.63-3.56(1 \mathrm{H}, \mathrm{m}, 8 \mathrm{a}-\mathrm{H}), 2.83(1 \mathrm{H}, \mathrm{dt}, J 8.6$ and $3.3 \mathrm{~Hz}, 5-$ H), $2.45\left(1 \mathrm{H}, \mathrm{tt}, J 12.3\right.$ and $\left.3.8 \mathrm{~Hz}, 10-\mathrm{H}_{\mathrm{A}}\right), 2.40-2.33\left(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{\mathrm{A}}\right), 1.56(1 \mathrm{H}, \mathrm{t}, J 4.3 \mathrm{~Hz}, 7-$ H), $1.00\left(3 \mathrm{H}, \mathrm{s}\right.$, methyl), $0.99-0.93\left(5 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}_{\mathrm{B}}, 8-\mathrm{H}_{\mathrm{B}}\right.$ and methyl), $0.72\left(3 \mathrm{H}, \mathrm{s}\right.$, methyl); $\delta_{\mathrm{C}}$ ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 151.7 (C-9a), 144.3 (C-2), 137.7 (C-4), 120.2 (C-4a), 112.4 (C-3), 55.7 (C-8a), 48.9 (C-5a), 42.8 (C-6), 41.3 (C-5), 41.0 (C-7), 39.7 (C-8), 39.3 (C-10), 19.6 (methyl), 19.3 (methyl), 12.7 (methyl); HRMS found $\mathrm{MH}^{+}$229.1705. $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2}$ requires $M H, 229.1699$.

## methyl ( $1 R^{*}, 4 R^{*}$ )-4-[(pyridine-2-carbonyl)amino]cyclohexane-1-carboxylate (S8)



Prepared according to an adapted General procedure C, cis-4-amino-cyclohexanecarboxylic acid methyl ester hydrochloride ( $1.00 \mathrm{~g}, 5.18 \mathrm{mmol}$ ) followed by addition of a saturated aqueous solution of $\mathrm{NaHCO}_{3}$ instead of 5 M NaOH gave a crude material. This was then purified via column chromatography, eluting EtOAc-hexane 30:70 to give picolinamide derivative $\mathbf{S 8}^{4}(1.24 \mathrm{~g}, 91 \%)$ as a colourless oil. $R_{\mathrm{f}} 0.20$ (EtOAc-hexane $40: 60$ ). $\delta_{\mathrm{H}}(500 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ): $8.54(1 \mathrm{H}$, ddd, $J 4.8,1.7$ and 0.9 Hz , pyridinyl $6-\mathrm{H}), 8.18(1 \mathrm{H}, \mathrm{dt}, J 7.7$ and 1.2 Hz , pyridinyl 3-H), 8.12 ( 1 H , br. d, $J 6.6 \mathrm{~Hz}, \mathrm{NH}$ ), 7.83 ( 1 H , td, $J 7.7$ and 1.7 Hz , pyridinyl 4-H), $7.41(1 \mathrm{H}$, ddd, $J 7.7,4.8$ and 1.2 Hz , pyridinyl $5-\mathrm{H}), 4.18-4.11(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.70(1 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{Me}\right), 2.56-2.50(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 2.02-1.93\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.6-\mathrm{H}_{\mathrm{A}}\right), 1.85-1.69\left(6 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}\right.$, $6-\mathrm{H}_{\mathrm{B}}, 3-\mathrm{H}_{2}$ and $5-\mathrm{H}_{2}$ ); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 175.7$ ( $\mathrm{C}=\mathrm{O}$ ester), 163.6 ( $\mathrm{C}=\mathrm{O}$ amide), 150.2 (pyridinyl C-2), 148.2 (pyridinyl C-6), 137.4 (pyridinyl C-4), 126.2 (pyridinyl C-5), 122.2
(pyridinyl C-3), $51.8\left(\mathrm{CO}_{2} \mathrm{Me}\right), 45.9(\mathrm{C}-4), 40.4(\mathrm{C}-1), 29.6\left(\mathrm{C}_{2}-3,5\right), 25.2\left(\mathrm{C}_{2}-2,6\right)$. All data is consistent with known literature values. ${ }^{4}$

## methyl ( $1 R^{*}, 2 S^{*}, 4 S^{*}$ )-4-[(pyridine-2-carbonyl)amino]-2-(3-methoxyphenyl)cyclohexane-1-carboxylate ( S 9 )



Prepared according to General procedure D, picolinamide derivative S8 (200 mg, 0.76 mmol ) and 3-iodoanisole ( $0.55 \mathrm{ml}, 4.58 \mathrm{mmol}$ ) gave a crude material. This was then purified via column chromatography eluting with EtOAc-hexane 25:75 to give arylated derivative $\boldsymbol{S} \boldsymbol{9}$ (243 $\mathrm{mg}, 87 \%, d r>95:<5$ by ${ }^{1} \mathrm{H}$ NMR) as a colourless oil. $R_{\mathrm{f}} 0.22$ (EtOAc-hexane $40: 60$ ). $v_{\text {max }} / \mathrm{cm}^{-}$ ${ }^{1}: 3377,2944,2864,1726,1669,1585,1516,1433,1239,1158 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.56$ ( $1 \mathrm{H}, \mathrm{d}, J 4.8 \mathrm{~Hz}$, pyridinyl 6-H), $8.20(1 \mathrm{H}, \mathrm{d}, J 7.7 \mathrm{~Hz}$, pyridinyl 3-H), $8.11(1 \mathrm{H}, \mathrm{br}$, d, J 8.4 $\mathrm{Hz}, \mathrm{NH}), 7.84(1 \mathrm{H}$, td, $J 7.7$ and 1.5 Hz , pyridinyl $4-\mathrm{H}), 7.42(1 \mathrm{H}, \mathrm{dd}, J 7.7$ and 4.8 Hz , pyridinyl $5-\mathrm{H}), 7.19(1 \mathrm{H}, \mathrm{t}, J 7.7 \mathrm{~Hz}$, methoxyphenyl $5-\mathrm{H}), 6.80(1 \mathrm{H}, \mathrm{d}, J 7.7 \mathrm{~Hz}$, methoxyphenyl 6-H), 6.78-6.72 ( 2 H, m, methoxyphenyl 2-H and methoxyphenyl 4-H), 4.17 ( $1 \mathrm{H}, \mathrm{tdt}, J$ 12.2, 8.4 and $4.1 \mathrm{~Hz}, 4-\mathrm{H}$ ), 3.78 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$ ), 3.45 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}$ ), 3.05-2.96 ( 2 H , $\mathrm{m}, 1-\mathrm{H}$ and $2-\mathrm{H}), 2.47\left(1 \mathrm{H}\right.$, app. q, $\left.J 12.2 \mathrm{~Hz}, 3-\mathrm{H}_{\mathrm{A}}\right), 2.17-2.11\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.5-\mathrm{H}_{\mathrm{A}}\right), 2.03-$ $1.81\left(3 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.6-\mathrm{H}_{2}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 174.3(\mathrm{C}=\mathrm{O}$ ester), 163.6 ( $\mathrm{C}=\mathrm{O}$ amide), 159.7 (methoxyphenyl C-3), 150.2 (pyridinyl C-2), 148.2 (pyridinyl C-6), 144.6 (methoxyphenyl C-1), 137.5 (pyridinyl C-4), 129.3 (methoxyphenyl C-5), 126.2 (pyridinyl C5), 122.4 (pyridinyl C-3), 119.8 (methoxyphenyl C-6), 113.3 (methoxyphenyl C-2), 112.1 (methoxyphenyl C-4), $55.3(\mathrm{OMe}), 51.2\left(\mathrm{CO}_{2} \mathrm{Me}\right), 48.5(\mathrm{C}-4), 44.8(\mathrm{C}-1), 44.0(\mathrm{C}-2), 32.6(\mathrm{C}-$ 3), 28.2 (C-6), 28.0 (C-5); HRMS found $\mathrm{MH}^{+}$369.1818. $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $M H, 369.1809$. The relative configuration was determined through NOESY ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ). nOe observed between $\mathrm{CO}_{2} \mathrm{Me}$ and methoxyphenyl 2-H and nOe observed between $2-\mathrm{H}$ and $4-\mathrm{H}(500 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ).
methyl $\left(1 R^{*}, 2 S^{*}, 4 S^{*}\right.$ )-4-acetamido-2-(3-methoxyphenyl)cyclohexane-1-carboxylate (23)


Water ( 7.40 ml ) was added to arylated derivative $\mathbf{S 9}$ ( $240 \mathrm{mg}, 0.65 \mathrm{mmol}$ ) in THF ( 7.40 ml ) then $\mathrm{HCl}(1.64 \mathrm{ml}, 37 \%)$ was added and the solution stirred for 5 mins at rt . Then zinc powder ( $636 \mathrm{mg}, 9.78 \mathrm{mmol}$ ) was added portionwise and the resulting suspension allowed to stir at rt for a further 2 h . The reaction mixture was filtered through celite (eluting with EtOAc) then saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{ml})$ was added to the filtrate. The phases were separated and the aqueous phase extracted with EtOAc ( $3 \times 30 \mathrm{ml}$ ). The organic phases were combined, dried ( $\mathrm{MgSO}_{4}$ ), filtered and concentrated under reduced pressure to give the crude amine intermediate. This was dissolved in $\mathrm{DCM}(20 \mathrm{ml})$ then $\mathrm{Et}_{3} \mathrm{~N}(0.91 \mathrm{ml}, 6.50 \mathrm{mmol})$ and $\mathrm{Ac}_{2} \mathrm{O}$ ( $0.61 \mathrm{ml}, 6.50 \mathrm{mmol}$ ) were added sequentially. The reaction mixture was then stirred at rt for 18 h then saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{ml})$ was added to the reaction mixture. The phases were separated and the aqueous phase extracted with DCM ( $3 \times 30 \mathrm{ml}$ ). The organic phases were combined, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a crude material. This was then purified via column chromatography, eluting EtOAc-hexane 75:25 $\rightarrow$ $100 \%$ EtOAc to give acetamide derivative $23(108 \mathrm{mg}, 54 \%)$ as a colourless oil. $R_{\mathrm{f}} 0.24$ (EtOAc). $v_{\max } / \mathrm{cm}^{-1}: 3277,2935,2836,1728,1651,1527,1434,1293,1166 ; \delta_{\mathrm{H}}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 7.19(1 \mathrm{H}, \mathrm{t}, J 7.8 \mathrm{~Hz}$, phenyl $5-\mathrm{H}), 6.78-6.72(3 \mathrm{H}, \mathrm{m}$, phenyl 2-H, phenyl 4-H and phenyl 6-H), 5.44 ( 1 H, br. d, $J 8.1 \mathrm{~Hz}, \mathrm{NH}$ ), 4.10-3.91 ( $1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ ), 3.78 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$ ), 3.43 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 2.96-2.91(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and $2-\mathrm{H}), 2.27\left(1 \mathrm{H}, \mathrm{app} . \mathrm{q}, J 12.2 \mathrm{~Hz}, 3-\mathrm{H}_{\mathrm{A}}\right), 2.09-$ $2.01\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.5-\mathrm{H}_{\mathrm{A}}\right), 1.98\left(3 \mathrm{H}, \mathrm{s}\right.$, acetyl), $1.92-1.86\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{A}}\right), 1.83(1 \mathrm{H}, \mathrm{dt}, J$ 13.5 and $\left.4.1 \mathrm{~Hz}, 6-\mathrm{H}_{\mathrm{B}}\right), 1.71-1.60\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 174.4(\mathrm{C}=\mathrm{O}$ ester), 169.3 ( $\mathrm{C}=\mathrm{O}$ amide), 159.7 (phenyl C-3), 144.5 (phenyl C-1), 129.3 (phenyl C-5), 119.7 (phenyl C-6), 113.3 (phenyl C-2), 112.0 (phenyl C-4), 55.3 (OMe), $51.2\left(\mathrm{CO}_{2} \mathrm{Me}\right), 48.5(\mathrm{C}-4), 44.7$ (C1), 44.0 (C-2), 32.7 (C-3), 28.0 (C-6), 27.9 (C-5), 23.8 (acetyl $\mathrm{CH}_{3}$ ); HRMS found $\mathrm{MH}^{+}$ 306.1700. $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{4}$ requires $M H, 306.1700$.

## methyl $\left(2 R^{*}, 5 S^{*}, 6 R^{*}\right)$-1-acetyl-8-methoxy-1,2,3,4,5,6-hexahydro-2,6-methano-1-benzazocine-5-carboxylate (24)



Acetamide derivative 23 ( $81.0 \mathrm{mg}, 0.27 \mathrm{mmol}$ ) was dissolved in MeCN ( 5 ml ) then NBS ( 52.0 $\mathrm{mg}, 0.29 \mathrm{mmol}$ ) was added and the reaction mixture left to stir at rt for 18 h . The volatiles were removed under reduced pressure to give the crude brominated intermediate. This was then dissolved in toluene ( 2 ml ) and added to a pressure vial. Then $\operatorname{Pd}(\mathrm{OAc})_{2}(3.00 \mathrm{mg}, 5 \mathrm{~mol} \%)$, rac-BINAP ( $13.0 \mathrm{mg}, 7.5 \mathrm{~mol} \%$ ) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(176 \mathrm{mg}, 0.54 \mathrm{mmol})$ were added sequentially and the resulting reaction mixture stirred at $100^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was allowed to cool to room temperature, filtered through celite (eluting with DCM) and concentrated under reduced pressure to give a crude material. This was then purified via column chromatography, eluting EtOAc-hexane 50:50 to give the cyclised acetamide derivative 24 ( $35.0 \mathrm{mg}, 43 \%$ ) as a colourless oil. $R_{\mathrm{f}} 0.58$ (EtOAc). $v_{\text {max }} / \mathrm{cm}^{-1}: 2993,2835,1730,1649,1493,1434,1305,1264$, 1176,$1049 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 6.73(1 \mathrm{H}, \mathrm{dd}, J 9.2$ and $3.0 \mathrm{~Hz}, 9-\mathrm{H}), 6.52(1 \mathrm{H}, \mathrm{d}, J 3.0 \mathrm{~Hz}$, $7-\mathrm{H}), 4.59(1 \mathrm{H}$, app. br. s, $2-\mathrm{H}), 3.74(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.50(1 \mathrm{H}, \mathrm{d}, J 2.8$ $\mathrm{Hz}, 6-\mathrm{H}), 2.73(1 \mathrm{H}, \mathrm{dt}, J 12.8$ and $3.6 \mathrm{~Hz}, 5-\mathrm{H}), 2.35(3 \mathrm{H}, \mathrm{s}$, acetyl), $2.15(1 \mathrm{H}, \mathrm{br} . \mathrm{d}, J 13.5 \mathrm{~Hz}$, $\left.3-\mathrm{H}_{\mathrm{A}}\right), 1.99\left(2 \mathrm{H}\right.$, app. s, $\left.11-\mathrm{H}_{2}\right), 1.76-1.70\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}\right), 1.60\left(1 \mathrm{H}\right.$, app. t, J $\left.13.5 \mathrm{~Hz}, 3-\mathrm{H}_{\mathrm{B}}\right)$, 1.38 ( $1 \mathrm{H}, \mathrm{qd}, J 13.7$ and $4.0 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{B}}$ ); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 173.7$ ( $\mathrm{C}=\mathrm{O}$ ester), 170.7 (C=O amide), 155.1 (C-8), 133.2 (C-10a), 129.7 (C-10), 123.1 (C-6a), 114.1 (C-7), 112.6 (C-9), 55.5 (OMe), 51.7 ( $\mathrm{CO}_{2} \mathrm{Me}$ ), 49.1 (C-2), 48.2 (C-5), 36.7 (C-6), 31.3 (C-11), 31.0 (C-3), 25.1 (acetyl $\mathrm{CH}_{3}$ ), 19.5 (C-4); HRMS found $\mathrm{MH}^{+}$304.1544. $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4}$ requires $\mathrm{MH}, 304.1543 .10-\mathrm{H}$ is not observed by ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ).
methyl ( $1 R^{*}, 2 S^{*}, 4 S^{*}$ )-2-(2-fluoropyridin-3-yl)-4-[(pyridine-2-carbonyl)amino]cyclohexane-1-carboxylate (25)


Prepared according to General procedure D, picolinamide derivative $\mathbf{S 9}$ ( $200 \mathrm{mg}, 0.76 \mathrm{mmol}$ ) and 2-fluoro-3-iodopyridine ( $1.02 \mathrm{~g}, 4.58 \mathrm{mmol}$ ) gave a crude material. This was then purified via column chromatography eluting with EtOAc-hexane 40:60 to give the arylated derivative 25 ( $105 \mathrm{mg}, 39 \%, d r>95:<5$ by ${ }^{1} \mathrm{H}$ NMR) as a pale-yellow solid. $R_{\mathrm{f}} 0.13$ (EtOAc-hexane 40:60). $v_{\max } / \mathrm{cm}^{-1}: 3386,2845,1733,1670,1520,1205 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.57(1 \mathrm{H}$, ddd, $J 4.8,1.7$ and 0.9 Hz , pyridinyl 6-H), $8.20(1 \mathrm{H}, \mathrm{dt}, J 7.8$ and 1.2 Hz , pyridinyl $3-\mathrm{H}), 8.10(1 \mathrm{H}$, br. d, $J 8.4 \mathrm{~Hz}, \mathrm{NH}), 8.07(1 \mathrm{H}, \mathrm{dt}, J 4.7$ and 1.5 Hz , fluoropyridinyl $6-\mathrm{H}), 7.86(1 \mathrm{H}, \mathrm{td}, J 7.8$ and 1.7 Hz , pyridinyl 4-H), 7.73-7.68 ( 1 H , m, fluoropyridinyl 4-H), 7.44 ( 1 H , ddd, J 7.8, 4.8 and 1.2 Hz , pyridinyl $5-\mathrm{H})$, 7.15-7.11 ( $1 \mathrm{H}, \mathrm{m}$, fluoropyridinyl $5-\mathrm{H}$ ), 4.19 ( 1 H, tdt, $J 12.4,8.4$ and $4.1 \mathrm{~Hz}, 4-\mathrm{H}), 3.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.29(1 \mathrm{H}, \mathrm{dt}, J 13.1$ and $3.8 \mathrm{~Hz}, 2-\mathrm{H}), 3.16-3.13(1 \mathrm{H}$, $\mathrm{m}, 1-\mathrm{H}), 2.46\left(1 \mathrm{H}, \mathrm{q}, J 12.2 \mathrm{~Hz}, 3-\mathrm{H}_{\mathrm{A}}\right), 2.23\left(1 \mathrm{H}, \mathrm{dq}, J 14.0\right.$ and $\left.6.1 \mathrm{~Hz}, 6-\mathrm{H}_{\mathrm{A}}\right), 2.16-2.11(1 \mathrm{H}$, $\left.\mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}\right), 2.07-2.01\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right), 2.01-1.93\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{B}}\right), 1.74(1 \mathrm{H}, \mathrm{qd}, J 12.7$ and 4.1 Hz , $5-\mathrm{H}_{\mathrm{B}}$ ); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 173.7$ ( $\mathrm{C}=\mathrm{O}$ ester), 163.7 ( $\mathrm{C}=\mathrm{O}$ amide), 161.5 ( $\mathrm{d}, J 238.1 \mathrm{~Hz}$, fluoropyridinyl C-2), 150.1 (pyridinyl C-2), 148.2 (pyridinyl C-6), 145.6 (d, J 15.1 Hz , fluoropyridinyl C-6), 139.4 (d, J 5.2 Hz , fluoropyridinyl C-4), 137.6 (pyridinyl C-4), 126.4 (pyridinyl C-5), 124.8 (d, J 29.0 Hz , fluoropyridinyl C-3), 122.4 (pyridinyl C-3), 121.4 (d, J 4.1 Hz , fluoropyridinyl C-5), $51.3\left(\mathrm{CO}_{2} \mathrm{Me}\right), 48.4(\mathrm{C}-4), 42.2(\mathrm{C}-1), 36.6(\mathrm{~d}, J 2.5 \mathrm{~Hz}, \mathrm{C}-2)$, 31.7 (C-3), 28.2 (C-5), $28.0(\mathrm{C}-6) ; \delta_{\mathrm{F}}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ): 72.5 (pyridinyl CF) HRMS found $\mathrm{MH}^{+}$358.1573. $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{FN}_{3} \mathrm{O}_{3}$ requires $M H$, 358.1561. The relative configuration was determined through NOESY ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ). nOe observed between $\mathrm{CO}_{2} \mathrm{Me}$ and fluoropyridinyl $4-\mathrm{H}$ and nOe observed between $2-\mathrm{H}$ and $4-\mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

## $N$-(cyclopropylmethyl)pyridine-2-carboxamide (S10)



A mixture of picolinic acid ( $2.08 \mathrm{~g}, 16.9 \mathrm{mmol}$ ), cyclopropanemethylamine ( $1.00 \mathrm{~g}, 14.1$ $\mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}$ ( $3.92 \mathrm{ml}, 28.2 \mathrm{mmol}$ ) were dissolved in $\mathrm{DCM}(20 \mathrm{ml}) . \mathrm{POCl}_{3}(2.63 \mathrm{ml}, 28.2$ mmol ) was added dropwise at $0^{\circ} \mathrm{C}$ then the reaction mixture was stirred at rt for 2 h . DCM (20 $\mathrm{ml})$ and $1 \mathrm{M} \mathrm{NaOH}(30 \mathrm{ml})$ were added at $0^{\circ} \mathrm{C}$, then the phases were separated and the aqueous phase extracted with DCM ( $3 \times 30 \mathrm{ml}$ ). The organic phases were combined, washed with water ( 20 ml ), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a crude material. This was then purified via column chromatography, eluting EtOAc-hexane 20:80 to give the picolinamide derivative $\mathbf{S 1 0}^{5}(1.75 \mathrm{~g}, 71 \%)$ as a white solid. $R_{\mathrm{f}} 0.30$ (EtOAc-hexane $30: 70) . \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.57(1 \mathrm{H}, \mathrm{dd}, J 4.7$ and 0.7 Hz , pyridinyl $6-\mathrm{H}), 8.21(1 \mathrm{H}, \mathrm{d}, J$ 7.8 Hz , pyridinyl $3-\mathrm{H}), 8.13(1 \mathrm{H}$, br. s, NH), $7.85(1 \mathrm{H}, \mathrm{td}, J 7.8$ and 1.7 Hz , pyridinyl 4-H), $7.42(1 \mathrm{H}$, ddd, $J 7.2,4.7$ and 0.7 Hz , pyridinyl $5-\mathrm{H}), 3.35(2 \mathrm{H}$, app. $\mathrm{t}, J 6.8 \mathrm{~Hz}$, cyclopropylmethyl 1- $\mathrm{H}_{2}$ ), 1.13-1.04 ( $1 \mathrm{H}, \mathrm{m}$, cyclopropylmethyl $2-\mathrm{H}$ ), 0.59-0.54 ( $2 \mathrm{H}, \mathrm{m}$, cyclopropylmethyl 3- $\mathrm{H}_{\mathrm{A}}$ and cyclopropylmethyl 4- $\mathrm{H}_{\mathrm{A}}$ ), 0.34-0.26 ( $2 \mathrm{H}, \mathrm{m}$, cyclopropylmethyl 3- $\mathrm{H}_{\mathrm{B}}$ and cyclopropylmethyl $4-\mathrm{H}_{\mathrm{B}}$ ); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ): $164.3(\mathrm{C}=\mathrm{O}), 150.3$ (pyridinyl C2), 148.2 (pyridinyl C-6), 137.5 (pyridinyl C-4), 126.2 (pyridinyl C-5), 122.4 (pyridinyl C-3), 44.4 (cyclopropylmethyl C-1), 10.9 (cyclopropylmethyl C-2), 3.7 (cyclopropylmethyl C-3 and cyclopropylmethyl C-4). All data is consistent with known literature values. ${ }^{5}$
$N-\left\{\left[\left(1 R^{*}, 2 S^{*}\right)\right.\right.$-2-(3-methoxyphenyl)cyclopropyl]methyl\}pyridine-2-carboxamide (26)


Prepared according to General procedure F, picolinamide derivative $\mathbf{S 1 0}$ ( $200 \mathrm{mg}, 1.14 \mathrm{mmol}$ ) and 3-iodoanisole ( $0.15 \mathrm{ml}, 1.25 \mathrm{mmol}$ ) gave a crude material. This was purified via column chromatography, eluting EtOAc-hexane 20:80 to give the arylated derivative 26 ( 220 mg , $68 \%, d r>95:<5$ by ${ }^{1} \mathrm{H} N M R$ ) as a white solid. $R_{\mathrm{f}} 0.27$ (EtOAc-hexane 30:70). $v_{\text {max }} / \mathrm{cm}^{-1}: 3354$, 3008, 2936, 1659, 1519, 1431, 1238, 1160, 1044; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.53$ ( 1 H , ddd, J 4.8, 1.7 and 0.9 Hz , pyridinyl 6-H), $8.15(1 \mathrm{H}$, dt, $J 7.8$ and 1.2 Hz , pyridinyl $3-\mathrm{H}), 7.96(1 \mathrm{H}$, br. s, NH), $7.82(1 \mathrm{H}$, td, $J 7.8$ and 1.7 Hz , pyridinyl $4-\mathrm{H}), 7.40(1 \mathrm{H}, \mathrm{ddd}, J 7.8,4.8$ and 1.2 Hz , pyridinyl $5-\mathrm{H}), 7.22(1 \mathrm{H}, \mathrm{t}, J 7.9 \mathrm{~Hz}$, methoxyphenyl $5-\mathrm{H}), 6.89-6.84(2 \mathrm{H}$, m, methoxyphenyl 6-H and methoxyphenyl 2-H), $6.76(1 \mathrm{H}, \mathrm{dd}, J 7.9$ and 2.5 Hz , methoxyphenyl 4-H), 3.81 ( 3 H , s, OMe), 3.44-3.37 ( $1 \mathrm{H}, \mathrm{m}$, cyclopropylmethyl 1- $\mathrm{H}_{\mathrm{A}}$ ), 3.05-2.98 $(1 \mathrm{H}, \mathrm{m}$, cyclopropylmethyl 1$\left.\mathrm{H}_{\mathrm{B}}\right), 2.29(1 \mathrm{H}, \mathrm{td}, J 8.3$ and $6.3 \mathrm{~Hz}, 2-\mathrm{H}), 1.55-1.47(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 1.07(1 \mathrm{H}, \mathrm{td}, J 8.3$ and 5.4 $\left.\mathrm{Hz}, 3-\mathrm{H}_{\mathrm{A}}\right), 0.94\left(1 \mathrm{H}, \mathrm{dd}, J 11.4\right.$ and $\left.5.4 \mathrm{~Hz}, 3-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 164.2(\mathrm{C}=\mathrm{O}), 159.8$ (methoxyphenyl C-3), 150.2 (pyridinyl C-2), 148.1 (pyridinyl C-6), 139.9 (methoxyphenyl C1), 137.4 (pyridinyl C-4), 129.4 (methoxyphenyl C-5), 126.1 (pyridinyl C-5), 122.3 (pyridinyl C-3), 121.5 (methoxyphenyl C-6), 114.8 (methoxyphenyl C-2), 112.2 (methoxyphenyl C-4), 55.3 (OMe), 39.6 (cyclopropylmethyl C-1), 21.0 (C-2), 18.4 (C-1), 8.6 (C-3); HRMS found $\mathrm{MNa}^{+}$305.1269. $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $M N a, 305.1260$. The relative configuration was determined through NOESY ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ). nOe observed between $1-\mathrm{H}$ and $2-\mathrm{H}$ and nOe observed between cyclopropylmethyl $1-\mathrm{H}_{2}$ and methoxyphenyl $2-\mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

## $N-\left\{\left[\left(1 R^{*}, 2 S^{*}\right)\right.\right.$-2-(3-methoxyphenyl)cyclopropyl]methyl\}acetamide (S11)



Water ( 7.8 ml ) and $\mathrm{HCl}(1.79 \mathrm{ml}, 37 \%)$ were added to a solution of arylated derivative 26 (200 $\mathrm{mg}, 0.71 \mathrm{mmol}$ ) in THF ( 10 ml ). The solution was stirred for 5 mins at rt then zinc ( 689 mg , 10.6 mmol ) was added portionwise and the resulting suspension left to stir at rt for 3 h . The mixture was filtered through celite (eluting with DCM ) and saturated aqueous $\mathrm{NaHCO}_{3}(40 \mathrm{ml})$ was added to the filtrate. The phases were separated and the aqueous phase extracted with DCM ( $3 \times 30 \mathrm{ml}$ ). The organic layers were combined, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give the crude amine intermediate. This intermediate was dissolved in THF
$(10 \mathrm{ml})$, basified with 2 M NaOH , then $\mathrm{Ac}_{2} \mathrm{O}(0.20 \mathrm{ml}, 2.13 \mathrm{mmol})$ was added and the resulting solution stirred at rt for 18 h . Water ( 20 ml ) was added and the mixture was extracted with DCM ( $3 \times 30 \mathrm{ml}$ ). The organic layers were combined, dried ( $\mathrm{MgSO}_{4}$ ), filtered and concentrated under reduced pressure to give a crude material. This was then purified via column chromatography, eluting EtOAc-hexane 90:10 to give acetamide derivative S11 (94.0 mg, $60 \%$ ) as a colourless oil. $R_{\mathrm{f}} 0.26$ (EtOAc-hexane 90:10). $v_{\text {max }} / \mathrm{cm}^{-1}: 3282,3070,2932,1648$, $1580,1545,1434,1370,1271,1253,1150,1042 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.20(1 \mathrm{H}, \mathrm{t}, J 7.7 \mathrm{~Hz}$, phenyl 5-H), 6.83-6.79 $(1 \mathrm{H}, \mathrm{m}$, phenyl 6-H), 6.77-6.72 $(2 \mathrm{H}, \mathrm{m}$, phenyl 2-H and phenyl 4-H), $5.27(1 \mathrm{H}$, br. s, NH), $3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.22(1 \mathrm{H}, \mathrm{dt}, J 13.7$ and 6.7 Hz , cyclopropylmethyl 1$\left.\mathrm{H}_{\mathrm{A}}\right), 2.84-2.78\left(1 \mathrm{H}, \mathrm{m}\right.$, cyclopropylmethyl $\left.1-\mathrm{H}_{\mathrm{B}}\right), 2.22(1 \mathrm{H}, \mathrm{td}, J 8.6$ and $6.3 \mathrm{~Hz}, 2-\mathrm{H}), 1.87$ $(3 \mathrm{H}, \mathrm{s}$, acetyl $), 1.43-1.35(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 1.02\left(1 \mathrm{H}, \mathrm{td}, J 8.6\right.$ and $\left.5.4 \mathrm{~Hz}, 3-\mathrm{H}_{\mathrm{A}}\right), 0.84(1 \mathrm{H}, \mathrm{dd}, J$ 11.4 and $5.4 \mathrm{~Hz}, 3-\mathrm{H}_{\mathrm{B}}$ ); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ): $169.9(\mathrm{C}=\mathrm{O}$ ), 159.8 (phenyl C-3), 140.0 (phenyl C-1), 129.5 (phenyl C-5), 121.3 (phenyl C-6), 114.9 (phenyl C-2), 111.6 (phenyl C-4), 55.3 (OMe), 39.7 (cyclopropylmethyl C-1), 23.4 (acetyl), 20.8 (C-2), 18.5 (C-1), 8.6 (C-3); HRMS found $\mathrm{MNa}^{+}$242.1146. $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2}$ requires $M N a, 242.1151$.

## 1-[(1aR*,7bS*)-6-methoxy-1,1a,2,7b-tetrahydro-3H-cyclopropa[c]quinolin-3yl]ethanone (27)



Acetamide derivative $\mathbf{S 1 1}$ ( $95.0 \mathrm{mg}, 0.43 \mathrm{mmol}$ ) was dissolved in MeCN ( 5 ml ) then NBS $(85.0 \mathrm{mg}, 0.47 \mathrm{mmol}$ ) was added and the resulting solution stirred at rt for 4 h . The volatiles were removed under reduced pressure to give the crude brominated intermediate. This was then dissolved in toluene ( 2 ml ) then added to a pressure vial. Then $\mathrm{Pd}(\mathrm{OAc})_{2}(5.00 \mathrm{mg}, 5 \mathrm{~mol} \%)$, rac-BINAP ( $20.0 \mathrm{mg}, 7.5 \mathrm{~mol} \%$ ) and $\mathrm{NaO}^{t} \mathrm{Bu}(83.0 \mathrm{mg}, 0.86 \mathrm{mmol})$ were added sequentially, the pressure vial sealed then stirred at $100{ }^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was cooled to rt then filtered through celite (eluting with DCM). The filtrate was concentrated under reduced pressure to give a crude material. This was then purified via column chromatography, eluting EtOAc-hexane 25:75 to give the cyclised acetamide derivative 27 ( $38.0 \mathrm{mg}, 41 \%$ ) as a colourless oil. $R_{\mathrm{f}} 0.31$ (EtOAc-hexane 50:50). $v_{\mathrm{max}} / \mathrm{cm}^{-1}: 3004,2920,2836,1651,1502,1385$,
$1265,1215,1139 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 6.93(1 \mathrm{H}, \mathrm{d}, J 8.7 \mathrm{~Hz}, 4-\mathrm{H}), 6.87(1 \mathrm{H}, \mathrm{d}, J 2.7 \mathrm{~Hz}, 7-$ H), $6.68(1 \mathrm{H}, \mathrm{dd}, J 8.7$ and $2.7 \mathrm{~Hz}, 5-\mathrm{H}), 5.04\left(1 \mathrm{H}, \mathrm{d}, J 12.5 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{A}}\right), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $2.68\left(1 \mathrm{H}, \mathrm{d}, J 12.5 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{B}}\right), 2.12(3 \mathrm{H}, \mathrm{s}$, acetyl), $1.93(1 \mathrm{H}, \mathrm{td}, J 8.4$ and $4.5 \mathrm{~Hz}, 7 \mathrm{~b}-\mathrm{H}), 1.84-$ $1.78(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{a}-\mathrm{H}), 1.01\left(1 \mathrm{H}, \mathrm{td}, J 8.4\right.$ and $\left.5.6 \mathrm{~Hz}, 1-\mathrm{H}_{\mathrm{A}}\right), 0.61(1 \mathrm{H}, \mathrm{dd}, J 10.0$ and $5.0 \mathrm{~Hz}, 1-$ $\mathrm{H}_{\mathrm{B}}$ ); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 170.5(\mathrm{C}=\mathrm{O}), 157.6(\mathrm{C}-6), 135.3(\mathrm{C}-3 \mathrm{a}), 129.4(\mathrm{C}-7 \mathrm{a}), 126.1(\mathrm{C}-$ 4), 113.8 (C-7), 110.8 (C-5), 55.6 (OMe), 38.4 (C-2), 22.5 (acetyl CH3), 18.4 (C-1a), 15.2 (C7b), $9.0(\mathrm{C}-1)$; HRMS found $\mathrm{MH}^{+}$218.1172. $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires $M H$, 218.1176.

## ethyl 2-[(1R*,2S*)-2-\{[(pyridine-2-carbonyl)amino]methyl\}cyclopropyl]benzoate (28)



Prepared according to General procedure F, picolinamide derivative $\mathbf{S 1 0}$ ( $200 \mathrm{mg}, 1.14 \mathrm{mmol}$ ) and ethyl-2-iodobenzoate ( $345 \mathrm{mg}, 1.25 \mathrm{mmol}$ ) gave a crude material. This was purified via column chromatography, eluting EtOAc-hexane 30:70 to give arylated ester derivative 28 ( $146 \mathrm{mg}, 40 \%, d r>95:<5$ by ${ }^{1} \mathrm{H}$ NMR) as a colourless oil. $R_{\mathrm{f}} 0.23$ (EtOAc-hexane 40:60). $v_{\text {max }} / \mathrm{cm}^{-1}: 3382,2981,1712,1669,1519,1488,1449,1291,1253,1132,1076 ; \delta_{\mathrm{H}}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 8.51(1 \mathrm{H}$, ddd, $J 4.8,1.7$ and 0.9 Hz , pyridinyl $6-\mathrm{H}), 8.10(1 \mathrm{H}, \mathrm{dt}, J 7.8$ and 1.0 Hz , pyridinyl 3-H), $8.07(1 \mathrm{H}$, br. s, NH), $7.92(1 \mathrm{H}, \mathrm{dd}, J 7.7$ and 1.4 Hz , phenyl $6-\mathrm{H}), 7.79(1 \mathrm{H}$, td, $J 7.8$ and 1.7 Hz , pyridinyl 4-H), $7.44(1 \mathrm{H}, \mathrm{td}, J 7.6$ and 1.4 Hz , phenyl 4-H), $7.38(1 \mathrm{H}$, ddd, $J$ $7.8,4.8$ and 1.0 Hz , pyridinyl $5-\mathrm{H}), 7.31-7.26(2 \mathrm{H}, \mathrm{m}$, phenyl 3-H and phenyl $5-\mathrm{H}), 4.39(2 \mathrm{H}$, qd, $J 7.1$ and 1.4 Hz , ethyl $\left.1-\mathrm{H}_{2}\right), 3.34\left(1 \mathrm{H}, \mathrm{dt}, J 14.0\right.$ and 6.5 Hz , cyclopropylmethyl $\left.1-\mathrm{H}_{\mathrm{A}}\right)$, $2.85\left(1 \mathrm{H}\right.$, ddd, $J 14.0,8.3$ and 4.4 Hz , cyclopropylmethyl $\left.1-\mathrm{H}_{\mathrm{B}}\right), 2.69(1 \mathrm{H}, \mathrm{dd}, J 15.4$ and 8.3 Hz, cyclopropyl 1-H), 1.67-1.59 (1H, m, cyclopropyl 2-H), 1.38 (3H, t, J 7.1 Hz , ethyl 2-H3), $1.17\left(1 \mathrm{H}, \mathrm{td}, J 8.3\right.$ and 5.5 Hz , cyclopropyl $\left.3-\mathrm{H}_{\mathrm{A}}\right), 1.04(1 \mathrm{H}, \mathrm{dd}, J 11.9$ and 5.5 Hz , cyclopropyl $3-\mathrm{H}_{\mathrm{B}}$ ); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 167.9$ ( $\mathrm{C}=\mathrm{O}$ ester), 164.3 ( $\mathrm{C}=\mathrm{O}$ amide), 150.3 (pyridinyl $\mathrm{C}-2$ ), 148.1 (pyridinyl C-6), 139.4 (phenyl C-2), 137.3 (pyridinyl C-4), 132.0 (phenyl C-4), 131.9
(phenyl C-1), 131.0 (phenyl C-6), 129.9 (phenyl C-5), 126.6 (phenyl C-3), 126.0 (pyridinyl C5), 122.3 (pyridinyl C-3), 61.1 (ethyl C-1), 40.1 (cyclopropylmethyl C-1), 21.5 (cyclopropyl C-1), 18.9 (cyclopropyl C-2), 14.4 (ethyl C-2), 9.2 (cyclopropyl C-3); HRMS found $\mathrm{MH}^{+}$ 325.1542. $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\mathrm{MH}, 325.1547$. The relative configuration was determined through NOESY $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$. nOe observed between cyclopropyl 1-H and cyclopropyl $2-\mathrm{H}$ and nOe observed between cyclopropylmethyl $1-\mathrm{H}_{2}$ and phenyl $3-\mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.
$\left(1 \mathrm{a} R^{*}, 8 \mathrm{~b} S^{*}\right)-1 \mathrm{a}, 2,3,8 \mathrm{~b}-$ tetrahydrocyclopropa[d][2]benzazepin-4(1H)-one (3)


Water ( 4.73 ml ) and $\mathrm{HCl}(1.08 \mathrm{ml}, 37 \%)$ were added to a solution of arylated ester derivative $28(140 \mathrm{mg}, 0.43 \mathrm{mmol})$ in THF ( 15 ml ). The reaction mixture was stirred at rt for 5 mins then zinc powder ( $419 \mathrm{mg}, 6.45 \mathrm{mmol}$ ) was added portionwise over 30 mins . The resulting suspension was stirred at rt for 2 h . The reaction mixture was filtered through celite (eluting with THF) then the filtrate was basified with 5 M NaOH solution and the resulting solution allowed to stir at rt for a further 18 h . This was then extracted with DCM ( $3 \times 30 \mathrm{ml}$ ), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a crude material. This was then purified via column chromatography, eluting EtOAc-hexane 90:10 to give lactam derivative 3 ( $42.0 \mathrm{mg}, 57 \%$ ) as a white solid. $R_{\mathrm{f}} 0.36$ ( EtOAc ). $v_{\text {max }} / \mathrm{cm}^{-1}: 3272$, 2995, 2850, $1643,1598,1455,1359,1153,1023 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.75(1 \mathrm{H}, \mathrm{dd}, J 7.8$ and $1.1 \mathrm{~Hz}, 5-$ H), 7.45-7.38 ( $2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}$ and $8-\mathrm{H}$ ), $7.30(1 \mathrm{H}, \mathrm{td}, J 7.8$ and $1.5 \mathrm{~Hz}, 6-\mathrm{H}), 6.39(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{NH})$, $3.58\left(1 \mathrm{H}, \mathrm{ddd}, J 14.9,6.3\right.$ and $\left.4.5 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{A}}\right), 2.92-2.81\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}\right), 2.13(1 \mathrm{H}, \mathrm{td}, J 8.7$ and $5.3 \mathrm{~Hz}, 8 \mathrm{~b}-\mathrm{H}), 1.79-1.70(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{a}-\mathrm{H}), 1.11\left(1 \mathrm{H}\right.$, ddd, $J 8.7,7.9$ and $\left.5.3 \mathrm{~Hz}, 1-\mathrm{H}_{\mathrm{A}}\right), 0.78-0.70$ $\left(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 172.4(\mathrm{C}=\mathrm{O}), 138.5(\mathrm{C}-8 \mathrm{a}), 133.2(\mathrm{C}-4 \mathrm{a}), 132.0(\mathrm{C}-7)$, 131.1 (C-8), 130.6 (C-5), 126.8 (C-6), 43.5 (C-2), 21.3 (C-1a), 18.3 (C-8b), 11.1 (C-1); HRMS found $\mathrm{MH}^{+}$174.0907. $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}$ requires $M H, 174.0913$.

## $N-\left[\left(1 R^{*}, 3 R^{*}, 4 R^{*}\right)\right.$-1-azabicyclo[2.2.2]octan-3-yl]pyridine-2-carboxamide (S12)



Prepared according to General procedure C, 3-aminoquinuclidine dihydrochloride ( $5.00 \mathrm{~g}, 25.1$ mmol ) gave a crude material. This was further purified by stirring in MTBE ( 60 ml ) for 2 h and any solids were subsequently filtered off. The filtrate was concentrated under reduced pressure to give picolinamide derivative $\mathbf{S 1 2}^{6}(3.67 \mathrm{~g}, 63 \%)$ as a colourless oil. $R_{\mathrm{f}} 0.45(\mathrm{DCM}-$ MeOH 90:10). $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.56(1 \mathrm{H}, \mathrm{d}, J 4.7 \mathrm{~Hz}$, pyridinyl 6-H), $8.26(1 \mathrm{H}$, br. d, $J$ $5.7 \mathrm{~Hz}, \mathrm{NH}), 8.19(1 \mathrm{H}, \mathrm{d}, J 7.8 \mathrm{~Hz}$, pyridinyl $3-\mathrm{H}), 7.85(1 \mathrm{H}, \mathrm{td}, J 7.8$ and 1.7 Hz , pyridinyl 4H), $7.43(1 \mathrm{H}$, ddd, $J 7.8,4.7$ and 1.2 Hz , pyridinyl $5-\mathrm{H}), 4.20-4.14(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.44(1 \mathrm{H}$, ddd, $J 14.2,9.5$ and $\left.2.3 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{A}}\right), 3.02-2.95\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{A}}\right), 2.95-2.80\left(3 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{B}}\right.$ and $7-$ $\mathrm{H}_{2}$ ), $2.68\left(1 \mathrm{H}\right.$, ddd, $J$ 14.2, 4.9 and $\left.2.1 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{B}}\right), 2.07-2.03(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 1.86-1.80(1 \mathrm{H}, \mathrm{m}$, $\left.5-\mathrm{H}_{\mathrm{A}}\right), 1.76-1.69\left(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{2}\right), 1.57-1.48\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 164.3(\mathrm{C}=\mathrm{O})$, 150.0 (pyridinyl C-2), 148.2 (pyridinyl C-6), 137.6 (pyridinyl C-4), 126.3 (pyridinyl C-5), 122.3 (pyridinyl C-3), 56.2 (C-2), 47.7 (C-6), 46.9 (C-7) 46.6 (C-3), 26.0 (C-8), 25.9 (C-4), 20.4 (C-5). All data is consistent with known literature values. ${ }^{6}$
$N-\left[\left(1 R^{*}, 3 R^{*}, 4 S^{*}, 5 S^{*}\right)-5-(3-m e t h o x y p h e n y l)-1-a z a b i c y c l o[2.2 .2]\right.$ octan-3-yl]pyridine-2carboxamide (S13)


To a solution of picolinamide derivative $\mathbf{S 1 2}(0.50 \mathrm{~g}, 2.16 \mathrm{mmol})$ and 3-iodoanisole ( 0.77 ml , 6.49 mmol ) in DMF ( 10 ml ) were added pivalic acid ( $242 \mathrm{mg}, 2.38 \mathrm{mmol}$ ), $\mathrm{Pd}(\mathrm{OAc})_{2}(73.0$
$\mathrm{mg}, 15 \mathrm{~mol} \%$ ) and $\mathrm{Ag}_{2} \mathrm{CO}_{3}(657 \mathrm{mg}, 2.38 \mathrm{mmol})$. The resulting mixture was stirred and heated at $100^{\circ} \mathrm{C}$ for 24 h . Then $5 \mathrm{M} \mathrm{NaOH}(20 \mathrm{ml})$ was added and the resulting solution extracted with DCM ( $3 \times 30 \mathrm{ml}$ ). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a crude material. This was then purified via column chromatography, eluting DCM-sat. $\mathrm{NH}_{3} / \mathrm{MeOH} 95: 5$ to give arylated derivative $\boldsymbol{S 1 3}(0.52 \mathrm{~g}$, $71 \%, d r>95:<5$ by ${ }^{1} \mathrm{H}$ NMR) as a dark yellow oil. $R_{\mathrm{f}} 0.29$ (DCM-sat. $\mathrm{NH}_{3} / \mathrm{MeOH} 95: 5$ ). $v_{\max } / \mathrm{cm}^{-1}: 3343,2938,2872,1658,1590,1515,1461,1434,1319,1252,1157,1040 ; \delta_{\mathrm{H}}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.19(1 \mathrm{H}$, ddd, $J 4.7,1.7$ and 0.9 Hz , pyridinyl 6-H), $7.96(1 \mathrm{H}, \mathrm{dt}, J 7.8$ and 1.2 Hz, pyridinyl 3-H), $7.81(1 \mathrm{H}$, br. d, $J 7.9 \mathrm{~Hz}, \mathrm{NH}), 7.70(1 \mathrm{H}, \mathrm{td}, J 7.8$ and 1.7 Hz , pyridinyl 4H), $7.27(1 \mathrm{H}$, ddd, $J 7.8,4.7$ and 1.2 Hz , pyridinyl $5-\mathrm{H}), 7.18(1 \mathrm{H}, \mathrm{t}, J 7.7 \mathrm{~Hz}$, phenyl $5-\mathrm{H})$, $6.94(1 \mathrm{H}$, dd, $J 7.7$ and 0.7 Hz , phenyl 6-H), $6.90(1 \mathrm{H}$, app. s, phenyl $2-\mathrm{H}), 6.65(1 \mathrm{H}, \mathrm{dd}, J 7.7$ and 2.5 Hz , phenyl $4-\mathrm{H}), 4.20-4.14(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.72(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.52-3.36\left(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.6-\mathrm{H}_{2}\right), 3.10(1 \mathrm{H}, \mathrm{t}, J 8.7 \mathrm{~Hz}, 5-\mathrm{H}), 2.94-2.86\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right), 2.78(1 \mathrm{H}, \mathrm{dd}, J 14.1$ and 4.6 $\left.\mathrm{Hz}, 2-\mathrm{H}_{\mathrm{B}}\right), 2.56(1 \mathrm{H}, \mathrm{dt}, J 5.7$ and $3.0 \mathrm{~Hz}, 4-\mathrm{H}), 1.93-1.77\left(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{2}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : 163.7 (C=O), 160.2 (phenyl C-3), 149.6 (pyridinyl C-2), 147.5 (pyridinyl C-6), 144.9 (phenyl C-1), 137.0 (pyridinyl C-4), 130.0 (phenyl C-5), 125.8 (pyridinyl C-5), 121.7 (pyridinyl C-3), 119.6 (phenyl C-6), 112.7 (phenyl C-2), 111.4 (phenyl C-4), 57.0 (C-2), 55.2 (OMe), 52.0 (C6), 46.7 (C-3), 46.2 (C-7), 38.3 (C-5), 32.7 (C-4), 28.8 (C-8); HRMS found $\mathrm{MH}^{+} 338.1879$. $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $M H, 338.1863$.

## $N-\left[\left(1 R^{*}, 3 R^{*}, 4 S^{*}, 5 S^{*}\right)-5-(3-m e t h o x y p h e n y l)-1\right.$-azabicyclo[2.2.2]octan-3-yl]acetamide (29)



Arylated derivative $\mathbf{S 1 3}$ ( $0.52 \mathrm{~g}, 1.54 \mathrm{mmol}$ ) was suspended in water ( 40 ml ) to which HCl ( 5 $\mathrm{ml}, 37 \%$ ) was added slowly with stirring. The reaction mixture was stirred for 5 mins at rt then zinc powder ( $1.50 \mathrm{~g}, 23.1 \mathrm{mmol}$ ) was added slowly. The reaction mixture was left to stir at rt for 16 h . Then $\mathrm{DCM}(70 \mathrm{ml})$ and $5 \mathrm{M} \mathrm{NaOH}(100 \mathrm{ml})$ were added slowly at $0^{\circ} \mathrm{C}$. The mixture
was filtered through celite, with the celite pad being subsequently washed with water ( 30 ml ) and DCM ( 30 ml ). The combined filtrate was extracted with DCM ( $3 \times 50 \mathrm{ml}$ ), organic layers combined, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give the crude amine intermediate. This amine intermediate ( $0.35 \mathrm{~g}, 1.51 \mathrm{mmol}$ ) was dissolved in THF ( 20 $\mathrm{ml})$ then $\mathrm{NaOH}(60.0 \mathrm{mg}, 1.51 \mathrm{mmol})$ in water ( 5 ml ) was added at rt . $\mathrm{Ac}_{2} \mathrm{O}(0.18 \mathrm{ml}, 1.89$ mmol) was added and the reaction mixture stirred at rt for a further 1 h .5 M NaOH was added to basify the solution to pH 13 . This solution was then extracted with DCM ( $3 \times 40 \mathrm{ml}$ ), organic layers combined, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a crude material. This was then purified via column chromatography, eluting DCM-sat. $\mathrm{NH}_{3} / \mathrm{MeOH} 95: 5$ to give acetamide derivative $29(306 \mathrm{mg}, 74 \%)$ as a colourless oil. $R_{\mathrm{f}} 0.52$ (DCM-sat. $\mathrm{NH}_{3} / \mathrm{MeOH} 90: 10$ ). $v_{\max } / \mathrm{cm}^{-1}: 3291,3068,2937,2870,2835,1644,1546,1433$, 1257,$1043 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.30(1 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}$, phenyl $5-\mathrm{H}), 6.96(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and 0.7 Hz , phenyl 6-H), $6.88(1 \mathrm{H}, \mathrm{s}$, phenyl $2-\mathrm{H}), 6.78(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and 2.5 Hz , phenyl 4-H), 5.06 ( 1 H , br. d, J $7.2 \mathrm{~Hz}, \mathrm{NH}$ ), 3.98-3.91 ( $1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ ), 3.81 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$ ), $3.44-3.25$ ( $3 \mathrm{H}, \mathrm{m}$, $2-\mathrm{H}_{\mathrm{A}}$ and $\left.6-\mathrm{H}_{2}\right), 3.05(1 \mathrm{H}, \mathrm{t}, J 8.6 \mathrm{~Hz}, 5-\mathrm{H}), 2.91-2.77\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right), 2.57(1 \mathrm{H}, \mathrm{ddd}, J 14.2$, 4.9 and $\left.2.1 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{B}}\right), 2.44-2.41(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 1.87-1.78\left(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{\mathrm{A}}\right), 1.77-1.69(1 \mathrm{H}, \mathrm{m}, 8-$ $\mathrm{H}_{\mathrm{B}}$ ), $1.42\left(3 \mathrm{H}, \mathrm{s}\right.$, acetyl); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 169.4$ (acetyl C=O), 160.3 (phenyl C-3), 145.7 (phenyl C-1), 130.0 (phenyl C-5), 119.0 (phenyl C-6), 113.5 (phenyl C-2), 111.5 (phenyl C-4), 56.7 (C-2), 55.4 (OMe), 51.8 (C-6), 46.9 (C-3), 46.2 (C-7), 38.2 (C-5), 32.7 (C-4), 28.6 (C-8), 23.0 (acetyl $\mathrm{CH}_{3}$ ); HRMS found $\mathrm{MH}^{+}$275.1762. $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $M H$, 275.1754.
$\left(2 R^{*}, 4 \mathrm{a} S^{*}, 5 S^{*}, 10 R^{*}, 11 \mathrm{a} S^{*}\right)$-7-methoxy-10-methyl-1,3,4,4a,5,10,11,11a-octahydro-2,5methanobenzo $[e]$ pyrido $[3,4-b]$ azepine (30)


Acetamide derivative 29 ( $221 \mathrm{mg}, 0.81 \mathrm{mmol}$ ) was dissolved in $\mathrm{MeCN}(10 \mathrm{ml})$ and $\mathrm{POCl}_{3}$ $(0.76 \mathrm{ml}, 8.10 \mathrm{mmol})$ was added dropwise at rt . The reaction mixture was stirred and heated to
$100^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was cooled to rt and all volatiles removed under reduced pressure. This residue was dissolved in DCM ( 10 ml ), then water ( 5 ml ) and 5 M NaOH were added to basify the reaction mixture. This was then extracted with DCM ( $3 \times 50 \mathrm{ml}$ ), organic layers combined, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give the crude imine intermediate. This crude intermediate ( $140 \mathrm{mg}, 0.55 \mathrm{mmol}$ ) was dissolved in $\mathrm{MeOH}(5 \mathrm{ml})$ and $\mathrm{NaBH}_{4}(42.0 \mathrm{mg}, 1.10 \mathrm{mmol})$ was added at rt . The resulting solution was allowed to stir at rt for 1 h . Then $1 \mathrm{M} \mathrm{HCl}(15 \mathrm{ml})$ was added to quench the reaction, followed by 2 M NaOH to basify the solution to pH 12 . Then this mixture was extracted with DCM ( 3 x 30 ml ), organic layers combined, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a crude material ( $d r$ 68:32 by ${ }^{1} \mathrm{H}$ NMR). This was then purified via column chromatography, eluting DCM-sat. $\mathrm{NH}_{3} / \mathrm{MeOH} 95: 5 \rightarrow 90: 10$ to give the cyclised amine derivative 30 ( $112 \mathrm{mg}, 54 \%$, $d r$ 84:16 by ${ }^{1} \mathrm{H}$ NMR) as a colourless oil. $R_{\mathrm{f}} 0.25$ (DCM-sat. $\left.\mathrm{NH}_{3} / \mathrm{MeOH} 95: 5\right) . v_{\text {max }} / \mathrm{cm}^{-1}: 3251,2947,2909,2783,1602,1502,1238,1038 ; \delta_{\mathrm{H}}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 7.13(1 \mathrm{H}, \mathrm{d}, J 8.6 \mathrm{~Hz}, 9-\mathrm{H}), 6.69-6.62(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$ and $8-\mathrm{H}), 4.19(1 \mathrm{H}, \mathrm{q}, J 6.7 \mathrm{~Hz}$, $10-\mathrm{H})$, $3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.39-3.25\left(2 \mathrm{H}, \mathrm{m}, 11 \mathrm{a}-\mathrm{H}\right.$ and $\left.12-\mathrm{H}_{\mathrm{A}}\right), 3.06-2.80\left(5 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}_{\mathrm{B}}, 5-\right.$ $\mathrm{H}, 1-\mathrm{H}_{\mathrm{A}}$ and $\left.3-\mathrm{H}_{2}\right), 2.63\left(1 \mathrm{H}, \mathrm{d}, J 13.8 \mathrm{~Hz}, 1-\mathrm{H}_{\mathrm{B}}\right), 2.55(1 \mathrm{H}, \mathrm{t}, J 4.5 \mathrm{~Hz}, 4 \mathrm{a}-\mathrm{H}), 1.76-1.56(3 \mathrm{H}$, $\mathrm{m}, 4-\mathrm{H}_{2}$ and NH ), $1.50\left(3 \mathrm{H}, \mathrm{d}, J 6.7 \mathrm{~Hz}\right.$, methyl); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 157.8(\mathrm{C}-7), 144.5$ (C-5a), 138.3 (C-9a), 126.8 (C-9), 116.4 (C-6), 110.3 (C-8), 57.3 (C-1), 55.9 (C-12), 55.4 (OMe), 52.0 (C-11a), 49.9 (C-10), 46.6 (C-3), 42.7 (C-5), 29.2 (C-4a), 24.4 (C-4), 22.4 (methyl $\mathrm{CH}_{3}$ ); HRMS found $\mathrm{MH}^{+}$259.1808. $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$ requires MH , 259.1805. The relative configuration was determined through NOESY ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ). nOe observed between 10H and $4 \mathrm{a}-\mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

## 1-[(2R*,4aS*,5S*,10aR*)-7-methoxy-1,3,4,4a,5,10a-hexahydro-10H-2,5methanobenzo $[b][1,7]$ naphthridin-10-yl]ethanone (S14)



Acetamide derivative 29 ( $100 \mathrm{mg}, 0.36 \mathrm{mmol}$ ) was dissolved in MeCN ( 5 ml ) and NBS ( 65.0 $\mathrm{mg}, 0.36 \mathrm{mmol}$ ) was added. The reaction mixture was left to stir at rt for 18 h . The solvent was removed under reduced pressure to give the crude $p$-bromo intermediate. This crude intermediate ( $82.0 \mathrm{mg}, 0.23 \mathrm{mmol}$ ) was dissolved in toluene ( 5 ml ) and $\mathrm{Pd}(\mathrm{OAc})_{2}(3.00 \mathrm{mg}, 5$ $\mathrm{mol} \%$ ), rac-BINAP ( $11.0 \mathrm{mg}, 7.5 \mathrm{~mol} \%$ ) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(152 \mathrm{mg}, 0.47 \mathrm{mmol})$ were added sequentially. The reaction mixture was heated at $100^{\circ} \mathrm{C}$ for 24 h then allowed to cool to rt . The resulting mixture was filtered through celite and concentrated under reduced pressure to give a crude material. This was then purified via column chromatography, eluting DCM-sat. $\mathrm{NH}_{3} / \mathrm{MeOH} 95: 5$ to give the cyclised acetamide derivative $\boldsymbol{S 1 4}(40.0 \mathrm{mg}, 41 \%)$ as a paleyellow oil. $R_{\mathrm{f}} 0.61$ (DCM-sat. $\mathrm{NH}_{3} / \mathrm{MeOH} 90: 10$ ). $v_{\text {max }} / \mathrm{cm}^{-1}: 2934,2871,1634,1494,1243$, 1038 ; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 6.76(1 \mathrm{H}, \mathrm{dd}, J 9.0$ and $2.0 \mathrm{~Hz}, 8-\mathrm{H}), 6.60(1 \mathrm{H}, \mathrm{d}, J 2.0 \mathrm{~Hz}, 6-$ $\mathrm{H}), 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.37-3.26\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.11-\mathrm{H}_{\mathrm{A}}\right), 2.94-2.85\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}\right.$ and $\left.3-\mathrm{H}_{\mathrm{A}}\right)$, $2.78-2.70\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}\right), 2.60\left(1 \mathrm{H}, \mathrm{d}, J 13.3 \mathrm{~Hz}, 1-\mathrm{H}_{\mathrm{B}}\right), 2.47-2.42\left(1 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}_{\mathrm{B}}\right), 2.33(3 \mathrm{H}$, s, acetyl), $1.91(1 \mathrm{H}$, app. s, $4 \mathrm{a}-\mathrm{H}), 1.84-1.72\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right) ; \delta_{\mathrm{c}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 170.0$ (C=O), 156.8 (C-7), 135.6 (C-9a), 127.5 (C-5a), 125.3 (C-9), 113.3 (C-6), 112.2 (C-8), 57.0 (C-1), 55.6 (OMe), 53.1 (C-11), 46.3 (C-3), 34.6 (C-5), 26.2 (C-4a), 24.8 (acetyl CH ${ }_{3}$ ), 23.0 (C-4); HRMS found $\mathrm{MH}^{+}$273.1606. $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $M H$, 273.1598. 9-H and 10a-H not observed by ${ }^{1} \mathrm{H}$ NMR and C-10a not observed by ${ }^{13} \mathrm{C}$ NMR.

## $\left(2 R^{*}, 4 a S^{*}, 5 S^{*}, 10 \mathrm{a} R^{*}\right)$-7-methoxy-3,4,4a,5,10,10a-hexahydro-1H-2,5methanobenzo $[b][1,7]$ naphthridine (31)



Cyclised acetamide derivative $\mathbf{S 1 4}$ ( $40.0 \mathrm{mg}, 0.15 \mathrm{mmol}$ ) was dissolved in 1:1 $\mathrm{HCl}-\mathrm{EtOH}$ ( 10 ml ) and stirred at $80{ }^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was allowed to cool to rt then concentrated under reduced pressure to give the amine derivative 31 ( $36.0 \mathrm{mg}, 89 \%$ ) as an offwhite solid. $R_{\mathrm{f}} 0.37$ (DCM-sat. $\mathrm{NH}_{3} / \mathrm{MeOH} 90: 10$ ). $v_{\max } / \mathrm{cm}^{-1}: 3151,3052,1595,1238,1016$;
$\delta_{\mathrm{H}}(500 \mathrm{MHz}, \mathrm{MeOD}): 7.33(1 \mathrm{H}, \mathrm{d}, J 8.7 \mathrm{~Hz}, 9-\mathrm{H}), 7.08(1 \mathrm{H}, \mathrm{d}, J 8.7 \mathrm{~Hz}, 8-\mathrm{H}), 7.05(1 \mathrm{H}, \mathrm{s}, 6-$ H), 4.56-4.48 $(1 \mathrm{H}, \mathrm{m}, 10 \mathrm{a}-\mathrm{H}), 4.00-3.93\left(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\mathrm{A}}\right), 3.86\left(4 \mathrm{H}\right.$, app. s, OMe and $\left.11-\mathrm{H}_{\mathrm{A}}\right)$, 3.64-3.58 ( $1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.52-3.44\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{A}}\right), 3.40-3.32\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.3-\mathrm{H}_{\mathrm{B}}\right), 3.27(1 \mathrm{H}$, d, J $12.3 \mathrm{~Hz}, 11-\mathrm{H}_{\mathrm{B}}$ ), 2.64 ( 1 H , app. s, $4 \mathrm{a}-\mathrm{H}$ ), 2.34-2.24 ( $2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}$ ); $\delta_{\mathrm{C}}(125 \mathrm{MHz}, \mathrm{MeOD}$ ): 162.1 (C-7), 136.6 (C-9a), 126.1 (C-9), 119.9 (C-5a), 117.2 (C-8), 115.8 (C-6), 56.4 (OMe), 54.7 (C-11), 48.8 (C-1), 47.0 (C-3), 46.8 (C-10a), 30.6 (C-5), 23.9 (C-4a), 20.3 (C-4); HRMS found $\mathrm{MH}^{+}$231.1495. $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ requires $M H, 231.1492$. The product was isolated as the HCl salt.
( $1 R^{*}, 3 S^{*}, 4 R^{*}$ )-3-(2-bromophenyl)-2-(4-methoxyphenyl)-2-azabicyclo[2.2.2]octan-5-one (S15)

$p$-anisidine ( $2.00 \mathrm{~g}, 16.2 \mathrm{mmol}$ ), proline ( $0.19 \mathrm{~g}, 30 \mathrm{~mol} \%$ ), 2-cyclohexenone ( $1.56 \mathrm{ml}, 16.2$ $\mathrm{mmol})$ and 2-bromobenzaldehyde ( $1.00 \mathrm{~g}, 5.41 \mathrm{mmol}$ ) were dissolved in $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O} 9: 1$ (15 $\mathrm{ml})$ at rt . The reaction mixture was then stirred at $35{ }^{\circ} \mathrm{C}$ for 3 days. The mixture was filtered through celite, eluting with EtOAc. The filtrate was diluted with EtOAc ( 20 ml ) and subsequently washed with water ( 2 x 40 ml ). The aqueous washings were then back extracted with EtOAc ( $3 \times 30 \mathrm{ml}$ ), organic layers combined, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a crude material ( $d r$ 80:20 by ${ }^{1} \mathrm{H}$ NMR). This was then purified via column chromatography, eluting EtOAc-hexane 15:85 to give bicyclic ketone derivative $S 15\left(1.08 \mathrm{~g}, 53 \%, d r>95:<5\right.$ by ${ }^{1} \mathrm{H}$ NMR) as a yellow oil. $R_{\mathrm{f}} 0.30$ (EtOAc-hexane 20:80). $v_{\text {max }} / \mathrm{cm}^{-1}: 3062,2934,2868,2832,1732,1508,1460,1440,1293,1240,1180,1110,1083 ; \delta_{\mathrm{H}}$ ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 7.56 ( $1 \mathrm{H}, \mathrm{dd}, J 7.9$ and 1.1 Hz , bromophenyl $3-\mathrm{H}$ ), $7.35(1 \mathrm{H}, \mathrm{dd}, J 7.9$ and 1.7 Hz , bromophenyl 6-H), $7.20(1 \mathrm{H}, \mathrm{td}, J 7.9$ and 1.1 Hz , bromophenyl $5-\mathrm{H}), 7.10(1 \mathrm{H}, \mathrm{td}, J$ 7.9 and 1.7 Hz , bromophenyl 4-H), 6.76 ( $2 \mathrm{H}, \mathrm{d}, J 9.2 \mathrm{~Hz}$, methoxyphenyl 3,5-H), 6.56 ( 2 H , d, $J 9.2 \mathrm{~Hz}$, methoxyphenyl 2,6-H), 4.90 (1H, d, J $1.8 \mathrm{~Hz}, 3-\mathrm{H}), 4.48-4.44$ (1H, m, 1-H), 3.71
( $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$ ), 2.88-2.81 ( $2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $6-\mathrm{H}_{\mathrm{A}}$ ), $2.51\left(1 \mathrm{H}, \mathrm{dd}, J 18.8\right.$ and $\left.2.2 \mathrm{~Hz}, 6-\mathrm{H}_{\mathrm{B}}\right), 2.24-$ $2.17\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.8-\mathrm{H}_{\mathrm{A}}\right), 2.03-1.97\left(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{\mathrm{B}}\right), 1.82-1.77\left(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ): 212.1 (C-5), 152.6 (methoxyphenyl C-4), 141.9 (methoxyphenyl C-1), 140.2 (bromophenyl C-1), 133.5 (bromophenyl C-3), 129.3 (bromophenyl C-4), 128.2 (bromophenyl C-5), 128.0 (bromophenyl C-6), 122.3 (bromophenyl C-2), 115.4 (methoxyphenyl $\mathrm{C}_{2}-2,6$ ), 114.9 (methoxyphenyl $\mathrm{C}_{2}-3,5$ ), 65.2 (C-3), 55.7 (OMe), 50.6 (C-1), 49.4 (C-4), 46.1 (C-6), 22.7 (C-7), 22.3 (C-8); HRMS found $\mathrm{MH}^{+}$388.0730. $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{BrNO}_{2}$ requires $\mathrm{MH}, 388.0730$. The relative configuration was determined through NOESY ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ). nOe observed between $3-\mathrm{H}$ and $8-\mathrm{H}_{\mathrm{A}}$ and bromophenyl $6-\mathrm{H}$ and $6-\mathrm{H}_{\mathrm{A}}$.

## tert-butyl $N$-[(1R*, $\left.3 S^{*}, 4 S^{*}, 5 R^{*}\right)$-3-(2-bromophenyl)-2-(4-methoxyphenyl)-2-azabicyclo[2.2.2]octan-5-yl]carbamate (32)



Bicyclic ketone $\mathbf{S 1 5}$ ( $1.02 \mathrm{~g}, 2.64 \mathrm{mmol}$ ) was dissolved in sat. $\mathrm{NH}_{3} / \mathrm{MeOH}(50 \mathrm{ml})$ and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(1.59 \mathrm{ml}, 5.27 \mathrm{mmol})$ was added at rt . The solution was allowed to stir for 18 h at rt , then cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{NaBH}_{4}(150 \mathrm{mg}, 3.96 \mathrm{mmol})$ was added portionwise. The resulting reaction mixture was left to stir at rt for 2 h . The mixture was concentrated under reduced pressure and the resulting residue was dissolved in EtOAc ( 30 ml ) and brine ( 30 ml ) was added with vigorous stirring. The phases were separated and the aqueous phase was then extracted with EtOAc ( $3 \times 30 \mathrm{ml}$ ). The organic layers were combined, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give the crude amine intermediate. This intermediate was dissolved in THF ( 20 ml ) and the solution was basified with 2 M NaOH . Then $\mathrm{Boc}_{2} \mathrm{O}$ (1.73 $\mathrm{g}, 7.92 \mathrm{mmol}$ ) was added and the resulting mixture was allowed to stir at rt for 4 h . Water ( 20 ml ) was added and the mixture was then extracted with EtOAc ( $3 \times 30 \mathrm{ml}$ ). The organic layers were combined, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a crude material. This was purified via column chromatography, eluting EtOAc-hexane 10:90 to
give carbamate derivative 32 ( $311 \mathrm{mg}, 25 \%$, $d r 74: 26$ by ${ }^{1} \mathrm{H}$ NMR) as a colourless oil. $R_{\mathrm{f}} 0.54$ (EtOAc-hexane 20:80). $v_{\max } / \mathrm{cm}^{-1}: 3285,2937,2865,1694,1510,1346,1270,1225,1190$, $1081 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.64-7.57$ ( $3 \mathrm{H}, \mathrm{m}$, bromophenyl 3-H and bromophenyl $6-\mathrm{H}^{\mathrm{maj}}$ ), $7.57-7.51\left(1 \mathrm{H}, \mathrm{m}\right.$, bromophenyl $\left.6-\mathrm{H}^{\mathrm{min}}\right), 7.29\left(1 \mathrm{H}, \mathrm{td}, J 7.6\right.$ and 1.0 Hz , bromophenyl $\left.5-\mathrm{H}^{\text {maj }}\right)$, $7.23\left(1 \mathrm{H}, \mathrm{td}, J 7.6\right.$ and 1.0 Hz , bromophenyl $\left.5-\mathrm{H}^{\mathrm{min}}\right), 7.14(1 \mathrm{H}, \mathrm{td}, J 7.6$ and 1.6 Hz , bromophenyl 4- $\mathrm{H}^{\mathrm{maj}}$ ), $7.11\left(1 \mathrm{H}, \mathrm{td}, J 7.6\right.$ and 1.6 Hz , bromophenyl 4-H ${ }^{\mathrm{min}}$ ), 6.76-6.70 ( $4 \mathrm{H}, \mathrm{m}$, methoxyphenyl 3,5-H), 6.51-6.43 (4H, m, methoxyphenyl 2,6-H), 4.71 ( $2 \mathrm{H}, \mathrm{d}, J 6.2 \mathrm{~Hz}, \mathrm{NH}$ ), $4.56(2 \mathrm{H}, \mathrm{d}, J 2.2 \mathrm{~Hz}, 3-\mathrm{H}), 4.08-4.04\left(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}^{\mathrm{maj}}\right), 4.01-3.97\left(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}^{\mathrm{min}}\right), 3.80-3.73$ $(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}^{\mathrm{maj}}\right), 3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}^{\mathrm{min}}\right), 2.95-2.91(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.42-2.35$ $\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{A}}{ }^{\mathrm{maj}}\right), 2.24-2.16\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{A}}{ }^{\mathrm{min}}\right), 2.12-2.03\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\mathrm{A}}\right), 1.82-1.70(6 \mathrm{H}, \mathrm{m}, 6-$ $\mathrm{H}_{\mathrm{B}}$ and $\left.8-\mathrm{H}_{2}\right), 1.60-1.54\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\mathrm{B}}\right.$, overlap with residual water peak), $1.45\left(9 \mathrm{H}, \mathrm{s},{ }^{t} \mathrm{Bu}^{\mathrm{min}}\right)$, $1.26\left(9 \mathrm{H}, \mathrm{s},{ }^{\dagger} \mathrm{Bu}^{\mathrm{maj}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 155.5$ ( $\mathrm{Boc} \mathrm{C}=\mathrm{O}^{\text {min }}$ ), 154.9 ( $\mathrm{Boc} \mathrm{C}=\mathrm{O}^{\text {maj }}$ ), 151.9 (methoxyphenyl C-4 $4^{\text {min }}$ ), 151.7 (methoxyphenyl C-4 $4^{\text {maj }}$ ), 142.8 (methoxyphenyl C-1 ${ }^{\text {maj }}$ ), 142.2 (methoxyphenyl C-1 ${ }^{\text {min }}$ ), 140.5 (bromophenyl C-1), 134.2 (bromophenyl C-3 ${ }^{\text {maj }}$ ), 133.3 (bromophenyl C-3 $3^{\text {min }}$ ), 129.0 (bromophenyl C-4 $4^{\text {min }}$ ), 128.7 (bromophenyl C-4 ${ }^{\text {maj }}$ ), 128.5 (bromophenyl C-6), 127.9 (bromophenyl C-5 ${ }^{\text {maj }}$ ), 127.5 (bromophenyl C-5 ${ }^{\text {min }}$ ), 122.1 (bromophenyl C-2), 114.8 (methoxyphenyl $\mathrm{C}_{2}-3,5^{\text {maj }}$ ), 114.7 (methoxyphenyl $\mathrm{C}_{2}-3,5^{\mathrm{min}}$ ), 113.9 (methoxyphenyl $\left.\mathrm{C}_{2}-2,6\right)$, $78.7\left(\mathrm{C}_{1}{ }^{\dagger} \mathrm{Bu}\right)$, $65.4(\mathrm{C}-3), 55.7\left(\mathrm{OMe}^{\mathrm{maj}}\right)$, $55.6\left(\mathrm{OMe}^{\mathrm{min}}\right), 48.3(\mathrm{C}-$ $\left.5^{\text {min }}\right), 47.5\left(\mathrm{C}-5^{\mathrm{maj}}\right), 46.8\left(\mathrm{C}-1^{\mathrm{min}}\right), 46.2\left(\mathrm{C}-1^{\mathrm{maj}}\right), 36.6(\mathrm{C}-6), 35.2(\mathrm{C}-4), 28.5\left(\mathrm{C}_{3}{ }^{\mathrm{t}} \mathrm{Bu}^{\mathrm{min}}\right), 28.2$ $\left(\mathrm{C}_{3}{ }^{\mathrm{t}} \mathrm{Bu}^{\mathrm{maj}}\right), 26.0\left(\mathrm{C}-8^{\mathrm{min}}\right), 25.7\left(\mathrm{C}-8^{\mathrm{maj}}\right), 22.6\left(\mathrm{C}-7^{\mathrm{min}}\right), 21.9\left(\mathrm{C}-7^{\mathrm{maj}}\right) ;$ HRMS found $\mathrm{MH}^{+}$ 489.1583. $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{BrN}_{2} \mathrm{O}_{3}$ requires $\mathrm{MH}, 489.1570$. The relative configuration of the major diastereomer was determined through NOESY ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ). nOe observed between 5H and $8-\mathrm{H}_{\mathrm{A}}$.
tert-butyl ( $3 R^{*}, 4 \mathrm{a} R^{*}, 9 S^{*}, 9 \mathrm{a} S^{*}$ )-11-(4-methoxyphenyl)-2,3,4,4a,9,9a-hexahydro-3,9-epiminoacridine-10(1H)-carboxylate (33)

$\mathrm{Pd}(\mathrm{OAc})_{2}(4.00 \mathrm{mg}, 5 \mathrm{~mol} \%)$, $\mathrm{rac}-\mathrm{BINAP}(16.0 \mathrm{mg}, 7.5 \mathrm{~mol} \%)$ and $\mathrm{NaO}^{t} \mathrm{Bu}(63.0 \mathrm{mg}, 0.66$ $\mathrm{mmol})$ were added to a solution of carbamate derivative $32(160 \mathrm{mg}, 0.33 \mathrm{mmol})$ in toluene $(10 \mathrm{ml})$ at rt . The reaction mixture was then stirred and heated at $100{ }^{\circ} \mathrm{C}$ for 24 h , allowed to cool to rt and then filtered through celite. The filtrate was concentrated under reduced pressure to give a crude material. This was then purified via column chromatography, eluting EtOAchexane 5:95 to give the cyclised carbamate derivative 33 ( $45.0 \mathrm{mg}, 32 \%$, $d r>95:<5$ by ${ }^{1} \mathrm{H}$ NMR) as a colourless oil. $R_{\mathrm{f}} 0.58$ (EtOAc-hexane 20:80). $v_{\max } / \mathrm{cm}^{-1}: 2990,2934,2858,1692$, $1509,1328,1273,1192,1078 ; \delta_{\text {H }}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.97(1 \mathrm{H}, \mathrm{d}, J 8.4 \mathrm{~Hz}, 5-\mathrm{H}), 7.38(1 \mathrm{H}$, dd, $J 7.6$ and $1.3 \mathrm{~Hz}, 8-\mathrm{H}), 7.21-7.17(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 7.00(2 \mathrm{H}, \mathrm{d}, J 9.1 \mathrm{~Hz}$, methoxyphenyl 2,6H), $6.95(1 \mathrm{H}, \mathrm{td}, J 7.6$ and $0.9 \mathrm{~Hz}, 7-\mathrm{H}), 6.84(2 \mathrm{H}, \mathrm{d}, J 9.1 \mathrm{~Hz}$, methoxyphenyl 3,5-H), $4.65-$ $4.59(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.54(1 \mathrm{H}, \mathrm{d}, J 2.3 \mathrm{~Hz}, 9-\mathrm{H}), 3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.69-3.64(1 \mathrm{H}, \mathrm{m}, 4 \mathrm{a}-\mathrm{H})$, $2.27\left(1 \mathrm{H}\right.$, ddd, $J 13.9,9.9$ and $\left.2.6 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{A}}\right), 2.00-1.92\left(2 \mathrm{H}, \mathrm{m}, 9 \mathrm{a}-\mathrm{H}\right.$ and $\left.2-\mathrm{H}_{\mathrm{A}}\right), 1.87(1 \mathrm{H}$, ddd, $J$ 13.9, 6.5 and $\left.3.4 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{B}}\right), 1.83-1.69\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.1-\mathrm{H}_{\mathrm{A}}\right), 1.57\left(9 \mathrm{H}, \mathrm{s},{ }^{\dagger} \mathrm{Bu}\right), 1.45-1.36$ $\left(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 153.5$ ( $\mathrm{Boc} \mathrm{C}=\mathrm{O}$ ), 152.2 (methoxyphenyl C-4), 143.5 (methoxyphenyl C-1), 135.9 (C-4b), 131.5 (C-8a), 128.5 (C-8), 127.6 (C-6), 123.2 (C-5), 122.6 (C-7), 116.4 (methoxyphenyl $\mathrm{C}_{2}-2,6$ ), 114.9 (methoxyphenyl $\left.\mathrm{C}_{2}-3,5\right), 81.4\left(\mathrm{C}_{1}{ }^{\dagger} \mathrm{Bu}\right), 55.9$ (OMe), 55.3 (C-9), 48.8 (C-3), 46.5 (C-4a), 36.9 (C-4), 30.9 (C-9a), 28.6 ( $\mathrm{C}_{3}{ }^{\dagger} \mathrm{Bu}$ ), 21.3 (C-2), 21.2 (C-1); HRMS found $\mathrm{MH}^{+}$407.2338. $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $M H$, 407.2329. Confirmation of the relative configuration was determined through NOESY ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ). nOe observed between $1-\mathrm{H}_{\mathrm{B}}$ and $4 \mathrm{a}-\mathrm{H}$.

## Scaffold and Virtual Library Analysis

## List of Scaffolds Prepared Including Novelty Assessment




25


29



26


30



27


31



28 (85 hits)


3


32


33

Figure S1: The 30 scaffolds prepared through this unified synthetic approach. The deprotected frameworks (black) are indicated. Number of hits from novelty assessment are shown in brackets where appropriate. $\mathrm{R}=2$-pyridylcarbonyl.

## Scaffold Diversity Assessment

A full version of the hierarchical scaffold tree highlighted in Figure 1 is shown below, including structures of the frameworks at each level of hierarchy. ${ }^{7}$


Figure S2: Hierarchical scaffold tree with structures. The twenty-three frameworks (black) at the graph-node-bond level are related hierarchically to eight monocyclic parent (blue) frameworks through iterative removal of rings (red $\rightarrow$ green). The corresponding scaffolds relating to each framework at the graph-node level are numbered accordingly.

## Scaffold Molecular Property Assessment

Computational assessment of the molecular weight and Alog P of the deprotected scaffold library was performed using LLAMA ${ }^{8}$ and the data subsequently replotted in Origin. Figure S3 shows a plot of AlogP vs Molecular weight for the deprotected scaffold library.


Figure S3: Plot of AlogP vs Molecular weight for the deprotected scaffold library.

## Scaffold Shape Diversity Assessment

The principle moments of inertia of the lowest energy conformations of the deprotected scaffold library was performed using LLAMA. Figure S4 shows the PMI plot of the deprotected scaffold library.


Figure S4: PMI plot of the deprotected scaffold library to highlight shape diversity.

## Virtual Library Molecular Property Assessment

Computational assessment of the molecular weight and AlogP of the virtual library was performed using LLAMA, where the scaffolds were decorated once with the set of medicinally relevant capping groups already present within LLAMA. Figure S 5 shows a plot of AlogP vs Molecular weight for the virtually decorated library of compounds.


Figure S5: Plot of AlogP vs Molecular weight for the virtual library. The scaffold library was decorated once with medicinally relevant capping groups in LLAMA to provide a virtual mono-decorated library.

## Virtual Library Shape Diversity Assessment

The principle moments of inertia of the lowest energy conformations of the virtual library was performed using LLAMA. Figure S6 shows the PMI plot of the virtual library.


Figure S6: PMI plot of the virtual scaffold library to highlight shape diversity.

## Proposed Mechanism for Rearrangement Process (Compound 5)






Figure S7: Proposed mechanism for the rearrangement process observed in the synthesis of compound 5 .

## NMR Spectra

S263
Name - Scott Rice
Room No. - G56 Sample - S263


${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR


S268
Name - Scott Rice
Room No. - G56 Sample - S268


${ }^{1} \mathrm{H}$ NMR


Sample - S268
${ }^{13} \mathrm{C}$ NMR



S252
Name - Scott Rice
Room No. - G56 Sample - S252



|  |  | $\begin{gathered} \text { T } \\ \underset{-}{0} \end{gathered}$ |  | CNo |  |  |  |  |  |  |  |  |  |  | 'নু |  |  |  |  |  |  |  | + |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | , | , | , | 1 | 1 | , | , | , | , | 1 | , | , |  | 1 | 1 | + | 1 | + |
| 7.6 | 7.4 | 7.2 | 7.0 | 6.8 | 6.6 | 6.4 | 6.2 | 6.0 | 5.8 | 5.6 | 5.4 | 5.2 | 5.0 | 4.8 | 4.6 | $\begin{array}{r} 4.4 \\ \text { f1 (pi } \end{array}$ | $\begin{gathered} 4.2 \\ \mathrm{pm}) \end{gathered}$ | 4.0 | 3.8 | 3.6 | 3.4 | 3.2 | 3.0 | 2.8 | 2.6 | 2.4 | 2.2 | 2.0 | 1.8 | 1.6 | 1.4 | 1.2 |


| S252 | $\stackrel{\infty}{\sim}$ |
| :---: | :---: |
| Name - Scott Rice | $\stackrel{\infty}{\square}$ |
| Room No. - G56 |  | Room No. - G56 Sample - S252

## ${ }^{13}$ C NMR



sample14216
Name - Scott Rice
Room No. - G56
Sample - S265

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR


S253
Name－Scott Rice
Room No．－G56 Sample－S253


OMe

${ }^{1} \mathrm{H}$ NMR


| S253 \％¢ | $\pm$ | 人̀ | न | ¢ \％\％ |  | ก | へ） | $\bigcirc$ | $\%$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name－Scott Rice | $\underset{\sim}{\text { ¢ }}$ | స్入入 | － | \＃̇ | ＋ | ～ | ¢゙ずずす | ๗లल | ～ |
| Room No．－G56 Sample－S253 | － | － |  | － |  | 1 | 111 | ¢ 1 | 1 |

${ }^{13} \mathrm{C}$ NMR

| T | 1 | 1 | 1 |  | 1 | 1 |  |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | ${ }_{\mathrm{f} 1}^{100}(\mathrm{ppm})$ | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 |

S254c
Name - Scott Rice
Room No. - G56
Sample- S254c


5
${ }^{1} \mathrm{H}$ NMR



${ }^{13} \mathrm{C}$ NMR



S2

${ }^{1} \mathrm{H}$ NMR


| S260 | ¢ | \% | O | $\pm$ | 무요 |  |  |  |  | N |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name - Scott Rice | $\stackrel{\infty}{\infty}$ | $\stackrel{\infty}{\sim}$ | $\underset{\sim}{J}$ | - | $\stackrel{\sim}{\square}$ | ix ix m | लें | ¢ ${ }_{\text {¢ }}^{\infty}$ | ¢ | N |
| Room No. - G56 |  | \| | 1 |  | $1<1$ | 11 |  | \/ | 11 |  |
| Sample - S260 |  |  |  |  |  |  |  |  |  |  |

${ }^{13} \mathrm{C}$ NMR



S261
Name - Scott Rice
Room No. - G56 Sample-S261


S3

${ }^{1} \mathrm{H}$ NMR




${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR


S266


12

Name－Scott Rice
Room No．－G56 Sample－S266

 $\iint 1 J 11$
${ }^{1} \mathrm{H}$ NMR


| S266 |  |  |  | $\stackrel{\infty}{\square}$ | $\stackrel{\sim}{0}$ | ¢ |  |  | 윷 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name－Scott Rice | － | ¢్లో | ํ． | 䫆 | \％ | 岁ます |  | － | $\stackrel{\infty}{\sim}$ |
| Room No．－G56 | －1 | \1 \V | 1111 |  |  | 11 |  |  | V |

## ${ }^{13} \mathrm{C}$ NMR


S244
Name - Scott Rice
Room No. - G56
Room No. - G56
Sample - S244
$\iiint$
${ }^{1} \mathrm{H}$ NMR


${ }^{13} \mathrm{C}$ NMR


S236
Name - Scott Rice
Name - Scott Ric
Room No. - G56
Room No. - G56
Sample - S236


${ }^{13} \mathrm{C}$ NMR


S237p
Name - Scott Rice
Room No. - G56
Sample - S237p


4

H NMR

 Sample - S237
$\stackrel{\infty}{\infty}$
${ }^{13} \mathrm{C}$ NMR


 Sample - S222


## ${ }^{1} \mathrm{H}$ NMR



S222
Name - Scott Rice
Room No. - G56
Sample- S22 $\stackrel{\sim}{\sim}$
${ }^{13} \mathrm{C}$ NMR



S387
Name - Scott Rice
Room No. - G56 Sample - S387


$$
\iiint
$$


${ }^{1} \mathrm{H}$ NMR


S388
Name - Scott Rice
Room No. - G56 Sample - S388


S6
${ }^{1} \mathrm{H}$ NMR


${ }^{13} \mathrm{C}$ NMR

| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | T |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 |


${ }^{1} \mathrm{H}$ NMR


${ }^{13} \mathrm{C}$ NMR

S392
Name - Scott Rice
Room No. - G56 Sample - S392




NAc $\mathbf{S 7}$
${ }^{1} \mathrm{H}$ NMR


${ }^{13} \mathrm{C}$ NMR


S400
Name - Scott Rice
Room No. - G56 Sample - S400

${ }^{1} \mathrm{H}$ NMR



S400
Name - Scott Rice
Room No. - G56
Sample - S400
${ }^{13}$ C NMR


Name - Scott Rice
Room No. - G56
Sample-S390


${ }^{1} \mathrm{H} N M R$

${ }^{13} \mathrm{C}$ NMR




S397
Name - Scott Rice
Room No. - G56
Sample - S397

${ }^{1} \mathrm{H}$ NMR

[^0]
${ }^{13} \mathrm{C}$ NMR



${ }^{1} \mathrm{H}$ NMR



S395
Name－Scott Rice
Room No．－G56 Sample－S395

${ }^{1} \mathrm{H}$ NMR


| S395 | mbi | ¢゙すが大デ | ～すへ～～が | 号ずす |  | 8 | 9 | －${ }^{\text {a }}$ | $\stackrel{H}{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name－Scott Rice | ざ |  |  | 冎这的 | ¢ ¢ ¢ | $\stackrel{\circ}{0}$ | ल | ì | $\stackrel{\sim}{\sim}$ |
| Room No．－G56 <br> Sample－S395 | \／1 | ｜1Vト｜ | 4 | ｜ $\mid$ |  |  |  | $\checkmark$ |  |

${ }^{13} \mathrm{C}$ NMR

[^1]${ }^{19}$ F NMR


S396
Name - Scott Rice
Room No. - G56 Sample - S396



| S396 | 9 | N | $\stackrel{\square}{6}$ | $\stackrel{\text { T}}{ }$ |
| :---: | :---: | :---: | :---: | :---: |
| Name - Scott Rice | $\stackrel{i}{\square}$ | $\underset{\sim}{\square}$ | ल | 축 |
| Room No. - G56 | \| | \| |  |  | Room No. - G56 Sample - S396

${ }^{13} \mathrm{C}$ NMR

| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | , | 1 | 1 | 1 | 1 | 1 | 1 | 1 | , |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 |




${ }^{1} \mathrm{H}$ NMR


${ }^{13} \mathrm{C}$ NMR


S432
Name - Scott Rice Room No. - G56 Sample - S432


## 1/1/ 11

${ }^{1} \mathrm{H} N M R$





| 1 | 1 | 1 |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | T |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 |  | $100$ | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 |


${ }^{1} \mathrm{H}$ NMR





S436
Name - Scott Rice
Room No. - G56
Sample - S436 Sample - S436

25


| S436 | * | ¢\% ¢ | $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ | ¢ F ¢ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Name - Scott Rice | $\stackrel{\sim}{\sim}$ | ற్ర¢ |  | -్ల్లై | - |
| Room No. - G56 | I | 11/ | $11 \%$ | Y/ | 以1\% |
| Sample - S436 |  |  |  |  |  | Sample - S436

${ }^{13}$ C NMR

S 436
Name
Name - Scott Rice
Room No - G56
Sample S436
${ }^{19}$ F NMR


```
-15
```



S405
Name - Scott Rice
Room No. - G56
Sample - S405

${ }^{1} \mathrm{H}$ NMR


| S405 ¢ | $\stackrel{\sim}{\sim}$ | g | $\stackrel{\square}{1}$ |
| :---: | :---: | :---: | :---: |
| Name - Scott Rice | ำู | ¢ | - |
| Room No. - G56 | 11 | 1 |  | Room No. - G5

${ }^{13} \mathrm{C}$ NMR


S412
Name - Scott Rice
Room No. - G56
Sample - S412

${ }^{1} \mathrm{H}$ NMR

$$
\text { J J } \int \text { J JJ }
$$


$\stackrel{\sim}{\sim}$

${ }^{13} \mathrm{C}$ NMR


NOESY




S413
Name - Scott Rice
Room No. - G56 Sample - S413
${ }^{1} \mathrm{H}$ NMR



S413
Name - Scott Rice
$\underset{\sim}{0}$
Room No. - G56 |
Sample - S413
器

|
${ }^{13} \mathrm{C}$ NMR



S430
Name - Scott Rice
Room No - G56
Sample S430
|| |
${ }^{1} \mathrm{H}$ NMR


| S430 Noun | $\stackrel{\text { ® }}{\sim}$ | べ | \%\% | $\stackrel{ \pm}{\text { ¢ }}$ |  | $\stackrel{\%}{0}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name - Scott Rice $\xlongequal{\text { ® }}$ | $\stackrel{1}{\square}$ | $\stackrel{\sim}{m}$ | స్స్ | $\stackrel{\sim}{\square}$ | ~ | ¢ | ํ $\underset{\sim}{\sim} \underset{\sim}{\circ}$ | $\infty$ |
| Room No. - G56 | 1 |  |  |  |  |  | , 1 |  |

${ }^{13} \mathrm{C}$ NMR





S416b
Name - Scott Rice
Sample-S416b
${ }^{1} \mathrm{H}$ NMR

S416b
Name - Scott Rice
Room No. - G56
$\stackrel{\sim}{N}$
$\mid$

Room No. - G56
Sample - S416b
|
${ }^{13} \mathrm{C}$ NMR


S319p
Name - Scott Rice
Room No. - G56
Room No. - G56




Sample - S319p
${ }^{13} \mathrm{C}$ NMR

[^2]
${ }^{1} \mathrm{H}$ NMR



${ }^{13} \mathrm{C}$ NMR


S329
Name - Scott Rice
Room No. - G56 Sample - S329

| JJI
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

| 1 | 1 | 1 |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 |

S331
Name - Scott Rice
Room No. - G56
Sample - S331
$\int \sqrt{ }$
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

S333
Name－Scott Rice
Room No．－G56 Sample－S333

$\iint$
${ }^{1} \mathrm{H}$ NMR



| S333 مٌ | $\stackrel{n}{ }$ | ～ | ＊ | $\stackrel{\sim}{m}$ | \％ |  | $\bigcirc$ | 込通 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name－Scott Rice ${ }_{\text {® }}$ | $\stackrel{\sim}{n}$ | $\stackrel{\sim}{\sim}$ | へ | $\cdots$ | － | N | $\stackrel{\circ}{\text { ¢ }}$ |  |
| Room No．－G56｜ | I |  | ｜ | 11 | 1／1 | ｜ | ｜ | 111 |

${ }^{13} \mathrm{C}$ NMR


S334c
Room No. - G56
Sample - S334c
$\iint$
${ }^{1} \mathrm{H}$ NMR

-

${ }^{13} \mathrm{C}$ NMR



${ }^{1} \mathrm{H}$ NMR


| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | , | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | , | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 230 | 220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 |

S349
Name - Scott Rice
Room No. - G56 Sample - S349


${ }^{13} \mathrm{C}$ NMR


S351
Name－Scott Rice Room No．－G56 Sample－S351

〕 s flil
${ }^{1} \mathrm{H}$ NMR


| S351 | $\cdots$ | $\stackrel{9}{\square}$ | $\infty$ | ¢O운 | 꿍 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Name－Scott Rice | ก | \％ | $\stackrel{\sim}{\sim}$ | －${ }^{\circ}$ | ～్入入 |
| Room No．－G56 | 11 | 1 | I | $\backslash 1$ | \／ | Sample－S351

${ }^{13} \mathrm{C}$ NMR

|  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | f1 $\begin{array}{r}90 \\ 90\end{array}$ | 80 | 70 | 60 | 50 | 40 | 30 | 20 |

## References

1 Y.-Q. Chen, Z. Wang, Y. Wu, S. R. Wisniewski, J. X. Qiao, W. R. Ewing, M. D. Eastgate and J.-Q. Yu, J. Am. Chem. Soc., 2018, 140, 17884-17894.

2 Y. Wu, Y.-Q. Chen, T. Liu, M. D. Eastgate and J.-Q. Yu, J. Am. Chem. Soc., 2016, 138, 14554-14557.

3 C. E. Coomber, L. Benhamou, D.-K. Bučar, P. D. Smith, M. J. Porter and T. D. Sheppard, J. Org. Chem., 2018, 83, 2495-2503.

4 J. Zhao, X.-J. Zhao, P. Cao, J.-K. Liu and B. Wu, Org. Lett., 2017, 19, 4880-4883.
5 D. S. Roman and A. B. Charette, Org. Lett., 2013, 15, 4394-4397.
6 D. H. O’ Donovan, P. Aillard, M. Berger, A. de la Torre, D. Petkova, C. Knittl-Frank, D. Geerdink, M. Kaiser and N. Maulide, Angew. Chemie Int. Ed., 2018, 57, 1073710741.

7 A. Schuffenhauer, P. Ertl, S. Roggo, S. Wetzel, M. A. Koch and H. Waldmann, J. Chem. Inf. Model., 2007, 47, 47-58.

8 I. Colomer, C. J. Empson, P. Craven, Z. Owen, R. G. Doveston, I. Churcher, S. P. Marsden and A. Nelson, Chem. Commun., 2016, 52, 7209-7212.


[^0]:    路

[^1]:    

[^2]:    $\begin{array}{llllllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20\end{array}$

