Supporting Information

Pentanuclear Clusters Resembling the Cubane-Dangler Connectivity in Native

Oxygen-Evolving Center of Photosystem II

Chao Yang, Shenyu Wang, Fusheng Sai, Dingqi Liu, Fuxing Sun, Yu Gu and Gang Wu*

Experimental section

Materials and methods

All chemicals were obtained commercially without further purification. *Caution! Although no such sign was observed during the present work, perchlorate salts are potentially explosive and should be handled with care and in small quantities.*

Elemental analysis (C, H and N) was carried out using a Perkin-Elmer 2400 Elemental Analyzer. ICP-AES analyses were performed on a PerkinElmer OPTIMA 3300DV ICP spectrometer. Electrospray mass spectrometry (ESI-MS) measurements were carried out in the positive ion mode using an Orbitrap FusionTM TribridTM mass spectrometer (Thermo Scientific, San Jose, CA, USA) that was equipped with an electrospray ionization (ESI) source. Mass spectra were collected in the mass range m/z 200-2000. The heated ion capillary was maintained at 320 °C. The electrochemical measurements were conducted on a Bio-Logic VSP electrochemical workstation. Cyclic voltammograms were recorded on ca. 1 mM solutions of the relevant complexes at 25 °C with a platinum wire counter electrode, a Ag/Ag+ reference electrode (0.01 M AgNO₃, 0.1 M nBu₄NPF₆ in CH₃CN), and a 3.0 mm glassy carbon electrode disc. The electrolyte solutions were 0.1 M nBu₄NPF₆ in CH₂Cl₂:DMF (20:1) for all compounds. All reported values are referenced to an internal ferrocene/ferrocenium couple.

Single-crystal X-ray diffraction measurements for compound 1 and 3 were carried out using a Bruker D8 QUEST system with Mo-K α radiation ($\lambda = 0.71073$ Å) at 150 K. Data of compound 4 were collected on a MarCCD mx300 in the National Center for Protein Sciences Shanghai at the Shanghai Synchrotron Radiation Facility at 100 K. The diffraction data of compound 4 were transformed by APEX3 (The file type of the diffraction pictures was changed from name.mccd to name.sfrm). The raw data collection and reduction were done using APEX3 software.¹ Absorption corrections were applied using SADABS. The structures were solved by direct methods and refined by full-matrix least-squares techniques based on F2 using the SHELXS-2014 program.² All the non-hydrogen atoms were refined with anisotropic parameters. Program SQUEEZE, a part of the PLATON package of crystallographic software, was used to calculate the solvent disorder area and remove its contribution to the overall intensity data.³

Synthesis

2-(hydroxy(bipyridin-2-yl)methyl)phenol (H₂L) was synthesized according to the literature.⁴

Preparation of [Fe^{III}₃Zn^{II}₂L₃O(OAc)₃(CH₃OH)](ClO₄)₂·(CH₃OH)_{1.5} (compound 1)

A solution of $Fe(ClO_4)_3 \cdot xH_2O$ (105mg, 0.3mmol) in CH₃OH (5mL) was added with stirring to a solution of $Zn(OAc)_2 \cdot 2H_2O$ (74mg, 0.3mmol) and H₂L (28mg, 0.2mmol) in CH₃OH (10mL), followed by addition of Et₃N (15 µL). After stirring for 2 h, the resulting dark-red solution was filtered and the filtrate was left undisturbed to slowly evaporate. After 4 days, black orthohexagnal crystals were obtained in ca. 22% yield (based on Fe). Elementalanalysis (%) Calcd for [Fe^{III}₃Mn^{II}₂L₃O(OAc)₃(CH₃OH)(ClO₄)₂]·(CH₃OH)_{1.5} (C_{59.5}H₅₅N₆O_{23.5}Cl₂Fe₃Zn₂) : C 44.68, H 3.44, N 5.23, Fe 10.51, Zn 8.14; found: C 45.96, H 3.57, N 5.19, Fe 10.22, Zn 8.09.

Preparation of compound 2

A solution of $Fe(ClO_4)_3 \cdot xH_2O$ (70mg, 0.2mmol) in CH₃OH (5mL) was added with stirring to a solution of Co(OAc)₂ (74mg, 0.3mmol) and H₂L (28mg, 0.2mmol) in CH₃OH (5mL), followed by addition of Et₃N (15 µL). After stirring for 2 h, the resulting dark-red solution was filtered and the filtrate was left undisturbed to slowly evaporate. After 4 days, black orthohexagnal crystals were obtained in ca. 13% yield (based on Fe). Elementalanalysis (%) found for compound 2: C 45.32, H 3.88, N 5.03, Fe 10.32, Co 7.39.

$Preparation of \ [Fe^{III}_{3}Mn^{II}_{2}L_{3}O(OAc)_{3}(CH_{3}OH)](ClO_{4})_{2}\cdot(CH_{3}OH)_{1.5} \ (compound \ 3)$

A solution of $Fe(ClO_4)_3 \cdot xH_2O$ (70mg, 0.2mmol) in CH₃OH (5mL) was added with stirring to a solution of Mn(OAc)₂·4H₂O (74mg, 0.3mmol) and H₂L (28mg, 0.1mmol) in CH₃OH (5mL), followed by addition of Et₃N (20 µL). After stirring for 2 h, the resulting dark-red solution was filtered and the filtrate was left undisturbed to slowly evaporate. After 4 days, black orthohexagnal crystals were obtained in ca. 27% yield (based on Fe). Elementalanalysis (%) Calcd for [Fe^{III}₃Mn^{II}₂L₃O(OAc)₃(CH₃OH)(ClO₄)₂]·(CH₃OH)_{1.5} (C_{59.5}H₅₅N₆O_{23.5}Cl₂Fe₃Mn₂) : C 45.25, H 3.49, N 5.32, Fe 10.65, Mn 6.97; found: C 46.03, H 3.65, N 5.22, Fe 10.43, Mn 6.82.

Preparation of [Fe^{III}₃Ni^{II}₂L₃O(OAc)₂(OCH₃)(CH₃OH)(H₂O)](ClO₄)₂ (compound 4)

A solution of Fe(ClO₄)₃·xH₂O (70mg, 0.2mmol) in CH₃OH (5mL) was added with stirring to a solution of Ni(OAc)₂·4H₂O(74mg, 0.3mmol) and H₂L (28mg, 0.2mmol) in CH₃OH (5mL), followed by addition of Et₃N (15 µL). After stirring for 2 h, the resulting deep red solution was filtered and the filtrate was left undisturbed to slowly evaporate. After a week, dark red block crystals were obtained 9% ca. yield (based Fe). Elementalanalysis (%) Calcd in on for Fe^{III}₃Ni^{II}₂L₃O(OAc)₂(OCH₃)(CH₃OH)(H₂O)(ClO₄)₂ (C₅₇H₄₈Cl₂Fe₃N₆Ni₂O₂₂) : C 44.85, H 3.15, N 5.51, Fe 11.02, Ni 7.74; found: C 46.18, H 3.83, N 5.01, Fe 10.53, Ni 7.55.

Scheme S1. Synthetic route of H₂L.

compound	1	3	4		
Empirical formula	$C_{119}H_{110}Cl_4Fe_6N_{12}O_{47}Zn_4$	$C_{119}H_{110}Cl_4Fe_6Mn_4N_{12}O_{47}\\$	$C_{57}H_{48}Cl_2Fe_3N_6Ni_2O_{22}$		
Formula weight	3198.56	3156.84	1524.88		
Temperature/K	150.(2)	150.(2)	273(2)		
Crystal system	trigonal	trigonal	triclinic		
Space group	R ³	R ³	p1		
a/Å	13.0721(3)	13.1328(3)	14.1061(10)		
b/Å	13.0721(3)	13.1328(3)	14.4531(9)		
c/Å	63.6995(19)	63.2624(19)	17.9914(12)		
α/°	90	90	79.977(2)		
β/°	90	90	68.320(2)		
γ/°	120	120	72.495(2)		
Volume/Å ³	9426.6(5)	9449.1(5)	3242.5(4)		
Z	3	3	2		
$\rho_{calc}/g/cm^3$	1.690	1.664	1.562		
µ/mm ⁻¹	1.601	1.236	1.387		
F(000)	4884.0	4824.0	1552.0		
Crystal size/mm ³	$0.140\times0.130\times0.130$	$0.140 \times 0.120 \times 0.110$	$0.140 \times 0.120 \times 0.110$		
Radiation	MoK α ($\lambda = 0.71073$)	MoK α ($\lambda = 0.71073$)	MoK α ($\lambda = 0.71073$)		
2θ range for data collection/°	4.82 to 50.08	4.82 to 50.16	2.442 to 56.546		
Index ranges	$\begin{array}{l} \textbf{-12} \leq h \leq 11, \textbf{-15} \leq k \leq 15, \textbf{-42} \\ \leq 1 \leq 75 \end{array}$	$\label{eq:10} \begin{array}{l} -10 \leq h \leq 9, \text{-15} \leq k \leq 15, \text{-75} \\ \leq 1 \leq 37 \end{array}$	$-17 \le h \le 17, -19 \le k \le 19, -23$ $\le 1 \le 23$		
Reflections collected	10641	10528	45714		
Independent reflections	$3702 [R_{int} = 0.0315, R_{sigma} = 0.0393]$	$\begin{array}{l} 3721 \ [R_{int} = 0.0270, \ R_{sigma} = \\ 0.0344] \end{array}$	12537 [$R_{int} = 0.0827$, $R_{sigma} = 0.0498$]		
Data/restraints/parameters	3702/13/317	3721/14/311	12537/276/804		
Goodness-of-fit on F ²	1.031	1.081	1.039		
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0406, wR_2 = 0.0957$	$R_1 = 0.0526$, $wR_2 = 0.1300$	$R_1 = 0.0969, wR_2 = 0.2467$		
Final R indexes [all data]	$R_1 = 0.0530, wR_2 = 0.1016$	$R_1 = 0.0689, wR_2 = 0.1388$	$R_1 = 0.1184, wR_2 = 0.2709$		
Largest diff. peak/hole / e Å-3	1.00/-1.45	1.80/-0.77	1.87/-2.85		

 Table S1 Crystallographic data for 1, 3 and 4

Bond	Length/Å	Bond	Length/Å	Bond	Length/Å	Bond	Length/Å	Bond	Length/Å
Fe1-O2	1.851(5)	Fe2-O4	1.894(5)	Fe3-O12	1.895(5)	Ni1-O5	2.026(4)	Ni2-O1	2.021(5)
Fe1-O7	1.988(5)	Fe2-O6	1.965(6)	Fe3-O10	1.982(7)	Ni1-N3	2.059(5)	Ni2-09	2.030(5)
Fe1-O12	2.012(5)	Fe2-O11	1.993(6)	Fe3-O11	1.986(6)	Ni1-N5	2.085(6)	Ni2-N6	2.051(6)
Fe1-O3	2.048(5)	Fe2-O12	2.054(5)	Fe3-O8	1.996(6)	Nil-Nl	2.090(6)	Ni2-O12	2.085(4)
Fe1-O1	2.080(4)	Fe2-O5	2.116(5)	Fe3-O13	2.076(7)	Nil-Ol	2.112(4)	Ni2-N2	2.114(5)
Fe1-N4	2.187(6)	Fe2-O3	2.232(5)	Fe3-O14	2.106(6)	Ni1-O3	2.126(5)	Ni2-O5	2.147(4)
Average	2.028	Average	2.032	Average	2.007	Average	2.083	Average	2.075
Calculated Fe/Ni valences									
Fe1 -	+3(0.074)	Fe2 -	+3(0.090)	Fe3 +	-3(0.124)	Nil -	+2(0.070)	Ni2 -	+2(0.100)

Table S2 Fe-O/Fe-N and Ni-O/Ni-N bond distance (Å) and calculated Fe/Ni valences⁵ for compound **4**

Figure S1. "Cubane-plus-dangler" structures of compound **4** (a) and the native OEC (b), highlighting the coordination environment of the dangling ions and their connectivity with the parent cubane core. (Fe: dark red; Ni: light blue; Ca: light gray; Mn: purple; C: dim gray; O: red)

Figure S2. ESI-MS of compound **2** in DCM/DMF (20:1). Charge states are indicated as 2^+ . Experimental (black) and simulated (red)mass spectra of the isotopic envelopes are exhibited. The formulas of each species are given in the table.

Figure S3. ESI-MS of compound **3** in DCM/DMF (20:1). Charge states are indicated as 2^+ . Experimental (black) and simulated (red)mass spectra of the isotopic envelopes are exhibited. The formulas of each species are given in the table.

Figure S4. ESI-MS of compound 4 dissolved in DCM/DMF (20:1).

Fig. S5 Cyclic voltammograms corresponding to the $[Fe^{III}_{3}M^{II}_{2}]/[Fe^{III}_{2}Fe^{II}M^{II}_{2}]$ redox couple (M^{II} = Zn^{II}, Co^{II}, and Mn^{II}) in DCM/DMF (20:1). Scan rate is 100 mV/s. Potentials are referenced to Fc⁺/Fc.

Figure S6. Cyclic voltammograms with varying scan rates of compound 1 (Fe₃Zn₂).

Figure S7. Cyclic voltammograms with varying scan rates of compound 2 (Fe₃Co₂).

Figure S8. Cyclic voltammograms with varying scan rates of compound 3 (Fe₃Mn₂).

Figure S9. ChemDraws for compound 1 (a) and compound 4 (b). (Ligands are omitted for clarity.)

References

- 1. C. H. Görbitz, Acta Crystallographica Section B: Structural Science, 1999, 55, 1090-1098.
- 2. G. Sheldrick, Acta Crystallogr., Sect. A: Found. Adv., 2015, 71, 3-8.
- 3. A. Spek, Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 9-18.
- 4. Y. Zhang, C. Yang, F. Sun, G. Wu and S. Qiu, Inorg. Chem. Commun., 2019, 106, 6-10.
- 5. I. D. Brown, The Chemical Bond in Inorganic Chemistry, Oxford University Press, Oxford, 2002.