Electronic supplementary Information (ESI)

Synthesis and reactivity of phosphine borohydride compounds

Ramaraj Ayyappan,^[a] Yannick Coppel,^[a] Laure Vendier,^[a] Sundargopal Ghosh,^[b] Sylviane Sabo-Etienne,^[a] Sébastien Bontemps,^[a]*

^[a] LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 04, France.

^[b] Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.

E-mail: sebastien.bontemps@lcc-toulouse.fr.

Table of content

1. General considerations	
2. $[Li(OEt_2)]^+[o-iPr_2P-C_6H_4-B(C_8H_{14})-H]^-$ (1a)	2
3. $[Li(THF)]^+[o-iPr_2P-C_6H_4-B(Mes_2)-H]^-$ (1b)	
4. $[Li^{+}(THF)_{2}][o-iPr_{2}P-C_{6}H_{4}-B(Ipc)_{2}-H]^{-}$ (1c)	20
5. $[o-iPr_2P(CH_3)-C_6H_4-B(Mes_2)-H]$ (2)	28
6. $Li^{+}(THF)[1-B((Mes_2)-H)-(C_{10}H_6)-8-(PiPr_2)]^{-}(3)$	
7. $[1-B(Mes_2)-H)-(C_{10}H_6)-8-P(iPr_2)(CH_3)]^-$ (4)	
8. $[o-iPr_2P-C_6H_4-B(C_8H_{14})]$ (5a)	
9. $[o-iPr_2P-C_6H_4-B(Ipc)_2]$ (5c)	
10. Table S1: Selected NMR data in solution and solid state for compounds 1-4.	
11. Hydrolithiation of benzophenone using stoichiometric quantity of 1a	
12. Reaction 2 or 4 with ${}^{13}CO_2$	58
13. Hydrogenation of CO_2 in the presence Li_2CO_3 catalyzed by 5a or 5b	58
14. X-ray crystal diffraction	
15. References	

1. General considerations

All manipulations were carried out under an argon atmosphere using either Schlenk techniques or inside argon filled glove box.ⁱ Dry and degassed solvents were collected from MBraun solvent purification system (SPS). Deuterated solvents THF-d₈, C₆D₆ and toluene-d₈ were dried over 4 Å molecular sieves, degassed and stored under argon atmosphere. Quick pressure NMR valves and Fischer-Porter assembly was used to carry out reactions with CO₂. 9-BBN (9borabicyclo[3.3.1]nonane), and CH₃I were purchased from Sigma Aldrich and used as received. Mes₂B-H (Mes = 2,4,6-Me₃(C₆H₂))ⁱⁱ, (Ipc)₂B-H (Ipc = diisopinocampheyl)ⁱⁱⁱ, $o^{-i}Pr_2P(C_6H_4)Br^{iv}$ and 1-iodo-8-(diisopropylphosphino)naphthalene^v were synthesized according to the literature reports. NMR spectra were recorded using Bruker Avance 400 and Avance NEO 600 NMR spectrometers. The ¹H and ¹³C NMR chemical shifts were referenced to the residual proton and carbon signal of the deuterated solvents respectively. The ³¹P, ¹¹B and ⁷Li NMR spectra were referenced relative to 85% H₃PO₄ aqueous solution, F₃B.Et₂O and 1M LiCl (external reference) respectively. Chemical shifts are reported in ppm (δ) and coupling constants in Hertz (Hz). The following abbreviations were used, s - singlet, d - doublet, t - triplet, quart - quartet, sept septet, br-broad and m – multiplet. ESI-MS mass spectra were measured on a TSQ 7000 Thermo Electron mass instrument at ICT "Institut de Chimie de Toulouse" (website: ict.ups-tlse.fr). Elemental analyses were performed in the facility available in Laboratoire de Chimie de Coordination du CNRS using PerkinElmer 2400 Series Analyzer, Toulouse. Single crystals were diffracted in Bruker Kappa APEX II diffractometer at 100 - 115 K using Mo K α radiation ($\lambda =$ 0.71073 Å) filtered through graphite monochromator.

2. [Li(OEt₂)]⁺[*o*⁻ⁱPr₂P-C₆H₄-B(C₈H₁₄)-H]⁻ (1a)

9-BBN dimer (0.400 g, 1.50 mmol) and *o*-Li(0.9 Et₂O)-C₆H₄-PⁱPr₂ (0.800 g, 3.00 mmol) were stirred together at rt for 10 h in toluene (10 mL) under an argon atmosphere. Then, the solvent was removed under vacuum and after addition of n-pentane (35 mL) a colourless solid precipitated at -35 °C. (0.800 g, 2.02 mmol, 68 %). Monocrystals suitable for X-ray diffraction were obtained by cooling a saturated n-

pentane solution at -35 °C. Compound **1a** features one molecule of Et₂O coordinated to Li⁺ as shown in the crystal structure as well as by ¹H NMR spectroscopy.

¹H NMR (600.47 MHz, 298 K, C₆D₆): δ 8.24 (dd, ³*J*_{H-H} = 8.0 Hz, ³*J*_{H-P} = 3.4 Hz, 1H, H3), 7.41 (tt, ³*J*_{H-H} = 7.5 Hz, ⁴*J*_{H-P} = 1.5 Hz, 1H, H4), 7.30 (ddd, ³*J*_{H-H} = 6.2 Hz, ⁴*J*_{H-H} = 1.5 Hz, 1H, H6), 7.17 (td, ³*J*_{H-H} = 7.3 Hz, ⁴*J*_{H-H} = 1.5 Hz, 1H, H5), 2.47 (m, 3H, CH and CH₂ (9-BBN)), 2.36 (br s, CH₂ (9-BBN), 2H), 2.23 (m, ³*J*_{H-H} = 6.4 Hz, 1H, CH (9-BBN)), 2.07 (br s, 2H, CH₂ (9-BBN), 1.94 (m, 6H, ³*J*_{H-H} = 7.1 Hz, CH₂ (9-BBN) and CH(ⁱPr)), 1.61 (brs, 2H, CH₂(9-BBN)), 1.51 (quart, ¹*J*_{B-H} = 60 Hz, 1H, B-H), 1.02 (dd, ³*J*_{H-P} = 14.7 Hz, ³*J*_{H-H} = 6.9 Hz, 6H, CH₃(ⁱPr)), 0.90 (dd, ³*J*_{H-P} = 13.2 Hz, ³*J*_{H-H} = 7.1 Hz, 6H, CH₃(ⁱPr)).

³¹P{¹H} NMR (243.07 MHz, 298 K, C₆D₆): δ 0.2 (br s)

³¹P{¹H} NMR (243.07 MHz, 233 K, tol- d_8): $\delta - 1.6$ (quart, ¹ $J_{P-Li} = 69.4$ Hz)

³¹P{¹H} NMR (243.07 MHz, 298 K, THF- d_8): δ –0.4 (quart, J_{B-P} = 10.7 Hz)

¹¹B NMR (192.65 MHz, 298 K, C₆D₆): δ –13.3 (d, ¹*J*_{B-H} = 65.7 Hz)

¹¹B{¹H} NMR (192.65 MHz, 298 K, THF- d_8): δ –13.7 (d, J_{B-P} = 10.6 Hz)

¹³C{¹H} NMR (151.00 MHz, 298 K, C₆D₆): δ 169.0 (br s, C1), 136.1 (d, ¹*J*_{C-P} = 15.6 Hz, C2), 131.0 (s, C5), 128.8 (s, C6), 128.3 (s, C4), 123.6 (d, ²*J*_{C-P} = 3.2 Hz, C3), 36.8 (s, CH₂(9-BBN), C8), 31.0 (s, CH₂(9-BBN), C8), 25.9 (br, CH(ⁱPr)), 25.9 (s, CH₂(9-BBN), C9), 25.6 (s, CH₂(9-BBN), C9), 25.5 (br, CH(9-BBN), C7), 21.0 (d, ²*J*_{C-P} = 14.0 Hz, CH₃(ⁱPr)), 20.6 (d, ²*J*_{C-P} = 8.1 Hz, CH₃(ⁱPr)).

Comments: The CH(iPr), CH₂(9-BBN) {C9} and CH(9-BBN) (C7) signals are overlapping. Assignments were based on ${}^{13}C{}^{1}H{}^{31}P{}$, DEPT-135 and ${}^{1}H{}^{-13}C$ HSQC experiments.

⁷Li NMR (233.37 MHz, 298 K, C₆D₆): δ 0.4 (br s)

⁷Li NMR (233.37 MHz, 233 K, tol- d_8): δ 0.5 (dd, ¹ J_{P-Li} = 70.0 Hz, ¹ J_{Li-H} = 7.0 Hz)

³¹P{¹H} MAS NMR (168.8 MHz, 298 K): δ 5.4 (quart, ¹*J*_{P-Li} = 72.9 Hz)

⁷Li MAS NMR (155.30 MHz, 298 K): $\delta - 1.0$ (d, ¹*J*_{P-Li} = 72.9 Hz)

Anal. cald. for C₂₄H₄₃BLiOP: C, 72.73; H, 10.94. Found: C, 72.13; H, 11.20

Figure S1. ¹¹B NMR spectral stack plot of **1a** upon decoupling ¹H and ³¹P in THF- d_8 at 298 K.

Figure S2. ¹H NMR spectrum of **1a** in C₆D₆ at 298 K

Figure S3. COSY: ${}^{1}H / {}^{1}H$ NMR spectrum of **1a** at 298 K in C₆D₆.

Figure S4. ³¹P NMR spectrum of **1a** in C₆D₆ at 298 K. with the detection of $[o-iPr_2P-C_6H_4 - B(C_8H_{14})]$ (P-BBN, **5a**) as a result of partial evolution.

Figure S5. ¹¹B NMR spectral stack plot of **1a** upon decoupling ¹H and ³¹P at 298 K in C₆D₆.

Figure S6. ¹H-¹³C{¹H} HSQC spectrum of **1a** at 298 K in C₆D₆.

Figure S7. ${}^{1}H-{}^{13}C{}^{1}H$ HMBC spectrum of **1a** at 298 K in C₆D₆.

Fig S8. ⁷Li and ⁷Li{¹H} NMR spectral stack plot of 1a in tol- d_8 at 233 K.

Figure S9. ³¹P{¹H} and ³¹P{¹¹B}{¹H} NMR spectral stack plot of **1a** in tol- d_8 at 253 K. The change in $w_{1/2}$ is 4.0 Hz.

Figure S10. ⁷Li and ⁷Li{¹H}{³¹P} stack plot of spectra of 1a in tol- d_8 at 253 K.

42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 fl (ppm)

Figure S12. ${}^{31}P{}^{1}H$ CP MAS NMR spectrum of **1a** at 298 K. Peak marked '+' is arising due to decomposition of **1a**.

Figure S13. ¹¹B{¹H} MAS NMR spectrum of **1a** at 298 K.

Figure S14. ⁷Li MAS NMR spectrum of **1a** at 298 K. *-spinning side bands.

3. $[Li(THF)]^+[o^{-i}Pr_2P-C_6H_4-B(Mes_2)-H]^-$ (1b)

Mes₂B-H dimer (0.984 g, 1.97 mmol) and *o*-Li(0.9 Et₂O)-C₆H₄-PⁱPr₂ (1.05 g, 3.94 mmol) were stirred at rt in THF (20 mL) for 3 h under an argon atmosphere. Then the solvent volume was reduced to about 5 mL under vacuum. The product was precipitated by addition of *n*-pentane, and washed with *n*-pentane (3 x 10 mL). The solid was dried under vacuum before isolating it as a white powder (1.5 g, 2.87 mmol, 73 %). Monocrystals suitable for X-ray analysis were grown in n-pentane at -20 °C. Compound **1b** features one molecule of THF coordinated to Li⁺ as shown in the crystal structure as well as by ¹H NMR.

¹H NMR (400.18 MHz, 298 K, THF-*d*₈): δ 7.08 (dd, ³*J*_{H-H} = 7.6 Hz, ³*J*_{H-P} = 1.6 Hz, 1H, H3), 7.06 (br d, overlapping with H3, ³*J*_{H-H} = 7.4 Hz, 1H, H6), 6.68 (td, ³*J*_{H-H} = 7.3 Hz, ⁴*J*_{H-H} = 1.6 Hz, 1H, H4), 6.65 (td, ³*J*_{H-H} = 7.2 Hz, ⁴*J*_{H-H} = 1.3 Hz, 1H, H5), 6.34 (s, 4H, H_{aro}(Mes)), 4.05 (quart, ¹*J*_{B-H} = 77.9 Hz, 1H, B-H), 2.08 (s, 6H, *p*-CH₃(Mes)), 2.02 (dseptet, ³*J*_{H-H} = 7.2 Hz, ²*J*_{H-P} = 2.5 Hz, 2H, CH(iPr)), 1.89 (s, 12H, *o*-CH₃(Mes)), 0.99 (dd, ³*J*_{H-P} = 9.5 Hz, ³*J*_{H-H} = 6.9 Hz, 6H, CH₃(ⁱPr)), 0.93 (dd, ³*J*_{H-P} = 13.4 Hz, ³*J*_{H-H} = 7.1 Hz, 6H, CH₃(ⁱPr)).

¹H NMR (600.47 MHz, 298 K, C₆D₆): δ 7.82 (ddd, ³J_{H-H} = 6.8 Hz, ³J_{H-P} = 4.0 Hz, ⁴J_{H-H} = 1.7 Hz, 1H, H6), 7.29 (ddd, ³J_{H-P} = 6.8 Hz, ³J_{H-P} = 4.8 Hz, ⁴J_{H-H} = 1.7 Hz, 1H, H3), 7.14 (td, ³J_{H-H} = 7.2 Hz, ⁴J_{H-H} = 1.5 Hz, 2H, H4 & H5 overlapping with C₆D₆ signal), 7.05 (s, 1H, H_{aro}(Mes)), 6.72 (s, 1H, H_{aro}(Mes))), 6.66 (s, 1H, H_{aro}(Mes)), 3.68 (quart, ¹J_{B-H} = 65.0 Hz, 1H, B-H), 2.65 (s, 3H, *o*-CH₃(Mes)), 2.41 (s, 3H, *o*-CH₃(Mes)), 2.24 (s, 3H, *o*-CH₃(Mes)), 2.11 (s, 6H, *p*-CH₃(Mes)), 2.04 (s, 3H, *p*-CH₃(Mes)), 2.07 (m, ³J_{H-H} & ²J_{H-P} were not identified due to overlap with CH₃(Mes), 2H, CH(iPr)), 1.09 (s, 6H, overlap with THF, J_{H-P} and J_{H-H} could not identified), 0.98 (dd, ³J_{H-P} = 15.1 Hz, ³J_{H-H} = 7.0 Hz, 3H, CH₃(ⁱPr)), 0.92 (dd, ³J_{H-P} = 14.0 Hz, ³J_{H-H} = 6.7 Hz, 3H, CH₃(ⁱPr)).

Note: Among the four aromatic Mes protons, only three were identified. The last signal is overlapping with C_6D_6 signal.

³¹P{¹H} NMR (162.01 MHz, 298 K, THF- d_8): δ 1.2 (quart, $J_{B-P} = 16.7$ Hz)

³¹P{¹H} NMR (243.07 MHz, 298 K, C₆D₆): δ 0.52 (quart, ¹J_{P-Li} = 74.9 Hz)

¹¹B NMR (128.39 MHz, 298 K, THF- d_8): δ –14.0 (dd, ¹ J_{B-H} = 78.3, J_{B-P} = 17.0 Hz)

¹¹B NMR (192.65 MHz, 298 K, C₆D₆): δ –12.2 (dd, ¹*J*_{B-H} = 67.0, *J*_{B-P} = 11 Hz)

¹³C{¹H} NMR (151.00, 298 K, THF-*d*₈): δ 174.2 (br quart, C1), 159.8 (quart, ¹*J*_{C-B} = 51.4 Hz, C7), 143.6 (d, ¹*J*_{C-P} = 13.9 Hz, C2), 143.4 (s, C8), 137.0 (d, ²*J*_{C-P} = 9.4 Hz, C3), 129.2 (s, C10), 128.8 (s, C6), 127.8 (s, C9), 125.8 (s, C5), 121.6 (s, C4), 25.8 (s, o-CH₃(Mes)), 24.6 (d, ¹*J*_{C-P} = 20.8 Hz, CH(ⁱPr)), 22.4 (d, ²*J*_{C-P} = 21.9 Hz, CH₃(ⁱPr)), 21.6 (s, *p*-CH₃(Mes)), 20.0 (d, ²*J*_{C-P} = 13.5 Hz, CH₃(ⁱPr)).

⁷Li NMR (155.53, 298 K, THF-*d*₈): δ 0.5 (s)

⁷Li NMR (233.37, 298 K, C₆D₆): δ –0.4 (d, ¹*J*_{P-Li} = 73.0 Hz, ¹*J*_{Li-H} = 5.0 Hz).

⁷Li MAS NMR (155.53, 298 K): δ –0.9 (d, ¹*J*_{P-Li} = 72.1 Hz).

³¹P{¹H} MAS (161.76 MHz, 298 K): δ 0.8 (quart, ¹*J*_{P-Li} = 72.2 Hz).

HRMS ESI: Calc: 443.3039 (C₃₀H₄₁BP), found: 443.3040.

Anal. cald. for C₃₀H₄₁BLiP·2THF: C, 76.76; H, 9.66. Found: C, 76.83; H, 9.05.

Figure S15. ¹H NMR spectrum of phosphine borate compound **1b** in THF-*d*₈ at 298 K.

Figure S16. ¹H, ¹H{¹¹B} and ¹H{³¹P} NMR spectral stack plot of **1b** in THF- d_8 at 298 K.

Figure S17. ³¹P_INVAGATED_¹H NMR spectrum of **1b** at 298 K in THF- d_8 for the integration of the presence of **5b** (o^{-i} Pr₂P-C₆H₄-B(Mes₂)).

Note: Low temperature NMR spectra recorded for 1b at 213 K are the same as the 298 K spectra.

Figure S18. ${}^{31}P{}^{1}H$ and ${}^{31}P{}^{11}B{}^{1}H$ NMR spectral stack plot of **1b** in THF-*d*₈ at 298 K.

Figure S19. ¹¹B NMR spectral stack plot of **1b** upon decoupling ¹H and ³¹P at 298 K in THF-*d*₈.

Figure S20. ⁷Li and ⁷Li{¹H} NMR spectral stack plot of **1b** at 298 K in tol- d_8 .

nraN190709.9.fid 31P(1H){11B} C6D6
w _{1/2} = 27.0 Hz
mraN190709.21.fid 31P(1H) C6D6 $W_{1/2} = 41.0 \text{ Hz}$

F.O 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 -1.2 -1.4 -1.6 -1.8 -2.0 -2.2 -2.4 -2. f1 (ppm)

Figure S21. ³¹P{¹H} and ³¹P{¹H}{¹¹B} stack plot of spectra of **1b** in C₆D₆ at 298 K. The change in $w_{1/2}$ – 14.0 Hz.

Figure S22. ${}^{31}P{}^{1}H{}$ and ${}^{31}P{}^{1}H{}^{7}Li{}$ stack plot of spectra of **1b** in C₆D₆ at 298 K.

-3.5 -4.0 -4.5 -5.0 -5.5 -6.0 -6.5 -7.0 -7.5 -8.0 -8.5 -9.0 -9.5 -10.0 -10.5 -11.0 -11.5 -12.0 -12.5 -13.0 -13.5 -14.0 -14.5 -15.0 -15.5 -16.0 -16.5 -17.0 -17.5 -18.0 f1 (ppm)

Figure S23. ¹¹B NMR spectral stack plot of **1b** upon decoupling ¹H and ³¹P at 298 K in C₆D₆.

Figure S24. ⁷Li and ⁷Li{¹H}{³¹P} stack plot of spectra of **1b** in tol- d_8 at 298 K.

Figure S25. ³¹P{¹H} CPMAS NMR spectrum of **1b** at 298 K.

Figure S27. $^{11}B{^{1}H}$ MAS spectrum of **1b** at 298 K.

Figure S28. HRMS ESI spectrum of compound 1b.

4. [Li⁺(THF)2][*o*-iPr2P-C₆H₄-B(Ipc)2-H]- (1c)

Diisopinocampheylborane (0.414 g, 1.45 mmol) and o-Li(0.9 Et₂O)-C₆H₄-PⁱPr₂ (0.386 g, 1.45 mmol) were stirred at 298 K in toluene (10 mL) for 2 h under an argon atmosphere. Toluene was removed under vacuum. THF (3 mL) was added. Slow evaporation of THF under an argon atmosphere resulted in the formation of an oil. The supernatant was carefully filtered. Storage of the oil at -35° C in n-pentane (20 mL) resulted in the formation of a white precipitate. The colourless precipitate was separated and dried under vacuum. (0.660 g, 73 %). Monocrystals suitable for X-ray diffraction were obtained in n-pentane at -35° C upon standing for 72 h.

¹H NMR (600.47 MHz, 298 K, THF-*d*₈): δ 7.66 (ddd, ³*J*_{H-H} = 7.4 Hz, ⁴*J*_{H-P} = 3.4 Hz, ⁴*J*_{H-H} = 1.6 Hz, 1H, H3), 7.07 (dt, ³*J*_{H-H} = 7.7 Hz, ⁴*J*_{H-H} = 1.7 Hz, 1H, H6), 6.76 (td, ³*J*_{H-H} = 7.2 Hz, ⁴*J*_{H-P} = 1.4 Hz, 1H, H4), 6.64 (td, ³*J*_{H-H} = 7.3 Hz, ⁴*J*_{H-H} = 1.5 Hz, 1H, H5), 2.44 (quart, ¹*J*_{B-H} = 81.3 Hz, 1H, B-H), 2.12 (m, ³*J*_{H-H} = 6.0 Hz, ⁴*J*_{H-H} = 2.9 Hz, 2H, CH + CH₂ (1H diastero)), 2.01 (m, 4H, ²*J*_{H-P} = 15.9 Hz, ³*J*_{H-H} = 7.2 Hz, ⁴*J*_{H-H} = 3.6 Hz, CH(ⁱPr) overlap with C-H(Ipc) + CH₂ (1H diastero)), 1.91 (m, 2H, ³*J*_{H-H} = 6.2 Hz, ⁴*J*_{H-H} = 3.6 Hz, C-H(Ipc) + CH₂ (1H diastero) overlapping), 1.61 (m, 2H, ³*J*_{H-H} = 6.2 Hz, ⁴*J*_{H-H} = 3.6 Hz, C-H(Ipc) + CH₂ (1H diastero) overlapping), 1.64 (td, 1H, ³*J*_{H-H} = 5.9 Hz, ⁴*J*_{H-H} = 2.2 Hz, C-H(Ipc)), 1.37 (d, 1H, ³*J*_{H-H} = 8.0 Hz, CH₂ (1H diastero)), 1.09 (s, 3H, CH₃(Ipc)), 1.08 (s, 3H, CH₃(Ipc)), 1.07 (dd, 3H, ³*J*_{H-P} = 12.0 Hz, ³*J*_{H-H} = 7.0 Hz, CH₃(ⁱPr)), 1.01 (s, 3H, CH₃(Ipc)), 1.01 (dd, 3H, ³*J*_{H-F} = 12.2 Hz, CH₃(ⁱPr)), 0.99 (dd, 3H, ³*J*_{H-P} = 11.0 Hz, ³*J*_{H-H} = 7.2 Hz, CH₃(ⁱPr)), 0.94 (d, ³*H*, ³*J*_{H-H} = 7.2 Hz, CH₃(Ipc)), 0.24 (d, ³*J*_{H-H} = 7.7 Hz, CH₂ (1H diastereo)).

Notes: one CH₃(¹Pr) and two CH₃(Ipc) signals are overlapping at δ 1.08 ppm: CH + CH₂(diastereo) signals are overlapping at δ 1.37 ppm: CH + CH₂(diastereo) signals are overlapping at δ 1.61: In total, all CH of CH₂ signals are diastereotopic, so eight different sets of signals were found: CH (chiral group) + CH₂ (diastero) accounting 2H is buried inside THF signal at δ 1.78 ppm.

¹H NMR (600.47 MHz, 298 K, C₆D₆): δ 8.20 (ddd, ³*J*_{H-H} = 7.8 Hz, ⁴*J*_{H-P} = 3.8 Hz, ⁴*J*_{H-H} = 1.5 Hz, 1H, H3), 7.40 (tt, ³*J*_{H-H} = 7.3 Hz, ⁴*J*_{H-H} = 1.4 Hz, 1H, H4), 7.29 (ddd, ³*J*_{H-H} = 7.8 Hz, ⁴*J*_{H-P} = 4.6 Hz, ⁴*J*_{H-P} = 1.4 Hz,

1H, H6), 7.18 (td, ${}^{3}J_{H-H} = 7.8$ Hz, ${}^{4}J_{H-H} = 1.4$ Hz, 1H, H5), 2.57 (t, ${}^{3}J_{H-H} = 10.7$ Hz, 1H, CH), 2.39 (dd, 2H, ${}^{3}J_{H-H} = 7.6$ Hz, ${}^{4}J_{H-H} = 2.8$ Hz, C-H(Ipc)), 2.34 (m, 1H, ${}^{3}J_{H-H} = 8.3$ Hz, ${}^{4}J_{H-H} = 1.8$ Hz, C-H(Ipc)), 2.17 (m, 2H, ${}^{3}J_{H-H} = 8.3$ Hz, C-H(Ipc)), 2.14 (m, 1H, ${}^{3}J_{H-H} = 5.8$ Hz, C-H(Ipc)), 1.98 (dsept, 2H, ${}^{2}J_{H-P} = 9.2$ Hz, ${}^{3}J_{H-H} = 4.6$ Hz, C-H(iPr)), 1.92 (td, 2H, ${}^{3}J_{H-H} = 5.7$ Hz, ${}^{4}J_{H-H} = 1.8$ Hz, CH), 1.69 (m, 1H, CH(Ipc)), 1.51 (s, 3H, CH₃(Ipc)), 1.46 (s, 3H, CH₃(Ipc)), 1.39 (d, ${}^{3}J_{H-H} = 7.1$ Hz, 3H, CH₃(Ipc)), 1.36 (s, 3H, CH₃(Ipc)), 1.34 (s, 3H, CH₃(Ipc)), 1.28 (d, 3H, ${}^{3}J_{H-H} = 7.1$ Hz, CH₃(Ipc)), 1.05 (dd, 6H, ${}^{3}J_{H-P} = 15.5$ Hz, ${}^{3}J_{H-H} = 6.8$ Hz, two CH₃(¹Pr) group overlap), 0.99 (dd, 6H, ${}^{3}J_{H-P} = 11.6$ Hz, ${}^{3}J_{H-H} = 7.2$ Hz, two CH₃(¹Pr) group overlap), 0.82 (d, 1H, ${}^{3}J_{H-H} = 8.5$ Hz, CH₂ (1H diastereo)), 0.76 (d, ${}^{3}J_{H-H} = 8.5$ Hz, CH₂ (1H diastereo)).

Notes: B-H signal was not identified: 8 C-H and 4 CH₂ signals of chiral group are inequivalent. The CH₂ hydrogens are diastereotopic and overlapping with CH signals.

³¹P{¹H} NMR (243.07 MHz, 298.1 K, THF- d_8): δ 1.4 (quart, $J_{P-B} = 14.5$ Hz)

³¹P{¹H} NMR (243.08 MHz, 298 K, C₆D₆): 2.7 (quart, ${}^{1}J_{P-Li} = 72.8 \text{ Hz}$)

³¹P{¹H} CPMAS NMR (161.76 MHz, 298 K): δ 0.6 (br s, $w_{1/2}$ – 1400 Hz)

Note: The two signals were attributed to two different orientation of the molecule in the solid state.

¹¹B NMR (192.65 MHz, 298 K, THF- d_8): δ –9.4 (d, ¹ J_{B-H} = 81.4 Hz)

¹¹B{¹H} NMR (192.65 MHz, 298 K, THF- d_8): δ –9.4 (d, J_{B-P} = 13.0 Hz)

¹¹B{¹H} NMR (192.65 MHz, 298 K, C₆D₆): δ –4.6 (d, ¹J_{B-H} = 64.7 Hz)

¹³C{¹H} NMR (151.00 MHz, 298 K, THF-*d*₈): δ 175.3 (quart, ¹*J*_{B-C} = 48.1 Hz, C1), 144.3 (d, ¹*J*_{P-C} = 11.2 Hz, C2), 137.6 (d, ²*J*_{C-P} = 9.3 Hz, C3), 129.1 (s, C6), 124.1 (s, C4), 121.0 (s, C5), 52.6 (s, CH), 51.1 (s, CH), 45.1 (s, CH), 44.9 (s, CH₂), 44.2 (s, CH), 41.5 (s, overlapping CH), 41.0 (s, CH), 40.4 (s, quaternary carbon (Ipc)), 36.6 (s, CH₂), 33.3 (s, CH₂), 33.1 (s, CH₂), 32.8 (s, CH₂), 31.4 (s, quaternary carbon (Ipc)), 29.6 (s, CH₃(Ipc)), 29.4 (s, CH₃(Ipc)), 26.9 (d, ¹*J*_{P-C} = 22.4 Hz, CH(ⁱPr)), 26.6 (s, CH₃(Ipc)), 24.7 (d, ¹*J*_{P-C} = 21.6 Hz, CH(ⁱPr)), 24.1 (s, CH₃(Ipc)), 23.8 (s, CH₃(Ipc)), 22.3 (d, ²*J*_{P-C} = 19.9 Hz, CH₃(ⁱPr)), 22.0 (d, ²*J*_{P-C} = 18.0 Hz, CH₃(ⁱPr)), 21.2 (d, ²*J*_{P-C} = 21.2 Hz, CH₃(ⁱPr)), 20.1 (d, ²*J*_{P-C} = 11.7 Hz, CH₃(ⁱPr)),

Notes: 2 $CH(^{i}Pr)$ and 4 $CH_{3}(^{i}Pr)$ carbons on isopropyl group are inequivalent: 8 CH and 4 CH_{2} carbons are inequivalent.

⁷Li (155.53, 298 K, THF-*d*₈): δ –0.5 (s)

⁷Li NMR (233.37, 298 K, C₆D₆): δ 1.5 (dd, ¹*J*_{P-Li} = 73.0 Hz, ¹*J*_{Li-H} = 11.0 Hz)

⁷Li MAS NMR (155.30, 298 K): δ 0.9 (br s, $w_{1/2} = 271.0$ Hz)

¹³C{¹H} NMR (151.00 MHz, 298 K, C₆D₆): δ 169.3 (br, C1), 138.3 (d, ${}^{1}J_{P-C} = 11.2$ Hz, C3),134.7 (d, ${}^{2}J_{C-P} = 16.0$ Hz, C2), 131.0 (s, C6), 127.4 (s, C4), 123.3 (d, ${}^{4}J_{P-C} = 3.3$ Hz, C5), 51.8 (s, CH), 50.4 (s, CH), 43.8 (s, CH), 43.6 (s, CH), 43.3 (s, CH), 41.3 (s, CH), 40.2 (s, CH), 39.9 (s, C-H), 36.6 (s, CH₂), 34.3 (s, CH₂),

33.3 (s, CH₂), 31.7 (s, CH₂), 28.8 (s, CH), 28.6 (s, CH), 25.6 (s, CH), 24.7 (s, CH), 24.6 (d, ${}^{1}J_{P-C} = 6.5$ Hz, CH(ⁱPr)), 23.6 (s, CH), 23.5 (s, CH), 21.0 (d, ${}^{2}J_{P-C} = 14.2$ Hz, CH₃(ⁱPr)), 20.8 (d, ${}^{2}J_{P-C} = 13.4$ Hz, CH₃(ⁱPr)), 20.3 (d, ${}^{2}J_{P-C} = 6.9$ Hz, CH₃(ⁱPr)), 20.2 (d, ${}^{2}J_{P-C} = 6.8$ Hz, CH₃(ⁱPr)).

Anal. cald. for $C_{32}H_{53}BLiP.4THF$: C, 74.40; H, 11.06. Found: C, 74.44; H, 10.58. The presence of four THF molecules was confirmed by ¹H NMR spectroscopy.

Specific optical rotation $[\alpha]_D^{25} = +48.0^{\circ}$

Figure S29. Stack plot spectra of ¹H, ¹H {¹¹P} and ¹H {³¹B} NMR of **1c** in THF- d_8 at 298 K.

Figure S30. ${}^{31}P{}^{1}H$ and ${}^{31}P{}^{11}B{}^{1}H$ NMR spectral stack plot of **1c** in THF-*d*₈ at 298 K.

Figure S31. $^{1}H-^{13}C{^{1}H}$ HSQC spectrum of **1c** at 298 K in THF- d_{8} .

Figure S32. ¹¹B NMR spectral stack plot of **1c** upon decoupling ¹H and ³¹P at 298 K in THF-*d*₈.

Figure S33. ⁷Li NMR spectrum of **1c** at 298 K in THF-*d*₈.

Figure S34. ¹H NMR spectrum of compound **1c** in C₆D₆ at 298 K.

nraN200612.201.fid 31P{1H}{11B} 298K

Figure S35. ³¹P{¹H} and ³¹P{¹H}{¹¹B} stack plot of spectra of **1c** in C₆D₆ at 298 K. Change in $w_{1/2}$ is 9.0 Hz.

Figure S36. ¹¹B, ¹¹B $\{^{1}H\}$ and ¹¹B $\{^{1}H\}\{^{31}P\}$ stack plot of spectra of **1c** in C₆D₆ at 298 K.

nraN201013.23.fid 7Li{1H} 298K ChiBHLi

20 2.15 2.10 2.05 2.00 1.95 1.90 1.85 1.80 1.75 1.70 1.65 1.60 1.55 1.50 1.45 1.40 1.35 1.30 1.25 1.20 1.15 1.10 1.05 1.00 0.95 0.90 0.85 0.80 fl (ppm)

Figure S38. ${}^{31}P{}^{1}H$ CP MAS NMR spectrum of **1c** at 298 K. The P-Li coupling is not resolved probably due to the crystallinity of the sample.

Figure S39. ⁷Li MAS NMR spectrum of **1c** at 298 K. Due to the broadness of the signal, ${}^{1}J_{P-Li}$ is not resolved. The sharp signal at -1.1 ppm could be due to a different crystalline arrangement.

Figure S40. ¹¹B{¹H} MAS NMR spectrum of **1c** at 298 K.

5. [o-iPr₂P(CH₃)-C₆H₄-B(Mes₂)-H] (2)

Lithium phosphine borohydride **1b** (20 mg, 0.04 mmol) was dissolved in a J. Young NMR tube in THF- d_8 at 298 K. Then, four equivalents of methyl iodide (21.6 mg, 0.15 mmol) were added. NMR spectroscopy revealed the complete formation of **2**.

¹H NMR (600.47 MHz, 233 K, THF-*d*₈): δ 7.55 (dd, ³*J*_{H-P} = 12.1 Hz, ³*J*_{H-H} = 7.7 Hz, 1H, H3), 7.49 (ddd, ³*J*_{H-H} = 7.5 Hz, ⁴*J*_{H-P} = 4.5 Hz, ⁴*J*_{H-H} = 1.7 Hz, 1H, H6), 7.13 (td, ³*J*_{H-H} = 7.3 Hz, ⁴*J*_{H-H} = 1.4 Hz, 1H, H4), 7.09 (td, ³*J*_{H-H} = 7.4 Hz, ⁴*J*_{H-H} = 1.6 Hz, 1H, H5), 6.53 (s, 2H, H_{aro}(Mes)), 6.48 (s, 1H, H_{aro}(Mes)), 6.36 (s,

1H, H_{aro}(Mes)), 3.64 (quart, ${}^{1}J_{B-H} = 76.8$ Hz, 1H, B-H), 3.58 (dseptet, ${}^{3}J_{H-H} = 7.0$ Hz, ${}^{2}J_{H-P} = 4.2$ Hz, 1H, CH(iPr)), 3.43 (septet, ${}^{3}J_{H-H} = 7.5$ Hz, 1H, CH(iPr)), 2.13 (s, 3H, *o*-CH₃(Mes)), 2.10 (s, 6H, *o*-CH₃(Mes)), 1.92 (s, 3H, *o*-CH₃(Mes)), 1.78 (s, 3H, *p*-CH₃(Mes)), 1.69 (d, ${}^{2}J_{H-P} = 12.9$ Hz 3H, P-CH₃), 1.59 (s, 3H, *p*-CH₃(Mes)), 1.31 (dd, ${}^{3}J_{H-P} = 15.6$ Hz, ${}^{3}J_{H-H} = 6.9$ Hz, 3H, CH₃(iPr)), 1.18 (dd, ${}^{3}J_{H-P} = 17.2$ Hz, ${}^{3}J_{H-H} = 7.3$ Hz, 3H, CH₃(iPr)), 1.13 (dd, ${}^{3}J_{H-P} = 17.0$ Hz, ${}^{3}J_{H-H} = 8.1$ Hz, 3H, CH₃(iPr)), 1.07 (dd, ${}^{3}J_{H-P} = 16.2$ Hz, ${}^{3}J_{H-H} = 7.0$ Hz, 3H, CH₃(iPr)).

Comments: B-H signal partially overlapped with THF signal at δ 3.58. Two CH(iPr) signals are inequivalent and one of them overlap with THF signal at δ 3.58. Two mesityl CH₃ singlets overlap at δ 2.10, thus appearing as a doublet, and one of the CH₃(Mes) overlap with THF signal at δ 1.78.

³¹P{¹H} NMR (243.09 MHz, 233 K, THF- d_8): δ 37.9 (s, $w_{1/2} = 21.3$ Hz)

³¹P{¹H}{¹¹B} NMR (243.09 MHz, 233 K, THF- d_8): δ 37.9 (s, $w_{1/2} = 11.4$ Hz)

With ¹³C labelled compound. ³¹P{¹H} NMR (243.07 MHz, 233 K, C₆D₆): δ 37.7 (d, ¹J_{P-C} = 49.5 Hz).

¹¹B NMR (192.65 MHz, 233 K, THF- d_8): δ –13.2 (d, ¹ J_{B-H} = 75.4 Hz).

¹¹B{¹H} NMR (192.65 MHz, 233 K, THF- d_8): δ –13.2 (d, $w_{1/2}$ = 21.0 Hz, J_{P-B} = 3 Hz).

¹¹B{¹H}{³¹P} NMR (192.65 MHz, 233 K, THF- d_8): δ –13.2 (s, $w_{1/2}$ = 16.7 Hz).

¹³C{¹H} NMR (151.00, 233 K, THF-*d*₈): δ 176.0 (quart, ¹*J*_{C-B} = 44.8 Hz, C-1), 157.4 (quart, ¹*J*_{C-B} = 49.1 Hz, quaternary), 155.5 (quart, ¹*J*_{C-B} = 52.7 Hz, quaternary), 143.2 (s, Mes(quaternary)), 142.7 (s, Mes(quaternary)), 142.4 (s, Mes(quaternary)), 142.0 (s, Mes(quaternary)), 140.3 (d, ²*J*_{C-P} = 16.3 Hz, C-3), 131.7 (s, Mes(quaternary)), 132.1 (d, ²*J*_{C-P} = 14.0 Hz, C-6), 131.6 (s, C-5), 129.4 (s, Mes(aromatic)), 128.9 (s, Mes(aromatic)), 128.3 (s, Mes(aromatic)), 124.8 (d, ³*J*_{C-P} = 12.6 Hz, C-4), 122.5 (d, ¹*J*_{C-P} = 82.2 Hz, C-2), 27.1 (s, CH₃(Mes)), 26.6 (s, CH₃(Mes)), 26.5 (s, CH₃(Mes)), 24.6 (s, CH₃(Mes)), 24.7 (d, ¹*J*_{C-P} = 46.8 Hz, CH(ⁱPr)), 21.8 (d, ¹*J*_{C-P} = 47.3 Hz, CH(ⁱPr)), 21.5 (s, CH₃(Mes)), 21.4 (s, CH₃(Mes)), 17.9 (s, CH₃(ⁱPr)), 17.0 (d, ²*J*_{C-P} = 2.6 Hz, CH₃(ⁱPr)), 16.9 (s, CH₃(ⁱPr)), 15.8 (s, CH₃(ⁱPr)), 1.4 (d, ¹*J*_{C-P} = 45.7 Hz, P-CH₃).

Comments: Surprisingly, no ${}^{3}J_{C-P}$ was found for three CH₃(${}^{i}Pr$) and very large ${}^{1}J_{C-P}$ found for CH(${}^{i}Pr$).

Figure S41. ¹H NMR spectrum of **2** at 233 K in THF- d_8 .

Figure S42. ¹H, ¹H{³¹P} and ¹H{¹¹B} NMR spectral stack plot of methyl phosphonium borate **2** in THF- d_8 at 233 K. The doublet centred at δ 1.69 ppm with ² $J_{P-H} = 12.9$ Hz become a singlet after ¹H{³¹P} decoupling.

Figure S43. ¹H and ¹H{³¹P} NMR spectral stack plot of ¹³C labelled methyl phosphonium borate **2** in THF-*d*₈ at 298 K. The doublet of doublet (**) centred at δ 1.7 ppm with ²*J*_{P-H} = 12.7 Hz and ¹*J*_{C-H} = 134.0 Hz can be assigned to P-*CH*₃.

42.8 42.6 42.4 42.2 42.0 41.8 41.6 41.4 41.2 41.0 40.8 40.6 40.4 40.2 40.0 39.8 39.6 39.4 39.2 39.0 38.8 38.6 38.4 38.2 38.0 37.8 37.6 37.4 37.2 37.0 36.8 fl (ppm)

Fig S44. ³¹P{¹H} NMR spectral stack plot of **2** at 298 K in THF- d_8 : bottom trace (**2-P-CH**₃) and top trace (**2-P-¹³CH**₃). It shows ¹*J*_{P-C} = 50.0 Hz.

2.35 -12.40 -12.45 -12.50 -12.55 -12.60 -12.65 -12.70 -12.75 -12.80 -12.85 -12.90 -12.95 -13.00 -13.05 -13.10 -13.15 -13.20 -13.25 -13.30 -13.35 -13.40 -13.45 -13.50 -13.55 -13.6 f1 (ppm)

Figure S45. ¹¹B and ¹¹B{¹H} NMR spectral stack plot of **2** at 298 K in THF- d_8 , giving $J_{P-B} = 3$ Hz.

Figure S46. ¹³C{¹H} and ¹³C{¹H}{³¹P} superimposed NMR stack plot of the ¹³CH₃ labelled **2**. The doublet due to P-C coupling at δ 1.6 ppm become singlet upon decoupling.

Figure S47. ¹³C{¹H} NMR spectrum of **2** in THF- d_8 at 233 K.

Figure S48. Selective 1D ¹H-¹³C HSQC experiment on 2 to prove P-CH₃ bond formation.

6. Li⁺(THF)[1-B((Mes₂)-H)-(C₁₀H₆)-8-(PⁱPr₂)]⁻(3)

Dimesitylborane dimer (0.392 g, 0.78 mmol) and o-Li(0.9 Et₂O)-C₁₀H₆-PⁱPr₂ (0.508 g, 1.57 mmol) were stirred together at 298 K in THF (10 mL) for 2 h under argon atmosphere. Then, THF was completely removed under vacuum. Diethyl ether (5 mL) was added to precipitate the product at -35° C. The pale-yellow precipitate was washed with n-pentane (3 x 3 mL) and dried under vacuum. The pale yellow solid **3** was isolated (0.820 g, 1.04 mmol, 66 %). Monocrystals suitable for X-ray diffraction were obtained in n-pentane at -35° C upon standing for a week.

¹H NMR (600.47 MHz, 233 K, THF-*d*₈): δ 7.54 (d, ³*J*_{H-H} = 7.8 Hz, 1H, H5), 7.48 (d, ³*J*_{H-H} = 7.0 Hz, 1H, H7), 7.33 (d, ³*J*_{H-H} = 7.0 Hz, 1H, H4), 7.22 (d, ³*J*_{H-H} = 7.7 Hz, 1H, H2), 7.10 (t, ³*J*_{H-H} = 7.4 Hz, 1H, H6), 6.83 (t, ³*J*_{H-H} = 7.4 Hz, 1H, H3), 6.45 (s, 1H, H_{aro}Mes), 6.39 (s, 2H, H_{aro}Mes), 6.11 (s, 1H, H_{aro}Mes), 4.51 (quart, ¹*J*_{B-H} = 71.4 Hz, 1H, B-H), 2.12 (s, 6H, *p*-CH₃(Mes)), 2.07 (s, 3H, *o*-CH₃(Mes)), 2.00 (s, 3H, *o*-CH₃(Mes)), 1.82 (s, 3H, *o*-CH₃(Mes)), 1.78 (m, 1H, CH(iPr) overlapping with THF signal), 1.63 (sept, 2H, ³*J*_{H-H} = 6.8 Hz), 1.35 (s, 3H, *o*-CH₃(Mes)), 1.04 (overlapping dd, 6H, ³*J*_{H-H} = 6.5 Hz, CH₃(iPr)), 0.72 (dd, 3H, ³*J*_{H-P} = 14.8 Hz, ³*J*_{H-H} = 6.5 Hz, CH₃(iPr)), 0.32 (dd, 3H, ³*J*_{H-P} = 10.6 Hz, ³*J*_{H-H} = 6.8 Hz, CH₃(iPr)).

³¹P{¹H} NMR (243.07 MHz, 298 K, THF- d_8): δ 5.37 (quart, $J_{P-B} = 22.3$ Hz).

³¹P{¹H} NMR (162.01 MHz, 298 K, C_6D_6): 4.2 (quart, ¹*J*_{P-Li} = 73.0 Hz).

¹¹B NMR (192.65 MHz, 298 K, THF- d_8): $\delta - 11.8$ (dd, ${}^{1}J_{B-H} = 79.7$ Hz, $J_{B-P} = 20$ Hz).

¹¹B{¹H} NMR (192.65 MHz, 298 K, THF- d_8): $\delta - 11.8$ (d, $J_{B-P} = 20$ Hz).

¹¹B NMR (128.39 MHz, 298 K, C₆D₆): δ –10.8 (dd, ¹*J*_{B-H} = 68.8 Hz, *J*_{B-P} = 9 Hz).

¹¹B{¹H} NMR (128.39 MHz, 298 K, C₆D₆): δ –10.8 (d, $J_{B-P} = 9$ Hz).

¹³C{¹H} NMR (151.00 MHz, 233 K, THF-*d*₈): δ 167.9 (br, ipso-C(Mes)), 161.4 (br, C-8), 145.6 (d, ¹*J*_{C-P} = 22.6 Hz, C-1), 143.9 (s, quaternary), 143.5 (s, quaternary), 143.4 (s, quaternary), 143.24 (s, quaternary), 34

143.23 (s, quaternary), 143.20 (s, quaternary overlapping), 135.8 (d, ${}^{2}J_{C-P} = 5.8$ Hz, C-2), 135.1 (s, C-4), 131.2 (s, C-7), 130.7 (s, C-5), 129.4 (s, C_{aro}Mes), 128.7 (s, C_{aro}Mes), 128.2 (s, C_{aro}Mes), 127.8 (s, C_{aro}Mes), 127.63 (s, C_{aro}Mes), 127.56 (s, C_{aro}Mes), 125.1 (s, C_{aro}Mes), 124.6 (s, C-3), 122.3 (s, C6), 32.0 (d, ${}^{1}J_{C-P} = 27.4$ Hz, CH(ⁱPr)), 28.6 (d, ${}^{1}J_{P-C} = 29.9$ Hz, CH(ⁱPr)), 27.3 (s, CH₃(Mes)), 25.9 (s, CH₃(iPr)), 23.3 (d, ${}^{2}J_{P-C} = 17.9$ Hz, CH₃(ⁱPr)), 22.1 (d, ${}^{2}J_{P-C} = 36.8$ Hz, CH₃(ⁱPr)), 21.8 (s, CH₃(Mes)), 21.0 (d, ${}^{2}J_{P-C} = 15.6$ Hz, CH₃(ⁱPr)), 20.8 (d, ${}^{2}J_{P-C} = 19.3$ Hz, CH₃(ⁱPr)).

Notes: All the quaternary carbons were identified by ${}^{1}H{-}{}^{13}C{}^{1}H{}$ HSQC NMR spectrum. ${}^{1}H{-}{}^{13}C{}^{1}H{}$ HMBC NMR spectrum was also used to assign quaternary signals.

⁷Li (233.37, 298 K, THF-*d*₈): δ –0.1 (s)

⁷Li NMR (155.53, 298 K, C₆D₆): δ –0.2 (d, ¹*J*_{P-Li} = 71.3 Hz)

Anal. cald. for $C_{42}H_{59}BLiO_2P \cdot 2THF$: C, 78.25; H, 9.23. Found: C, 77.68; H, 8.52. The presence of two THF molecules was confirmed by ¹H NMR spectroscopy.

Figure S49.¹H NMR spectrum of naphtyl borate **3** at 233 K in THF- d_8 . At 298 K, the isopropyl region is broad, overlapping and multiplicity are not well resolved.

Figure S50. ¹H, ¹H{¹¹B} and ¹H{³¹P} stack plot of **3** at 233 K in THF- d_8 .

rayK0572.2.fid 5.90 5.79 5.55 PBH-nap-iso P31_DECOUPLE_H1 THF /x/av400hd/data/eq_n/nmr r.ayyappann 1

Figure S51. ${}^{31}P{}^{1}H$ NMR spectrum of naphtyl borate **3** in THF-*d*₈ at 298 K.

-9.2 -9.4 -9.6 -9.8 -10.0 -10.2 -10.4 -10.6 -10.8 -11.0 -11.2 -11.4 -11.6 -11.8 -12.0 -12.2 -12.4 -12.6 -12.8 -13.0 -13.2 -13.4 -13.6 -13.8 -14.0 -14 f1 (ppm)

Figure S53. ¹¹B, ¹¹B{¹H} and ¹¹B{¹H}{³¹P} NMR spectral stack plot of naphtyl borate **3** at 298 K in THF- d_8 .

Figure S54. ¹³C{¹H} NMR spectrum of naphtyl borate **3** at 233 K in THF-*d*₈.

rayK0570.5.fid PBH-nap-iso Li7_ THF /x/av400hd/data/eq_n/nmr r.ayyappann 7

Figure S55. ⁷Li NMR spectrum of naphtyl borate **3** at 233 K in THF-*d*₈.

Figure S57.¹¹B, ¹¹B{¹H} and ¹¹B{¹H}{³¹P} decoupling experiment of naphtyl borate **3** in C₆D₆ at 298 K. In the ¹¹B{¹H}{³¹P} spectrum (top), the broadness at the base line could indicate a not complete ³¹P

Figure S58. ⁷Li NMR spectrum of napthyl borate **3** in C₆D₆ at 298 K.

7. Characterization of methyl phosphonium naphtyl borate [1-B(Mes₂)-H)-(C₁₀H₆)-8-P(iPr₂)(CH₃)]- (4)

Lithium napthyl phosphine borohydride **3** (20 mg, 0.254 mmol) was dissolved in a J. Young NMR tube in THF- d_8 at 298 K. Then, four equivalents of methyl iodide (14.4 mg, 1.016 mmol) were added. NMR spectroscopy revealed the complete formation of **4**.

¹H NMR (600.47 MHz, 233 K, THF-*d*₈): δ 8.03 (d, ³*J*_{H-H} = 8.0 Hz, 1H, H4), 7.70 (dd, ³*J*_{H-P} = 16.8 Hz, ³*J*_{H-H} = 7.2 Hz, 1H, H2), 7.57 (d, ³*J*_{H-H} = 7.8 Hz, 1H, H5), 7.54 (d, ³*J*_{H-H} = 7.0 Hz, 1H, H7), 7.40 (td, ³*J*_{H-H} = 7.8 Hz, 1H, H5), 7.54 (d, ³*J*_{H-H} = 7.0 Hz, 1H, H7), 7.40 (td, ³*J*_{H-H} = 7.8 Hz, 1H, H5), 7.54 (d, ³*J*_{H-H} = 7.0 Hz, 1H, H7), 7.40 (td, ³*J*_{H-H} = 7.8 Hz, 1H, H5), 7.54 (d, ³*J*_{H-H} = 7.0 Hz, 1H, H7), 7.40 (td, ³*J*_{H-H} = 7.8 Hz, 1H, H5), 7.54 (d, ³*J*_{H-H} = 7.0 Hz, 1H, H7), 7.40 (td, ³*J*_{H-H} = 7.8 Hz, 1H, H5), 7.54 (d, ³*J*_{H-H} = 7.0 Hz, 1H, H7), 7.40 (td, ³*J*_{H-H} = 7.8 Hz, 1H, H5), 7.54 (d, ³*J*_{H-H} = 7.0 Hz, 1H, H7), 7.40 (td, ³*J*_{H-H} = 7.8 Hz, 1H, H5), 7.54 (d, ³*J*_{H-H} = 7.0 Hz, 1H, H7), 7.40 (td, ³*J*_{H-H} = 7.8 Hz, 1H, H5), 7.54 (d, ³*J*_{H-H} = 7.0 Hz, 1H, H7), 7.40 (td, ³*J*_{H-H} = 7.8 Hz, 1H, H5), 7.54 (d, ³*J*_{H-H} = 7.0 Hz, 1H, H7), 7.40 (td, ³*J*_{H-H} = 7.8 Hz, 1H, H5), 7.54 (d, ³*J*_{H-H} = 7.0 Hz, 1H, H7), 7.40 (td, ³*J*_{H-H} = 7.8 Hz, 1H, H5), 7.54 (d, ³*J*_{H-H} = 7.8 Hz, 1H, H5), 7.54 (d, ³*J*_{H-H} = 7.8 Hz, 1H, H5), 7.54 (d, ³*J*_{H-H} = 7.0 Hz, 1H, H7), 7.40 (td, ³*J*_{H-H} = 7.8 Hz, 1H, H5), 7.54 (d, ³*J*_{H-H} = 7.8 Hz, 1H, H5), 7.5

7.6 Hz, ${}^{3}J_{H-P} = 1.8$ Hz, 1H, H3), 7.15 (t, ${}^{3}J_{H-H} = 7.4$ Hz, 1H, H6), 6.67 (s, 1H, H_{aro}Mes), 6.47 (s, 2H, H_{aro}Mes), 6.43 (s, 1H, H_{aro}Mes), 6.10 (s, 1H, H_{aro}Mes), 4.59 (dsept, ${}^{2}J_{H-P} = 14.5$ Hz, ${}^{3}J_{H-H} = 7.2$ Hz, 1H, CH(ⁱPr)), 4.10 (quart, ${}^{1}J_{B-H} = 73.3$ Hz, 1H, B-H), 3.76 (dsept, ${}^{2}J_{H-P} = 14.3$ Hz, ${}^{3}J_{H-H} = 7.2$ Hz, 1H, CH(ⁱPr)), 2.50 (s, 3H, *p*-CH₃(Mes)), 2.17 (s, 3H, *o*-CH₃(Mes)), 2.01 (s, 3H, *o*-CH₃(Mes)), 1.89 (s, 3H, *o*-CH₃(Mes)), 1.77 (d, ${}^{2}J_{H-P} = 10.9$ Hz, 3H, P-CH₃), 1.48 (dd, ${}^{3}J_{H-P} = 17.1$ Hz, ${}^{3}J_{H-H} = 7.3$ Hz, 3H, CH₃(ⁱPr)), 1.42 (s, 3H, *o*-CH₃(Mes)), 1.20 (dd, 3H, ${}^{3}J_{H-P} = 17.1$ Hz, ${}^{3}J_{H-H} = 7.1$ Hz, CH₃(ⁱPr)), 0.45 (overlapping dd, 6H, ${}^{3}J_{H-P} = 12.9$ Hz, ${}^{3}J_{H-H} = 7.0$ Hz, CH₃(ⁱPr)), 0.35 (s, 3H, CH₃(Mes)).

³¹P{¹H} NMR (243.09 MHz, 233 K, THF-*d*₈): δ 43.6 (s).

With labelled ¹³CH₃; ³¹P{¹H} NMR (162.01 MHz, 233 K, THF- d_8): 43.7 (d, ¹ $J_{P-C} = 54.1$ Hz).

¹¹B NMR (192.65 MHz, 233 K, THF- d_8): δ –11.8 (d, ¹ J_{B-H} = 73.8 Hz).

¹¹B{¹H} NMR (192.65 MHz, 233 K, THF-*d*₈): δ –11.8 (s).

¹³C{¹H} NMR (151.00 MHz, 233 K, THF-*d*₈): δ 161.3 (quart, ${}^{1}J_{C-B} - 47.5$ Hz, C-8), 156.5 (quart, ${}^{1}J_{C-B} - 56.2$ Hz, *ipso*-C(Mes)), 143.8 (s, C_{aro}Mes quaterary), 143.7 (s, C_{aro}Mes quaternary), 142.4 (s, C_{aro}Mes quaternary), 137.8 (s, C-7), 137.0 (d, ${}^{3}J_{C-P} = 3.8$ Hz, C-4), 136.9 (d, ${}^{2}J_{C-P} = 11.2$ Hz, C-2), 136.7 (d, ${}^{2}J_{C-P} = 6.9$ Hz, C-9), 131.6 (s, C_{aro}Mes quaternary), 131.4 (s, C_{aro}Mes quaternary), 129.7 (s, C_{aro}Mes quaternary), 129.4 (s, C_{aro}Mes quaternary), 129.1 (s, C_{aro}Mes quaternary), 128.1 (s, C_{aro}Mes quaternary), 127.3 (s, C6), 126.5 (s, C5), 122.2 (d, ${}^{3}J_{C-P} = 13.8$ Hz, C3), 117.8 (d, ${}^{1}J_{C-P} = 78.8$ Hz, C1), 26.3 (s, CH₃(Mes)), 24.7 (d, ${}^{1}J_{C-P} = 42.4$ Hz, CH(ⁱPr)), 24.5 (s, CH₃(Mes)), 21.5 (s, CH₃(Mes)), 21.2 (s, CH₃(Mes)), 17.9 (s, CH₃(ⁱPr)), 17.8 (s, CH₃(iPr)), 17.5 (s, CH₃(iPr)), 1.5 (d, ${}^{1}J_{P-C} = 54.2$ Hz, P-CH₃).

Note: All the quaternary carbons were identified by ${}^{1}\text{H}{}^{-13}\text{C}{}^{1}\text{H}$ HSQC and HMBC NMR spectra. One of the CH₃(Mes) and CH(${}^{i}\text{Pr}$) signals are overlapping with THF at δ 25.5 ppm. Surprisingly, no ${}^{2}J_{C-P}$ was observed for CH₃(${}^{i}\text{Pr}$).

Figure S59. ¹H, ¹H{³¹P} and ¹H{¹¹B} NMR spectral stack plot of the methyl phosphonium zwitterionic product **4** at 233 K in THF-*d*₈. The doublet (P-CH₃) centred at δ 1.76 ppm become singlet upon ¹H{³¹P} decoupling.

2.35 2.30 2.25 2.20 2.15 2.10 2.05 2.00 1.95 1.90 1.85 1.80 1.75 1.70 1.65 1.60 1.55 1.50 1.45 1.40 1.35 1.30 1.25 1.20 1.15 1.10 fl (ppm)

Figure S60. ¹H NMR spectral stack plot of unlabelled methyl phosphonium naphtyl borate (**4**-P(CH₃)) stacked with labelled (**4**-P¹³CH₃) in THF- d_8 at 233 K. P-¹³CH₃ appeared at δ 1.77 ppm as doublet of doublet (dd) with ¹ J_{CH} = 131.86 Hz, ² J_{P-H} = 10.30 Hz. * - impurity.

Figure S61. Expansion of ¹H NMR decoupling experiments with ³¹P and ¹¹B of methyl phosphonium naphtyl borate **4** at 233 K with labelled ¹³CH₃-I. - doublet of doublet with ¹ $J_{C-H} = 131.9$ Hz, ² $J_{P-H} = 10.3$ Hz noted. # for the P-¹³CH₃ resonance at δ 1.77 ppm. In the middle of the right doublet, an impurity is present leading to a triplet appearance.

4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 fl (ppm)

Figure S62. 1D-¹H-¹³C HSQC transfer experiments to identify only P-CH₃ signal in **4** in the ¹H NMR spectrum at 233 K in THF- d_8 . Actual signal is overlapping with THF δ 1.78 ppm.

Figure S63. ³¹P{¹H} NMR spectrum of methyl phosphonium naphtyl borate **4** at 233 K in THF- d_8 . ³¹P{1H} integrated 233K

Figure S64. ${}^{31}P{}^{1}H$ NMR spectrum of ${}^{13}C$ -methyl phosphonium naphtyl borate **4** at 233 K. * - due to $[1-B(Mes_2)-C_{10}H_6)-8-P^iPr_2]$.

-21 -22 -23 -10 -11 -12 -13 -14 -15 -16 f1 (ppm) -17 -18 -19 -20 T 6 -1 -2 -4 -5 -6 -7 -8 -9 -3

Figure S65. ¹¹B and ¹¹B{¹H} NMR spectral stack plot of methyl phosphonium naphtyl borate 4 at 233 K in THF- d_8 .

Figure S66. HSQC: ${}^{1}H / {}^{13}C{}^{1}H$ NMR spectrum of 4 at 233 K in THF- d_8 .

Figure S67. ¹³C{¹H} and ¹³C{¹H}{³¹P} NMR spectral stack plot of methyl phosphonium naphtyl borate **4** at 233 K in THF-*d*₈. Doublet with ¹*J*_{P-C} = 54.1 Hz at δ 1.16 ppm became singlet upon ³¹P decoupling.

Fig S68. HMBC: ${}^{1}H / {}^{13}C{}^{1}H$ NMR spectrum of 4 at 233 K in THF- d_8 .

8. [o-iPr2P-C6H4-B(C8H14)] (5a)

 $Li^{+}(Et_2O)[o^{-i}Pr_2P-C_6H_4-B(C_8H_{14})-H]^{-}$ (1a) (0.500 g, 1.26 mmol) was treated with CO₂ (1 atm) at rt for 1 h in toluene in a Fischer Porter bottle. Then, all solvent was removed under vacuum. The product was extracted in Et₂O through filter cannula leaving HCOOLi as a precipitate. The combined filtrates were reduced under vacuum to afford 1a as a white solid. (0.380 g, 1.21 mmol, 96 %). Monocrystals suitable for X-ray diffraction were obtained by cooling a saturated n-pentane solution to -35 °C.

¹H NMR (400.13 MHz, 298 K, C₆D₆): δ 7.59 (dt, ³*J*_{H-H} = 7.4 Hz, ⁴*J*_{H-H} = 1.1 Hz, 1H, H6), 7.31 (td, ³*J*_{H-H} = 7.1 Hz, ⁴*J*_{H-P} = 1.0 Hz, ⁴*J*_{H-H} = 1.9 Hz, 1H, H4), 7.12 (tdd, ³*J*_{H-H} = 7.5 Hz, ⁴*J*_{H-P} = 3.2 Hz, ⁴*J*_{H-H} = 1.2 Hz, 1H, H5), 7.10 (dd, ³*J*_{H-H} = 7.6 Hz, ⁴*J*_{H-H} = 1.0 Hz, 1H, H3), 2.26 (m, 10H, CH₂(9-BBN)), 1.95 (sept, ³*J*_{H-H} = 7.2 Hz, ²*J*_{H-P} = not found, 2H, CH(ⁱPr), 1.91 (dt, ³*J*_{H-H} = 10.5 Hz, ³*J*_{H-H} = 3.3 Hz, 2H, CH₂(9-BBN) overlapping with CH(ⁱPr)), 1.58 (dquint, ³*J*_{H-H} = 3.5 Hz, ²*J*_{H-P} = 3.2 Hz, 2H, CH(9-BBN)), 0.94 (dd, ³*J*_{H-P} = 15.2 Hz, ³*J*_{H-H} = 7.1 Hz, 12H, CH₃(ⁱPr)).

³¹P{¹H} NMR (161.99 MHz, 297.8 K, C₆D₆): δ 22.1 (s)

¹¹B NMR (128.38 MHz, 298 K, C₆D₆): δ 28.7 (s)

¹³C{¹H} NMR (100.64 MHz, 298 K, C₆D₆): δ 172.7 (br s, C1), 131.0 (d, ¹*J*_{C-P} = 35.5 Hz, C2), 130.9 (d, ³*J*_{C-P} = 1.9 Hz, C4), 129.4 (d, ³*J*_{C-P} = 39.6 Hz, C6), 128.6 (s, C5), 126.0 (d, ²*J*_{C-P} = 5.3 Hz, C3), 33.4 (d, ³*J*_{C-P} = 9.2 Hz, CH₂(9-BBN)), 28.1 (br s, CH(9-BBN)), 25.0 (s, CH₂(9-BBN)), 23.7 (s, ²*J*_{C-P} = not found, CH(ⁱPr)), 19.0 (s, ²*J*_{C-P} = not found, CH₃(ⁱPr)), 18.6 (d, ²*J*_{C-P} = 5.6 Hz, CH₃(ⁱPr)).

Anal. cald. for C₂₀H₃₂BP: C, 76.44; H, 10.26. Found: C, 75.79; H, 10.19

Figure S69. ¹H NMR spectrum of **5a** in C₆D₆ at 298 K.

Figure S70. ³¹P NMR spectrum of **5a** in C_6D_6 at 298 K.

75 70 65 60 55 50 45 40 35 30 25 20 15 10 f1 (ppm) 145 140 135 130 125 120 115 110 105 100 95 90 85 80

Figure S72. ¹³C{¹H} NMR spectrum of **5a** in C₆D₆ at 298 K.

9. [o-ⁱPr₂P-C₆H₄-B(Ipc)₂] (5c)

 $Li^{+}(THF)_{2}[-o-P^{i}Pr_{2}-C_{6}H_{4}-B(Ipc)_{2}H]^{-}$ (1c) (0.500 g, 0.80 mmol) was dissolved in toluene (5 mL) in a Fischer-Porter bottle, followed by the admission of CO₂ (1 atm) at 298 K. The reaction contents were stirred for 10 min. During the course of the reaction, the solution became turbid. Toluene was removed under vacuum. The product was extracted in n-pentane (3 x 10 mL) leaving HCOOLi precipitated. The combined filtrates were reduced under vacuum to afford **5c** as a sticky solid. (0.360 g, 0.75 mmol, 94 %).

¹H NMR (600.47 MHz, 233 K, THF-*d*₈): δ 7.51 (ddd, ³*J*_{H-H} = 7.0 Hz, ⁴*J*_{H-P} = 2.7 Hz, 1H, H3), 7.26 (m, 3H, H4, H5, H6), 2.48 (quintet, ³*J*_{H-H} = 7.1 Hz, 1H, CH), 2.32 (m, ³*J*_{H-H} = 7.3 Hz, 3H, CH(ⁱPr) + CH), 1.94 (m, 11H, CH + CH₂), 1.57 (t, ³*J*_{H-H} = 5.6 Hz, 1H, CH), 1.19 (m, 12H, CH₃(ⁱPr) + CH₃(Ipc)), 1.16 (s, 3H, CH₃), 1.15 (s, 3H, CH₃), 1.10-1.07 (overlapping dd, ³*J*_{H-H} = 7.4 Hz, 9H, CH₃(ⁱPr) + CH₃(Ipc)), 0.96 (dd, ³*J*_{H-P} = 13.3 Hz, ³*J*_{H-H} = 7.0 Hz, CH₃(ⁱPr)), 0.76 (d, 1H, ³*J*_{H-H} = 9.1 Hz, CH₂ (1H diastereo)), 0.62 (d, ³*J*_{H-H} = 9.1 Hz, CH₂ (1H diastereo)).

³¹P{¹H} NMR (243.07 MHz, 233 K, THF-*d*₈): δ –0.17 (s).

¹¹B NMR (192.65 MHz, 298 K, THF-*d*₈): δ 78.1 (s)

¹³C{¹H} NMR (151.00 MHz, 233 K, THF-*d*₈): δ 156.6 (quart, ¹*J*_{B-C} = 44.1 Hz, C1), 137.7 (d, ¹*J*_{P-C} = 5.2 Hz, C3), 131.5 (s, C4), 130.6 (d, ¹*J*_{P-C} = 20.8 Hz, C2), 128.4 (s, C5), 127.1 (s, C6), 49.1 (s, CH), 48.5 (s, CH), 42.5 (s, CH), 41.9 (s, CH), 40.6 (s, CH), 40.1 (s, CH), 40.0 (s, CH₂), 38.3 (s, CH), 37.1 (s, CH), 35.4 (s, CH₂), 33.5 (s, CH₂), 32.2 (s, CH₂), 31.3 (s, CH₂), 29.1 (s, CH₃(Ipc)), 28.5 (s, CH₃(Ipc)), 26.5 (s, 1C, CH₂), 25.6 (d, ¹*J*_{P-C} = 13.2 Hz, 1C, CH(ⁱPr), 24.7 (d, ¹*J*_{P-C} = 12.1 Hz, CH(ⁱPr)), 24.4 (s, CH₃(Ipc)), 23.4 (s, CH₃(Ipc)), 23.2 (s, CH₃(Ipc)), 22.3 (d, ²*J*_{P-C} = 14.4 Hz, CH₃(ⁱPr)), 21.3 (d, ²*J*_{P-C} = 12.5 Hz, CH₃(ⁱPr)), 21.0 (d, ²*J*_{P-C} = 18.7 Hz, CH₃(ⁱPr)), 19.5 (d, ²*J*_{P-C} = 8.4 Hz, CH₃(ⁱPr)).

Note: Assignment of C4, C5 and C6 signals are arbitrary. Because in ${}^{1}H{-}{}^{13}C{}^{1}H{}$ HSQC spectrum, they all correlate with the multiplet appearing at the same chemical shift in ${}^{1}H$ NMR spectrum.

HRMS ESI: Calc: 494.3849 ($C_{32}H_{52}BPO$), Found: $[M+1]^+ = 495.3929$.

Figure S73. ¹H NMR spectrum of **5c** at 233 K in THF-*d*₈.

Figure S74. Stack plot spectra of ${}^{1}H$, ${}^{1}H{}^{31}P$ and ${}^{1}H{}^{11}B$ NMR of **5c** at 233 K in THF-*d*₈.

Figure S75. ³¹P{¹H} NMR spectrum of **5c** at 233 K in THF- d_8 .

Figure S76. ¹¹B NMR spectrum of **5c** at 233 K in THF-*d*₈.

Figure S77. ¹³C{¹H} NMR spectrum of **5c** at 233 K in THF- d_8 .

Figure S78. ¹³C{¹H} and ¹³C{¹H}{³¹P} NMR stack spectra of **5c** at 233 K in THF- d_8 .

Fig S79. HRMS ESI spectrum of 5c.

Compound	¹ H	$^{31}P{^{1}H}$	${}^{11}B{}^{1}H{}$	⁷ Li
1a (tol- <i>d</i> ₈ , 253 K)	1.51	-1.6 (quart, ${}^{1}J_{P-Li} = 69.4$ Hz) at 233 K	-13.5 (s, $w_{1/2} =$ 33.0 Hz)	0.5 (dd, ${}^{1}J_{P-Li} = 70.0$ Hz, ${}^{1}J_{Li\cdot H} = 7.0$ Hz) at 233 K
1a (THF- <i>d</i> ₈ , 298 K)	signal not found	-0.4 (quart, $J_{P-B} = 10.7 \text{ Hz}$)	-13.7 (d, <i>J</i> _{P-B} = 11 Hz)	-0.2 (sharp singlet, $w_{1/2}$ = 3.3 Hz)
1a (SS, 298 K)	-	5.4 (quart, ${}^{1}J_{P-Li} = 72.9$ Hz)	-14.3 (br s, $w_{1/2}$ = 1311.7 Hz)	-1.0 (d, ${}^{1}J_{P-Li} = 72.9$ Hz)
1b (THF- <i>d</i> ₈ , 298 K)	4.05	1.2 (quart, $J_{P-B} = 16.7$ Hz)	-14.0 (d, $J_{P-B} =$ 17 Hz)	0.5 (sharp singlet, $w_{1/2}$ = 3.6 Hz)
1b (C ₆ D ₆ , 298 K)	3.68	0.5 (quart, ${}^{1}J_{P-Li} = 74.9$ Hz),	-12.1 (d, $J_{P-B} = 11$ Hz)	-0.4 (d, ${}^{1}J_{P-Li} = 73.0$ Hz, ${}^{1}J_{Li-H} = 5.0$ Hz)
1b (SS, 298 K)	-	0.8 (quart, ${}^{1}J_{P-Li} = 72.2$ Hz)	-13.5 (br s, $w_{1/2}$ = 647.6 Hz)	-0.9 (d, ${}^{1}J_{P-Li} = 72.1$ Hz)
1c (THF- <i>d</i> ₈ , 298 K)	2.44	1.4 (quart, $J_{P-B} = 14.5 \text{ Hz}$)	-9.4 (d, $J_{P-B} =$ 13 Hz)	-0.5 (sharp singlet, $w_{1/2}$ = 3.6 Hz)
1c (C ₆ D ₆ , 298 K)	-	2.7 (quart, ${}^{1}J_{P-Li} = 72.8$ Hz)	-4.6 (s, $w_{1/2}$ – 59.0 Hz)	1.5 (dd, ${}^{1}J_{P-Li} = 73.0$ Hz, ${}^{1}J_{Li-H} = 11.0$ Hz)
1c ^a (SS, 298 K)	-	0.6 (v br, $w_{1/2} = 1400.0$ Hz)	-12.3 (br s, $w_{1/2} = 1154.0$ Hz)	0.9 (br s, $w_{1/2} = 271.0$ Hz)
2 (THF- d_8 , 233 K)	3.64	37.9 (br s)	-13.2 (d, $J_{P-B} = 3$ Hz)	-
3 (THF- <i>d</i> ₈ , 233 K)	4.51	5.4 (quart, $J_{P-B} = 22.3 \text{ Hz}$)	-11.8 (d, $J_{P-B} = 20$ Hz)	-0.1 (sharp singlet, $w_{1/2}$ = 6.9 Hz)
3 (C ₆ D ₆ , 298 K)	-	4.2 (quart, ${}^{1}J_{P-Li} = 73.0$ Hz)	-10.8 (d, $J_{P-B} =$ 9 Hz)	-0.2 (d, ${}^{1}J_{P-Li} = 71.3$ Hz)
4 (THF- <i>d</i> ₈ , 233 K)	4.10	43.6 (s)	-11.8	-

10. Table S1: Selected NMR data in solution and solid state for compounds 1-4.

 $w_{1/2}$ is the line width of a signal at half its maximum intensity.

11. Hydrolithiation of benzophenone using stoichiometric quantity of 1a

Stoichiometric quantities of Li⁺[P-B(9-BBN)-H] (**1a**) (24.6 mg, 0.06 mmol) and benzophenone (11.3 mg, 0.06 mmol) were taken together in a J.Young NMR tube in THF- d_8 (0.5 mL). The reaction was completed in less than 10 minutes. The conversion into the product Ph₂CHOLi (15.1 mg, 0.06 mmol, 93 %) was calculated using an internal standard hexamethylbenzene (8.4 mg, 0.05 mmol) by ¹H NMR spectroscopy (T1 = 30 s).

Fig S80. ¹H NMR spectrum of the reaction mixture of the hydrolithiation of benzophenone using stoichiometric amount of **1a**. Yield was calculated based on the internal standard C_6Me_6 .

Fig S81. ¹H NMR spectrum of the isolated product Ph_2CHOLi in THF-*d*₈. The peaks in the range 2.5 – 1.25 ppm corresponds to **5a**.

Fig S82. ¹³C{¹H} NMR spectrum of Ph₂CHOLi in THF-*d*₈ at 233 K.

12. Reaction of 2 or 4 with ¹³CO₂ (1 bar)

Compound **2** (13.5 mg, 0.030 mmol) or 4 (6.7 mg, 0.013 mmol) was dissolved in THF- d_8 (0.5 mL) in a high-pressure NMR tube at 298 K. Then, ¹³CO₂ (1 bar) was introduced into the NMR tube. Monitoring the reaction from 298-353 K by NMR spectroscopy indicated no reaction of **2** with ¹³CO₂.

13. Hydrogenation of CO₂ in the presence Li₂CO₃ catalyzed by 5a or 5b

H₂ (1 bar) + ¹³CO₂ (1 bar) + Li₂CO₃
$$\xrightarrow{10 \text{ mol } \% \text{ 5a or 5b}}$$
 No reaction observed
298 - 353 K
THF- d_8

In a high-pressure NMR tube, **5a** or **5b** (5 mg, 0.016 mmol) and lithium carbonate (11.8 mg, 0.160 mmol) were dissolved in THF- d_8 (0.5 mL). After degassing, ¹³CO₂ (1 bar) and H₂ (1 bar) were introduced consecutively into the NMR tube. The reaction progress was monitored by NMR spectroscopy using hexamethylbenzene as an internal standard. No reaction was observed and in particular no signal at 9.2 ppm indicative of LiOCHO is observed after 14h at rt nor after 3h at 50°C

14 X-ray crystal diffraction

The crystals were kept in their mother liquor until they were dipped in perfluoropolyether oil and their structure determined. The chosen crystals were mounted on a Mitegen micromount and quickly cooled down to either 100 K or 115 K. The selected crystals were mounted on a Bruker Kappa APEX II using a micro-focus molybdenum K α radiation ($\lambda = 0.71073$ Å) equipped with graphite monochromator which attached with an Oxford Cryosystems Cooler Device. The unit cell determination and data integration were carried out using APEX II.^{vi} The structures have been solved by Direct Methods using SHELXS², and refined either by least-squares procedures with SHELXL-2016^{vii} included in the software packages WinGX version 1.63.^{viii} or refined by means of least-squares procedures on a F with the aid of the program CRYSTALS^{ix}. Atomic Scattering Factors were taken from the International tables for X-Ray Crystallography^x. Absorption correction was done using multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997) method ^{xi}. All hydrogen atoms were geometrically placed and refined using a riding model, with the exception of the BH hydrogens, in the structures **1a**, **1b**, **1c** and **3** which were located in the difference Fourier map.

All non-hydrogen atoms were anisotropically refined. Drawings of molecules have been performed with the program Ortep-3^{xii} for Windows. Details of the structure solution and refinements are given in the Supporting Information (CIF file), together with a full listing of atomic coordinates, bond lengths and angles, and displacement parameters for all structures. These data have also been deposited at the Cambridge Crystallographic Data Centre. **CCDC numbers 2039383-2039387** contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Crystal parameters	1a	1b	1c
Molecular formula	C ₂₄ H ₄₃ BLiOP	C ₃₄ H ₄₉ BLiOP	$C_{80}H_{138}B_2Li_2O_4P_2$
Formula weight	396.33	522.49	1261.42
Crystal system	Monoclinic	Triclinic	Orthorhombic
Space group	$P2_1/n$	P-1	P2 ₁ 2 ₁ 2 ₁
a (Å)	16.00090(4)	10.21740(2)	11.092900(14)
b (Å)	9.96900(4)	10.90640(3)	19.47580(2)
c (Å)	16.21840(4)	15.03640(3)	35.92390(3)
α (°)	90	77.670(3)	90
β (°)	108.181(4)	74.617(3)	90
γ (°)	90	87.944(3)	90
$V(Å^3)$	2457.89(6)	1577.90(3)	7761.11(2)
Ζ	4	2	4
F(000)	872	568	2784
Crystal description	Block, colourless	Platelet, colourless	Plate, colourless
Crystal size (mm)	0.25 x 0.12 x 0.05	0.15 x 0.10 x 0.02	0.15 x 0.10 x 0.02
θ (°)	2-28	3-31	3-23
M (mm ⁻¹)	0.12	0.11	0.10
Independent reflections	7636	10018	17924
R _{int}	0.088	0.047	0.079
$\theta_{\min} - \theta_{\max} (^{\circ})$	2.2 - 30.8	1.4 - 31.4	3 – 23

Table S2. Crystal data collection and refinement parameters for 1a-c.

h	-22 to 22	-14 to 14	-14 to 14
k	-14 to 14	-15 to 15	-25 to 22
1	-22 to 23	-19 to 21	-46 to 46
$R[F^2>2\sigma(F^2)]$	0.051	0.053	0.048
$WR(F^2)$	0.048	0.073	0.043
S	1.11	1.07	0.83
(Δ/σ) max	0.001	0.001	0.001
$\Delta \rho_{\text{max}}$ (e Å ³)	0.33	0.40	0.38
$\Delta \rho_{\min} (e \text{ Å}^3)$	-0.25	-0.39	-0.40

Fig S83. ORTEP views of X-ray structures of **3** and **5a** at 50% thermal ellipsoid probability level. All the hydrogen atoms except B-H were omitted for clarity.

Crystal parameters	3	5a
Molecular formula	$C_{38}H_{51}B_{Li}OP$	$C_{20}H_{31}BP$
Formula weight	572.5	313.23
Crystal system	Monoclinic	Monoclinic
Space group	$P2_1/c$	$P2_1/c$
a (Å)	17.3854(1)	7.7245(2)
b (Å)	9.637 (0)	11.1972(4)
c (Å)	21.4581 (1)	21.3905(1)
α (°)	90	90
β (°)	109.675 (4)	97.583 (4)
γ (°)	90	90
$V(Å^3)$	3385.26 (9)	1833.94 (8)
Ζ	4	4
F(000)	1210	684

Table S3. Crystal data collection and refinement parameters for **3** and **5a**.

Crystal description	Parallelepiped,	Parallelpiped,
	colourless	colourless
Crystal size (mm)	0.15 x 0.06 x 0.02	0.16 x 0.12 x 0.03
θ (°)	2.6 - 28.9	2.7 - 25.3
M (mm ⁻¹)	0.11	0.14
Independent reflections	5735	684
R _{int}	0.082	0.084
θ_{\min} - θ_{\max}	2.0-24.7°	2.1-24.7°
h	-20 to 20	-9 to 9
k	-11 to 11	-13 to 13
1	-25 to 25	-25 to 25
$R[F^2>2\sigma(F^2)]$	0.072	0.058
$WR(F^2)$	0.224	0.179
S	1.26	1.12
(Δ/σ) max	0.003	0.004
Δρmax	0.65 e Å3	0.55 e Å3
Δρmin	-0.40 e Å3	-0.61 e Å3

Table S4. Important bond length (Å) and bond *angles* (°).

Bond	1a	1b	1c	3
length (Å)				
/Bond			(molecule 2)	
angle (°)				
P–Li	2.487(3)	2.506(3)	2.535(3)	2.459(7)
B–H	1.18(2)	1.179(18)	1.002	1.17(3)
Li–H	1.78(2)	1.96(2)	2.036	1.92(5)
Li–B	2.373(3)	2.509(3)	3.016(4)	2.485(7)
B–P	3.285(2)	3.283(2)	3.438(2)	3.341(3)
C(R2 on	2.323(3)	C6-Li1 2.443(3)	-	C28-Li1 2.361(7)
B)–Li		C5-Li1 2.214(3)		C27-Li1 2.168(6)
P–Li–H	94.1(7)	79.0(5)	78.4	74.0(1)
Li–P–C	101.87(8)	104.19(8)	110.98(9)	122.8(2)
Li–H–B	105.0(1)	104.0(1)	165.4	105.0(2)
Н–В–С	108.0(1)	105.5(9)	106.7	109.2

15. References

i. Shriver, D. F.; Drezdon, M. A. The Manipulation of Air Sensitive Compounds, 2nd ed.; Wiley: New York, **1986**.

ⁱⁱ Andrew Pelter,: Saraswathi Singaram,: Herbert Brown. *Tetrahedron Lett*, **1983**, *24*, 1433-1436.
ⁱⁱⁱ Herbert C Brown, Bakthan Singaram, *J. Org. Chem.* **1984**, *49*, 945-947.

^{iv} M. Tamm, B. Dreßel, K. Baum, T. Lugger, T. Pape, J. Organomet. Chem. 2003, 677, 1-9.

^v Sébastien Bontemps, Marc Devillard, Sonia Mallet-Ladeira, Ghenwa Bouhadir, Karinne Miqueu, Didier Bourissou, *Inorg. Chem.* **2013**, *52*, 4714–4720.

^{vi} SAINT Bruker (2007). Bruker AXS Inc., Madison, Wisconsin, USA.

^{vii} A short history of SHELX, G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., **2008**, *64*, 112-122.

^{viii} WinGX suite for small-molecule single-crystal crystallography, Farrugia, L. J. J. Appl. Cryst. **1999**, *32*, 837-838.

^{ix} CRYSTALS version 12: software for guided crystal structure analysis - PW Betteridge, JR Carruthers, K Prout, DJ Watkin, J. Appl. Cryst. **2003**. *36*, 1487.

^x INTERNATIONAL tables for X-Ray crystallography, **1974**, Vol IV, Kynoch press, Birmingham, England.

^{xi} R. H. Blessing, acta cryst. **1995**, a51, 33-38.

^{xii} ORTEP-3 for Windows - a version of ORTEP-III with a Graphical User Interface (GUI)- L. J. Farrugia, J. Appl. Crystallogr. **1997**, *30*, 565.