Supporting Information

Photocatalytic Water Oxidation with a Prussian Blue Modified Brown TiO₂

Gulsum Gundogdu^a, Turkan Gamze Ulusoy Ghobadi^b, Sina Sadigh Akbari,^a Ekmel Ozbay,^{c,d,e} Ferdi Karadas^{a,b*}

^a Department of Chemistry, Faculty of Science, Bilkent University, 06800 Ankara, Turkey

^b UNAM - National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey

^c Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey.

^d NANOTAM – Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey

^e Department of Physics, Bilkent University, Ankara 06800, Turkey.

*Corresponding author e-mail: karadas@fen.bilkent.edu.tr

1. Experimental Details

1.1. Chemicals and Reagents

All of the chemicals were used as received without further purification. Titanium (IV) butoxide (Ti(OBu)₄, 97%, Sigma–Aldrich), and Diethylene glycol (DEG), ethanol (EtOH) and diethyl ether $(CH_3CH_2)_2O$ were also purchased from Sigma-Aldrich. Titanium(IV) oxide nanopowder (P25), Potassium hexacyanoferrate(III) $(K_3Fe(CN)_6)$ and cobalt(II) nitrate hexahydrate $(Co(NO_3)_2 \cdot 6H_2O)$ were all purchased from Sigma-Aldrich. Na₂S₂O₈ aqueous buffer solutions were prepared adjusted to the desired pH by (0.1 M KH₂PO₄ and 0.1 M K₂HPO₄ diluted in deionized water with a pH close to 7). Millipore deionized water (resistivity: 18 M Ω cm⁻¹) was used in all of the experiments.

1.2. Synthesis of Black TiO₂ Nanoparticles, (b-TiO₂).

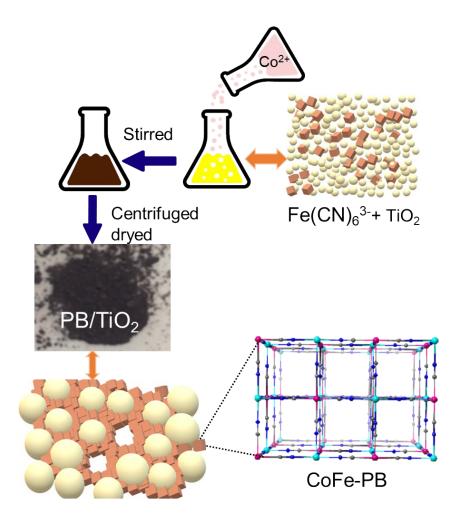
0.4 M Titanium(IV) butoxide (6.8 g) was mixed with 50 ml diethylene glycol (DEG) after stirring for 30 minutes at 1200 rpm yellow titanium glycolate gel is formed. 14.4 ml (8 molar times) of water was added and further stirred for 15 minutes. The hydrated titanium glycolate gel that has been formed was kept in a muffle furnace at 300°C for 2 hours. After leaving to cool at room temperature, the sample was washed using 100 ml each of ethanol, ether and water in order to remove impurities.

1.3. Synthesis of Prussian Blue coordinated TiO₂ and Black TiO₂ Nanoparticles, (PB/TiO₂ and

 $PB/b-TiO_2$).

An in situ synthetic method was adopted for the preparation of PB/TiO2 assemblies. Briefly, a Potassium hexacyanoferrate(III) solution (0.03 M) and TiO₂ powder solution (0.45 M) were dissolved in 15 mL water, afterwards magnetic stirred for 30 min at ambient temperature. Cobalt nitrate hexahydrate solution (0.04 M) dissolved in 15 mL water was added dropwise the resulting suspension was stirred for 12 hours. At last, the precipitate was centrifuged and washed with deionized water three times and the product was dried in oven at 60° C for 12 hours.

2. Characterization


2.1. Photocatalytic O₂ Evolution Studies

Photocatalytic studies on nanoparticles have been performed using a suspension of powder sample with $Na_2S_2O_8$ as sacrificial agent/electron acceptor in a 0.1 M phosphate buffer, pH 7, at 25 °C under 1 sun illumination (100 mW.cm⁻²). For each photocatalytic water oxidation test, 27 mg of catalysts with a mass ratio 1:1 of $Na_2S_2O_8$ dispersed in an 18 ml aqueous buffer solution placed in a round bottom flask. The reaction mixtures were purged before the test with N_2 in order to remove air. Photocatalytic O_2 evolution was conducted by GC (Agilent 7820A GC) equipped with a Molesieve column and a thermal conductivity detector (TCD). Argon gas was used as the carrier gas at a flow rate of 4 mL/min. 100 μ L of the gas mixture was injected into the gas chromatograph by using Hamilton SampleLock syringe (1750SL, volume 0.5 mL, needle size 22 ga bevel tip, and needle L 51 mm). Oxygen evolution was monitored with each probe for 2 h illumination with the solar simulator (300 W Xe lamp, AM 1.5 global filter). A photocatalytic test was repeated several times to gain reliable results. A lower-bound TOF was determined by assuming that all cobalt ions in the bulk sample are catalytically active. The total amount of O_2 produced was calculated as the sum of the O_2 in the headspace (determined by GC) plus O_2 dissolved in the solvent (calculated using Henry's Law, with a constant of 769 atm⁻¹).

2.2. Materials Characterization

The morphological characteristics of the synthesized materials were performed using a scanning electron microscope (SEM, FEI – Quanta 200 FEG) and elemental composition using an energy dispersive X-ray detector (EDS) coupled to the SEM operated at 15 kV. A transmission electron microscope (TEM, Tecnai G2-F30, FEI) was operated at 300 kV. TEM samples were dispersed in ethanol and prepared on a holey carbon coated copper grid. The Powder X-ray diffraction (PXRD) patterns were collected by Panalytical X'pert Multi-Purpose using Bragg-Brentano geometry (Cu K α radiation, $\lambda = 0.15418$ nm), in the range of 2 θ from 15 to 70°. The IR spectra were measured using a Bruker ALPHA Platinum-ATR spectrometer in the wavenumber range 4.000–400 cm⁻¹. X-ray photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha, Al K-Alpha radiation, hv = 1486.6 eV) measurement was performed in survey mode by operating a flood gun to prevent surface charging with the pass energy and a step size set to 30 eV and 0.1 eV, respectively. Peak positions correction was calibrated by referencing the C1s peak position (284.8 eV) and shifting other peaks in the spectrum accordingly. For the optical characterization of the samples, reflectance diffusion spectra UV-Vis (UV/DRS) spectra of the powders were collected (via Cary 5000, Varian) in diffuse reflection

mode and converted to absorption spectra by Kubelka-Munk transformation. Photoluminescence (PL) measurements have been performed using Cary Eclipse. The fluorescence measurements of the samples were performed with excitation at a wavelength 300 nm b-TiO₂ and PB/b-TiO₂ and 325 nm TiO₂ and PB/TiO₂, recorded the emission profiles from 325 to 550 nm for b-TiO2 and PB/b-TiO2 and 350 to 550 nm for TiO₂ and PB/TiO₂.

3. Supplementary Figures and Tables

Fig. S1. Synthesis route for CoFe PB/TiO₂.

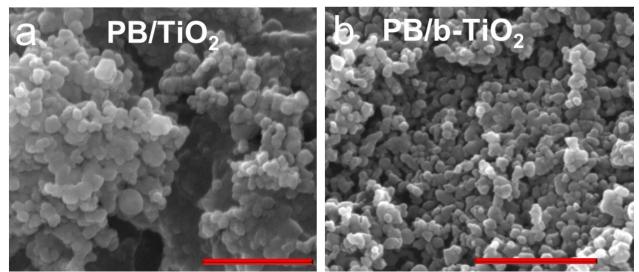
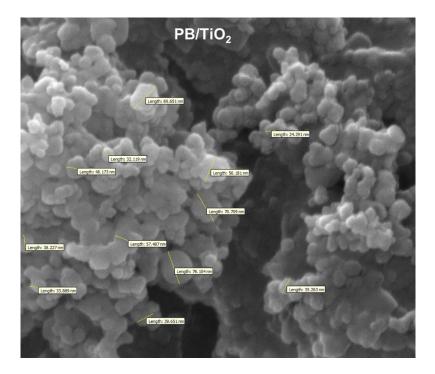
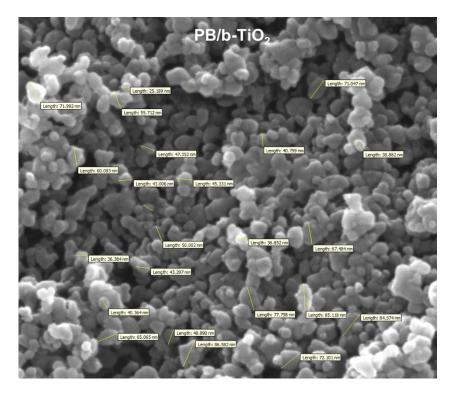




Fig. S2. SEM images for (a) PB/TiO₂ and (b) PB/b-TiO₂. Scale bars: 300 nm and 500 nm, respectively.

Fig. S3. SEM image of PB/TiO₂ NPs showing the average diameter varies from 24 to 73 nm. Scale bar: 300 nm.

Fig. S4. SEM image of PB/b-TiO₂ NPs showing the average diameter varies from 25 to 87 nm. Scale bar: 500 nm.

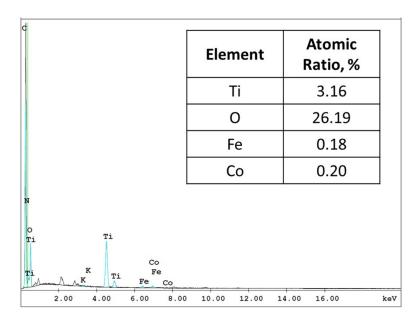


Fig. S5. EDS analysis of PB/TiO₂.

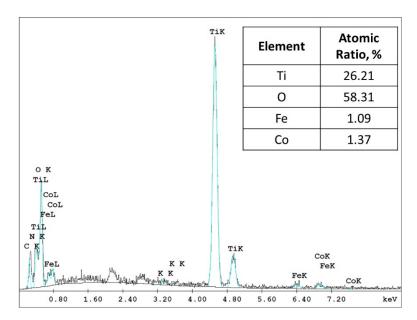


Fig. S6. EDS analysis of PB/b-TiO₂.

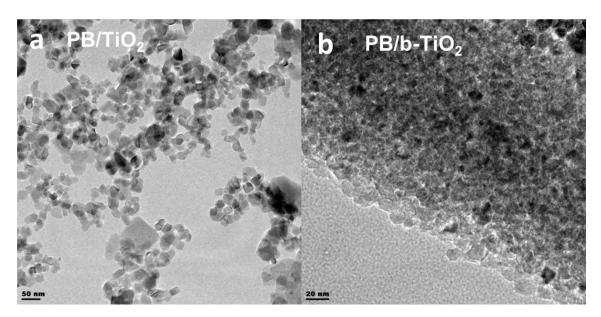
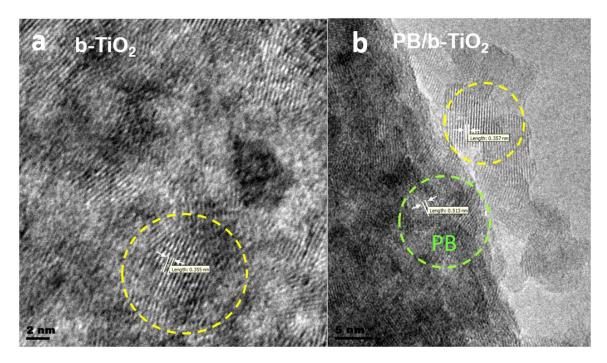
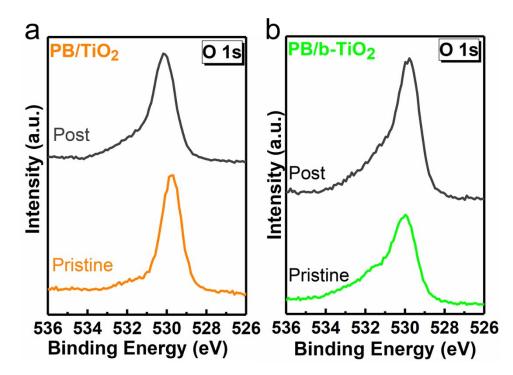




Fig. S7. HR-TEM image of PB/TiO $_2$ and PB/b-TiO $_2$ Scale bar: 50 nm and 20 nm, respectively.

Fig. S8. HR-TEM images of a) b-TiO2 and b) PB/b-TiO₂ Scale bar: 2 nm and 5 nm, respectively. Anatase phase is highlighted by yellow and PB is highlighted by green color dashed circle.

Fig. S9. High resolution XPS spectra of O1s of the postcatalytic and pristine for PB/b-TiO₂ and PB/TiO₂ samples.

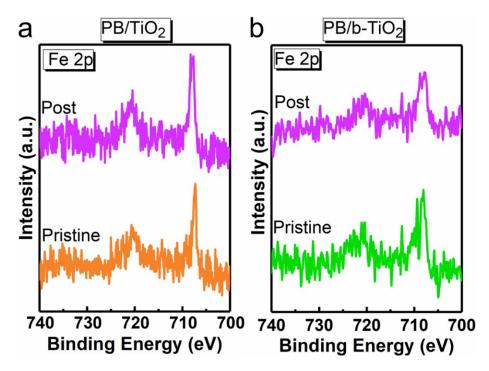
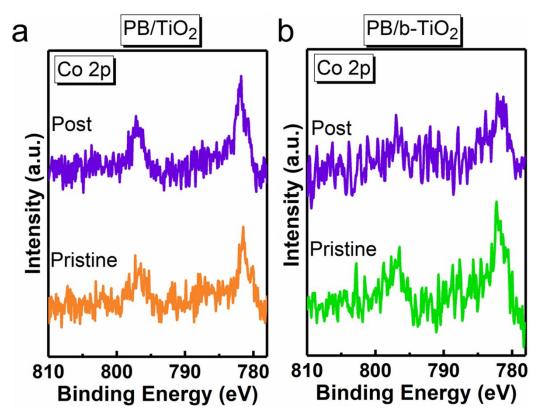
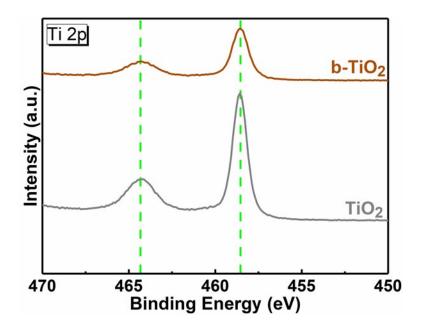


Fig. S10. High resolution XPS spectra of Fe2p for post catalytic PB/b-TiO₂ and pristine PB/TiO₂ samples.




Fig. S11. XPS spectra of Co 2p for post catalytic PB/b-TiO₂ and pristine PB/TiO₂ samples.

Compounds	Fe2p, eV				Co2p, eV				
		2p _{1/2} Fe ⁺²	2p _{3/2} Fe ⁺³	2p _{1/2} Fe ⁺³	2p _{3/2} Co ⁺³	2p _{1/2} Co ⁺³	2p _{3/2} Co ⁺²	2p _{1/2} Co ⁺²	
PB/TiO ₂	707.3	721	709.5	-	-	-	781.5	796.7	
Post	708	721	-	-	-	-	782	797	
PB/b-TiO ₂	708	721	710	723	-	-	782.4	797.5	
Post	708	721	-	-	-	-	782	797	

Table S1. XPS Fe2p and Co2p regions obtained from pristine and post samples.

Table S2. Binding energies (eV) of O 1s XPS peaks for pristine and post-catalytic samples.

Commente	O1s, eV			
Compounds	Pristine	Post		
TiO ₂ (P25)	529.8	-		
PB/TiO ₂	529.9	530		
b-TiO ₂	529.8	-		
PB/b-TiO ₂	530.7	529.8		

Fig. S12. High resolution XPS spectra of Ti2p for TiO_2 samples.

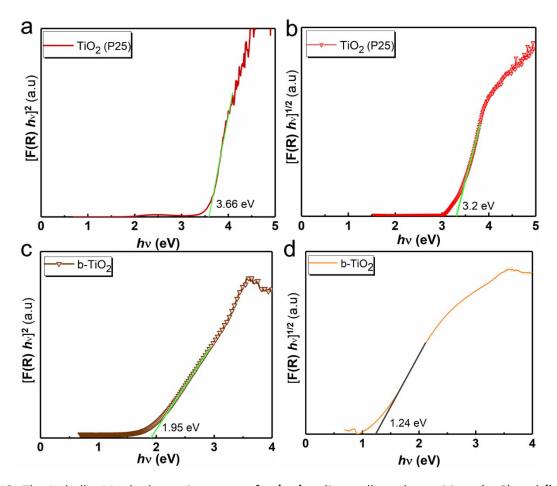

	Ti2p, eV				
Compounds	2p _{3/2} Ti ⁺⁴	2p _{1/2} Ti ⁺⁴			
TiO ₂ (P25)	458.6	464.3			
PB/TiO ₂	458.6	464.4			
b-TiO ₂	458.6	464.3			
PB/b-TiO ₂	459.3	465			

Table S3. Binding energies (eV) of Ti 2p XPS peaks for P25 and obtained samples.

The band gap energy is usually determined from diffuse reflectance spectra. The measured reflectance spectra can be transformed to the corresponding absorption spectra by applying the Kubelka–Munk function. The n factor $(F(R_{\infty}).h\vartheta)^n$ depends on the nature of the electron transition and is equal to 1/2 or 2 for the indirect and direct transition band gaps, respectively.¹ $(F(R_{\infty}).h\vartheta)^n = B(h\vartheta - E_g) eq(1)$

Through this transformation, the extrapolation with a linear function to zero absorption, the point at which the tangent line meets the x-axis equates to the band gap, Eg, value. Using the Tauc plots, the linearity of the plots against hv using n = 2 (direct) or n = 1/2 (indirect) are evaluated to assess the mode of transitions.

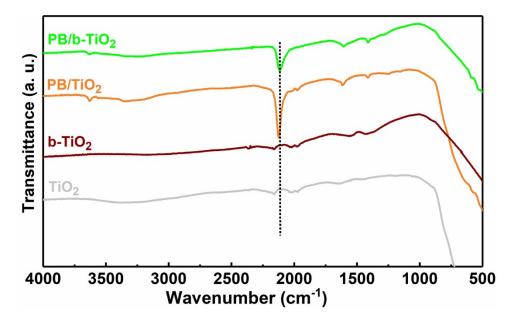

In the case of TiO₂, the direct and indirect band gaps were found to be 3.66 eV and 3.2 eV, respectively. These values for b-TiO₂ were 1.95 eV and 1.24 eV (see below **Fig. S13**). For TiO₂, the direct transition shows unrealistic bandgap value reaching 3.66 eV, thus indirect transition is preferred. Likewise, for the synthesized b-TiO₂ (noting that it is not derived from P25, titanium butoxide is the starting material), the indirect transition shows 1.24 eV band gap, which may be expected for defective TiO₂ phase, however we use direct type transition fits for b-TiO₂ showing the band gap values 1.95 eV as can be seen in below figure. This is due to the results obtained from the band alignment by XPS analysis. As an independent (from optical absorption analysis) characterization, XPS based band alignment calculations show a band gap value of 1.92 eV, which is quite similar to direct band gap value. That's why, we used direct transition for b-TiO₂. It should also be noted that a band gap of 1.24 eV or 1.95 eV for b-TiO₂ does not change the conclusions drawn in this manuscript as both are well below the band gap of Degussa, which makes it a visible light harvesting semiconductor. The calculated band gaps are 3.2 and 1.95 eV for Degussa-P25 and b-TiO₂. A band gap study showed that the band gap of the b-TiO₂ was significantly lower (E_g= 1.95 eV) compared to the unmodified white Degussa TiO₂ (Eg= 3.20 eV).

Fig. S13. The Kubelka-Munk absorption curves for **(a,c)** a direct allowed transitions (n=2) and **(b,d)** an indirect allowed transitions (n=1/2) for TiO_2 and b- TiO_2 , respectively. The reflectance spectrums transformed according to eq 1. and plotted against the photon energy. The linear part of the plot is extrapolated to the x-axis.

Table S4. Comparison table between the PB/TiO_2 samples in this work and previously reported the most similar studies photocatalysts for water oxidation.

Photocatalyst	Light Source	λ (nm)	Amount of catalyst	Scavenger	рН	O ₂ Evolved (μmol.h ⁻¹)	Ref
n-TiO ₂	125 W Hg lamp	> 300	10 mg	H ₂ SO ₄	acidic	80	2
TiO ₂ -ST01 Anatase	500 W Xe lamp	≥ <u>330</u>	8 g/L	Ce4+	2-4	97.5 (anatase)	3
TiO ₂ -TTO55N Rutile						111.1 (rutile)	
RuPy2@TiO2	Blue LED light	470	100 µM	Na ₂ S ₂ O ₈	7.2	2.78	4
RuPy6@TiO2						0.693	
cobalt-modified R- TiO2	300 W Xe lamp	> 500	100 mg	AgNO ₃	8.0-8.5	2.5	5
RuCP2@Pt-TiO ₂	Blue LED light	470	100 mM	Na ₂ S ₂ O ₈	7.3	3.20	6
RuCP2-Zr-RuP6@P t-TiO ₂						2.11	
RuCP ₂ -Zr-RuP ₄ -Zr- RuP6@Pt-TiO ₂						0.543	
Co_3O_4 -loaded Ti O_2	300 W Xe lamp	> 500	100 mg	AgNO ₃ and La ₂ O ₃	8.0-8.5	4.2 10.3	7
FeO _x -TiO ₂	LED lamp	365	10 mg	AgNO ₃	7	34.3	8
CoO _x -TiO ₂						31.4	
NiOx–TiO2						19.9	
Chromium-Doped Titanium Dioxide	450 W Xe lamp	> 415	25 mg	AgNO3	3	50 μL/h	9
TiO ₂	300 W Xe lamp	> 250	27 mg	Na ₂ S ₂ O ₈	7	2.4	This work
b-TiO ₂						4.8	
PB/TiO ₂						6.5	
PB/b-TiO ₂						35.6	
PB2/b-TiO ₂						26	

Fig. S14. ATR-FTIR spectra for b-TiO₂, TiO₂, PB/b-TiO₂, and PB/TiO₂ samples. A broad peak below 460 cm⁻¹ is observed that corresponds to Ti-O-Ti stretching vibrations. PB/b-TiO₂, and PB/TiO₂ samples display a sharp band at 1600 cm⁻¹ and a broad band at around 3300 cm⁻¹, which can be assigned the M–O–H stretching mode and the bending mode of H₂O, respectively. The band at 1390 cm⁻¹ is attributed to the asymmetric stretching of the carbonate species.

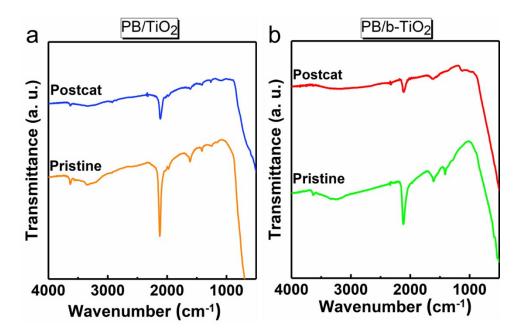
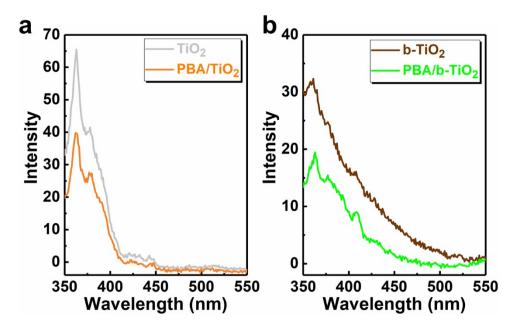



Fig. S15. ATR-FTIR spectra for pristine and post catalytic forms of (a) PB/TiO₂ and (b) PB/b-TiO₂ samples.

Fig. S16. The PL spectra for (a) TiO_2 , PBA/ TiO_2 and (b) $b-TiO_2$, and PBA/ $b-TiO_2$ solutions in ethanol with an excitation wavelength of 325 and 300 nm, respectively. (10^{-3} in EtOH solutions, 2 mm cuvette length).

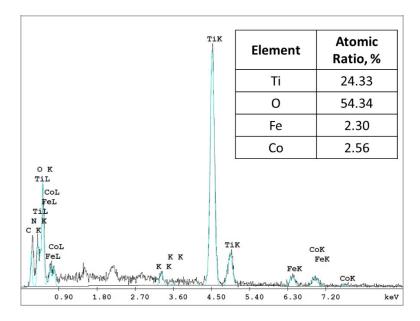


Fig. S17. EDS analysis of PB2/b-TiO₂.

REFERENCES

- 1 P. Makuła, M. Pacia and W. Macyk, J. Phys. Chem. Lett., 2018, 9, 6814–6817.
- 2 W. Vonach and N. Getoff, Z. Naturforsch., 1981, **36a**, 876-879.
- 3 G. R. Bamwenda, T. Uesigi, Y. Abe, K. Sayama and H. Arakawa, *Appl. Catal. A Gen.*, 2001, **205**, 117–128.
- 4 H. Otsuka, A. Kobayashi, M. Yoshida and M. Kato, *J. Photochem. Photobiol. A Chem.*, 2019, **369**, 189–194.
- 5 K. Maeda, K. Ishimaki, M. Okazaki, T. Kanazawa, D. Lu, S. Nozawa, H. Kato and M. Kakihana, *ACS Appl. Mater. Interfaces*, 2017, **9**, 6114–6122.
- 6 S. Furugori, A. Kobayashi, A. Watanabe, M. Yoshida and M. Kato, *ACS Omega*, 2017, **2**, 3901–3912.
- 7 K. Ishimaki, T. Uchiyama, M. Okazaki, D. Lu, Y. Uchimoto and K. Maeda, *Bull. Chem. Soc. Jpn.*, 2018, **91**, 486–491.
- 8 J. S. Schubert, J. Popovic, G. M. Haselmann, S. P. Nandan, J. Wang, A. Giesriegl, A. S. Cherevan and D. Eder, *J. Mater. Chem. A*, 2019, **7**, 18568–18579.
- 9 E. Borgarello, J. Kiwi, M. Grätzel, E. Pelizzetti and M. Visca, *J. Am. Chem. Soc.*, 1982, **104**, 2996–3002.