Electronic Supplementary Information

Hydrogen bonds system generated by nitroamino rearrangement: new character for designing next generation energetic materials

Lu Hu,^a Richard J. Staples,^b and Jean'ne M. Shreeve^a*

^a Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States

^b Department of Chemistry, Michigan State University, East Lansing, MI 48824, United States

Corresponding author email: Prof. Dr. J. M. Shreeve, jshreeve@uidaho.edu

Table of Contents

1. Experimental section	
Synthesis of compounds 1-8	S2
NMR Spectra	
2. X-ray Crystallography of 3	S11
Figures S15 to S18	
Tables S2	
3. Theoretical calculations	
4. DSC spectra of compounds 3-6	S14
5. References	

1. Experimental Section

Caution: Although we have not experienced any difficulties in preparing and handling these new energetic materials, proper protective precautions must be used. All compounds should be handled with care using the best safety practices.

General Methods

All reagents were obtained from Alfa Aesar or AK Scientific and were used as supplied. A Bruker AVANCE 300 nuclear magnetic resonance spectrometer operating at 300.13, and 75.48 MHz was used to collect ¹H and ¹³C spectra, respectively. DMSO-d₆ was employed as solvent and locking solvent. Chemical shifts are given relative to Me₄Si for ¹H and ¹³C spectra. Thermal decomposition (onset) points were measured with a differential scanning calorimeter (TA Instruments Co., model Q2000) at a scan rate of 5 °C min⁻¹. Densities were determined at room temperature by a Micromeritics AccuPyc 1340 gas pycnometer. IR spectra were recorded on a FT-IR spectrometer (Thermo Nicolet AVATAR 370) as thin films using KBr plates. The impact and friction tester. Hirshfeld surfaces and 2D fingerprint plots for **3** were generated by CrystalExplorer 3.1.¹ Elemental analyses (C, H, N) were performed on a Vario Micro cube Elementar Analyser.

4-Cyano-5-carbamidrazone imidazole (1)

Hydrazine (98%, 1.5 mL (30 mmol)) was added dropwise to a solution of 4,5dicyanoimidazole (1.18 g (10 mmol)) in isopropyl alcohol (30 mL) with stirring and cooling (0 °C). Stirring was continued overnight, and then the solid were filtered and washed with cold isopropyl alcohol (3 mL). The white solid (1.7 g, 93 %) was dried to give of product **1.** ¹H NMR ([D₆]DMSO): δ 6.97 (s, 4H), 7.30 (s, 1H); ¹³C NMR ([D₆]DMSO): δ 116.7, 117.4, 148.7 ppm; IR (KBr pellet): v 3344, 3070, 2229, 1744, 1611, 1551, 1490, 1439, 1302, 1134, 1109, 968, 873, 796, 660, 640, 523 cm⁻¹; elemental analysis (C₅H₆N₆, 150.15): calcd: 40.00, H 4.03, N 55.97; found: C 40.23, H 3.97, N 56.11.

4,7-Diamino-imidazo[4,5-d]pyridazine (2)

Compound **1** (0.9 g (6 mmol)) dissolved in AcOH (5 mL) was allowed to stand for 1 day. The solvent was removed by air, the white crystals was washed with water (5 mL) and dried to give **2** (0.89 g (99 %)). ¹H NMR ([D₆]DMSO): δ 7.94 (s, 1H), 6.58 (s, 4H); ¹³C NMR ([D₆]DMSO): δ 133.2, 148.3, 153.7 ppm; IR (KBr pellet): v 3411, 3335, 3116, 1672, 1625, 1560, 1522, 1477, 1434, 1278, 1192, 1064, 1041, 939, 809, 715, 638, 561 cm⁻¹; elemental analysis (C₅H₆N₆·H₂O, 168.16): calcd: 35.71, H 4.80, N 49.98; found: C 35.65, H 4.75, N 49.90.

4(7)-Nitramino-7(4)-nitrimino -imidazo[4,5-d]pyridazine (3)

To nitric acid (100%, 4 mL) was added compound **2** (0.6 g, 4 mmol) in small portions with stirring at 0 °C. After complete addition, the reaction mixture was stirred for 2 h at 0 °C and warmed to room temperature. After complete reaction, ice (10 g) was added, the yellow precipitate was filtered and washed with cold water (3 ml) to give **3** (0.62 g (65%) of **3**. ¹H NMR ([D₆]DMSO): δ 8.73 (s, 1H); ¹³C NMR ([D₆]DMSO): δ 133.1,

146.1, 147.6 ppm; IR (KBr pellet): v 3437, 3250, 3125, 3003, 2807, 1614, 1601, 1544, 1486, 1456, 1434, 1355, 1306, 1232, 1190, 1152, 1079, 1004, 968, 877, 840, 793, 772, 756, 642 cm⁻¹; elemental analysis ($C_5H_4N_8O4$, 240.14): calcd: 25.01, H 1.68, N 46.66; found: C 25.16, H 1.75, N 47.33.

General Procedures for Synthesis of Compounds 4-7

To a solution of **3** (0.24 g, 1 mmol) in water (10 mL) was added 1.1 mmol aqueous ammonia (28 wt. % in H₂O, 67 mg), hydrazine monohydride (98%, 55 mg), hydroxylamine (50 wt. % in H₂O, 73 mg) or sodium hydroxide (44 mg in 0.5 mL water). The reaction was stirred at room temperature for 1 h and then filtered to obtain the desired products **4** to **7**.

Ammonium 4(7)-nitramino-7(4)-nitrimino -imidazo[4,5-d]pyridazine (4)

Red solid, yield 0.18 g (70.7%). ¹H NMR ([D₆]DMSO): δ 8.38 (s, 1H), 6.35 (s, 4H); ¹³C NMR ([D₆]DMSO): δ 132.4, 145.3, 148.9 ppm; IR (KBr pellet): v 3433, 3232, 3126, 1618, 1561, 1459, 1412, 1325, 1303, 1194, 1126, 1086, 1015, 972, 945, 828, 769, 659, 624, 603 cm⁻¹; elemental analysis (C₅H₇N₉O4, 257.17): calcd: C 23.35, H 2.74, N 49.02; found: C 22.94, H 3.00, N 49.17.

Hydrazinium 4(7)-nitramino-7(4)-nitrimino-imidazo[4,5-d]pyridazine (5)

Red solid, yield 0.2 g (89%). ¹H NMR ([D₆]DMSO): δ 8.45 (s, 1H), 9.0 (s, 4H); ¹³C NMR ([D₆]DMSO): δ 132.4, 145.2, 148.7 ppm; IR (KBr pellet): v 3432, 3343, 3234, 3047, 2230 1611, 1522, 1459, 1414, 1325, 1307, 1205, 1144, 1122, 1088, 1017, 973, 949, 839, 769, 657, 626, 603 cm⁻¹; elemental analysis (C₅H₈N₁₀O₄, 272.19): calcd: C 22.06, H 2.96, N 51.46; found: C 21.83, H 3.08, N 51.29.

Hydroxylammonium 4(7)-nitramino-7(4)-nitrimino-imidazo[4,5-d]pyridazine (6) Yellow solid, yield 0.21 g (92%). ¹H NMR ([D₆]DMSO): δ 8.48 (s, 1H), 9.1 (s, 5H); ¹³C NMR ([D₆]DMSO): δ 132.2, 145.3, 148.7 ppm; IR (KBr pellet): v 3442, 3240, 3118, 1161, 1527, 1459, 1409, 1322, 1189, 1122, 1084, 1013, 974, 955, 887, 825, 765, 657, 626, 602 cm⁻¹; elemental analysis (C₅H₇N₉O₅, 273.17): calcd: C 21.98, H 2.58, N 46.15; found: C 21.63, H 2.94, N 45.90.

Sodium 4(7)-nitramino-7(4)-nitrimino-imidazo[4,5-d]pyridazine (7)

Yellow solid, yield 0.21 g (92%). ¹H NMR ([D₆]DMSO): δ 8.45 (s, 1H); ¹³C NMR ([D₆]DMSO): δ 132.8, 145.3, 148.7 ppm; IR (KBr pellet): v 3463, 3247, 1611, 1528, 1459, 1399, 1358, 1199, 1128, 1085, 1015, 947, 828, 767, 661, 603 cm⁻¹; elemental analysis (C₅H₃N₈O₄Na·H₂O, 280.14): calcd: C 21.44, H 1.80, N 40.00; found: C 21.55, H 2.11, N 40.01.

Disodium 4,7-dinitramino-imidazo[4,5-d]pyridazine (8)

To a solution of **3** (0.24 g, 1 mmol) in water (10 mL) was added NaOH (0.088 g, 2.2 mmol). The reaction was heated to 80 °C for 2 h. The solvent was blown off with air to obtain **8** (0.26 g, 92% yield). ¹H NMR ([D₆]DMSO): δ 7.99 (s, 1H); ¹³C NMR ([D₆]DMSO): δ 137.3, 150.5, 152.8 ppm; IR (KBr pellet): v 3423, 3244, 1637, 1384, 1336, 1215, 1140, 1126, 1084, 1014, 989, 945, 764, 631, 604 cm⁻¹; elemental analysis (C₅H₂N₈O₄Na₂·2H₂O, 320.13): calcd: C 18.76, H 1.89, N 35.00; found: C 18.64, H 1.64, N 35.25.

Figure S1 ¹H NMR of **3**.

Figure S2 ¹³C NMR of **3**.

Figure S3 ¹H NMR of **4**.

gure S4¹³C NMR of **4**.

Fi

Figure S5 ¹H NMR of **5**.

Figure S6¹³C NMR of **5**.

Figure S7 ¹H NMR of salts that contain 1.5 hydrazinium.

Current Data Paraseters FAHE Long132 ESPN0 1999 Patter 20200139 Line 12 55 SGLVENI DeG0

Figure S8 ¹³C NMR of salts that contain 1.5 hydrazinium.

Figure S9¹H NMR of **6**.

Current	t Data Parameters					
NANE	lugnpt 3C					
EXPNO	900					
PROCNO	1					
F2 - A4	coussition Parame	ters				
Date_	20200117					
Time	3.13					
INSTRU	e spect					
PROBHD	5 cm GNP 1H/13					
PULPRO	2 2 2 9 2 9					
TO	32768					
SOLVEN	0280	0850				
NS	1435					
0S	0					
SMH	17985 611	Hz				
FIORES	0 548877	HZ				
DA.	0 9110004	sec				
RG	14596 5					
DM	27 800	usec				
DE	6.00	usec				
TE	300 0	K				
10	1 00000000	sec				
011	0.03000000	sec				
035	0 00005000	Sec				
******	* CHANNEL ft ***					
NUC 1	130					
51	4 00	USEC				
PL1	-5 00	dB				
5F01	75.4752953	HHZ				
	- CHAIMEL 12					
CPOPRG	B1ssiew 9					
MIC5	114					
PCPD2	100 00	USEC				
PLS	120.08	98				
PL12	17 00	dB				
PL13	17 00	CH .				
SPUZ	300.1312005	NHZ				
F2 - Pr	ocessing paramet	ers				
51	32769					
SF	75.4677842	MHZ				
NUM	EN					
228	2.00					
03	3.00	riz				
PC	1.40					
-0.107						
1D 12MR	plot parameters					
CX	20.00	CB				
CAR	24.95	0.00				
F1P	218 702	pps				
-1	10004.97	112				
6.2	-30 000	popul Hz				
DDHCM	13 43511	009/08				
HZCH	1013 91791	HIJER				
	1012 21/31					

Figure S10¹³C NMR of **6**.

Figure S11 ¹H NMR of 7.

eseters ugnp13C 899

0

Figure S12 ¹³C NMR of 7.

Figure S13 ¹H NMR of 8.

Figure S14¹³C NMR of **8**.

dB dB dB HH2

cm cm ppm Hz ppm Hz ppm/c Hz/cm

32768 77853 EN 0 3.00 0 1.40

2. X-ray Crystallography of 3

_

Compound	3
CCDC No.	2024028
Formula	$C_7H_{11}N_8O_{5.5}S$
$D_{calc.}/\text{g cm}^{-3}$	1.630
μ/mm^{-1}	2.598
Formula Weight	327.30
Colour	yellow
Shape	chunk
Size/mm ³	0.28×0.17×0.11
T/K	173
Crystal System	triclinic
Space Group	<i>P</i> -1
a/Å	6.9526(2)
b/Å	11.2186(3)
c/Å	17.4355(5)
$\alpha/^{\circ}$	88.790(2)
$\beta/^{\circ}$	85.798(2)
γ/°	79.513(2)
V/Å ³	1333.59(7)
Ζ	4
Ζ'	2
Wavelength/Å	1.54178
Radiation type	CuK _α
$\Theta_{min}/^{\circ}$	2.541
$\Theta_{max}/^{\circ}$	68.278
Measured Refl's.	21093
Ind't Refl's	4781
Refl's with $I > 2(I)$	4388
R _{int}	0.0351
Parameters	424
Restraints	0
Largest Peak	0.593
Deepest Hole	-0.411
GooF	1.065
wR_2 (all data)	0.0944
wR_2	0.0920
R_1 (all data)	0.0372
R_1	0.0344

 Table S1. Crystal data and structure refinement for crystals

Figure S15. Single-crystal X-ray structure of 3.

Figure S16. Unit cell view for 3 along a axis; hydrogen bonds are marked as dotted lines.

Figure S17. Unit cell view for **3** along b axis, hydrogen bonds are marked as dotted lines.

Figure S18. Unit cell view for 3 along c axis, hydrogen bonds are marked as dotted lines.

D	Н	Α	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/deg
N2	H2	03	0.84(2)	2.01(2)	2.5758(19)	124(2)
N2	H2	$01A^1$	0.84(2)	2.23(2)	3.0374(19)	160(2)
N4	H4	02S ²	0.85(3)	1.85(3)	2.6923(19)	170(2)
N5	H5	01W	0.89(3)	1.81(3)	2.696(2)	178(2)
N1A	H1A	031	0.86(2)	2.25(2)	3.0650(19)	160(2)
N1A	H1A	01A	0.86(2)	2.01(2)	2.5795(19)	123.2(19)
N4A	H4AA	N3 ³	0.86(2)	1.96(2)	2.821(2)	176(2)
N7A	H7A	02S	0.84(2)	1.93(2)	2.760(2)	172(2)
01W	H1WA	$N3A^4$	0.82(3)	1.99(3)	2.799(2)	170(2)
01W	H1WB	01S ²	0.88(3)	1.79(3)	2.660(2)	170(3)

3. Table S2. Hydrogen bond information for **3** [Å and °]

¹1-x,1-y,1-z; ²1+x,+y,+z; ³2-x,-y,1-z; ⁴+x,1+y,+z

4. Theoretical calculations

The calculations of the heats of formation were carried out using Gaussian 03 (Revision D.01) suite of programs. Compound 3 and its derivatives were determined using isodesmic reactions (Scheme S1). The geometric optimization and frequency analyses of the structures were calculated using B3LYP/6-31+G** level. The gas phase enthalpy of formation was computed and the enthalpy of reaction was obtained by combining the MP2/6-311++G** energy differences for the reactions, the scaled zero point energies (ZPE), values of thermal corrections (HT), and other thermal factors.

Scheme S1. Isodesmic reactions for 3 and its derivatives.

Figure S19. DSC spectra of compounds 3 to 6.

5. Reference

1. S. K. Wolff, D. J. Grimwood, J. J. McKinnon, M. J. Turner, D. Jayatilaka, M. A. Spackman, CrystalExplorer (Version 3.1), University of Western Australia, **2012**.