Asymmetric sequential annulation/aldol process of 4-isothiocyanato pyrazolones and allenones: access to novel spiro[pyrrole-pyrazolones] and spiro[thiopyranopyrrole-pyrazolones]

Wenyao Wang, Xiaoze Bao, Shiqiang Wei, Shah Nawaz, Jingping Qu and Baomin Wang*

State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China. E-mail: bmwang@dlut.edu.cn

Contents:

1. General information	S1
2. Experimental procedures and characterization of compounds 4-7	S1
3. X-ray structures of 5af and 5"af	S34
4. References	\$35
5. NMR spectra for compounds	S36

1. General information

Unless otherwise noted, materials were purchased from commercial suppliers and used without further purification. Column chromatography was performed on silica gel (200~300 mesh). Enantiomeric excesses (ee) were determined by HPLC using corresponding commercial chiral columns as stated at 30 °C with UV detector at 254 nm. Optical rotations were reported as follows: $[\alpha]_D^T$ (c g/100 mL, solvent). All ¹H NMR and ¹⁹F NMR spectra were recorded on a Bruker Avance II 400 MHz, Bruker Avance II 500 MHz and Bruker Avance III 600 MHz respectively, ¹³C NMR spectra were recorded on a Bruker Avance II 101 MHz or Bruker Avance III 151 MHz with chemical shifts reported as ppm (in CDCl₃, TMS as an internal standard). Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, br = broad singlet, dd = double doublet, coupling constants in Hz, integration). HRMS (ESI) was obtained with a HRMS/MS instrument (LTQ Orbitrap XL TM). The absolute configuration of 4 was assigned by the X-ray analysis.

4-isothiocyanato pyrazolones were prepared according to the literature.¹ Allenyl ketones were prepared according to the literature.² Catalyst **Q4** and **Q5** were synthesized according to the literature procedure.³ The racemic products were synthesized using quinine/quinidine = 1:1 as the catalyst.

2. Experimental procedures and characterization of compounds 4, 5

A tube equipped with a magnetic stir bar was charged with 4-isothiocyanato pyrazolone 1 (0.2 mmol), Q4 (0.02 mmol), and toluene (2 mL). After stirring for 5 min, alkynyl ketone 2 (0.5 mmol) was added in one portion. The reaction was detected by TLC. After 0.5 h, the mixture was purified by column chromatography on silica gel (unless otherwise noticed, petroleum ether/EtOAc = 20:1 was used as the eluent) directly to give the product 4.

Compound 4aa

Prepared according to the procedure within 0.5 h as colorless oil (76.7 mg, 66% yield). $[\alpha]_{\rm D}^{17} = -186.79$ (*c* 0.41, CH₂Cl₂), ¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 (d, J = 7.7 Hz, 2H), 8.00-7.96 (m, 2H), 7.85-7.81 (m, 2H), 7.69-7.61 (m, 2H), 7.58 (d, J = 6.2 Hz, 2H), 7.55-7.39 (m, 8H), 7.30 (t, J = 7.7 Hz, 3H), 2.51 (d, J = 1.4 Hz, 3H), 1.87 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 190.6,

189.3, 175.2, 165.2, 162.2, 153.9, 148.3, 140.3, 138.2, 137.7, 136.4, 134.6, 132.8, 131.6, 129.9, 129.8, 129.2, 129.1, 128.5, 128.5, 128.0, 126.2, 125.9, 119.2, 93.79, 21.9, 12.9. HRMS (ESI) m/z Calcd. for $C_{25}H_{17}N_3O_2S$ ([M+H]⁺) 412.1114, Found 412.1114. Enantiomeric excess was determined to be 99% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 7/3, λ = 254 nm, 30 °C, 0.8 mL/min, tmajor = 16.9 min, tminor = 6.8 min).

Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %	
1 6.753 BB 2 16.635 BB	0.5407 3 0.6674 3	863.63428 866.19287	91.85115 79.77332	49.9834 50.0166	
DAD1 A, Sig=254,4 Ref=360,100	(C:\HPCHEM\1\DATA	\WWY\17092005.D)			
mAU _			16.915		
400 -					
300					
200					
00	6.880				
0 5		10	15	28	min
Peak RetTime Typ	e Width	Area	Heig	jht A	rea
# [min]	[min]	[mAU*s]	[mAU]]	8
1 6.880 VB	0.148	- 7 71_851	15 7.3	31070 0	3545
2 16.915 BB	0.5763	3 2.01937e	4 523.2	21265 99	.6455

Compound 4ba

Prepared according to the procedure within 0.5 h as colorless oil (86.8 mg, 73% yield); $[\alpha]_{\rm D}^{17} = -110.66$ (*c* 0.31, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-d) δ 8.03 (d, J = 8.7 Hz, 2H), 7.97 (d, J = 7.7 Hz, 2H), 7.84 (d, J = 7.7 Hz, 2H), 7.65 (s, 2H), 7.56-7.41 (m, 6H), 7.36-7.25 (m, 5H), 7.25 (s, 1H), 2.51 (d, J = 1.6 Hz, 3H), 2.39 (s, 3H), 1.87 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 190.5,

189.3, 175.1, 165.2, 162.2, 154.0, 148.2, 140.4, 138.9, 138.3, 137.71, 136.5, 134.5, 132.8, 132.4, 129.9, 129.8, 129.1, 128.5, 128.5, 127.9, 126.4, 126.1, 123.1, 93.9, 21.8, 21.5, 12.9. HRMS (ESI) m/z Calcd. for $C_{37}H_{29}N_3O_3S$ ([M+H]⁺) 596.2002, Found 596.1992. Enantiomeric excess was determined to be 95% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 7/3, λ = 254 nm, 30 °C, 0.8 mL/min, tmajor = 10.8 min, tminor = 6.3 min).

Compound 4ca

Prepared according to the procedure within 0.5 h as colorless oil (87.6 mg, 73% yield); $[\alpha]_{D}^{16} = -170.63$ (*c* 0.36, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-d) δ 8.06-7.95 (m,4H), 7.88-7.82 (m, 2H), 7.70-7.61 (m, 2H), 7.60-7.43 (m, 7H), 7.38-7.26 (m, 3H), 7.12 (t, *J* = 8.6 Hz, 2H), 2.52 (d, *J* = 1.3 Hz, 3H), 1.86 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 190.5, 189.2, 175.4, 165.0, 164.6 (d,

J = 253.4 Hz), 161.8, 152.9, 148.1, 140.5, 138.2, 137.6, 136.4, 134.6, 132.9, 129.8, 129.1 (d, J = 1.4 Hz), 128.5, 128.5, 128.1 (d, J = 8.7 Hz), 126.2, 126.2, 119.2, 116.5 (d, J = 22.3 Hz), 93.7, 21.8, 12.8; ¹⁹F NMR (470 MHz, Chloroform-*d*) δ -106.82 - -107.02 (m). HRMS (ESI) m/z Calcd. for C₂₅H₁₇N₃O₂S ([M+H]⁺) 412.1114, Found 412.1114. Enantiomeric excess was determined to be 98% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 7/3, λ = 254 nm, 30 °C, 0.8 mL/min, tmajor = 6.5 min, tminor = 9.2 min).

Compound 4da

Prepared according to the procedure within 0.5 h as colorless oil (89.2 mg, 73% yield); $[\alpha]_{D}^{17} = -189.91$ (*c* 0.37, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-d) δ 8.02 (d, J = 7.5 Hz, 2H), 7.98 (d, J = 7.0 Hz, 2H), 7.84 (d, J = 7.0 Hz, 2H), 7.69-7.61 (m, 2H), 7.56-7.42 (m, 7H), 7.37-7.26 (m, 3H), 6.92 (d, J = 8.9 Hz, 2H), 3.83 (s, 3H), 2.52 (d, J = 1.3 Hz, 3H), 1.86 (s, 3H); ¹³C NMR (101 MHz,

Chloroform-*d*) δ 190.7, 189.3, 174.9, 165.0, 162.4, 162.2, 153.6, 148.4, 140.2, 138.3, 137.8, 136.5, 134.5, 132.8, 129.8, 129.1, 129.1, 128.5, 128.5, 127.8, 127.6, 125.9, 122.6, 119.2, 114.6, 94.0, 55.5, 21.8, 12.9. HRMS (ESI) m/z Calcd. for C₃₇H₃₀N₃O₄S ([M+H]⁺) 612.1952, Found 612.1941. Enantiomeric excess was determined to be 99% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 7/3, λ = 254 nm, 30 °C, 0.8 mL/min, tmajor = 11.9 min, tminor = 9.9 min).

Compound 4ea

Prepared according to the procedure within 0.5 h as colorless oil (88.3 mg, 70% yield); $[\alpha]_{D}^{18} = -171.66$ (*c* 0.44, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-d) δ 9.27 (d, *J* = 8.6 Hz, 1H), 8.08 (dd, *J* = 8.7, 1.2 Hz, 2H), 7.95 (d, *J* = 8.3 Hz, 1H), 7.91 (m, 3H), 7.85-7.80 (m, 2H), 7.71-7.58 (m, 4H), 7.58-7.40 (m, 7H), 7.33 (t, *J* = 7.4 Hz, 1H), 7.28 (d, *J* = 8.2 Hz, 1H), 7.12 (d, *J* = 6.3 Hz, 1H), 2.50 (d, *J* =

1.3 Hz, 3H), 1.90 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 190.6, 189.3, 174.9, 164.7, 162.5, 154.6, 148.4, 140.4, 138.2, 137.7, 136.5, 134.5, 134.3, 132.8, 132.3, 130.5, 129.7, 129.2, 129.1, 129.0, 128.5, 128.4, 128.2, 127.8, 127.1, 126.6, 126.2, 126.1, 126.1, 125.1, 119.2, 95.1, 21.9, 12.9. HRMS (ESI) m/z Calcd. for C₄₀H₃₀N₃O₃S ([M+H]⁺) 632.2002, Found 632.2005. Enantiomeric excess was determined to be 79% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 7/3, λ = 254 nm, 30 °C, 0.8 mL/min, tmajor = 9.8 min, tminor = 7.3 min).

Compound 4fa

Prepared according to the procedure within 0.5 h as colorless oil (84.5 mg, 67% yield); $[\alpha]_{D}^{16} = -120.66$ (*c* 0.36, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-d) δ 8.09-8.04 (m, 2H), 8.00 (t, *J* = 6.8 Hz, 3H), 7.89 (d, *J* = 8.7 Hz, 1H), 7.86-7.77 (m, 4H), 7.73 (d, *J* = 1.7 Hz, 1H), 7.69-7.60 (m, 2H), 7.56-7.47 (m, 6H), 7.41 (t, *J* = 7.4 Hz, 1H), 7.30 (t, *J* = 7.5 Hz, 1H), 7.25-7.21 (m, 2H), 2.54 (d, *J* = 1.2 Hz,

3H), 1.90 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 190.6, 189.3, 175.3, 165.2, 162.3, 153.7, 148.2, 140.5, 138.2, 137.7, 136.5, 134.7, 134.6, 132.9, 132.8, 129.8, 129.2, 129.1, 129.0, 128.5, 128.5, 128.2, 127.9, 127.9, 127.5, 127.1, 126.5, 126.2, 122.4, 119.3, 93.8, 21.9, 12.9. HRMS (ESI) m/z Calcd. for C₄₀H₃₀N₃O₃S ([M+H]⁺) 632.2002, Found 632.1994. Enantiomeric excess was determined to be 99% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 7/3, λ = 254 nm, 30 °C, 0.8 mL/min, tmajor = 21.2 min, tminor = 7.8 min).

Compound 4ga

Prepared according to the procedure within 0.5 h as colorless oil (80.0 mg, 69% yield); $[\alpha]_{\rm D}^{16}$ = -128.88 (*c* 0.36, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-d) δ 8.03-7.93 (m, 4H), 7.85 (d, *J* = 6.9 Hz, 2H), 7.70-7.61 (m, 2H), 7.52 (t, *J* = 7.7 Hz, 2H), 7.49-7.44 (m, 4H), 7.33 (t, *J* = 7.7 Hz, 2H), 7.30-7.23 (m, 1H), 7.13-7.07 (m, 1H), 7.09-7.02 (m, 1H), 2.53 (s, 3H), 1.88 (s, 3H); ¹³C NMR (101

MHz, Chloroform-d) δ 190.5, 189.3, 175.6, 164.9, 161.5, 149.9, 147.9, 140.2, 138.2, 137.5, 136.4, 134.6, 132.9, 132.5, 129.8, 129.2, 129.1, 128.6, 128.5, 128.3, 128.3, 128.2, 126.1, 119.2, 93.6, 21.9, 12.9. HRMS (ESI) m/z Calcd. for C₃₄H₂₆N₃O₃S₂ ([M+H]⁺) 588.1410, Found 588.1406. Enantiomeric excess was determined to be 77% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 7/3, λ = 254 nm, 30 °C, 0.8 mL/min, tmajor = 16.9 min, tminor = 6.8 min).

Compound 4ha

Prepared according to the procedure within 0.5 h as colorless oil (41.5 mg, 40% yield); $[\alpha]_{\rm D}^{17} = -201.96$ (*c* 0.21, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-d) δ 7.96-7.87 (m, 6H), 7.70-7.61 (m, 2H), 7.52 (td, J = 7.7, 5.7 Hz, 3H), 7.42 (dt, J = 15.2, 7.3 Hz, 4H), 7.25 (s, J = 7.3 Hz 1H), 2.55 (d, J = 1.3 Hz, 3H), 1.99 (s, 3H), 1.87 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 190.5, 189.3, 175.3,

165.6, 159.4, 156.2, 148.1, 140.6, 138.2, 137.6, 136.4, 134.6, 132.9, 129.7, 129.1, 129.0, 128.6, 128.5, 128.3, 125.8, 118.9, 94.5, 21.8, 14.3, 12.6. HRMS (ESI) m/z Calcd. for $C_{31}H_{26}N_3O_3S$ ([M+H]⁺) 520.1689, Found 520.1681. Enantiomeric excess was determined to be 97% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 7/3, λ = 254 nm, 30 °C, 0.8 mL/min, tmajor = 10.9 min, tminor = 8.2 min).

Compound 4ia

Prepared according to the procedure within 0.5 h as colorless oil (86.3 mg, 81% yield); $[\alpha]_{D}^{18} = -194.75$ (*c* 0.46, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-d) δ 7.97-7.88 (m, 6H), 7.70-7.61 (m, 2H), 7.56-7.48 (m, 3H), 7.48-7.37 (m, 4H), 7.12 (t, *J* = 10.9 Hz, 1H), 2.54 (s, 3H), 2.40-2.18 (m, 2H), 1.87 (s, 3H), 1.25 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 190.5, 189.3, 175.1, 165.7,

160.3, 159.8, 148.2, 140.5, 138.3, 137.7, 136.4, 134.5, 132.9, 129.7, 129.1, 129.0, 128.6, 128.5, 128.1, 125.7, 118.9, 94.6, 22.5, 21.8, 12.7, 9.7. HRMS (ESI) m/z Calcd. for $C_{25}H_{17}N_3O_2S$ ([M+H]⁺) 534.1846, Found 534.1837. Enantiomeric excess was determined to be 92% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 7/3, λ = 254 nm, 30 °C, 0.8 mL/min, tmajor = 9.3 min, tminor = 6.7 min).

Compound 4ja

Prepared according to the procedure within 0.5 h as colorless oil (76.6 mg, 70% yield) ; $[\alpha]_{D}^{16}$ = -189.12 (*c* 0.36, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-d) δ 7.93 (m, 6H), 7.68-7.62 (m, 2H), 7.56-7.49 (m, 3H), 7.47-7.38 (m, 4H), 7.23 (t, *J* = 7.4 Hz, 1H), 2.54 (m, 1H), 2.53 (d, *J* = 1.3 Hz, 3H), 1.25 (d, *J* = 6.8 Hz, 3H), 1.22 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 190.7, 189.4,

174.8, 165.7, 163.7, 160.3, 148.2, 140.3, 138.2, 137.8, 136.4, 134.5, 132.9, 129.7, 129.1, 129.0, 128.6, 128.5, 128.1, 118.9, 94.8, 30.2, 21.9, 20.2 (d, J = 11.2 Hz), 12.78. HRMS (ESI) m/z Calcd. for $C_{33}H_{30}N_3O_3S$ ([M+H]⁺) 548.2002, Found 548.1994. Enantiomeric excess was determined to be 89% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 7/3, $\lambda = 254$ nm, 30 °C, 0.8 mL/min, tmajor = 8.3 min, tminor = 5.7 min).

Compound 4ka

Prepared according to the procedure within 0.5 h as colorless oil (65.4 mg, 60% yield); $[\alpha]_{D}^{15} = -197.55$ (*c* 0.32, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98-7.85 (m, 6H), 7.70-7.60 (m, 2H), 7.56-7.46 (m, 3H), 7.42 (t, J = 8.0 Hz, 4H), 7.21 (d, J = 7.4 Hz, 1H), 2.55 (s, 3H), 1.90 (s, 3H), 1.38 (tt, J = 8.5, 5.0 Hz, 1H), 1.15-1.05 (m, 2H), 0.98 (dd, J = 8.2, 3.2 Hz, 2H); ¹³C NMR (101 MHz,

Chloroform-*d*) δ 190.6, 189.4, 175.1, 165.4, 161.1, 160.2, 148.4, 142.6, 140.4, 138.2, 137.7, 136.4, 134.6, 132.9, 129.7, 129.1, 129.0, 128.6, 128.6, 128.5, 128.1, 127.9, 125.8, 125.7, 118.9, 94.7, 80.8, 29.5, 21.9, 12.8, 9.8, 8.5. HRMS (ESI) m/z Calcd. for C₃₃H₂₈N₃O₃S ([M+H]⁺) 546.1846, Found 546.1842. Enantiomeric excess was determined to be 95% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 7/3, λ = 254 nm, 30 °C, 0.8 mL/min, tmajor = 11.7 min, tminor = 7.2 min).

Compound 4ab

Prepared according to the procedure within 0.5 h as colorless oil (81.6 mg, 67% yield); $[\alpha]_{D}^{16} = -156.00$ (*c* 0.41, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-d) δ 8.02 (d, *J* = 8.5 Hz, 2H), 7.88 (d, *J* = 8.2 Hz, 2H), 7.74 (d, *J* = 8.2 Hz, 2H), 7.61 (d, *J* = 1.5 Hz, 1H), 7.60-7.55 (m, 2H), 7.48 (dd, *J* = 8.6, 7.3 Hz, 2H), 7.45-7.39 (m, 3H), 7.31 (d, *J* = 8.1 Hz, 3H), 7.10 (d, *J* = 8.0 Hz, 2H), 2.50 (d, *J* = 1.3 Hz, 3H), 2.44 (s, 3H), 2.33 (s, 3H), 1.86 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*)

δ 190.2, 189.0, 175.4, 165.3, 161.4, 153.9, 147.5, 145.8, 143.6, 140.6, 137.7, 135.7, 134.0, 131.5, 129.9, 129.8, 129.2, 129.2, 129.1, 128.6, 128.4, 126.1, 125.9, 119.2, 93.7, 21.9, 21.8, 21.6, 12.8. HRMS (ESI) m/z Calcd. for C₃₈H₃₂N₃O₃S ([M+H]⁺) 610.2159, Found 610.2148. Enantiomeric excess was determined to be 98% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 7/3, λ = 254 nm, 30 °C, 0.8 mL/min, tmajor = 12.1 min, tminor = 7.9 min).

Compound 4ac

Prepared according to the procedure within 0.5 h as colorless oil (79.8 mg, 60% yield); $[\alpha]_{D}^{13} = -187.00$ (*c* 0.41, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-d) δ 8.04 (d, J = 7.5 Hz, 2H), 7.93 (d, J = 8.4 Hz, 2H), 7.78 (d, J = 8.4 Hz, 2H), 7.65 (d, J = 1.4 Hz, 1H), 7.59 (dd, J = 8.0, 1.7 Hz, 2H), 7.51-7.40 (m, 5H), 7.36 (d, J = 8.3 Hz, 2H), 7.29 (t, J = 7.4 Hz, 1H), 7.15 (d, J = 8.3 Hz, 2H), 2.98 (m, 1H), 2.87 (m, 1H), 2.50 (d, J = 1.2 Hz, 3H), 1.87 (s, 3H), 1.27 (d, J = 1.2 Hz, 3H), 1.87 (s, 3H), 1.27 (d, J = 1.2 Hz, 3H), 1.87 (s, 3H), 1.27 (d, J = 1.2 Hz, 3H), 1.87 (s, 3H), 1.27 (d, J = 1.2 Hz, 3H), 1.87 (s, 3H), 1.27 (d, J = 1.2 Hz, 3H), 1.87 (s, 3H)

6.9 Hz, 6H), 1.21 (d, J = 0.9 Hz, 6H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 190.2, 189.0, 175.4, 165.3, 161.1, 156.4, 154.3, 153.9, 147.3, 140.7, 137.8, 136.1, 134.2, 131.5, 130.2, 130.0, 129.2, 129.1, 128.8, 128.3, 127.3, 126.6, 126.1, 125.9, 119.2, 93.7, 34.4, 34.2, 23.7, 23.6, 23.6, 21.8, 12.8. HRMS (ESI) m/z Calcd. for C₄₂H₄₀N₃O₃S ([M+H]⁺) 666.2785, Found 666.2774. Enantiomeric excess was determined to be 96% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 7/3, λ = 254 nm, 30 °C, 0.8 mL/min, tmajor = 9.2 min, tminor = 8.0 min).

Compound 4ad

Prepared according to the procedure within 0.5 h as colorless oil (65.0 mg, 50% yield); $[\alpha]_{D}^{15} = -201.66$ (*c* 0.34, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 (d, J = 8.1 Hz, 2H), 7.95 (s, 1H), 7.86 (s, 1H), 7.83 (d, J = 7.8 Hz, 1H), 7.70 (d, J = 7.8 Hz, 1H), 7.65 (s, 1H), 7.62 (d, J = 8.0 Hz, 1H), 7.55 (d, J = 6.9 Hz, 2H), 7.53-7.39 (m, 7H), 7.29 (t, J = 7.5 Hz, 1H), 7.23 (d, J = 7.9 Hz, 1H), 2.50 (s, 3H), 1.88 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 189.2,

187.8, 174.5, 164.8, 163.0, 153.7, 149.4, 139.9, 139.8, 137.9, 137.6, 135.6, 134.9, 134.4, 132.7, 131.6, 130.5, 129.9, 129.8, 129.2, 129.1, 128.6, 128.2, 126.9, 126.5, 126.2, 125.9, 119.2, 93.9, 21.9, 12.9. HRMS (ESI) m/z Calcd. for $C_{25}H_{17}N_3O_2S$ ([M+H]⁺) 650.1066, Found 650.1063. Enantiomeric excess was determined to be 92% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 7/3, $\lambda = 254$ nm, 30 °C, 0.8 mL/min, tmajor = 15.0 min, tminor = 7.1 min).

Compound 4ae

Prepared according to the procedure within 0.5 h as colorless oil (91.6 mg, 62% yield); $[\alpha]_{D}^{17} = -55.50$ (*c* 0.36, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-d) δ 7.95 (d, J = 7.6 Hz, 2H), 7.62 (d, J = 1.1 Hz, 1H), 7.55-7.50 (m, 3H), 7.48-7.47 (m, 1H), 7.46-7.41 (m, 4H), 7.40-7.34 (m, 4H), 7.29-7.26 (m, 2H), 7.25-7.21 (m, 2H), 2.58 (d, J = 1.3 Hz, 3H), 1.72 (s, 3H); ¹³C NMR (101 MHz,

Chloroform-*d*) δ 191.1, 190.1, 175.3, 167.4, 164.7, 153.6, 150.5, 141.4, 139.8, 139.1, 137.6, 133.7, 132.8, 131.8, 131.5, 130.7, 129.8, 129.8, 129.1, 129.0, 128.1, 127.4, 126.1, 126.1, 119.7, 119.7, 119.2, 94.1, 22.2, 12.7. HRMS (ESI) m/z Calcd. for C₃₆H₂₆N₃O₃SBr₂ ([M+H]⁺) 740.0036, Found 740.0022. Enantiomeric excess was determined to be 92% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 7/3, λ = 254 nm, 30 °C, 0.8 mL/min, tmajor = 44.7 min, tminor = 55.9 min).

Compound 4af

Prepared according to the procedure within 0.5 h as colorless oil (104.5 mg, 71% yield); $[\alpha]_{D}^{17} = -95.75$ (*c* 0.32, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-d) δ 8.01 (dd, J = 8.7, 1.2 Hz, 2H), 7.83 (d, J = 8.6 Hz, 2H), 7.69-7.64 (m, 4H), 7.62 (d, J = 1.3 Hz, 1H), 7.57-7.53 (m, 2H), 7.53-7.47 (m, 3H), 7.46-7.39 (m, 4H), 7.34-7.29 (m, 1H), 2.49 (d, J = 1.3 Hz, 3H), 1.88 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 189.5, 188.0, 174.7, 164.9, 162.5, 153.8, 149.1, 140.0, 137.6,

137.0, 135.1, 132.5, 131.8, 131.6, 131.2, 130.2, 129.9, 129.8, 129.3, 129.2, 127.9, 126.8, 126.3, 125.9, 119.2, 93.9, 21.9, 12.9. HRMS (ESI) m/z Calcd. for $C_{36}H_{26}N_3O_3SBr_2$ ([M+H]⁺) 740.0036, Found 740.0030. Enantiomeric excess was determined to be 99% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 7/3, λ = 254 nm, 30 °C, 0.8 mL/min, tmajor = 17.8 min, tminor = 8.5 min).

Compound 4ag

Prepared according to the procedure within 0.5 h as colorless oil (95.9 mg, 76% yield); $[\alpha]_{D}^{21} = -164.84$ (*c* 0.36, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.09 (d, J = 8.4 Hz, 2H), 8.03 (d, J = 7.5 Hz, 2H), 7.87 (t, J = 8.8 Hz, 4H), 7.82-7.75 (m, 2H), 7.60-7.52 (m, 5H), 7.48-7.45 (m, 2H), 7.41-7.34 (m, 2H), 2.53 (d, J = 1.3 Hz, 3H), 1.92 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 189.2, 187.4, 174.0, 164.7, 164.1, 153.6, 150.8, 141.4, 139.5, 139.3, 137.4,

132.9, 132.4, 132.36, 131.8, 130.0, 129.7, 129.3, 129.3, 128.9, 128.7, 126.6, 125.8, 125.5, 119.2, 117.7, 115.9, 94.1, 22.1, 13.1. HRMS (ESI) m/z Calcd. for $C_{38}H_{26}N_5O_3S$ ([M+H]⁺) 632.1751, Found 632.1753. Enantiomeric excess was determined to be 92% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 7/3, λ = 254 nm, 30 °C, 0.8 mL/min, tmajor = 40.7 min, tminor = 16.9 min).

Compound 4ah

Prepared according to the procedure within 0.5 h as colorless oil (95.3 mg, 70% yield); $[\alpha]_{D}^{15} = -90.25$ (*c* 0.32, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-d) δ 8.71 (dd, *J* = 8.6, 1.1 Hz, 1H), 8.56-8.44 (m, 1H), 8.07 (d, *J* = 8.2 Hz, 1H), 7.99 (dd, *J* = 8.7, 1.2 Hz, 2H), 7.96 (dd, *J* = 7.2, 1.2 Hz, 1H), 7.92-7.87 (m, 2H), 7.83-7.80 (m, 1H), 7.77 (dd, *J* = 7.2, 1.2 Hz, 1H), 7.66 (ddd, *J* = 8.5, 6.9, 1.5 Hz, 1H), 7.57 (dd, *J* = 6.8, 1.6 Hz, 2H), 7.54-7.49 (m,

3H), 7.48-7.38 (m, 8H), 7.31-7.26 (m, 2H), 2.56 (d, J = 1.3 Hz, 3H), 1.75 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 192.7, 191.8, 175.8, 165.1, 164.3, 153.9, 148.3, 141.4, 137.7, 136.7, 134.4, 134.1, 133.9, 133.8, 132.5, 132.3, 131.5, 131.4, 130.3, 130.2, 130.0, 129.2, 129.1, 128.7, 128.7, 128.7, 128.4, 127.7, 127.0, 126.4, 126.1, 125.9, 125.7, 125.4, 112.8, 112.5, 119.2, 93.8, 21.9, 12.9. HRMS (ESI) m/z Calcd. for C₄₄H₃₂N₃O₃S ([M+H]⁺) 682.2159, Found 682.2137. Enantiomeric excess was determined to be 89% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 7/3, λ = 254 nm, 30 °C, 0.8 mL/min, tmajor = 29.8 min, tminor = 17.8 min).

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	17.866	BB	0.5936	182.09482	3.70359	5.5492
2	29.815	MM	1.7151	3099.36670	30.11760	94.4508

Compound 4ai

Prepared according to the procedure within 0.5 h as colorless oil (86.6 mg, 73% yield); $[\alpha]_{D}^{16} = -112.00$ (*c* 0.44, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-d) δ 8.03 (d, J = 7.6 Hz, 2H), 7.82 (dd, J = 4.9, 1.2 Hz, 1H), 7.78 (dd, J = 3.8, 1.2 Hz, 1H), 7.62 (d, J = 1.3 Hz, 1H), 7.58 (dd, J = 8.1, 1.7 Hz, 2H), 7.55-7.47 (m, 4H), 7.47-7.41 (m, 3H), 7.29 (t, J = 7.5 Hz, 1H), 7.16 (dd, J = 4.9, 3.9 Hz, 1H),

6.96 (dd, J = 4.9, 3.8 Hz, 1H), 2.57 (d, J = 1.3 Hz, 3H), 1.98 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 182.0, 181.2, 174.4, 165.1, 161.0, 153.9, 149.0, 146.2, 143.2, 140.5, 137.6, 137.0, 136.7, 133.9, 131.9, 131.6, 129.9, 129.3, 129.1, 128.9, 128.2, 126.3, 126.2, 125.9, 119.2, 93.7, 21.8, 12.9. HRMS (ESI) m/z Calcd. for C₃₂H₂₄N₃O₃S₃ ([M+H]⁺) 594.0974, Found 594.0964. Enantiomeric excess was determined to be 95% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 7/3, λ = 254 nm, 30 °C, 0.8 mL/min, tmajor = 101.3 min, tminor = 9.3 min).

Compound 4aj

Prepared according to the procedure within 0.5 h as colorless oil (72.6 mg, 57% yield); $[\alpha]_{D}^{15} = -32.00$ (*c* 0.14, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.00 (d, *J* = 8.5 Hz, 2H), 7.54 - 7.44 (m, 5H), 7.44 - 7.35 (m, 2H), 7.38 - 7.29 (m, 3H), 7.30 - 7.22 (m, 5H), 7.21 - 7.15 (m 3H), 6.85 (s, 1H), 3.28 - 3.13 (m, 2H), 3.13 - 3.05 (m, 2H), 2.96 - 2.84 (m, 2H), 2.82 - 2.71 (m, 2H), 2.52 (d, *J* = 1.3 Hz, 3H), 2.17 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 198.1, 195.9,

175.8, 165.2, 164.9, 153.5, 148.5, 141.0, 140.3, 139.8, 137.6, 131.5, 131.1, 130.0, 129.1, 128.7, 128.5, 128.4, 126.5, 126.1, 126.1, 125.8, 119.2, 94.1, 46.1, 45.0, 29.8, 29.6, 21.8, 13.6. HRMS (ESI) m/z Calcd. for $C_{40}H_{36}N_3O_3S$ ([M+H]⁺) 638.2472, Found 638.2471. Enantiomeric excess was determined to be 75% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 7/3, λ = 254 nm, 30 °C,

To a tube equipped with a magnetic stir bar was charged with 4-isothiocyanato pyrazolone **1a** (732 mg, 2.5 mmol, 1.0 eq.) and **Q4** (157 mg, 0.25 mmol, 0.1 eq.), followed with toluene (25 mL). After stirred for 5 min, allenyl ketone **2a** (900 mg, 6.3 mmol, 2.5 eq.) was added in one portion. After 0.5 h, the solvent was removed under vacuum, the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1 was used as the eluent) to give the product **4aa** 0.97 g as light-yellow oil (yield 66%, ee 97%).

S 16

The procedure for the synthesis of compounds 5.

A reaction tube was charged with 4 (0.1 mmol) and DCM (1 mL), then Q4 (6.3mg, 0.01 mmol, 0.1 eq.) was added at room temperature. After the reaction was stirred for 12 h, the crude product was purified by column chromatography on silica gel to give the product 5.

Compound 5aa

Prepared according to the procedure within 12 h as white solid (51.7 mg, 89% yield, dr > 20:1). mp 155-157 °C; $[\alpha]_{D}^{18} = 122.00$ (*c* 0.32, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 (d, J = 8.1 Hz, 2H), 7.90 (d, J = 7.6 Hz, 2H), 7.58 (d, J = 7.7 Hz, 2H), 7.48 (d, J = 7.6 Hz, 3H), 7.45-7.36 (m, 7H), 7.35-7.27

(m, 4H), 7.13 (s, 1H), 3.55 (d, J = 14.5 Hz, 1H), 3.19 (d, J = 14.6 Hz, 1H), 2.99 (bs, 1H), 1.38 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 188.6, 178.7, 165.8, 156.5, 154.5, 150.5, 142.3, 140.2, 137.7, 137.5, 132.9, 131.2, 130.1, 129.0, 128.7, 128.3, 128.2, 125.9, 125.2, 120.6, 119.3, 93.4, 72.4, 51.5, 12.1. HRMS (ESI) m/z Calcd. for C₃₆H₂₈N₃O₃S ([M+H]⁺) 582.1846, Found 582.1841. Enantiomeric excess was determined to be 93% (determined by HPLC using chiral OD-H column, hexane/2-propanol = 7/3, $\lambda = 254$ nm, 30 °C, 0.8 mL/min, tmajor = 12.6 min, tminor = 18.0 min).

Compound 5da

Prepared according to the procedure within 12 h as white solid (55.0 mg, 90% yield, dr = 7.3:1). mp 122.5-125.0 °C; $[\alpha]_D^{17}$ = 71.25 (*c* 0.45, CH₂Cl₂); ¹H NMR (600 MHz, Chloroform-*d*: methanol-*d* = 10:1) δ 7.87 (dt, *J* = 25.0, 7.9 Hz, 4H), 7.55 (q, *J* = 7.8, 6.6 Hz, 3H), 7.46 (q, *J* = 7.5 Hz, 2H), 7.40 (p, *J* = 7.5 Hz, 4H). 7.36-7.27 (m, 4H), 7.23 (t, *J* = 7.8 Hz, 1H), 7.14 (d, *J* = 7.2 Hz, 1H), 3.52 (dd, *J* = 14.7, 7.2 Hz, 1H), 3.38 (s, 1H), 3.33 (s, 3H), 3.22 (dd, *J* = 14.9, 7.3 Hz, 1H),

2.44 (h, J = 7.3 Hz, 1H), 1.49 (s, 3H); ¹³C NMR (151 MHz, Chloroform-*d*: methanol-d = 10:1) δ 189.1, 179.2, 166.3, 164.4, 154.5, 151.1, 142.4, 140.4, 137.6, 137.4, 132.9, 128.9, 128.8, 128.7, 128.1, 128.0,

125.6, 125.4, 120.4, 119.1, 94.1, 71.9, 51.3, 29.7, 20.1, 19.9, 11.9. HRMS (ESI) m/z Calcd. for $C_{37}H_{30}N_3O_4S$ ([M+H]⁺) 612.1952, Found 612.1949. Enantiomeric excess was determined to be 91% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 7/3, λ = 254 nm, 30 °C, 0.8 mL/min, tmajor = 13.4 min, tminor = 17.3 min).

Compound 5ea

Prepared according to the procedure within 12 h as white solid (52.4 mg, 83% yield, dr = 4:1). mp 160-162 °C; $[\alpha]_{D}^{16}$ = 102.73 (*c* 0.28, CH₂Cl₂); ¹H NMR (600 MHz, Chloroform:Methol = 10:1-*d*) δ 9.08 (d, *J* = 8.6 Hz, 1H), 8.00 (d, *J* = 8.0 Hz, 2H), 7.86 (d, *J* = 8.2 Hz, 1H), 7.81 (d, *J* = 8.3 Hz, 3H), 7.59 (t, *J* = 7.8 Hz, 1H), 7.58-7.48 (m, 4H), 7.47 (t, *J* = 7.8 Hz, 2H), 7.38 (q, *J* = 7.6 Hz, 4H), 7.29

(dd, *J* = 14.9, 7.6 Hz, 2H), 7.17 (d, *J* = 7.3 Hz, 3H), 6.93 (s, 1H), 3.47 (d, *J* = 14.4 Hz, 1H), 3.00 (dd, *J* = 14.5, 4.0 Hz, 1H), 2.84 (s, 1H), 1.37 (s, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 188.6, 178.7, 165.5, 156.5, 154.9, 150.4, 142.2, 140.3, 137.9, 137.7, 137.4, 134.1, 132.9, 131.7, 130.4, 129.1, 129.0, 129.0, 128.8, 128.6, 128.3, 128.2, 128.2, 127.9, 126.9, 126.4, 126.3, 126.0, 125.8, 125.3, 125.3, 125.2, 120.6, 119.2, 94.6, 72.3, 51.3, 21.5, 12.2. HRMS (ESI) m/z Calcd. for $C_{40}H_{30}N_3O_3S$ ([M+H]⁺) 632.2002, Found 632.2005. Enantiomeric excess was determined to be 99% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 7/3, λ = 254 nm, 30 °C, 0.8 mL/min, tmajor = 21.3 min, tminor = 10.9 min).

Compound 5ga

Prepared according to the procedure within 12 h as yellow solid (47.5 mg, 81% yield, dr = 6:1). mp 225-226 °C; $[\alpha]_{D}^{17}$ = 30.91 (*c* 0.22, CH₂Cl₂); ¹H NMR (600 MHz, Chloroform-*d*: methanol-*d* = 10:1) δ 7.92 (q, *J* = 6.3 Hz, 4H), 7.58 (q, *J* = 6.8 Hz, 3H), 7.46 (q, *J* = 8.1 Hz, 6H), 7.41 (t, *J* = 7.3 Hz, 1H), 7.32 (d, *J* = 6.9 Hz, 1H), 7.27 (q, *J* = 7.0 Hz, 1H), 7.18 (s, 1H), 7.02 (dd, *J* = 23.1, 4.0 Hz, 2H), 3.55

(d, J = 14.6 Hz, 1H), 3.37 (s, 1H), 3.26 (d, J = 14.7 Hz, 1H), 1.50 (s, 3H); ¹³C NMR (151 MHz, Chloroform-*d*: methanol-d = 10:1) δ 189.1, 180.2, 165.6, 155.7, 150.9, 150.4, 142.5, 140.5, 137.4, 137.3, 133.0, 132.2, 129.4, 128.9, 128.7, 128.6, 128.4, 128.1, 128.0, 126.0, 125.3, 120.5, 119.3, 92.8, 71.8, 51.2, 11.8. HRMS (ESI) m/z Calcd. for C₃₄H₂₆N₃O₃S₂ ([M+H]⁺) 588.1410, Found 588.1402. Enantiomeric excess was determined to be 99% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 7/3, $\lambda = 254$ nm, 30 °C, 0.8 mL/min, tmajor = 21.3 min, tminor = 42.7 min).

Compound 5ha

Prepared according to the procedure within 12 h as white solid (45.6 mg, 88% yield, dr > 20:1). mp 110.2-112.5 °C; $[\alpha]_{D}^{17} = 21.00$ (*c* 0.22, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.94-7.76 (m, 2H), 7.58-7.49 (m, 3H), 7.47-7.34 (m, 5H), 7.31 (t, J = 7.3 Hz, 1H), 7.20 (t, J = 7.4 Hz, 1H), 7.09 (s, 1H), 3.51 (d, J = 7.4 Hz, 1H), 7.09 (s, 1H), 3.51 (d, J = 7.4 Hz, 1H), 7.09 (s, 1H), 3.51 (d, J = 7.4 Hz, 1H), 7.09 (s, 1H), 3.51 (d, J = 7.4 Hz, 1H), 7.09 (s, 1H), 3.51 (d, J = 7.4 Hz, 1H), 7.09 (s, 1H), 3.51 (d, J = 7.4 Hz, 1H), 7.09 (s, 1H), 3.51 (d, J = 7.4 Hz, 1H), 7.09 (s, 1H), 3.51 (d, J = 7.4 Hz, 1H), 7.09 (s, 1H), 3.51 (d, J = 7.4 Hz, 1H), 7.09 (s, 1H), 3.51 (d, J = 7.4 Hz, 1H), 7.09 (s, 1H), 3.51 (d, J = 7.4 Hz, 1H), 7.09 (s, 1H), 3.51 (d, J = 7.4 Hz, 1H), 7.09 (s, 1H), 3.51 (d, J = 7.4 Hz, 1H), 7.09 (s, 1H), 3.51 (d, J = 7.4 Hz, 1H), 7.09 (s, 1H), 3.51 (s,

14.4 Hz, 1H), 3.21 (d, J = 14.4 Hz, 1H), 3.10 (s, 1H), 1.87 (s, 3H), 1.49 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 188.7, 178.9, 166.2, 157.0, 153.9, 150.3, 141.9, 140.7, 137.6, 137.5, 132.9, 129.0,

128.9, 128.7, 128.3, 128.2, 125.6, 125.3, 120.7, 119.0, 94.0, 72.5, 51.4, 13.9, 11.8. HRMS (ESI) m/z Calcd. for $C_{31}H_{26}N_3O_3S$ ([M+H]⁺) 520.1689, Found 520.1689. Enantiomeric excess was determined to be 95% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 7/3, λ = 254 nm, 30 °C, 0.8 mL/min, tmajor = 14.6 min, tminor = 9.4 min).

Compound 5ja

Prepared according to the procedure within 12 h as white solid (44.3 mg, 81% yield, dr = 3.4:1). mp 172.0-174.1 °C; $[\alpha]_{D}^{17}$ = 29.37 (*c* 0.12, CH₂Cl₂); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.90 (d, *J* = 7.7 Hz, 2H), 7.86 (d, *J* = 8.1 Hz, 2H), 7.55 (d, *J* = 8.0 Hz, 3H), 7.46 (t, *J* = 7.7 Hz, 2H), 7.41 (q, *J* = 8.3 Hz, 4H), 7.33 (t,

J = 7.4 Hz, 1H), 7.21 (t, J = 7.5 Hz, 1H), 7.14 (s, 1H), 3.52 (d, J = 14.4 Hz, 1H), 3.23 (d, J = 14.5 Hz, 1H), 2.47 (s, 1H), 2.46-2.41 (m, 1H), 1.50 (s, 3H), 1.19 (d, J = 6.9 Hz, 3H), 1.14 (d, J = 6.9 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*: methanol-*d* = 10:1) δ 188.9, 178.9, 166.3, 164.4, 154.5, 151.0, 142.4, 140.2, 137.6, 137.5, 132.9, 128.9, 128.8, 128.7, 128.1, 128.1, 125.6, 125.4, 120.4, 119.1, 94.1, 71.9, 51.4, 29.8, 20.1, 20.0, 12.0. HRMS (ESI) m/z Calcd. for C₃₃H₃₀N₃O₃S ([M+H]⁺) 548.2002, Found 548.2000. Enantiomeric excess was determined to be 99% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 7/3, $\lambda = 254$ nm, 30 °C, 0.8 mL/min, tmajor = 16.5 min, tminor = 25.7 min).

Compound 5ka

Prepared according to the procedure within 12 h as white solid (49.1 mg, 90% yield, dr > 20:1). mp 150.5-152.1 °C $[\alpha]_{D}^{16}$ = 66.36 (*c* 0.21, CH₂Cl₂); ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.96 (d, *J* = 7.7 Hz, 2H), 7.78 (d, *J* = 8.1 Hz, 2H), 7.62 (t, *J* = 7.4 Hz, 1H), 7.53 (dd, *J* = 12.5, 6.0 Hz, 5H), 7.45 (t, *J* = 7.9 Hz, 2H), 7.37 (t,

J = 7.5 Hz, 2H), 7.26 (dt, J = 14.7, 7.4 Hz, 2H), 6.59 (s, 1H), 3.65 (d, J = 14.4 Hz, 1H), 3.37 (d, J = 14.5 Hz, 1H), 1.50 (p, J = 7.0, 6.6 Hz, 1H), 1.07-0.81 (m, 4H); ¹³C NMR (101 MHz, DMSO- d_6) δ 188.7, 179.0, 166.3, 162.8, 153.1, 152.0, 143.3, 141.8, 137.7, 137.4, 133.7, 129.6, 129.3, 128.7, 128.5, 128.2, 126.3, 126.0, 120.7, 119.1, 93.7, 79.8, 72.3, 50.0, 12.1, 9.9, 9.3, 9.1. HRMS (ESI) m/z Calcd. for C₃₃H₂₈N₃O₃S ([M+H]⁺) 546.1846, Found 546.1846. Enantiomeric excess was determined to be 95% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 7/3, $\lambda = 254$ nm, 30 °C, 0.8 mL/min, tmajor = 21.3 min, tminor = 11.7 min).

Compound 5ah

Prepared according to the procedure within 12 h as yellow solid (63.3 mg, 93% yield, dr = 4.5:1). mp 206.5-209.0 °C; $[\alpha]_{D}^{16}$ = -33.44 (*c* 0.34, CH₂Cl₂); ¹H NMR (600 MHz, Chloroform-*d*) δ 8.54-8.29 (m, 2H), 8.08-7.81 (m, 7H), 7.61 (t, *J* = 8.2 Hz, 2H), 7.59-7.48 (m, 7H), 7.41 (dt, *J* = 16.4, 7.5 Hz, 6H), 7.23 (t, *J* = 7.5 Hz, 1H), 6.85 (s, 1H), 4.17 (d, *J* = 15.0 Hz, 1H), 3.19 (d, *J*

= 14.9 Hz, 1H), 2.81 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 192.2, 178.2, 165.5, 155.8, 154.0, 150.0, 137.8, 136.4, 134.5, 133.8, 132.6, 131.1, 130.3, 130.3, 130.0, 129.4, 129.3, 129.1, 128.9, 128.4, 127.8, 127.1, 126.5, 126.0, 125.9, 125.8, 125.7, 125.4, 125.3, 112.6, 112.3, 119.2, 93.4, 48.8, 11.6. HRMS (ESI) m/z Calcd. for C₄₄H₃₂N₃O₃S ([M+H]⁺) 682.2159, Found 682.2159. Enantiomeric excess was determined to be 87% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 7/3, $\lambda = 254$ nm, 30 °C, 0.8 mL/min, tmajor = 26.6 min, tminor = 10.7 min).

Compound 5af

Prepared according to the procedure within 12 h as light-yellow solid (62.6 mg, 85% yield, dr > 20:1). mp 170.0-173.0 °C; $[\alpha]_{D}^{16} = 112.44$ (*c* 0.32, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.89 (d, J = 5.7 Hz, 2H), 7.77-7.68 (m, 2H), 7.57-7.48 (m, 2H), 7.50-7.38 (m, 8H), 7.39-7.33 (m, 1H), 7.30 (d, J = 7.7 Hz, 2H), 7.23 (s, 1H), 7.03 (s, 1H), 3.43 (d, J = 14.4 Hz, 1H), 3.33 (s, 1H), 3.12 (d, J = 14.4 Hz, 1H), 1.41-1.36 (m, 3H);

¹³C NMR (101 MHz, Chloroform-*d*) δ 187.4, 178.4, 165.7, 156.9, 154.4, 150.8, 141.5, 139.7, 137.5, 136.0, 132.1, 132.0, 131.3, 130.0, 129.7, 129.1, 129.0, 128.3, 127.1, 126.1, 125.9, 122.4, 120.3, 119.3, 93.4, 72.0, 51.4, 12.3. HRMS (ESI) m/z Calcd. for $C_{36}H_{25}Br_2N_3O_3S$ ([M+H]⁺) 738.0056, Found 738.0063. Enantiomeric excess was determined to be 99% (determined by HPLC using chiral IC-H column, hexane/2-propanol = 7/3, λ = 254 nm, 30 °C, 0.8 mL/min, tmajor = 16.6 min, tminor = 20.9 min).

S 22

Br

Compound 5'af

This diastereoisomer was prepared according to the procedure using DABCO as catalyst within 24 h as yellow solid (62.6 mg, 85% yield, dr = 3:1). mp 215.0-217.5 °C; $[\alpha]_{D}^{17}$ = -144.40 (*c* 0.23, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 (d, *J* = 8.0 Hz, 2H), 7.59 (d, *J* = 7.9 Hz, 2H), 7.55-7.42 (m, 5H), 7.42-7.32 (m, 6H), 7.23 (d, *J* = 9.0 Hz, 3H), 6.92 (s, 1H), 4.69 (s, 1H), 3.44 (d, *J* = 14.1 Hz, 1H), 3.29 (d, *J* = 14.2 Hz, 1H),

1.70 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 187.4, 178.6, 165.8, 156.9, 154.4, 150.9, 141.6, 139.7, 137.4, 135.9, 132.1, 132.0, 131.3, 129.9, 129.7, 129.1, 129.1, 128.3, 127.1, 126.2, 125.9, 122.4, 120.3, 119.3, 93.4, 71.9, 51.3, 12.2. HRMS (ESI) m/z Calcd. for C₃₆H₂₅Br₂N₃O₃S ([M+H]⁺) 738.0056, Found 738.0063. Enantiomeric excess was determined to be 99% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 7/3, λ = 254 nm, 30 °C, 0.8 mL/min, tmajor = 12.5 min, tminor = 17.9 min).

One-pot procedure for the synthesis of compound 5aa from 1a and 2a.

A tube equipped with a magnetic stir bar was charged with 4-isothiocyanato pyrazolone **1a** (0.2 mmol), **Q4** (0.02 mmol), and toluene (2 mL). After stirring for 5 min, alkynyl ketone **2a** (0.5 mmol) was added in one portion. The reaction was detected by TLC. After 36 h, the mixture was purified by column chromatography on silica gel (unless otherwise noticed, petroleum ether/EtOAc = 5:1 was used as the eluent) directly to give the product **5aa**.

Asymmetric aldol reaction of racemic 4 to compound 5. Table S1 Optimization of Reaction Conditions

Entry Catalys	Catalyst	Amount of	Solvent	€ [b]	Yield ^a [%]		$\operatorname{Ee}^{b}[\%]$	
	Catalyst	Cat. (X equiv)		<i>t</i> [11]	5af	5"af	5af	5"af
1	Q1	1	DCM	24	49	45	77	49
2	Q4	1	DCM	2	47	50	99	85
3	Q5	1	DCM	12	41	42	97	73
4	Q4	1	CHCl ₃	12	41	40	99	87
5	Q4	1	THF	12	40	40	95	89
6	Q4	1	CH ₃ CN	12	41	43	97	87
7	Q4	1	toluene	12	46	48	93	85
8	Q4	0.1	CHCl ₃	12	45	43	99	91
9	Q4	0.05	CHCl ₃	14	41	40	99	88

The reaction was carried out on a 0.1 mmol scale in 1 mL solvent with catalyst. ^{*a*}Isolated yield was given. ^{*b*}The ee was determined by chiral HPLC.

Asymmetric aldol reactions of racemic 4 to compound 5

To a solution of racemic 4 (0.1 mmol, 1.0 eq.) in $CHCl_3$ (1.0 mL) was added Q4 (6.3 mg, 0.01 mmol, 0.1 eq.). The reaction mixture was stirred at rt for 12 h. The reaction was detected by TLC.

When the reaction finished, the crude mixture was purified by column chromatography on silica gel to give **5**.

Compound 5aa

Prepared according to the procedure within 12 h as white solid (25.0 mg, 43% yield). Enantiomeric excess was determined to be 99% (determined by HPLC using chiral IC-H column, hexane/2-propanol = 7/3, λ = 254 nm, 30 °C, 0.8 mL/min, tmajor = 12.4 min, tminor = 18.8 min).

Compound 5"aa

Prepared according to the procedure within 12 h as white solid (25.6 mg, 44% yield). mp 190.0-192.0 °C; $[\alpha]_{D}^{17} = -144.40$ (*c* 0.31, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.92 (d, J = 7.5 Hz, 2H), 7.83 (d, J = 7.0 Hz, 2H), 7.52 (d, J = 8.4 Hz, 3H), 7.47-7.32 (m, 9H), 7.30 (t, J = 6.9 Hz, 3H), 7.23 (d, J = 7.6 Hz, 1H), 7.03 (s, 1H), 4.39 (s, 1H), 3.47 (d, J = 12.8 Hz, 1H), 3.37 (d, J = 14.1 Hz, 1H),

1.87 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 188.8, 179.3, 166.6, 156.3, 154.8, 150.5, 142.2, 142.1, 137.5, 137.5, 132.9, 131.3, 130.0, 129.0, 128.9, 128.6, 128.6, 128.2, 128.1, 126.1, 125.2, 120.7, 119.4, 93.4, 72.4, 51.9, 12.1. HRMS (ESI) m/z Calcd. for C₃₆H₂₈N₃O₃S ([M+H]⁺) 582.1846, Found 582.1846. Enantiomeric excess was determined to be 89% (determined by HPLC using chiral IC-H column, hexane/2-propanol = 7/3, λ = 254 nm, 30 °C, 0.8 mL/min, tmajor = 16.1 min, tminor = 11.8 min)

Compound 5ba

Prepared according to the procedure within 12 h as white solid (12.4 mg, 41% yield). mp 215.5-217.1 °C; $[\alpha]_{D}^{15} = -77.81$ (*c* 0.21, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 (d, J = 8.1 Hz, 2H), 7.82 (d, J = 7.7 Hz, 2H), 7.52 (t, J = 7.4 Hz, 1H), 7.41 (q, J = 7.5 Hz, 6H), 7.36 (s, 1H), 7.33-7.27 (m, 4H), 7.25-7.20 (m, 3H), 7.02 (s, 1H), 4.21 (s, 1H), 3.46 (d, J = 14.1 Hz, 1H), 3.37 (d, J = 14.1

Hz, 1H), 2.36 (s, 3H), 1.68 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 188.7, 179.1, 166.4, 156.5, 154.9, 150.6, 142.2, 141.8, 138.6, 137.6, 137.5, 132.9, 132.2, 130.0, 129.0, 128.8, 128.6, 128.6, 128.2, 128.1, 126.5, 126.0, 125.2, 123.3, 120.6, 119.4, 93.4, 72.6, 51.9, 21.5, 12.2. HRMS (ESI) m/z Calcd. for C₃₇H₃₀N₃O₃S ([M+H]⁺) 596.2002, Found 596.2001. Enantiomeric excess was determined to be 99% (determined by HPLC using chiral IC-H column, hexane/2-propanol = 7/3, λ = 254 nm, 30 °C, 0.8 mL/min, tmajor = 9.1 min, tminor = 13.2 min)

Compound 5"ba

Prepared according to the procedure within 12 h as white solid (22.0 mg, 37% yield). mp 140.5-142.8 °C; $[\alpha]_{D}^{16} = 10.00$ (*c* 0.11, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 (d, J = 8.1 Hz, 2H), 7.88 (d, J = 7.7 Hz, 2H), 7.57 (d, J = 7.8 Hz, 2H), 7.50 (t, J = 3.4 Hz, 2H), 7.40 (dq, J = 15.4, 7.7 Hz, 9H), 7.11 (s, 1H), 3.78 (s, 1H), 3.55 (d, J = 14.6 Hz, 1H), 3.21 (d, J = 14.6 Hz, 1H), 2.30 (s,

3H), 1.40 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 188.6, 178.8, 165.9, 156.6, 154.7, 150.7,

142.2, 140.0, 138.6, 137.7, 137.5, 132.9, 132.1, 130.0, 129.0, 128.9, 128.7, 128.6, 128.2, 126.4, 125.9, 125.4, 125.2, 123.2, 120.4, 119.3, 93.4, 72.7, 51.3, 21.5, 12.1. HRMS (ESI) m/z Calcd. for $C_{37}H_{30}N_3O_3S$ ([M+H]⁺) 596.2002, Found 596.2002. Enantiomeric excess was determined to be 99% (determined by HPLC using chiral IC-H column, hexane/2-propanol = 7/3, λ = 254 nm, 30 °C, 0.8 mL/min, tmajor = 10.8 min, tminor = 27.8 min).

Prepared according to the procedure within 12 h as white solid (12.4 mg, 47% yield). Enantiomeric excess was determined to be 97% (determined by HPLC using chiral IC-H column, hexane/2-propanol = 7/3, λ = 254 nm, 30 °C, 0.8 mL/min, tmajor = 17.7 min, tminor = 10.7 min).

Compound 5"ha

Prepared according to the procedure within 12 h as white solid (12.4 mg, 47% yield). mp 117.0-120.0 °C; $[\alpha]_{\rm D}^{17}$ = -50.63 (*c* 0.21, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.79 (dd, *J* = 6.9, 1.5 Hz, 4H), 7.50 (t, *J* = 7.4 Hz, 1H), 7.45-7.37 (m, 4H), 7.40-7.25 (m, 6H), 7.18 (t, *J* = 7.4 Hz, 1H), 6.98 (s, 1H), 4.50 (s, 1H), 3.43-3.27 (m, 2H), 1.91 (s, 3H), 1.63 (s, 3H); ¹³C NMR (101 MHz,

Chloroform-*d*) δ 188.7, 179.7, 167.0, 157.1, 153.8, 150.3, 142.5, 142.1, 137.5, 137.4, 132.9, 128.9, 128.7, 128.6, 128.2, 128.1, 125.8, 125.2, 120.7, 119.2, 72.5, 51.8, 13.8, 11.8. HRMS (ESI) m/z Calcd. for C₃₁H₂₆N₃O₃S ([M+H]⁺) 520.1689, Found 520.1688. Enantiomeric excess was determined to be 91% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 7/3, λ = 254 nm, 30 °C, 0.8 mL/min, tmajor = 8.8 min, tminor = 12.9 min).

Compound 5ia

Prepared according to the procedure within 12 h as white solid (22.9 mg, 43% yield). mp 210.1-212.5 °C; $[\alpha]_{D}^{15} = 30.00$ (*c* 0.20, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 (t, *J* = 8.3 Hz, 4H), 7.54 (d, *J* = 7.7 Hz, 3H), 7.49-7.36 (m, 6H), 7.33 (d, *J* = 7.3 Hz, 1H), 7.21 (t, *J* = 7.4 Hz, 1H), 7.12 (s, 1H), 3.52 (d, *J* =

14.4 Hz, 1H), 3.23 (d, J = 14.5 Hz, 1H), 2.69 (s, 1H), 2.32-2.05 (m, 2H), 1.50 (s, 3H), 1.17 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 188.6, 178.3, 166.2, 160.9, 154.4, 150.2, 141.8, 140.3, 137.8, 137.5, 133.0, 129.1, 128.9, 128.7, 128.4, 128.2, 125.6, 125.3, 120.7, 119.1, 94.2, 72.6, 51.5, 22.1, 12.0, 9.7. HRMS (ESI) m/z Calcd. for C₃₂H₂₈N₃O₃S ([M+H]⁺) 534.1846, Found 534.1840. Enantiomeric excess was determined to be 99% (determined by HPLC using chiral IC-H column, hexane/2-propanol = 7/3, $\lambda = 254$ nm, 30 °C, 0.8 mL/min, tmajor = 27.2 min, tminor = 46.6 min)

Compound 5"ia

Prepared according to the procedure within 12 h as white solid (25.6 mg, 48% yield); $[\alpha]_{D}^{17} = -95.45$ (*c* 0.21, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.84-7.74 (m, 4H), 7.50 (t, *J* = 7.9 Hz, 1H), 7.43-7.26 (m, 10H), 7.17 (t, *J* = 7.5 Hz, 1H), 6.98 (s, 1H), 4.48 (s, 1H), 3.50-3.14 (m, 2H), 2.34-2.06 (m, 2H), 1.62 (s,

3H), 1.20 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 188.7, 179.4, 167.1, 161.2, 154.2, 150.4, 142.5, 141.8, 137.6, 137.5, 132.8, 128.9, 128.7, 128.6, 128.2, 128.0, 125.7, 125.2, 120.7, 119.3, 94.1, 72.5, 51.8, 22.1, 11.9, 9.7. HRMS (ESI) m/z Calcd. for C₃₂H₂₈N₃O₃S ([M+H]⁺) 534.1846, Found 534.1841. Enantiomeric excess was determined to be 87% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 7/3, λ = 254 nm, 30 °C, 0.8 mL/min, tmajor = 12.7 min, tminor = 15.4 min)

Compound 5ja

Prepared according to the procedure within 12 h as white solid (22.4 mg, 41% yield). Enantiomeric excess was determined to be 97% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 7/3, λ = 254 nm, 30 °C, 0.8 mL/min, tmajor = 18.4 min, tminor = 25.8 min).

Compound 5"ja

Prepared according to the procedure within 12 h as white solid (25.2 mg, 46%); $[\alpha]_{D}^{17} = -45.65$ (*c* 0.18, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.85-7.76 (m, 4H), 7.50 (t, *J* = 7.4 Hz, 1H), 7.46-7.36 (m, 4H), 7.40-7.30 (m, 4H), 7.33-7.25 (m, 1H), 7.18 (t, *J* = 7.4 Hz, 1H), 6.98 (s, 1H), 4.99-4.50 (m, 1H), 3.39 (d, *J* = 13.1 Hz, 1H), 3.30 (d, *J* = 13.8 Hz, 1H), 2.44 (hept, *J* = 6.9 Hz, 1H), 1.62 (s, 3H),

1.21 (d, J = 6.9 Hz, 3H), 1.13 (d, J = 6.9 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 188.7, 179.1, 167.1, 164.5, 154.6, 150.6, 142.6, 141.7, 137.6, 137.5, 132.8, 128.9, 128.6, 128.6, 128.2, 128.0, 125.8, 125.2, 120.7, 119.3, 94.2, 72.3, 51.8, 29.9, 20.1, 20.1, 12.1. HRMS (ESI) m/z Calcd. for C₃₃H₃₀N₃O₃S ([M+H]⁺) 548.2002, Found 548.1999. Enantiomeric excess was determined to be 89% (determined by HPLC using chiral IC-H column, hexane/2-propanol = 7/3, λ = 254 nm, 30 °C, 0.8 mL/min, tmajor = 10.1 min, tminor = 12.1 min).

Compound 5af

Compound 5"af

Prepared according to the procedure within 12 h as yellow solid (31.8 mg, 43% yield). Enantiomeric excess was determined to be 91% (determined by HPLC using chiral IC-H column, hexane/2-propanol = 7/3, λ = 254 nm, 30 ^oC, 0.8 mL/min, tmajor = 48.8 min, tminor = 21.0 min).

45% yield). Enantiomeric excess was determined to be 99% (determined by HPLC using chiral IC-H column, hexane/2-propanol = 7/3, λ = 254 nm, 30 °C, 0.8 mL/min, tmajor = 18.7 min, tminor = 12.0 min).

To a solution of **4aa** (58.1 mg, 0.1 mmol, 1.0 equiv) in THF (1.0 mL) was added 85% *m*CPBA (42.6 mg, 0.21 mmol, 2.1 equiv) at 0 °C. The reaction mixture was stirred at 0 °C for 2 h. And then the mixture was diluted with EtOAc (10 mL) and quenched with saturated NaHCO₃ aqueous (5 mL). The organic phase was separated and washed with saturated NaHCO₃ aqueous and brine, dried over Na₂SO₄, concentrated. The crude mixture was purified by column chromatography on silica gel (EtOAc/petroleum ether = 1/5) to give **6** as light-yellow oil (32.6 mg, 81% yield). [α]_D¹⁶ = -37.00 (*c* 0.12, CH₂Cl₂); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.91 (d, *J* = 8.0 Hz, 2H), 7.88 - 7.80 (m, 2H), 7.74 - 7.66 (m, 2H), 7.48 (t, *J* = 7.6 Hz, 1H), 7.44 - 7.29 (m, 8H), 7.21 (t, *J* = 7.5 Hz, 1H), 1.78 (s, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 190.2, 171.5, 167.3, 157.3, 153.6, 137.4, 136.1, 134.6, 134.3, 131.8, 129.8, 129.4, 129.2, 128.9, 128.8, 126.3, 126.1, 74.5, 12.0. HRMS (ESI) m/z Calcd. for C₂₆H₂₀N₃O₃ ([M+H]⁺) 422.1499, Found 422.1498. Enantiomeric excess was determined to be 99% (determined by HPLC using chiral OD-H column, hexane/2-propanol = 7/3, λ = 254 nm, 30 °C, 0.8 mL/min, tmajor = 10.0 min, tminor = 22.4 min).

Methanesulfonyl chloride (12.5 mg, 0.11 mmol) and then triethylamine (11.1 mg, 0.11 mmol) were added to a solution of **5aa** (58.1 mg 0.1 mmol) in toluene (2 mL). This mixture was refluxed for 2 h and then poured into saturated aqueous ammonium chloride (5 mL). After separation of the organic layer, the aqueous phase was extracted with ethyl acetate. The combined organic phase was dried over magnesium sulfate. After evaporation of the solvents, the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 was used as the eluent) to give **7** as yellow solid (44 mg, 1.17 mmol). mp 115.0 - 117.5 °C; $[\alpha]_D^{16} = 215.70$ (*c* 0.14, CH₂Cl₂); ¹H NMR (600 MHz, Chloroform-*d*) δ 8.00 (d, *J* = 7.7 Hz, 2H), 7.96 (d, *J* = 8.0 Hz, 2H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.50 (dd, *J* = 8.0, 3.8 Hz, 4H), 7.44 (t, *J* = 8.0 Hz, 3H), 7.42 (d, *J* = 6.2 Hz, 3H), 7.37 (t, *J* = 7.6 Hz, 3H), 7.33 (s, 1H), 7.29 (s, 1H), 7.24 (d, *J* = 7.7 Hz, 1H), 6.64 (s, 1H), 1.43 (s, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 189.1, 177.7, 165.6, 155.8, 154.1, 147.8, 140.9, 138.1, 137.8, 137.7, 132.9, 131.2, 131.1, 130.2, 129.3, 129.0, 129.0, 128.8, 128.7, 128.1, 125.9, 119.8, 119.2, 94.0, 13.2. HRMS (ESI) m/z Calcd. for C₃₆H₂₆N₃O₂S ([M+H]⁺) 564.1740, Found 564.1741. Enantiomeric excess was determined to be 96% (determined by HPLC using chiral OD-H column, hexane/2-propanol = 7/3, λ = 254 nm, 30 °C, 0.8 mL/min, tmajor = 10.4 min, tminor = 9.4 min).

3. X-ray structures of 5af and 5"af

4. References

(1) X. Bao, S. Wei, X. Qian, J. Qu, B. Wang, L. Zou and G. Ge, Asymmetric Construction of a Multi-Pharmacophore-Containing Dispirotriheterocyclic Scaffold and Identification of a Human Carboxylesterase 1 Inhibitor. *Org. Lett.* 2018, **20**, 3394-3398.

(2) (a) X. Zhang, X. Jia, L. Fang, N. Liu, J. Wang and X. Fan, Tandem Reactions of 1,2-Allenic Ketones Leading to Substituted Benzenes and α,β -Unsaturated Nitriles. *Org. Lett.* 2011, **13**, 5024-5027; (b) H. Xu, X. Zhang, Y. He, S. Guo and X. Fan, Tandem reaction of 3-hydroxyhexa-4,5-allenic esters: a novel access to diversely substituted 2H-pyran-2-ones and indenes. *Chem. Commun.* 2012, **48**, 3121-3123.

(3) (a) W. Yang and D.-M. Du, Highly Enantioselective Michael Addition of Nitroalkanes to Chalcones Using Chiral Squaramides as Hydrogen Bonding Organocatalysts. *Org. Lett.* 2010, **12**, 5450-5453; (b) J. P. Malerich, K. Hagihara and V. H. Rawal, Chiral Squaramide Derivatives are Excellent Hydrogen Bond Donor Catalysts. *J. Am. Chem. Soc.* 2008, **130**, 14416-14417.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

тт (рр

S 73

S 75

