Asymmetric sequential annulation/aldol process of 4-isothiocyanato pyrazolones and allenones: access to novel spiro[pyrrole-pyrazolones] and spiro[thiopyranopyrrole-pyrazolones]

Wenyao Wang, Xiaoze Bao, Shiqiang Wei, Shah Nawaz, Jingping Qu and Baomin Wang*

State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China. E-mail: bmwang@dlut.edu.cn

Contents:

1. General information S1
2. Experimental procedures and characterization of compounds 4-7 S1
3. X-ray structures of $\mathbf{5 a f}$ and $\mathbf{5}$ " af S34
4. References S35
5. NMR spectra for compounds S36

1. General information

Unless otherwise noted, materials were purchased from commercial suppliers and used without further purification. Column chromatography was performed on silica gel (200~300 mesh). Enantiomeric excesses (ee) were determined by HPLC using corresponding commercial chiral columns as stated at $30^{\circ} \mathrm{C}$ with UV detector at 254 nm . Optical rotations were reported as follows: $[\alpha]_{\mathrm{D}}^{\mathrm{T}}$ (c g/100 mL , solvent). All ${ }^{1} \mathrm{H}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Bruker Avance II 400 MHz , Bruker Avance II 500 MHz and Bruker Avance III 600 MHz respectively, ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Avance II 101 MHz or Bruker Avance III 151 MHz with chemical shifts reported as ppm (in CDCl_{3}, TMS as an internal standard). Data for ${ }^{1} \mathrm{H}$ NMR are recorded as follows: chemical shift (δ, ppm), multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad singlet, $\mathrm{dd}=$ double doublet, coupling constants in Hz, integration). HRMS (ESI) was obtained with a HRMS/MS instrument (LTQ Orbitrap XL TM). The absolute configuration of 4 was assigned by the X-ray analysis.

4-isothiocyanato pyrazolones were prepared according to the literature. ${ }^{1}$ Allenyl ketones were prepared according to the literature. ${ }^{2}$ Catalyst $\mathbf{Q 4}$ and $\mathbf{Q 5}$ were synthesized according to the literature procedure. ${ }^{3}$ The racemic products were synthesized using quinine/quinidine $=1: 1$ as the catalyst.

2. Experimental procedures and characterization of compounds $\mathbf{4 , 5}$

A tube equipped with a magnetic stir bar was charged with 4-isothiocyanato pyrazolone 1 (0.2 $\mathrm{mmol}), \mathbf{Q 4}(0.02 \mathrm{mmol})$, and toluene (2 mL). After stirring for 5 min , alkynyl ketone $2(0.5 \mathrm{mmol})$ was added in one portion. The reaction was detected by TLC. After 0.5 h , the mixture was purified by column chromatography on silica gel (unless otherwise noticed, petroleum ether/EtOAc $=20: 1$ was used as the eluent) directly to give the product 4.

Compound 4aa

4aa

Prepared according to the procedure within 0.5 h as colorless oil $(76.7 \mathrm{mg}, 66 \%$ yield). $[\alpha]_{\mathrm{D}}^{17}=-186.79\left(c 0.41, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right),{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) δ 8.02 (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.00-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.85-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.61(\mathrm{~m}$, $2 \mathrm{H}), 7.58(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-7.39(\mathrm{~m}, 8 \mathrm{H}), 7.30(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.51$ $(\mathrm{d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 190.6$, $189.3,175.2,165.2,162.2,153.9,148.3,140.3,138.2,137.7,136.4,134.6,132.8,131.6,129.9,129.8$, 129.2, 129.1, 128.5, 128.5, 128.0, 126.2, 125.9, 119.2, 93.79, 21.9, 12.9. HRMS (ESI) m/z Calcd. for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 412.1114$, Found 412.1114. Enantiomeric excess was determined to be 99% (determined by HPLC using chiral AD-H column, hexane/2-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8$ $\mathrm{mL} / \mathrm{min}$, tmajor $=16.9 \mathrm{~min}$, tminor $=6.8 \mathrm{~min})$.

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\text { min] }} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[m A U * s]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	6.753	BB	0.5407	3863.63428	91.85115	49.9834
2	16.635	BB	0.6674	3866.19287	79.77332	50.0166

Compound 4ba

Prepared according to the procedure within 0.5 h as colorless oil $(86.8 \mathrm{mg}, 73 \%$ yield); $[\alpha]_{\mathrm{D}}^{17}=-110.66\left(c 0.31, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) δ 8.03 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.97 (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.65$ $(\mathrm{s}, 2 \mathrm{H}), 7.56-7.41(\mathrm{~m}, 6 \mathrm{H}), 7.36-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 2.51(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, 3H), $2.39(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 190.5$, $189.3,175.1,165.2,162.2,154.0,148.2,140.4,138.9,138.3,137.71,136.5,134.5,132.8,132.4,129.9$, 129.8, 129.1, 128.5, 128.5, 127.9, 126.4, 126.1, 123.1, 93.9, 21.8, 21.5, 12.9. HRMS (ESI) m/z Calcd. for $\mathrm{C}_{37} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 596.2002$, Found 596.1992. Enantiomeric excess was determined to be 95% (determined by HPLC using chiral AD-H column, hexane/2-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8$ $\mathrm{mL} / \mathrm{min}$, tmajor $=10.8 \mathrm{~min}$, tminor $=6.3 \mathrm{~min})$.

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	6.232	MM	0.2134	1.42945 e 4	1116.20996	49.0379
2	10.439	MM	0.3165	1.48554 e 4	782.36310	50.9621

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	6.359	VB	0.1741	550.99896	46.53965	2.3282
2	10.876	VP	0.3179	2.31150 e 4	1124.17139	97.6718

Compound 4ca

Prepared according to the procedure within 0.5 h as colorless oil $(87.6 \mathrm{mg}, 73 \%$ yield); $[\alpha]_{\mathrm{D}}^{16}=-170.63\left(c 0.36, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) δ 8.06-7.95 (m, 4 H$), 7.88-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.43(\mathrm{~m}, 7 \mathrm{H})$, 7.38-7.26 (m, 3H), $7.12(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.86(\mathrm{~s}$, 3 H), ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ 190.5, 189.2, 175.4, 165.0, 164.6 (d, $J=253.4 \mathrm{~Hz}), 161.8,152.9,148.1,140.5,138.2,137.6,136.4,134.6,132.9,129.8,129.1(\mathrm{~d}, J=1.4$ $\mathrm{Hz}), 128.5,128.5,128.1(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 126.2,126.2,119.2,116.5(\mathrm{~d}, J=22.3 \mathrm{~Hz}), 93.7,21.8,12.8$; ${ }^{19}$ F NMR (470 MHz , Chloroform- d) $\delta-106.82-107.02$ (m). HRMS (ESI) m/z Calcd. for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) 412.1114$, Found 412.1114. Enantiomeric excess was determined to be 98% (determined by HPLC using chiral AD-H column, hexane/2-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=$ 6.5 min, tminor $=9.2 \mathrm{~min}$).

Compound 4da

Prepared according to the procedure within 0.5 h as colorless oil $(89.2 \mathrm{mg}, 73 \%$ yield); $[\alpha]_{\mathrm{D}}^{17}=-189.91\left(c 0.37, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) δ $8.02(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.98(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.69-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.42(\mathrm{~m}, 7 \mathrm{H}), 7.37-7.26(\mathrm{~m}, 3 \mathrm{H}), 6.92(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 190.7,189.3,174.9,165.0,162.4,162.2,153.6,148.4,140.2,138.3,137.8,136.5$, $134.5,132.8,129.8,129.1,129.1,128.5,128.5,127.8,127.6,125.9,122.6,119.2,114.6,94.0,55.5$, 21.8, 12.9. HRMS (ESI) m / z Calcd. for $\mathrm{C}_{37} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$612.1952, Found 612.1941. Enantiomeric excess was determined to be 99% (determined by HPLC using chiral AD-H column, hexane $/ 2$-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=11.9 \mathrm{~min}$, tminor $=9.9 \mathrm{~min}$).

Compound 4ea

Prepared according to the procedure within 0.5 h as colorless oil $(88.3 \mathrm{mg}, 70 \%$ yield); $[\alpha]_{\mathrm{D}}^{18}=-171.66\left(c 0.44, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) δ $9.27(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{dd}, J=8.7,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.91 (m, 3H), 7.85-7.80 (m, 2H), 7.71-7.58 (m, 4H), 7.58-7.40 (m, 7H), 7.33 (t, J $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~d}, J=$ $1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ 190.6, 189.3, 174.9, 164.7, 162.5, $154.6,148.4,140.4,138.2,137.7,136.5,134.5,134.3,132.8,132.3,130.5,129.7,129.2,129.1,129.0$, $128.5,128.4,128.2,127.8,127.1,126.6,126.2,126.1,126.1,125.1,119.2,95.1,21.9,12.9$. HRMS (ESI) m/z Calcd. for $\mathrm{C}_{40} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$632.2002, Found 632.2005. Enantiomeric excess was determined to be 79% (determined by HPLC using chiral AD-H column, hexane/2-propanol $=7 / 3, \lambda=$ $254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=9.8 \mathrm{~min}$, tminor $=7.3 \mathrm{~min}$).

Compound 4fa

Prepared according to the procedure within 0.5 h as colorless oil $(84.5 \mathrm{mg}, 67 \%$ yield); $[\alpha]_{\mathrm{D}}^{16}=-120.66\left(c 0.36, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) δ 8.09-8.04 (m, 2H), $8.00(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.89(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.77$ (m, 4H), $7.73(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.47(\mathrm{~m}, 6 \mathrm{H}), 7.41(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, 3H), $1.90(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) δ 190.6, 189.3, 175.3, 165.2, 162.3, 153.7, $148.2,140.5,138.2,137.7,136.5,134.7,134.6,132.9,132.8,129.8,129.2,129.1,129.0,128.5,128.5$, 128.2, 127.9, 127.9, 127.5, 127.1, 126.5, 126.2, 122.4, 119.3, 93.8, 21.9, 12.9. HRMS (ESI) m/z Calcd. for $\mathrm{C}_{40} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$632.2002, Found 632.1994. Enantiomeric excess was determined to be 99% (determined by HPLC using chiral AD-H column, hexane/2-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8$ $\mathrm{mL} / \mathrm{min}$, tmajor $=21.2 \mathrm{~min}$, tminor $=7.8 \mathrm{~min})$.

Compound 4ga

Prepared according to the procedure within 0.5 h as colorless oil ($80.0 \mathrm{mg}, 69 \%$ yield); $[\alpha]_{\mathrm{D}}^{16}=-128.88\left(c 0.36, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) δ 8.03-7.93 (m, 4H), $7.85(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.70-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.33(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 1 \mathrm{H})$, 7.13-7.07 (m, 1H), 7.09-7.02 (m, 1H), $2.53(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 190.5,189.3,175.6,164.9,161.5,149.9,147.9,140.2,138.2,137.5,136.4$, $134.6,132.9,132.5,129.8,129.8,129.2,129.1,128.6,128.5,128.3,128.3,128.2,126.1,119.2,93.6$, 21.9, 12.9. HRMS (ESI) m / z Calcd. for $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$588.1410, Found 588.1406. Enantiomeric excess was determined to be 77% (determined by HPLC using chiral AD-H column, hexane $/ 2$-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=16.9 \mathrm{~min}$, tminor $=6.8 \mathrm{~min}$).

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	Area		Height		Area
				mAU	*S	[mAU]	\%
1	8.954	VB	0.4925	4403	88330	134	4524	11.7893
2	10.862	BB	0.6214	3.29	2 e 4	786	9016	88.2107

Compound 4ha

4ha

Prepared according to the procedure within 0.5 h as colorless oil ($41.5 \mathrm{mg}, 40 \%$ yield); $[\alpha]_{\mathrm{D}}^{17}=-201.96\left(c 0.21, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) δ 7.96-7.87 (m, 6H), 7.70-7.61 (m, 2H), $7.52(\mathrm{td}, J=7.7,5.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.42(\mathrm{dt}, J$ $=15.2,7.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.25(\mathrm{~s}, J=7.3 \mathrm{~Hz} 1 \mathrm{H}), 2.55(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.99(\mathrm{~s}$, 3 H), 1.87 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ 190.5, 189.3, 175.3, $165.6,159.4,156.2,148.1,140.6,138.2,137.6,136.4,134.6,132.9,129.7,129.1,129.0,128.6,128.5$, 128.3, 125.8, 118.9, 94.5, 21.8, 14.3, 12.6. HRMS (ESI) m/z Calcd. for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 520.1689, Found 520.1681. Enantiomeric excess was determined to be 97% (determined by HPLC using chiral AD-H column, hexane $/ 2-$ propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=10.9$ \min, tminor $=8.2 \mathrm{~min})$.

Compound 4ia

Prepared according to the procedure within 0.5 h as colorless oil ($86.3 \mathrm{mg}, 81 \%$ yield); $[\alpha]_{\mathrm{D}}^{18}=-194.75\left(c 0.46, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) δ 7.97-7.88 (m, 6H), 7.70-7.61 (m, 2H), 7.56-7.48 (m, 3H), 7.48-7.37 (m, 4H), 7.12 (t, $J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.40-2.18(\mathrm{~m}, 2 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 190.5,189.3$, 175.1, 165.7, $160.3,159.8,148.2,140.5,138.3,137.7,136.4,134.5,132.9,129.7,129.1,129.0,128.6,128.5,128.1$, 125.7, 118.9, 94.6, 22.5, 21.8, 12.7, 9.7. HRMS (ESI) m/z Calcd. for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 534.1846$, Found 534.1837. Enantiomeric excess was determined to be 92% (determined by HPLC using chiral AD-H column, hexane $/ 2$-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=9.3 \mathrm{~min}$, tminor $=$ 6.7 min).

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	6.580	BB	0.1939	1.34967 e 4	1064.62646	49.8404
2	9.008	MM	0.2574	1.35831 e 4	879.51312	50.1596

Compound 4ja

Prepared according to the procedure within 0.5 h as colorless oil ($76.6 \mathrm{mg}, 70 \%$ yield) ; $[\alpha]_{\mathrm{D}}^{16}=-189.12\left(c 0.36, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) δ 7.93 (m, 6H), 7.68-7.62 (m, 2H), 7.56-7.49 (m, 3H), 7.47-7.38 (m, 4H), 7.23 (t, J $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $1.22(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ 190.7, 189.4, $174.8,165.7,163.7,160.3,148.2,140.3,138.2,137.8,136.4,134.5,132.9,129.7,129.1,129.0,128.6$, $128.5,128.1,118.9,94.8,30.2,21.9,20.2(\mathrm{~d}, J=11.2 \mathrm{~Hz}), 12.78$. HRMS (ESI) m/z Calcd. for $\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$548.2002, Found 548.1994. Enantiomeric excess was determined to be 89% (determined by HPLC using chiral AD-H column, hexane/2-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30{ }^{\circ} \mathrm{C}, 0.8$ $\mathrm{mL} / \mathrm{min}$, tmajor $=8.3 \mathrm{~min}$, tminor $=5.7 \mathrm{~min}$).

Compound 4ka

Prepared according to the procedure within 0.5 h as colorless oil $(65.4 \mathrm{mg}, 60 \%$ yield); $[\alpha]_{\mathrm{D}}^{15}=-197.55\left(c 0.32, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) δ 7.98-7.85 (m, 6H), 7.70-7.60 (m, 2H), 7.56-7.46 (m, 3H), 7.42 (t, J = 8.0 Hz, $4 \mathrm{H}), 7.21(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{tt}, J=8.5,5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.15-1.05(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{dd}, J=8.2,3.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 190.6,189.4,175.1,165.4,161.1,160.2,148.4,142.6,140.4,138.2,137.7,136.4$, 134.6, 132.9, 129.7, 129.1, 129.0, 128.6, 128.6, 128.5, 128.1, 127.9, 125.8, 125.7, 118.9, 94.7, 80.8, 29.5, 21.9, 12.8, 9.8, 8.5. HRMS (ESI) m/z Calcd. for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 546.1846$, Found 546.1842. Enantiomeric excess was determined to be 95% (determined by HPLC using chiral AD-H column, hexane $/ 2$-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=11.7 \mathrm{~min}$, tminor $=7.2$ min).

\#	Time	Area	Height	Width	Area\% Symmetry	
1	7.332	21270.5	658.8	0.4364	50.253	2.237
2	11.986	21056.2	691	0.4807	49.747	0.852

$\boldsymbol{\#}$	Time	Area	Height	Width	Area\%	
1	7.273	385	28.6	0.2009	2.522	0.725
2	11.787	14880.4	706.9	0.3228	97.478	0.733

Compound 4ab

Prepared according to the procedure within 0.5 h as colorless oil ($81.6 \mathrm{mg}, 67 \%$ yield); $[\alpha]_{\mathrm{D}}^{16}=-156.00\left(c 0.41, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) δ 8.02 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.61$ (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{dd}, J=8.6,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.39$ $(\mathrm{m}, 3 \mathrm{H}), 7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{~d}, J=1.3 \mathrm{~Hz}$, $3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 190.2,189.0,175.4,165.3,161.4,153.9,147.5,145.8,143.6,140.6,137.7,135.7,134.0,131.5,129.9$, $129.8,129.2,129.2,129.1,128.6,128.4,126.1,125.9,119.2,93.7,21.9,21.8,21.6,12.8$. HRMS (ESI) m / z Calcd. for $\mathrm{C}_{38} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$610.2159, Found 610.2148. Enantiomeric excess was determined to be 98% (determined by HPLC using chiral AD-H column, hexane/2-propanol $=7 / 3, \lambda=$ $254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=12.1 \mathrm{~min}$, tminor $=7.9 \mathrm{~min}$).

Compound 4ac

Prepared according to the procedure within 0.5 h as colorless oil ($79.8 \mathrm{mg}, 60 \%$ yield); $[\alpha]_{\mathrm{D}}^{13}=-187.00\left(c 0.41, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) δ $8.04(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.65(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=8.0,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.40(\mathrm{~m}, 5 \mathrm{H})$, $7.36(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $2.98(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.21(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 190.2,189.0,175.4,165.3$, $161.1,156.4,154.3,153.9,147.3,140.7,137.8,136.1,134.2,131.5,130.2,130.0,129.2,129.1,128.8$, 128.3, 127.3, 126.6, 126.1, 125.9, 119.2, 93.7, 34.4, 34.2, 23.7, 23.6, 23.6, 21.8, 12.8. HRMS (ESI) m/z Calcd. for $\mathrm{C}_{42} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 666.2785$, Found 666.2774. Enantiomeric excess was determined to be 96% (determined by HPLC using chiral AD-H column, hexane/2-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, $0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=9.2 \mathrm{~min}$, tminor $=8.0 \mathrm{~min}$).

Compound 4ad

Prepared according to the procedure within 0.5 h as colorless oil ($65.0 \mathrm{mg}, 50 \%$ yield); $[\alpha]_{\mathrm{D}}^{15}=-201.66\left(c 0.34, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- $d)$ $\delta 8.02(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.70(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.39(\mathrm{~m}, 7 \mathrm{H}), 7.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 189.2$, $187.8,174.5,164.8,163.0,153.7,149.4,139.9,139.8,137.9,137.6,135.6,134.9,134.4,132.7,131.6$, $130.5,129.9,129.8,129.2,129.1,128.6,128.2,126.9,126.5,126.2,125.9,119.2,93.9,21.9,12.9$. HRMS (ESI) m/z Calcd. for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$650.1066, Found 650.1063. Enantiomeric excess was determined to be 92% (determined by HPLC using chiral AD-H column, hexane $/ 2$-propanol $=7 / 3$, $\lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=15.0 \mathrm{~min}$, tminor $\left.=7.1 \mathrm{~min}\right)$.

Compound 4ae

Prepared according to the procedure within 0.5 h as colorless oil $(91.6 \mathrm{mg}, 62 \%$ yield); $[\alpha]_{\mathrm{D}}^{17}=-55.50\left(c \quad 0.36, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) δ $7.95(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 3 \mathrm{H})$, 7.48-7.47 (m, 1H), 7.46-7.41 (m, 4H), 7.40-7.34 (m, 4H), 7.29-7.26 (m, 2H), 7.25-7.21 (m, 2H), $2.58(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 191.1,190.1,175.3,167.4,164.7,153.6,150.5,141.4,139.8,139.1,137.6,133.7$, $132.8,131.8,131.5,130.7,129.8,129.8,129.8,129.1,129.0,128.1,127.4,126.1,126.1,119.7,119.7$, 119.2, 94.1, 22.2, 12.7. HRMS (ESI) m/z Calcd. for $\mathrm{C}_{36} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{SBr}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 740.0036$, Found 740.0022. Enantiomeric excess was determined to be 92% (determined by HPLC using chiral AD-H column, hexane $/ 2$-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=44.7 \mathrm{~min}$, tminor $=55.9$ min).

Compound 4af

Prepared according to the procedure within 0.5 h as colorless oil $(104.5 \mathrm{mg}, 71 \%$ yield); $[\alpha]_{\mathrm{D}}^{17}=-95.75\left(c \quad 0.32, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) δ $8.01(\mathrm{dd}, J=8.7,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.69-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.62$ (d, $J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 4 \mathrm{H})$, 7.34-7.29 (m, 1H), $2.49(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 189.5$, 188.0, 174.7, 164.9, 162.5, 153.8, 149.1, 140.0, 137.6, $137.0,135.1,132.5,131.8,131.6,131.2,130.2,129.9,129.8,129.3,129.2,127.9,126.8,126.3,125.9$, 119.2, 93.9, 21.9, 12.9. HRMS (ESI) m/z Calcd. for $\mathrm{C}_{36} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{SBr}_{2}$ ([M+H] ${ }^{+}$) 740.0036, Found 740.0030. Enantiomeric excess was determined to be 99% (determined by HPLC using chiral AD-H column, hexane $/ 2$-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=17.8 \mathrm{~min}$, tminor $=8.5$ min).

Compound 4ag

Prepared according to the procedure within 0.5 h as colorless oil ($95.9 \mathrm{mg}, 76 \%$ yield); $[\alpha]_{\mathrm{D}}^{21}=-164.84\left(c 0.36, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) δ 8.09 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.03(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{t}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H})$, 7.82-7.75 (m, 2H), 7.60-7.52 (m, 5H), 7.48-7.45 (m, 2H), 7.41-7.34 (m, 2H), $2.53(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ $189.2,187.4,174.0,164.7,164.1,153.6,150.8,141.4,139.5,139.3,137.4$, $132.9,132.4,132.36,131.8,130.0,129.7,129.3,129.3,128.9,128.7,126.6,125.8,125.5,119.2,117.7$, 115.9, 94.1, 22.1, 13.1. HRMS (ESI) m/z Calcd. for $\mathrm{C}_{38} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$632.1751, Found 632.1753. Enantiomeric excess was determined to be 92% (determined by HPLC using chiral AD-H column, hexane $/ 2$-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=40.7 \mathrm{~min}$, tminor $\left.=16.9 \mathrm{~min}\right)$.

Compound 4ah

Prepared according to the procedure within 0.5 h as colorless oil $(95.3 \mathrm{mg}$, 70% yield); $[\alpha]_{\mathrm{D}}^{15}=-90.25\left(c \quad 0.32, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, Chloroform-d) $\delta 8.71$ (dd, $J=8.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 8.56-8.44 (m, 1H), 8.07 (d, J $=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{dd}, J=8.7,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{dd}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.92-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.83-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.77(\mathrm{dd}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.66$ (ddd, $J=8.5,6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=6.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.49(\mathrm{~m}$, $3 \mathrm{H}), 7.48-7.38(\mathrm{~m}, 8 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 2.56(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ 192.7, 191.8, 175.8, 165.1, 164.3, 153.9, 148.3, 141.4, 137.7, 136.7, 134.4, 134.1, $133.9,133.8,132.5,132.3,131.5,131.4,130.3,130.2,130.0,129.2,129.1,128.7,128.7,128.7,128.4$, 127.7, 127.0, 126.4, 126.1, 125.9, 125.7, 125.4, 112.8, 112.5, 119.2, 93.8, 21.9, 12.9. HRMS (ESI) m/z Calcd. for $\mathrm{C}_{44} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 682.2159$, Found 682.2137. Enantiomeric excess was determined to be 89% (determined by HPLC using chiral AD-H column, hexane/2-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, $0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=29.8 \mathrm{~min}$, tminor $=17.8 \mathrm{~min})$.

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	17.866		0.5936	182.09482	3.70359	5.5492
2	29.815	MM	1.7151	3099.36670	30.11760	94.4508

Compound 4ai

Prepared according to the procedure within 0.5 h as colorless oil $(86.6 \mathrm{mg}, 73 \%$ yield); $[\alpha]_{\mathrm{D}}^{16}=-112.00\left(c 0.44, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) δ $8.03(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{dd}, J=4.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{dd}, J=3.8,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=8.1,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-7.47(\mathrm{~m}$, $4 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=4.9,3.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.96(\mathrm{dd}, J=4.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 182.0,181.2,174.4,165.1,161.0,153.9,149.0,146.2,143.2,140.5,137.6,137.0$, 136.7, 133.9, 131.9, 131.6, 129.9, 129.3, 129.1, 128.9, 128.2, 126.3, 126.2, 125.9, 119.2, 93.7, 21.8, 12.9. HRMS (ESI) m/z Calcd. for $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$594.0974, Found 594.0964. Enantiomeric excess was determined to be 95% (determined by HPLC using chiral AD-H column, hexane/2-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=101.3 \mathrm{~min}$, tminor $\left.=9.3 \mathrm{~min}\right)$.

Compound 4aj

Prepared according to the procedure within 0.5 h as colorless oil $(72.6 \mathrm{mg}, 57 \%$ yield); $[\alpha]_{\mathrm{D}}^{15}=-32.00\left(c \quad 0.14, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) δ $8.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.44(\mathrm{~m}, 5 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.29$ $(\mathrm{m}, 3 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.21-7.15(\mathrm{~m} \mathrm{3H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 3.28-3.13(\mathrm{~m}$, $2 \mathrm{H}), 3.13-3.05(\mathrm{~m}, 2 \mathrm{H}), 2.96-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.82-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{~d}, J=$ $1.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) δ 198.1, 195.9, $175.8,165.2,164.9,153.5,148.5,141.0,140.3,139.8,137.6,131.5,131.1,130.0,129.1,128.7,128.5$, $128.4,126.5,126.1,126.1,125.8,119.2,94.1,46.1,45.0,29.8,29.6,21.8,13.6$. HRMS (ESI) m/z Calcd. for $\mathrm{C}_{40} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 638.2472$, Found 638.2471. Enantiomeric excess was determined to be 75% (determined by HPLC using chiral AD-H column, hexane/2-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}$,
$0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=23.9 \mathrm{~min}$, tminor $=29.5 \mathrm{~min})$.

Gram scale synthesis of the product 3aa

To a tube equipped with a magnetic stir bar was charged with 4-isothiocyanato pyrazolone 1a ($732 \mathrm{mg}, 2.5 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and $\mathbf{Q 4}(157 \mathrm{mg}, 0.25 \mathrm{mmol}, 0.1 \mathrm{eq}$.), followed with toluene (25 mL). After stirred for 5 min , allenyl ketone $\mathbf{2 a}(900 \mathrm{mg}, 6.3 \mathrm{mmol}, 2.5 \mathrm{eq}$.) was added in one portion. After 0.5 h , the solvent was removed under vacuum, the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc $=20: 1$ was used as the eluent) to give the product 4aa 0.97 g as light-yellow oil (yield 66%, ee 97%).

The procedure for the synthesis of compounds 5.

A reaction tube was charged with $4(0.1 \mathrm{mmol})$ and $\mathrm{DCM}(1 \mathrm{~mL})$, then $\mathbf{Q 4}(6.3 \mathrm{mg}, 0.01 \mathrm{mmol}$, 0.1 eq.) was added at room temperature. After the reaction was stirred for 12 h , the crude product was purified by column chromatography on silica gel to give the product 5 .

Compound 5aa

Prepared according to the procedure within 12 h as white solid $(51.7 \mathrm{mg}, 89 \%$ yield, $\mathrm{dr}>20: 1$). $\mathrm{mp} 155-157{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{18}=122.00\left(c 0.32, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.95$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), $7.90(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.58 (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.45-7.36(\mathrm{~m}, 7 \mathrm{H}), 7.35-7.27$ (m, 4H), $7.13(\mathrm{~s}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{bs}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13}$ C NMR (101 MHz , Chloroform- d) δ 188.6, 178.7, 165.8, 156.5, 154.5, 150.5, 142.3, 140.2, 137.7, $137.5,132.9,131.2,130.1,129.0,128.7,128.3,128.2,125.9,125.2,120.6,119.3,93.4,72.4,51.5,12.1$ HRMS (ESI) m/z Calcd. for $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 582.1846$, Found 582.1841. Enantiomeric excess was determined to be 93% (determined by HPLC using chiral OD-H column, hexane/2-propanol $=7 / 3$, $\lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=12.6 \mathrm{~min}$, tminor $=18.0 \mathrm{~min}$).

Compound 5da

Prepared according to the procedure within 12 h as white solid $(55.0 \mathrm{mg}, 90 \%$ yield, $\mathrm{dr}=7.3: 1$) $\mathrm{mp} 122.5-125.0^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{17}=71.25\left(c 0.45, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, Chloroform- d : methanol- $d=10: 1) \delta 7.87(\mathrm{dt}, J=25.0,7.9 \mathrm{~Hz}, 4 \mathrm{H})$, $7.55(\mathrm{q}, J=7.8,6.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.46(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{p}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H})$. $7.36-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J$ $=14.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{dd}, J=14.9,7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.44(\mathrm{~h}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz , Chloroform- d : methanol $-d=10: 1$) $\delta 189.1$, $179.2,166.3,164.4,154.5,151.1,142.4,140.4,137.6,137.4,132.9,128.9,128.8,128.7,128.1,128.0$,
125.6, 125.4, 120.4, 119.1, 94.1, 71.9, 51.3, 29.7, 20.1, 19.9, 11.9. HRMS (ESI) m / z Calcd. for $\mathrm{C}_{37} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$612.1952, Found 612.1949. Enantiomeric excess was determined to be 91% (determined by HPLC using chiral AD-H column, hexane/2-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8$ $\mathrm{mL} / \mathrm{min}$, tmajor $=13.4 \mathrm{~min}$, tminor $=17.3 \mathrm{~min})$.

Compound 5ea

Prepared according to the procedure within 12 h as white solid ($52.4 \mathrm{mg}, 83 \%$ yield, $\mathrm{dr}=4: 1) . \mathrm{mp} 160-162{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{16}=102.73\left(c 0.28, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(600$ MHz , Chloroform:Methol $=10: 1-d) \delta 9.08(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.59(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.58-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.47(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{q}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.29$ (dd, $J=14.9,7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.17 (d, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J$ $=14.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~s}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (151 MHz , Chloroform- d) δ 188.6, 178.7, $165.5,156.5,154.9,150.4,142.2,140.3,137.9,137.7,137.4,134.1,132.9,131.7,130.4,129.1,129.0$, $129.0,128.8,128.6,128.3,128.2,128.2,127.9,126.9,126.4,126.3,126.0,125.8,125.3,125.3,125.2$, 120.6, 119.2, 94.6, 72.3, 51.3, 21.5, 12.2. HRMS (ESI) m/z Calcd. for $\mathrm{C}_{40} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 632.2002, Found 632.2005. Enantiomeric excess was determined to be 99% (determined by HPLC using chiral AD-H column, hexane $/ 2$-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=21.3$ \min, tminor $=10.9 \mathrm{~min})$.

Compound 5ga
O Ph Prepared according to the procedure within 12 h as yellow solid $(47.5 \mathrm{mg}, 81 \%$
 yield, $\mathrm{dr}=6: 1$) $\mathrm{mp} 225-226{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{17}=30.91\left(c \quad 0.22, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(600$ MHz , Chloroform- d : methanol- $d=10: 1$) $\delta 7.92(\mathrm{q}, J=6.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.58(\mathrm{q}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.46(\mathrm{q}, J=8.1 \mathrm{~Hz}, 6 \mathrm{H}), 7.41(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.27(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{dd}, J=23.1,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.55$ $(\mathrm{d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 1 \mathrm{H}), 3.26(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz , Chloroform- d : methanol $-d=10: 1$) δ 189.1, 180.2, 165.6, 155.7, 150.9, 150.4, 142.5, 140.5, 137.4, 137.3, 133.0, 132.2, 129.4, 128.9, 128.7, 128.6, 128.4, 128.1, 128.0, 126.0, 125.3, 120.5, 119.3, 92.8, 71.8, 51.2, 11.8. HRMS (ESI) m/z Calcd. for $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$588.1410, Found 588.1402. Enantiomeric excess was determined to be 99% (determined by HPLC using chiral AD-H column, hexane $/ 2$-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=21.3 \mathrm{~min}$, tminor $\left.=42.7 \mathrm{~min}\right)$.

Compound 5ha

Prepared according to the procedure within 12 h as white solid ($45.6 \mathrm{mg}, 88 \%$ yield, $\mathrm{dr}>20: 1$). $\mathrm{mp} 110.2-112.5^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{17}=21.00\left(c 0.22, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.94-7.76$ (m, 2H), 7.58-7.49 (m, 3H), 7.47-7.34 (m, $5 \mathrm{H}), 7.31(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=$ $14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~s}, 1 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 188.7,178.9,166.2,157.0,153.9,150.3,141.9,140.7,137.6,137.5,132.9,129.0$,
128.9, 128.7, 128.3, 128.2, 125.6, 125.3, 120.7, 119.0, 94.0, 72.5, 51.4, 13.9, 11.8. HRMS (ESI) m/z Calcd. for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 520.1689$, Found 520.1689. Enantiomeric excess was determined to be 95% (determined by HPLC using chiral AD-H column, hexane/2-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, $0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=14.6 \mathrm{~min}$, tminor $=9.4 \mathrm{~min}$).

Compound 5ja

$0 \quad \mathrm{O}^{\mathrm{Ph}}$ Prepared according to the procedure within 12 h as white solid $(44.3 \mathrm{mg}, 81 \%$

5ja yield, $\mathrm{dr}=3.4: 1)$. $\mathrm{mp} 172.0-174.1{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{17}=29.37\left(c 0.12, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta 7.90(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.46(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{q}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.33(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=14.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.47(\mathrm{~s}, 1 \mathrm{H}), 2.46-2.41(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13}$ C NMR (101 MHz, Chloroform- d : methanol- $d=10: 1$) $\delta 188.9,178.9,166.3,164.4,154.5,151.0$, $142.4,140.2,137.6,137.5,132.9,128.9,128.8,128.7,128.1,128.1,125.6,125.4,120.4,119.1,94.1$, 71.9, 51.4, 29.8, 20.1, 20.0, 12.0. HRMS (ESI) m/z Calcd. for $\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 548.2002$, Found 548.2000. Enantiomeric excess was determined to be 99% (determined by HPLC using chiral AD-H column, hexane/2-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=16.5 \mathrm{~min}$, tminor $=25.7$ min).

Compound 5ka

Prepared according to the procedure within 12 h as white solid $(49.1 \mathrm{mg}, 90 \%$ yield, $\mathrm{dr}>20: 1$). $\mathrm{mp} 150.5-152.1{ }^{\circ} \mathrm{C}[\alpha]_{\mathrm{D}}^{16}=66.36\left(c 0.21, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 7.96(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{dd}, J=12.5,6.0 \mathrm{~Hz}, 5 \mathrm{H}), 7.45(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{dt}, J=14.7,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=$ $14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{p}, J=7.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.07-0.81(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) δ 188.7, 179.0, 166.3, 162.8, 153.1, 152.0, 143.3, 141.8, 137.7, 137.4, 133.7, 129.6, 129.3, 128.7, 128.5, 128.2, 126.3, 126.0, 120.7, 119.1, 93.7, 79.8, 72.3, 50.0, 12.1, 9.9, 9.3, 9.1. HRMS (ESI) m/z Calcd. for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$546.1846, Found 546.1846. Enantiomeric excess was determined to be 95% (determined by HPLC using chiral AD-H column, hexane/2-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8$ $\mathrm{mL} / \mathrm{min}$, tmajor $=21.3 \mathrm{~min}$, tminor $=11.7 \mathrm{~min})$.

Compound 5ah

Prepared according to the procedure within 12 h as yellow solid $(63.3 \mathrm{mg}$, 93% yield, $\mathrm{dr}=4.5: 1) . \mathrm{mp} 206.5-209.0^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{16}=-33.44\left(c 0.34, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) δ 8.54-8.29 (m, 2H), 8.08-7.81 (m, 7H), $7.61(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.48(\mathrm{~m}, 7 \mathrm{H}), 7.41(\mathrm{dt}, J=16.4,7.5 \mathrm{~Hz}, 6 \mathrm{H})$, $7.23(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J$
$=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- -) δ 192.2, 178.2, 165.5, 155.8, 154.0, $150.0,137.8,136.4,134.5,133.8,132.6,131.1,130.3,130.3,130.0,129.4,129.3,129.1,128.9,128.4$, $127.8,127.1,126.5,126.0,125.9,125.8,125.7,125.4,125.3,112.6,112.3,119.2,93.4,48.8,11.6$. HRMS (ESI) m/z Calcd. for $\mathrm{C}_{44} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$682.2159, Found 682.2159. Enantiomeric excess was determined to be 87% (determined by HPLC using chiral AD-H column, hexane $/ 2$-propanol $=7 / 3$, $\lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=26.6 \mathrm{~min}$, tminor $=10.7 \mathrm{~min}$).

Compound 5af

Prepared according to the procedure within 12 h as light-yellow solid ($62.6 \mathrm{mg}, 85 \%$ yield, $\mathrm{dr}>20: 1$). $\mathrm{mp} 170.0-173.0^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{16}=112.44(c$ $0.32, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.89(\mathrm{~d}, J=5.7 \mathrm{~Hz}$, $2 \mathrm{H})$, 7.77-7.68 (m, 2H), 7.57-7.48 (m, 2H), 7.50-7.38 (m, 8H), 7.39-7.33 $(\mathrm{m}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=$ $14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 1 \mathrm{H}), 3.12(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.41-1.36(\mathrm{~m}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 187.4,178.4,165.7,156.9,154.4,150.8,141.5,139.7,137.5$, $136.0,132.1,132.0,131.3,130.0,129.7,129.1,129.0,128.3,127.1,126.1,125.9,122.4,120.3,119.3$, 93.4, 72.0, 51.4, 12.3. HRMS (ESI) m/z Calcd. for $\mathrm{C}_{36} \mathrm{H}_{25} \mathrm{Br}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 738.0056$, Found 738.0063. Enantiomeric excess was determined to be 99% (determined by HPLC using chiral IC-H column, hexane $/ 2$-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=16.6 \mathrm{~min}$, tminor $=20.9$ min).

Compound 5'af

This diastereoisomer was prepared according to the procedure using DABCO as catalyst within 24 h as yellow solid $(62.6 \mathrm{mg}, 85 \%$ yield, $\mathrm{dr}=$ 3:1). mp 215.0-217.5 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{17}=-144.40\left(c 0.23, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform- d) $\delta 7.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.55-7.42(\mathrm{~m}, 5 \mathrm{H}), 7.42-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.23(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 3 \mathrm{H}), 6.92(\mathrm{~s}$, $1 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H})$, 1.70 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 187.4,178.6,165.8,156.9,154.4,150.9,141.6$, 139.7, 137.4, 135.9, 132.1, 132.0, 131.3, 129.9, 129.7, 129.1, 129.1, 128.3, 127.1, 126.2, 125.9, 122.4, 120.3, 119.3, 93.4, 71.9, 51.3, 12.2. HRMS (ESI) m/z Calcd. for $\mathrm{C}_{36} \mathrm{H}_{25} \mathrm{Br}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 738.0056$, Found 738.0063. Enantiomeric excess was determined to be 99% (determined by HPLC using chiral AD-H column, hexane $/ 2$-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=12.5 \mathrm{~min}$, tminor $=$ 17.9 min).

One-pot procedure for the synthesis of compound 5aa from 1a and 2a.

A tube equipped with a magnetic stir bar was charged with 4-isothiocyanato pyrazolone 1a (0.2 $\mathrm{mmol}), \mathbf{Q 4}(0.02 \mathrm{mmol})$, and toluene (2 mL). After stirring for 5 min , alkynyl ketone $\mathbf{2 a}(0.5 \mathrm{mmol})$ was added in one portion. The reaction was detected by TLC. After 36 h , the mixture was purified by column chromatography on silica gel (unless otherwise noticed, petroleum ether/EtOAc $=5: 1$ was used as the eluent) directly to give the product 5aa.

Asymmetric aldol reaction of racemic 4 to compound 5.

Table S1 Optimization of Reaction Conditions

Entry	Catalyst	Amount of Cat. (X equiv)	Solvent	$t[\mathrm{~h}]$	Yield ${ }^{\text {a }}$ [\%]		$\mathrm{Ee}^{\text {b }}$ [\%]	
					5af	5" ${ }^{\text {af }}$	5af	5"af
1	Q1	1	DCM	24	49	45	77	49
2	Q4	1	DCM	2	47	50	99	85
3	Q5	1	DCM	12	41	42	97	73
4	Q4	1	CHCl_{3}	12	41	40	99	87
5	Q4	1	THF	12	40	40	95	89
6	Q4	1	$\mathrm{CH}_{3} \mathrm{CN}$	12	41	43	97	87
7	Q4	1	toluene	12	46	48	93	85
8	Q4	0.1	CHCl_{3}	12	45	43	99	91
9	Q4	0.05	CHCl_{3}	14	41	40	99	88

The reaction was carried out on a 0.1 mmol scale in 1 mL solvent with catalyst. ${ }^{a}$ Isolated yield was given. ${ }^{b}$ The ee was determined by chiral HPLC.

Asymmetric aldol reactions of racemic 4 to compound 5

To a solution of racemic $4\left(0.1 \mathrm{mmol}, 1.0 \mathrm{eq}\right.$.) in $\mathrm{CHCl}_{3}(1.0 \mathrm{~mL})$ was added $\mathbf{Q 4}(6.3 \mathrm{mg}, 0.01$ mmol, 0.1 eq .). The reaction mixture was stirred at rt for 12 h . The reaction was detected by TLC.

When the reaction finished, the crude mixture was purified by column chromatography on silica gel to give 5.

Compound 5aa

Prepared according to the procedure within 12 h as white solid $(25.0 \mathrm{mg}, 43 \%$ yield). Enantiomeric excess was determined to be 99% (determined by HPLC using chiral IC-H column, hexane/2-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8$ $\mathrm{mL} / \mathrm{min}$, tmajor $=12.4 \mathrm{~min}$, tminor $=18.8 \mathrm{~min}$).

Compound 5"aa

Prepared according to the procedure within 12 h as white solid ($25.6 \mathrm{mg}, 44 \%$ yield). $\mathrm{mp} 190.0-192.0^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{17}=-144.40\left(c 0.31, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.47-7.32(\mathrm{~m}, 9 \mathrm{H}), 7.30(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.23(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.03(\mathrm{~s}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H})$,
1.87 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 188.8,179.3,166.6,156.3,154.8,150.5,142.2$, $142.1,137.5,137.5,132.9,131.3,130.0,129.0,128.9,128.6,128.6,128.2,128.1,126.1,125.2,120.7$, 119.4, 93.4, 72.4, 51.9, 12.1. HRMS (ESI) m/z Calcd. for $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$582.1846, Found 582.1846. Enantiomeric excess was determined to be 89% (determined by HPLC using chiral IC-H column, hexane $/ 2$-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=16.1 \mathrm{~min}$, tminor $=11.8$ min)

Compound 5ba

Prepared according to the procedure within 12 h as white solid $(12.4 \mathrm{mg}, 41 \%$ yield). mp 215.5-217.1 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{15}=-77.81\left(c 0.21, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.91(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{q}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.20$ $(\mathrm{m}, 3 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{~s}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=14.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) δ 188.7, 179.1, 166.4, 156.5, $154.9,150.6,142.2,141.8,138.6,137.6,137.5,132.9,132.2,130.0,129.0,128.8,128.6,128.6,128.2$, 128.1, 126.5, 126.0, 125.2, 123.3, 120.6, 119.4, 93.4, 72.6, 51.9, 21.5, 12.2. HRMS (ESI) m/z Calcd. for $\mathrm{C}_{37} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 596.2002$, Found 596.2001. Enantiomeric excess was determined to be 99% (determined by HPLC using chiral IC-H column, hexane/2-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8$ $\mathrm{mL} / \mathrm{min}$, tmajor $=9.1 \mathrm{~min}$, tminor $=13.2 \mathrm{~min}$)

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	Area		Height		Area
				mAU	* S	[mAU]	\%
1	9.118	BB	0.4354	5.66	6 e 4	1881	078	99.45
2	13.240		0.5595		7698		9267	0.5

Compound 5" ba

Prepared according to the procedure within 12 h as white solid $(22.0 \mathrm{mg}, 37 \%$ yield). mp 140.5-142.8 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{16}=10.00\left(c 0.11, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.95(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=3.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{dq}, J=15.4,7.7 \mathrm{~Hz}, 9 \mathrm{H}), 7.11(\mathrm{~s}$, $1 \mathrm{H}), 3.78(\mathrm{~s}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}$,
3H), $1.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 188.6,178.8,165.9,156.6,154.7,150.7$,
$142.2,140.0,138.6,137.7,137.5,132.9,132.1,130.0,129.0,128.9,128.7,128.6,128.2,126.4,125.9$, $125.4,125.2,123.2,120.4,119.3,93.4,72.7,51.3,21.5,12.1$. HRMS (ESI) m / z Calcd. for $\mathrm{C}_{37} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$596.2002, Found 596.2002. Enantiomeric excess was determined to be 99% (determined by HPLC using chiral IC-H column, hexane/2-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8$ $\mathrm{mL} / \mathrm{min}$, tmajor $=10.8 \mathrm{~min}$, tminor $=27.8 \mathrm{~min})$.

Compound 5ha
O Prepared according to the procedure within 12 h as white solid ($12.4 \mathrm{mg}, 47 \%$ yield). Enantiomeric excess was determined to be 97% (determined by HPLC using chiral IC-H column, hexane/2-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8$ $\mathrm{mL} / \mathrm{min}$, tmajor $=17.7 \mathrm{~min}$, tminor $=10.7 \mathrm{~min})$.

Peak \#	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	Area		Height		Area
				mAU	*S	[mAU]	\%
1	10.699	VB	0.7277	397	22000		. 80447	1.5297
2	17.763	BB	1.7692	2.55	96 e 4	217.	. 71043	98.4703

Compound 5"ha

Prepared according to the procedure within 12 h as white solid ($12.4 \mathrm{mg}, 47 \%$ yield). mp 117.0-120.0 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{17}=-50.63\left(c 0.21, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.79$ (dd, $J=6.9,1.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.50(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.45-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.25(\mathrm{~m}, 6 \mathrm{H}), 7.18(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 4.50$ $(\mathrm{s}, 1 \mathrm{H}), 3.43-3.27(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 188.7,179.7,167.0,157.1,153.8,150.3,142.5,142.1,137.5,137.4,132.9,128.9$, 128.7, 128.6, 128.2, 128.1, 125.8, 125.2, 120.7, 119.2, 72.5, 51.8, 13.8, 11.8. HRMS (ESI) m/z Calcd. for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 520.1689$, Found 520.1688. Enantiomeric excess was determined to be 91% (determined by HPLC using chiral AD-H column, hexane/2-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8$ $\mathrm{mL} / \mathrm{min}$, tmajor $=8.8 \mathrm{~min}$, tminor $=12.9 \mathrm{~min}$).

Compound 5ia

$5 i a$

Prepared according to the procedure within 12 h as white solid ($22.9 \mathrm{mg}, 43 \%$ yield). mp 210.1-212.5 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{15}=30.00\left(c 0.20, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.88(\mathrm{t}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.54(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.49-7.36(\mathrm{~m}$, $6 \mathrm{H}), 7.33$ (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=$ $14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~s}, 1 \mathrm{H}), 2.32-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ 188.6, 178.3, 166.2, 160.9, 154.4, 150.2, 141.8, 140.3, $137.8,137.5,133.0,129.1,128.9,128.7,128.4,128.2,125.6,125.3,120.7,119.1,94.2,72.6,51.5,22.1$, 12.0, 9.7. HRMS (ESI) m / z Calcd. for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$534.1846, Found 534.1840. Enantiomeric excess was determined to be 99% (determined by HPLC using chiral IC-H column, hexane $/ 2$-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=27.2 \mathrm{~min}$, tminor $=46.6 \mathrm{~min}$)

Peak	RetTime	Type	Width	Area		Height		Area
\#	[min]		[min]	mAU	*S	[mAU]	-
1	26.580	BB	1.1742	1089	3564		7706	50.2139
2	44.800	MM	6.9614	1079	. 5720		8510	49.7861

Compound 5"ia

Prepared according to the procedure within 12 h as white solid $(25.6 \mathrm{mg}, 48 \%$ yield); $[\alpha]_{\mathrm{D}}^{17}=-95.45\left(c \quad 0.21, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) δ $7.84-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.50(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.26(\mathrm{~m}, 10 \mathrm{H}), 7.17(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 1 \mathrm{H}), 3.50-3.14(\mathrm{~m}, 2 \mathrm{H}), 2.34-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{~s}$, 3H), $1.20(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 188.7,179.4,167.1,161.2,154.2$, $150.4,142.5,141.8,137.6,137.5,132.8,128.9,128.7,128.6,128.2,128.0,125.7,125.2,120.7,119.3$, 94.1, 72.5, 51.8, 22.1, 11.9, 9.7. HRMS (ESI) m/z Calcd. for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 534.1846$, Found 534.1841. Enantiomeric excess was determined to be 87% (determined by HPLC using chiral AD-H column, hexane $/ 2$-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=12.7 \mathrm{~min}$, tminor $=15.4$ min)

Compound 5ja

Prepared according to the procedure within 12 h as white solid $(22.4 \mathrm{mg}, 41 \%$ yield). Enantiomeric excess was determined to be 97% (determined by HPLC using chiral AD-H column, hexane/2-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8$ $\mathrm{mL} / \mathrm{min}$, tmajor $=18.4 \mathrm{~min}$, tminor $=25.8 \mathrm{~min}$).

Compound 5"ja

Prepared according to the procedure within 12 h as white solid ($25.2 \mathrm{mg}, 46 \%$); $[\alpha]_{\mathrm{D}}^{17}=-45.65\left(c 0.18, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.85-7.76$ $(\mathrm{m}, 4 \mathrm{H}), 7.50(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.25$ (m, 1H), $7.18(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 4.99-4.50(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=$ $13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.44$ (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H})$, $1.21(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ 188.7, 179.1, $167.1,164.5,154.6,150.6,142.6,141.7,137.6,137.5,132.8,128.9,128.6,128.6,128.2,128.0,125.8$, 125.2, 120.7, 119.3, 94.2, 72.3, 51.8, 29.9, 20.1, 20.1, 12.1. HRMS (ESI) m/z Calcd. for $\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) 548.2002$, Found 548.1999. Enantiomeric excess was determined to be 89% (determined by HPLC using chiral IC-H column, hexane $/ 2-$ propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=$ 10.1 min, tminor $=12.1 \mathrm{~min}$)

Compound 5af

 ${ }^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=18.7 \mathrm{~min}$, tminor $=12.0 \mathrm{~min}$).

Prepared according to the procedure within 12 h as yellow solid (33.2 mg , 45% yield). Enantiomeric excess was determined to be 99% (determined by HPLC using chiral IC-H column, hexane $/ 2$-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30$

Compound 5"af

Prepared according to the procedure within 12 h as yellow solid (31.8 mg , 43% yield). Enantiomeric excess was determined to be 91% (determined by HPLC using chiral IC-H column, hexane $/ 2$-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30$ ${ }^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=48.8 \mathrm{~min}$, tminor $=21.0 \mathrm{~min}$).

Synthesis of compound 6 and 7

To a solution of $4 \mathbf{4 a}(58.1 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) in THF $(1.0 \mathrm{~mL})$ was added $85 \% \mathrm{mCPBA}(42.6$ $\mathrm{mg}, 0.21 \mathrm{mmol}, 2.1$ equiv) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h . And then the mixture was diluted with $\mathrm{EtOAc}(10 \mathrm{~mL})$ and quenched with saturated NaHCO_{3} aqueous (5 mL). The organic phase was separated and washed with saturated NaHCO_{3} aqueous and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated. The crude mixture was purified by column chromatography on silica gel $(\mathrm{EtOAc} /$ petroleum ether $=1 / 5)$ to give 6 as light-yellow oil $(32.6 \mathrm{mg}, 81 \%$ yield $) .[\alpha]_{\mathrm{D}}^{16}=-37.00(c 0.12$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform-d) $\delta 7.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.88-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.74-$ $7.66(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.29(\mathrm{~m}, 8 \mathrm{H}), 7.21(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (151 MHz , Chloroform- d) $\delta 190.2,171.5,167.3,157.3,153.6,137.4,136.1,134.6,134.3,131.8$, 129.8, 129.4, 129.2, 128.9, 128.8, 126.3, 126.1, 74.5, 12.0. HRMS (ESI) m/z Calcd. for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) 422.1499$, Found 422.1498. Enantiomeric excess was determined to be 99% (determined by HPLC using chiral OD-H column, hexane $/ 2-$ propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=$ 10.0 min, tminor $=22.4 \mathrm{~min}$).

Methanesulfonyl chloride ($12.5 \mathrm{mg}, 0.11 \mathrm{mmol}$) and then triethylamine ($11.1 \mathrm{mg}, 0.11 \mathrm{mmol}$) were added to a solution of $\mathbf{5 a a}(58.1 \mathrm{mg} 0.1 \mathrm{mmol})$ in toluene (2 mL). This mixture was refluxed for 2 h and then poured into saturated aqueous ammonium chloride (5 mL). After separation of the organic layer, the aqueous phase was extracted with ethyl acetate. The combined organic phase was dried over magnesium sulfate. After evaporation of the solvents, the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10: 1$ was used as the eluent) to give 7 as yellow solid ($44 \mathrm{mg}, 1.17 \mathrm{mmol}$). mp $115.0-117.5^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{16}=215.70\left(c 0.14, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform-d) $\delta 8.00(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50$ $(\mathrm{dd}, J=8.0,3.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.44(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.42(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.37(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$, $7.33(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz , Chloroform- d) $\delta 189.1,177.7,165.6,155.8,154.1,147.8,140.9,138.1,137.8,137.7,132.9,131.2$, 131.1, 130.2, 129.3, 129.0, 129.0, 128.8, 128.7, 128.1, 125.9, 119.8, 119.2, 94.0, 13.2. HRMS (ESI) m / z Calcd. for $\mathrm{C}_{36} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$564.1740, Found 564.1741. Enantiomeric excess was determined to be 96% (determined by HPLC using chiral OD-H column, hexane/2-propanol $=7 / 3, \lambda=$ $254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=10.4 \mathrm{~min}$, tminor $=9.4 \mathrm{~min}$).

3. X-ray structures of 5af and 5" af

5"af
III
\equiv

4. References

(1) X. Bao, S. Wei, X. Qian, J. Qu, B. Wang, L. Zou and G. Ge, Asymmetric Construction of a Multi-Pharmacophore-Containing Dispirotriheterocyclic Scaffold and Identification of a Human Carboxylesterase 1 Inhibitor. Org. Lett. 2018, 20, 3394-3398.
(2) (a) X. Zhang, X. Jia, L. Fang, N. Liu, J. Wang and X. Fan, Tandem Reactions of 1,2-Allenic Ketones Leading to Substituted Benzenes and α, β-Unsaturated Nitriles. Org. Lett. 2011, 13, 5024-5027; (b) H. Xu, X. Zhang, Y. He, S. Guo and X. Fan, Tandem reaction of 3-hydroxyhexa-4,5-allenic esters: a novel access to diversely substituted 2H-pyran-2-ones and indenes. Chem. Commun. 2012, 48, 3121-3123.
(3) (a) W. Yang and D.-M. Du, Highly Enantioselective Michael Addition of Nitroalkanes to Chalcones Using Chiral Squaramides as Hydrogen Bonding Organocatalysts. Org. Lett. 2010, 12, 5450-5453; (b) J. P. Malerich, K. Hagihara and V. H. Rawal, Chiral Squaramide Derivatives are Excellent Hydrogen Bond Donor Catalysts. J. Am. Chem. Soc. 2008, 130, 14416-14417.

5. NMR spectra for compounds

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

 পᄋ \qquad $\stackrel{+}{\infty}$

210	200	190				150	140	130	120			90	80	70	60	50		30	20	10	o	-10
	200	190	180	170	160	150	140	130	120		1 (pp	90	80		60	5	40	30				

[^0]

甘 J

[^1]

Nิ

[^2]WU \qquad

Nへ|

[^3]

4ab

4ad

[^4]

$\underset{\underset{\sim}{N}}{\stackrel{\text { N }}{N}} \stackrel{\stackrel{N}{N}}{\underset{\sim}{i}}$

 が

4af

[^5]

[^6]

|n

[^7]

$\stackrel{\overline{\mathrm{N}}}{ }$

[^8]

 ભ

-22.05
-11.94
-9.68

[^0]: $\begin{array}{lllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90\end{array}$

[^1]: $\begin{array}{lllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 9\end{array}$

[^2]: $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl} & (\mathrm{ppm})\end{array}$

[^3]: $\begin{array}{lllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 9\end{array}$

[^4]: $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ & & & & & 100\end{array}$

[^5]: $\begin{array}{lllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 9\end{array}$

[^6]: $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100\end{array}$

[^7]: $\begin{array}{lllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90\end{array}$

[^8]: $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ f 1 & (\mathrm{pmm})\end{array}$

