Supporting Information for

High-performance ammonia-selective MFI nanosheet membranes

Xuekui Duan,^a Donghun Kim,^{ab} Katabathini Narasimharao ^c Shaeel Al-Thabaiti,^c and Michael Tsapatsis *ade

^a Department of Chemical Engineering and Materials Science, University of Minnesota Twin Cities,
421 Washington Ave SE, Minneapolis, MN 55455, USA. Email: tsapa001@umn.edu
^b School of Chemical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
^c Department of Chemistry, Faculty of Science King Abdulaziz University (KAU),
P.O. Box 80203 Jeddah 21589, Saudi Arabia.
^d Department of Chemical and Biomolecular Engineering & Institute for NanoBioTechnology,
Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.
^e Applied Physics Laboratory, Johns Hopkins University, 11100 Johns Hopkins Road, Laurel, MD 20723, USA.

EXPERIMENTAL SECTION

Direct synthesis of MFI nanosheets: The MFI nanosheets were prepared by a synthesis procedure reported previously ¹, using seeded growth templated by a certain structure directing agent (SDA): bis-1,5(tripropyl ammonium) pentamethylene diiodide (dC5). In brief, first, MFI nanocrystals were prepared as seeds for the growth of nanosheets, using a sol with molar composition of $10SiO_2$:2.4TPAOH:0.87NaOH:114H₂O. A precursor sol with a composition of 80TEOS:3.75dC5:20 KOH:9500 H₂O was hydrolyzed and mixed with the MFI nanocrystal suspension at 1000:1 silica molar ratio of precursor sol to nanocrystal suspension. The mixture was then transferred into a Teflon-lined stainless steel autoclave and hydrothermally treated statically at 140 °C for 4 days.

Preparation of porous sintered silica fiber (SSF) supports: Sintered silica fiber (SSF) supports were prepared by following the same procedures reported earlier ². First, commercially available silica fibers, referred to as quartz fibers, were crushed and pressed followed by sintering at 1100 °C and for 3 hours and polishing using CarbiMet[™] SiC abrasive paper (600 grit/P1200). Then, 500 nm Stöber silica spheres were rubbed manually on the top surface followed by sintering at 1100 °C for 3 hours. This rubbing and sintering process was repeated up to 5-8 times until the surface was fully covered by the Stöber silica spheres. Finally, a top 50 nm Stöber silica layer was rubbed on the surface and fixed on the surface by sintering at 450 °C for 6 hours. It serves as the silica source to form continuous and inter-grown films by the gel-free secondary growth method ³.

Fabrication of MFI membranes: Membrane fabrication was performed following the exact procedures reported earlier ⁴. Briefly, the synthesized MFI nanosheets were purified using centrifugation and dispersed in DI water containing 5 vol% ethanol. To form a thin layer of nanosheet coating on the porous SSF support as seeds, the floating particle method was used ⁴. The support was placed in a home-made TeflonTM trough. After filling the trough with DI water, the suspension was transferred to the air-water interface using a micropipette, forming a uniform layer of MFI nanosheets. Then, by lowering the water level below the support, the MFI nanosheet layer was deposited on the support surface, to obtain a uniform layer of nanosheet coating. The coated support was then dried and calcined at 400 °C for 6 hours. This coatings process was repeated twice to ensure high surface coverage by the nanosheets. Finally, the seeded support was treated by the gel-free secondary growth ³ at 180 °C for 4 days using an impregnating TPAOH aqueous solution (0.025M TPAOH) to obtain a well-intergrown membrane, which was calcined at 450 °C for 6 hours.

Characterization: X-ray diffraction (XRD) patterns were obtained using a Panalytical X'Pert Pro diffractometer with Cu K α radiation at 45 kV and 40 mA. SEM measurements were performed on a FEG-SEM (Hitachi SU8230) at 5 kV. The cross-sectional FIB-SEM images of the membrane were obtained by FEI Helios NanoLab G4 dual-beam focused ion beam (FIB).

Permeation test: The membranes were tested under different feed pressures. The hydrocarbon/H₂ atmospheric feed pressure tests were performed in the Wicke–Kallenbach mode (70 mL/min hydrocarbon/hydrogen mixture feed with permeate side purged with 30 mL/min sweep gas (Ar)). For membrane tests at higher feed pressures, no sweep gas was used. The feed pressure was regulated by a pressure regulator and measured by a pressure gauge. The permeate side was kept at atmospheric pressure. After maintaining the membrane for ca. 20 hours at each condition to ensure steady state stable operation, the concentrations of feed and permeate streams were determined by GC with a thermal conductivity detector (GC/TCD), equipped with a packed-bed column (Chromosorb PAW, Agilent). Ar was used as carrier gas for the GC. At each permeation condition, the analysis was repeated at least three times. The membrane separation performance is typically assessed with permeance and separation factor. The permeance is the flux normalized by the partial pressure gradient across the membrane. The separation factor is defined as the composition ratio of components A and B in the permeate mixture relative to the composition ratio of A and B in the retentate mixture, i.e. SF(AB) = $[X_A/X_B]_{permeate}/[X_A/X_B]_{retentate}$.

Figure S1: a), b) surface morphology and c) cross-sectional FIB-SEM image of the MFI membrane fabricated from MFI nanosheet seed layer; d) out-of-plane XRD pattern of the fabricated MFI membrane, indicating a dominant b-out-of-plane orientation after secondary growth. The broad background peak is due to the amorphous silica support. Scale bars are a) 5 μ m, b) 1 μ m, and c) 1 μ m.

Table S1: Ammonia/hydrogen binary permeation measurement conditions and membrane performances

	-		Feed conditions		Р	ermeate conditio	ns		NH ₃	NH ₃ /H ₂
ID	D Temp Feed Pressur		Feed composition	Feed flow rate	Permeate pressure	Permeate composition	Permeate flow rate (measured)	NH3 flux [mol/(m².s)]	permeance (mol/(m².s.Pa))	NH ₃ /H ₂ S.F.
1	25 °C	3 har	50%H ₂ +50%	400	1bar (no	99.62%	30.0	0.090	2 26 × 10-6	307
	25 0		NH ₃	mL/min	sweep)	NH ₃	mL/min	0.070	2.20 10	507
2	50 °C	3 har	50%H ₂ +50%	400	1bar (no	94.9%	50.8	0.144	3 45 × 10-6	23.8
2	30 0	5 0 0	NH ₃	mL/min	sweep)	NH ₃	mL/min	0.177	5.45 10	25.0
3	100 °C	3 har	50%H ₂ +50%	400	1bar (no	75.1%	76.6	0.173	2 72 X 10-6	3.8
3 100 °C	3 bar	NH ₃	mL/min	sweep)	NH ₃	mL/min	0.175	2.72 ~ 10 *	3.8	

Sample calculation:

At 25 °C, 3 bar feed pressure, permeate flow rate is 30.0 mL/min.

Converting mL/min to mol/s:

 $30.0 \text{ mL/min} = (30.0 \times 10^{-6} \text{ m}^3 \times 101325 \text{ Pa})/(60 \text{ s} \times 8.314 \text{ m}^3 \times \text{Pa} \times \text{K}^{-1} \times \text{mol}^{-1} \times (273.15+25) \text{ K})$

=2.04×10⁻⁵ mol/s

Effective Membrane Diameter =1.70 cm

Effective Membrane Area = $3.14 \times (1.70 \times 10^{-2} \text{ m})^2/4 = 0.000227 \text{ m}^2$

NH₃ flux = 2.04×10^{-5} mol/s × 99.62% /0.000227=0.0895 mol/(m².s)

NH₃ Composition in Retentate: (204 mL/min - 99.62%×30.0 mL/min)/(408 mL/min - 30.0 mL/min)

=0.461

Partial pressure difference = 46.1%×3.01×101325 Pa - 99.62%×101325 Pa = 39680 Pa

NH₃ permeance = 0.0895 mol/(m².s)/ 39680 Pa = 2.26×10⁻⁶ mol/(m².s.Pa)

S.F. = (0.9962/0.0038)/(0.461/0.539) = 307

Estimation of expected NH₃ flux

We assume single component NH_3 transport (i.e., neglect the presence of N_2 and H_2 in the membrane) through a membrane and use the following equation to find the flux:

$$J = \frac{\varepsilon Dq_s}{L} \ln(\frac{1 + bP_{feed}}{1 + bP_{permeate}}) \text{ (ref. 5)}$$

Where J is the flux (mol/(m².s)); ε is the support porosity; D is the diffusion coefficient (m²/s); q_s is the saturation loading in mol/m³; L is the membrane thickness and b is the Langmuir parameter.

We use the following parameters:

ε=0.3;

 $D = 6 \times 10^{-11}$ to 1×10^{-9} m²/s (obtained from Figure 5 of Jobic et al. ⁶);

 q_s =4.3 mol/kg (estimated from the data of Figure 6 in ref.⁷);

The density of MFI zeolite is 1,800 kg/m³;

 $L = 1 \ \mu m = 1 \times 10^{-6} m;$

 $b = 8.0 \times 10^{-6} Pa^{-1}$ (estimated from the data of Figure 6 in ref.⁷);

 $P_{feed} = 1.5$ bar;

 $P_{permeate} = 1$ bar.

$$D = 6 \times 10^{-11} \text{ m}^2/\text{s} : J = \frac{0.3 \times 6 \times 10^{-11} \times 4.3 \times 1800}{1 \times 10^{-6}} \ln(\frac{1 + 8.0 \times 10^{-6} \times 1.5 \times 10^5}{1 + 8.0 \times 10^{-6} \times 1.0 \times 10^5}) = 0.028$$
$$D = 1 \times 10^{-9} \text{ m}^2/\text{s} : J = \frac{0.3 \times 1 \times 10^{-9} \times 4.3 \times 1800}{1 \times 10^{-6}} \ln(\frac{1 + 8.0 \times 10^{-6} \times 1.5 \times 10^5}{1 + 8.0 \times 10^{-6} \times 1.0 \times 10^5}) = 0.466$$

Table S2: Ammonia/nitrogen binary permeation measurement condition	ns and membrane performances
--	------------------------------

			Feed conditions		Ре	rmeate condition	15		NH ₃	
ID	Temp	Feed Pressure	Feed composition	Feed flow rate	Permeate pressure	Permeate composition	Permeate flow rate (measured)	NH ₃ flux [mol/(m².s)]	permeance (mol/(m².s.Pa))	NH ₃ /N ₂ S.F.
1	25 °C	3 bar	50%N2+50%	400	1bar	99.95%	22.0	0.066	1.10×10^{-6}	2236
			NH ₃	mL/min	(no sweep)	NH ₃	mL/min			
2	50 °C	3 bar	50%N ₂ +50%	400	1bar	99.3%	44.5	0.133	2.62×10^{-6}	191
			NH ₃	mL/min	(no sweep)	NH ₃	mL/min		2.02 10	
3	50 °C	5 har	50%N ₂ +50%	400	1bar	99.3%	72.5	0.216	1.89×10^{-6}	219
5	50 0	5 000	NH ₃	mL/min	(no sweep)	NH ₃	mL/min	0.210	1.09 10	219
4	50 °C	7 har	50%N2+50%	400	1 bar	99.2%	87.7	0.261	1.66 × 10-6	221
	50 0	7 000	NH ₃	mL/min	(no sweep)	NH ₃	mL/min	0.201	1.00 10	221
5	100 °C	3 har	50%N2+50%	400	1bar	92.7%	46.8	0.131	3 47 X 10-6	15.8
5	100 C	5 0 41	NH ₃	mL/min	(no sweep)	NH ₃	mL/min	0.151	5.47 10	15.6
6	100 °C)°C 5 bar	5 bar 50%N ₂ +50% 400 1bar		1 bar	92.5% 89.4		0.248	2 50 × 10-6	20.0
	6 100 °C 5 b	5041	NH ₃	mL/min	(no sweep)	NH ₃	mL/min	0.240	2.50 10	20.0

Table S3: H_2 /Hydrocarbon binary permeation measurement conditions and membrane performances

			Feed conditions			Permeate condition	ons	Hydrocarbon	Hydrocarbon	Hydrocarbon/
ID	Тетр	Feed Pressure	Feed composition	Feed flow rate	Permeate pressure	Permeate composition	Sweep/permeate flow rate	flux [mol/(m².s)]	permeance (mol/(m².s.Pa))	H ₂ S.F.
1	25 °C	1 bar	30%H ₂ +70% <i>n</i> -butane	50 mL/min	1 bar (Ar sweep)	0.083%H ₂ +13.5% <i>n</i> -butane, Ar balance	30 mL/min	0.0135	2.17 × 10-7	59
2	25 °C	1 bar	30%H ₂ +70% <i>n</i> -propane	50 mL/min	l bar (Ar sweep)	0.18%H ₂ +15.2% <i>n</i> - propane, Ar balance	30 mL/min	0.0129	2.20 × 10 ⁻⁷	39
3	25 °C	1 bar	30%H ₂ +70% ethane	50 mL/min	1 bar (Ar sweep)	1.0%H ₂ +20.7% ethane, Ar balance	30 mL/min	0.0184	3.0 × 10 ⁻⁷	5.7
4	25 °C	6 bar	98%H ₂ +2% <i>n</i> -butane	200 mL/min	1bar (no sweep)	90.5%H ₂ +9.5% <i>n</i> -butane	2.9 mL/min	9.2 × 10 ⁻⁴	5.8 × 10-7	6.5
5	25 °C	8 bar	98%H ₂ +2% <i>n</i> -butane	200 mL/min	1bar (no sweep)	86.8%H ₂ +13.2% <i>n</i> -butane	3.1 mL/min	0.0011	5.0 × 10 ⁻⁷	7.7
6	25 °C	10 bar	98%H ₂ +2% <i>n</i> -butane	200 mL/min	1bar (no sweep)	84.5%H ₂ +15.5% <i>n</i> -butane	3.2 mL/min	0.0014	4.3 × 10-7	9.5
7	25 °C	2 bar	50%H ₂ +50% <i>n</i> -propane	200 mL/min	1bar (no sweep)	3.3%H ₂ +96.7% <i>n</i> -propane	4.1 mL/min	0.0103	5.3 × 10 ⁻⁷	31
8	25 °C	4 bar	50%H ₂ +50% <i>n</i> -propane	200 mL/min	1bar (no sweep)	1.5%H ₂ +98.5% <i>n</i> -propane	20.5 mL/min	0.0531	6.3 × 10 ⁻⁷	83
9	25 °C	6 bar	50%H ₂ +50% <i>n</i> -propane	200 mL/min	1bar (no sweep)	2.2%H ₂ +97.8% <i>n</i> -propane	26.5 mL/min	0.0688	5.9 × 10-7	81

Table S4: H_2 /Hydrocarbon ternary permeation measurement conditions and membrane performances

			Feed conditions			Permeate conditions			Ethane/	Hudrogon	n hutana	Ethane
ID	Тетр	Feed Pressure	Feed composition	Feed flow rate	Permeate pressure	Permeate composition	Sweep flow rate	flux/permeance	<i>n-</i> propane flux/permeance	flux/permeance	/H ₂ S.F.	or <i>n</i> -propane /H ₂ S.F.
1	25 °C	1 bar	20%H ₂ +40% ethane+40% <i>n</i> -butane	50 mL/min	1 bar (Ar sweep)	0.084%H ₂ +1.6% ethane +7.0% n-butane, Ar balance	30 mL/min	5.50 × 10 ⁻³ mol/(m ² .s) 1.65 × 10 ⁻⁷ mol/(m ² .s.Pa)	1.26 × 10 ⁻³ mol/(m ² .s) 3.2 × 10 ⁻⁸ mol/(m ² .s.Pa)	6.57 × 10 ⁻⁵ mol/(m ² .s) 3.25 × 10 ⁻⁹ mol/(m ² .s.Pa)	42	10
2	25 °C	1 bar	20%H ₂ +40% <i>n</i> -propane+40% <i>n</i> -butane	50 mL/min	l bar (Ar sweep)	0.084%H ₂ +4.2% n-propane +8.1% n-butane, Ar balance	30 mL/min	6.64 × 10 ⁻³ mol/(m ² .s) 1.9 × 10 ⁻⁷ mol/(m ² .s.Pa)	3.41 × 10 ⁻³ mol/(m ² .s) 1.0 × 10 ⁻⁷ mol/(m ² .s.Pa)	6.83 × 10 ⁻⁵ mol/(m ² .s) 3.16 × 10 ⁻⁹ mol/(m ² .s.Pa)	50	29

Ref.	Material	Membrane Thickness	Feed	Sweep	T/°C	NH3 permeability /permeance	NH ₃ permeance [mol/(m ² .s.Pa)]	NH ₃ flux (mol/(m ² .s))	NH ₃ /H ₂ selectivity /S.F.	NH ₃ /N ₂ selectivity /S.F.
	Lithium		1 bar 10% NH ₃			9900 Barrer				245
	Immobilized Molten Salt		1 bar 25% NH ₃	He, 1 bar	279	7400 Barrer				129
	Membrane		1 bar 50% NH ₃			7100 Barrer				80
			1 bar 10% NH ₃			100,000 Barrer				>1000
			1 bar 20% NH ₃	He,	250	69,000 Barrer				>1000
			1 bar 40% NH ₃	1 bar	l bar	28,000 Barrer				>1000
			1 bar 80% NH ₃	He, 1 bar	300	21,000 Barrer				>1000
[8] Pez, 1988	[8] Pez, 1988 [9] Pez		1 bar 10% NH ₃			130,000 Barrer				>1000
[9] Pez, 1992	Zinc Chloride	,	1 bar 20% NH ₃			79,000 Barrer				>1000
	Immobilized Molten Salt		1 bar 40% NH ₃			44,000 Barrer				>1000
	Membrane		1 bar 60% NH ₃			43,000 Barrer				>1000
			1 bar 80% NH ₃			33,000 Barrer				>1000
			1 bar 10% NH ₃			140,000 Barrer				>1000
			1 bar 20% NH ₃	He, 1 bar	350	150,000 Barrer				>1000
			1 bar 40% NH ₃			46,000 Barrer				>1000
			1 bar single gas	He, 1 bar	311	290,000 Barrer			3200	
	NUL				0	2400 GPU	8.0×10-7	0.14		>1000
[10] Pez,	NH ₃ - NH ₄ SCN	1NH3:1N2	Не	23	1900 GPU	6.36×10-7	0.11		8700	
1988	Membrane on Nylon filter		3.6 bar 3.	3.6 bar	21	5265.5 Barrer			59.2	135
					50	5038.6 Barrer			25.8	59.1

Appendix S1: Ammonia separation based on liquid membranes

Appendix S2: Ammonia separation based on polymeric membranes

Ref.	Material	Membrane Thickness	Feed	Sweep	T/°C	NH ₃ permeance	NH3 permeance [mol/(m².s.Pa)]	NH ₃ flux [mol/(m ² .s)]	NH ₃ /H ₂ selectivity	NH ₃ /N ₂ selectivity
[11]	Multi- component		0.1	11	25	376 GPU	1.26×10-7	0.043	78.8	1423
Kulprathi panja,	silicone rubber/poly	y NA	gas, 50 psig	no sweep	25	164 GPU	0.55×10-7	0.019	80.7	1350
1986	ethylene glycol				25	224 GPU	0.75×10-7	0.026	78.6	1100

Ref.	Material	Membrane Thickness	Feed	Sweep	T/°C	NH ₃ permeance	NH ₃ permeance [mol/(m ² .s.Pa)]	NH ₃ flux (mol/(m ² .s))	NH ₃ /H ₂ selectivity	NH ₃ /N ₂ selectivity
					23.5	118 GPU	0.39×10 ⁻⁷		12.5	450.4
[12] Pan,	Polysulfone amide	NA	Single gas		0	135 GPU	0.45×10-7		33.6	892.8
1988					-10	520 GPU	1.7×10-7		200.8	6025
					-16	1010 GPU	3.4×10-7		653.7	18878

Ref.	Material	Membrane Thickness	Feed	Sweep	T/°C	NH ₃ permeance (GPU)	NH3 permeance [mol/(m².s.Pa)]	NH ₃ flux [mol/(m ² .s)]	NH ₃ /H ₂ S.F.	NH ₃ /N ₂ S.F.
			3NH ₃ :1N ₂ 1 bar	He, 1 bar	17	2.9 GPU	9.7×10 ⁻¹⁰	0.000073		>50
		80-150 μm	3NH ₃ :1N ₂ 5 bar	He, 5 bar	17	16 GPU	5.4×10-9	0.0020		>800
	Polyvinyl- ammonium		3NH ₃ :1N ₂ 6 bar	He, 6 bar	17	50 GPU	1.7×10-8	0.0090		>1000
	chloride		60% NH ₃ 13.8 bar	He, 1 bar	25	32 GPU	1.1×10 ⁻⁸	0.0089		2100
		~180 µm	40% NH ₃ 20.7 bar	He, 1 bar	25	27 GPU	9.0×10-9	0.0075		2500
			30% NH ₃ 27.5 bar	He, 1 bar	25	24 GPU	8.0×10-9	0.0066		2200
	[13] Pez.	NA	3NH ₃ :1N ₂ 1 bar	He, 1 bar	17	98 GPU	3.3×10 ⁻⁸	0.0025		>900
			3NH ₃ :1N ₂ 6 bar	He, 6 bar	17	250 GPU	8.4×10 ⁻⁸	0.038		>1100
			3NH ₃ :1N ₂ 3 bar	He, 3 bar	52	150 GPU	5.0×10 ⁻⁸	0.011		>1000
			3NH ₃ :1N ₂ 6 bar	He, 6 bar	52	220 GPU	7.4×10 ⁻⁸	0.033		>1100
[13] Pez			3NH ₃ :1N ₂ 3 bar	He, 3 bar	73	110 GPU	3.7×10-8	0.0083		>900
1988			3NH ₃ :1N ₂ 6 bar	He, 6 bar	73	160 GPU	5.4×10 ⁻⁸	0.024		>1000
			38.8% NH ₃ 20.5 bar	He, 1 bar	26	340 GPU	1.1×10 ⁻⁷	0.090		1500
	Polyvinyla mmonium		28.6% NH ₃ 27.8 bar	He, 1 bar	26	230 GPU	7.7×10 ⁻⁸	0.061		1300
	thiocyanate	100-300	25.4% NH ₃ 31.2 bar	He, 1 bar	26	210 GPU	7.0×10 ⁻⁸	0.056		1200
		μm	18.6% NH ₃ 42.7 bar	He, 1 bar	26	150 GPU	5.0×10 ⁻⁸	0.040		1100
			13.4% NH ₃ 59.2 bar	He, 1 bar	26	110 GPU	3.7×10-8	0.022		970
			12.0% NH ₃ 66.4 bar	He, 1 bar	26	97 GPU	3.2×10 ⁻⁸	0.026		890
			13.8% NH ₃ +25.9%H ₂ +60.3%N ₂ 57.5 bar	He, 1 bar	24	54 GPU	1.8×10 ⁻⁸	0.014	6200	3600
			13.8% NH ₃ +25.9%H ₂ +60.3%N ₂ 57.5 bar	He, 1 bar	60	32 GPU	1.1×10 ⁻⁸	0.0085	1400	2000

Ref.	Material	Membrane Thickness	Feed	Sweep	T/°C	NH ₃ permeance	NH3 permeance [mol/(m ² .s.Pa)]	NH ₃ flux [mol/(m ² .s)]	NH ₃ /H ₂ S.F.	NH ₃ /N ₂ S.F.
	Polyvinyl-		15111		0	183 GPU	6.1×10 ⁻⁸	0.011		>3000
[10] Pez, 1988	alcohol	~200 µm	$1NH_3$: $1N_2$	He 3.6 bar	19	179 GPU	6.0×10 ⁻⁸	0.011		3000
	thiocyanate		5.0 041		50	180 GPU	180 GPU 6.0×10 ⁻⁸			1000

Ref.	Material	Membrane Thickness	Feed	Sweep	T/°C	NH ₃ permeance	NH ₃ permeance [mol/(m ² .s.Pa)]	NH ₃ flux [mol/(m ² .s)]	NH ₃ /H ₂ selectivity	NH ₃ /N ₂ selectivity
[14] Timashev, 1991	Hydrolyzed Perfluosro- sulfonic acid polymer hollow fibers	Wall thickness 17 μm	Single gas, 2bar	He, 1 bar	25	459 GPU	1.54×10-7	0.031	> 100-1000	

Ref.	Material	Membrane Thickness	Feed	Sweep	T/ °C	NH ₃ permeance	NH ₃ permeance [mol/(m ² .s.Pa)]	NH ₃ flux [mol/(m ² .s)]	NH ₃ /H ₂ S.F.	NH ₃ /N ₂ S.F.
[15]	Composite polysulfone		NH ₂ /N ₂ /H ₂		22	132.6 GPU	4.4×10 ⁻⁸	0.0031	33	>1000
Bikson, 1991	hollow fiber/ sulfonated polysulfone		10/30/60 100 psig		9	157.3 GPU	5.3×10 ⁻⁸	0.0036	63	>1000

Ref.	Material	Membrane Thickness	Feed	Sweep	T/° C	NH ₃ permeance	NH ₃ permeance [mol/(m ² .s.Pa)]	NH ₃ flux [mol/(m ² .s)]	NH ₃ /H ₂ selectivity /S.F.	NH ₃ /N ₂ selectivity /S.F.
[16] Cussler, 1992	Perfluoro- sulfone (Nafion) Different ionic forms	38 μm	5.4 bar NH ₃ /N ₂ mixture, ratio not given.	Не	21			(Interview) 0.14 0.10 0.084 0.070 0.040 0.038 0.035 0.013 0.019 0.012 0.017 0.0087 0.0050 0.0059		>3000 >3000 600 60 >3000 >3000 >3000 >3000 >3000 3000 120 60 >3000
								0.0061 NA		60 >3000
[17] Vorotynt sev, 2006	Cellulose acetate		Single gas, 1bar	<4.1 kPa	25	292 GPU	9.8×10 ⁻⁸	0.0098	9.3	111
[18] Cussler, 2009	Poly(norbor enylethysty rene)-b- poly(propyl styrene- sulfonate) copolymer	NA	Single gas, 2bar	1 bar	25	>600 Barrer				>90
[10]	noly[big(trif				5	5643.7			105.3	221.3
Makhlou)phosphaze	NA	Single	Vacuum	21	Barrer 5265.5			59.2	135
fi,2012	012 ne] (PTFEP)		Eas		50	5038.6 Barrer			25.8	59.1

Ref.	Material	Membrane Thickness	Feed	Sweep	T/°C	NH ₃ permeance	NH ₃ permeance [mol/(m².s.pa)]	NH ₃ flux (mol/(m ² .s))	NH ₃ /H ₂ S.F.	NH ₃ /N ₂ S.F.
[20] Camus, 2006	Tubular silica membranes on alumina substrates	<200nm	16% NH ₃ , 3/1 H ₂ /N ₂ 10 bar	1 bar	80	2275 GPU	7.62 × 10 ⁻⁷	0.12	6.60	14.48
			14% NH ₃ , 3/1 H ₂ /N ₂ 16.3 bar	1 bar	80	513 GPU	1.72 × 10 ⁻⁷	0.039	2.74	1.59
			14% NH ₃ , 3/1 H ₂ /N ₂ 21.2 bar	1 bar	80	1107 GPU	3.71 × 10 ⁻⁷	0.11	4.89	7.10
			14% NH ₃ , 3/1 H ₂ /N ₂ 25.2 bar	1 bar	80	1687 GPU	5.65 × 10 ⁻⁷	0.20	4.88	10.73
	Si-1, average pore size 0.5-0.6 nm Si-2, average pore size 0.4-0.5 nm Si-3, average pore size 0.3 nm	Si-1, verage re size <u>-0.6 nm</u> Si-2, verage re size -0.5 nm Si-3, verage re size -3 nm	1bar 1/1 NH ₃ /H ₂ 1 bar	11	50	304 GPU	1.02×10^{-7}	0.0051	28.7	
[21] Kaneza shi, 2010				1 bar	400	310 GPU	1.04×10^{-7}	0.0052	0.083	
			1 bar 1/1 NH ₃ /H ₂ 1 bar	11	50	50 GPU	0.168 × 10 ⁻⁷	0.00084	1.02	
				1 bar	1 bar 400	35 GPU	0.117 × 10 ⁻⁷	0.00058	0.018	
			1 bar 1/1 NH ₃ /H ₂	1 bar	50	1.5 GPU	0.00521 × 10 ⁻⁷	0.000026	0.31	

Appendix S3: Ammonia separation based on silica membranes

Appendix S4: Ammonia separation based on MFI membranes

Ref.	Material	Membrane Thickness	Feed	Sweep	T/°C	NH ₃ permeance	NH ₃ permeance [mol/(m ² .s.Pa)]	NH3 flux [mol/(m².s)]	NH ₃ /H ₂ S.F.	NH ₃ /N ₂ S.F.
[20] Camus , 2006	MFI on alumina tube	5-15µm	16% NH ₃ , 3/1 H ₂ /N ₂ 10bar	1 bar	80		2.14 × 10 ⁻⁷	0.034	9.13	14.09
			16% NH ₃ , 3/1 H ₂ /N ₂ 10bar	1 bar	25		0.60 × 10-7	0.0096	2.80	3.10
			9% NH ₃ , 3/1 H ₂ /N ₂ 10bar	1 bar	25		0.64 × 10 ⁻⁷	0.0058	3.08	2.84
			2% NH ₃ , 3/1 H ₂ /N ₂ 10bar	1 bar	25		0.92 × 10 ⁻⁷	0.0018	5.00	4.61
	MFI on fiber		16% NH ₃ , 3/1 H ₂ /N ₂ 10bar	1 bar	80		0.13 × 10-7	0.0021	7.14	20.66

	4 CN/IET 1	e 4 1	1 1 4 4
Appendix 55: Literature re	ports of MFI membrai	ies for sorption-das	ed selective separation

Ref.	Membrane Thickness	Mixture	Sweep	Pressure	т.	Hydrocarbon flux/permeance	S.F.		
[22] Moulijn, 1999	50-60 μm	5 <i>n</i> -C ₄ :95H ₂	He	1 bar	295 K	1×10 ⁻³ mol/(m ² .s)	125		
[23] Moulijn, 1999	50-60 µm	50 <i>n</i> -C ₄ :50H ₂	Yes	1 bar	300 K	5×10-3 mol/(m ² .s)	40		
[24] Lin, 2000	3-5 µm	$\begin{array}{l} 84.48H_2{:}7.59CH_4{:}2.51C_2H_6{:}2.52C_2H_4\\ {:}0.75C_3H_8{:}1.45C_3H_6{:}0.4n{-}C_4{:}0.3i{-}C_4 \end{array}$	5.6-12.1 mL/min	1 bar	298 K	2-4×10 ⁻⁴ mol/(m ² .s)	H ₂ not detected		
		20C ₃ H ₆ :80N ₂	No	10 bar	298 K	22×10-7mol/(m ² .s.Pa)	43		
[25] Hedlund, 2017	0.5 μm	20C ₂ H ₄ :80N ₂	No	10 bar	277 K	57×10-7mol/(m ² .s.Pa)	6		
[26]Dragomirova, R. <i>et al, 2014</i>	40 µm	92CH ₄ :8 <i>n</i> -C ₄	vacuum	1bar	298 K	1.36×10 ⁻⁵ mol/(m ² .s)	39		
[27] Hedlund,	0.4 µm	10n-C4:90CH4	No	9 bar	298 K	$31\times 10^{\text{-7}} \text{mol}/(\text{m}^2.\text{s.Pa})$	25		
2018		10C3H8:90CH4	No	9 bar	297 K	54 × 10 ⁻⁷ mol/(m ² .s.Pa)	9.5		
[28] Nair, 2019	<0.8 µm	17.5 <i>n</i> -C ₄ :82.5CH ₄	Ar	1 bar	298 K	8.4× 10 ⁻⁷ mol/(m ² .s.Pa)	300		
		16.5C ₃ H ₈ :83.5CH ₄	Ar	1 bar	298 K	16.7× 10-7mol/(m ² .s.Pa)	45		
[29] Nair, 2020	0.3-1.2µm	76CH ₄ :8C ₂ H ₆ :8C ₃ H ₈ :8 <i>n</i> -C ₄ H ₁₀	Ar	9 bar	298 K	<i>n</i> -butane: 460 GPU <i>n</i> -propane: 220 GPU ethane: 31 GPU	<i>n</i> -C ₄ /CH ₄ : 97 C ₃ H ₈ /CH ₄ : 48 C ₂ H ₆ /CH ₄ : 7		
				10 <i>n</i> -C ₄ :90CH ₄	Ar	1-10 bar	298 K	800-2500 GPU	125-250
		10 <i>n</i> -C ₃ H ₈ :90CH ₄	Ar	1-9 bar	298 K	1500-3200 GPU	15-25		
[30] Nair, 2020	0.8-1 μm	82CH ₄ :9 <i>n</i> -C ₃ H ₈ :9 <i>n</i> -C ₄ H ₁₀	Ar	1-9 bar	298 K	<i>n</i> -butane: 700-2500 GPU <i>n</i> -propane: 100-350 GPU	n-C ₄ /CH ₄ : 150-250 n-C ₃ H ₈ /CH ₄ : 25-40		
		76CH ₄ :8C ₂ H ₆ :8 <i>n</i> -C ₃ H ₈ :8 <i>n</i> -C ₄ H ₁₀	Ar	1-9 bar	298 K	<i>n</i> -butane: 700-2700 GPU <i>n</i> -propane: 175-500 GPU ethane: 15-35 GPU	n-C ₄ /CH ₄ : 160-280 n-C ₃ H ₈ /CH ₄ : 45-60 C ₂ H ₆ /CH ₄ : 4		

1GPU=3.35× 10⁻¹⁰mol/(m².s.Pa)

References:

- M. Y. Jeon, D. Kim, P. Kumar, P. S. Lee, N. Rangnekar, P. Bai, M. Shete, B. Elyassi, H. S. Lee, K. Narasimharao, S. N. Basahel, S. Al-Thabaiti, W. Xu, H. J. Cho, E. O. Fetisov, R. Thyagarajan, R. F. DeJaco, W. Fan, K. A. Mkhoyan, J. I. Siepmann and M. Tsapatsis, *Nature*, 2017, **543**, 690–694.
- K. V. Agrawal, B. Topuz, T. C. T. Pham, T. H. Nguyen, N. Sauer, N. Rangnekar, H. Zhang, K. Narasimharao, S. N. Basahel, L. F. Francis, C. W. Macosko, S. Al-Thabaiti, M. Tsapatsis and K. B. Yoon, *Adv. Mater.*, 2015, 27, 3243–3249.
- 3. T. C. T. Pham, T. H. Nguyen and K. B. Yoon, *Angew. Chem.*, *Int. Ed.*, 2013, **52**, 8693–8698.
- 4. D. Kim, M. Y. Jeon, B. L. Stottrup and M. Tsapatsis, *Angew. Chem., Int. Ed.*, 2018, **130**, 489–494.
- 5. V. Nikolakis, G. Xomeritakis, A. Abibi, M. Dickson, M. Tsapatsis and D. G. Vlachos, *J. Membr. Sci.*, 2001, **184**, 209-219.
- 6. H. Jobic, H. Ernst, W. Heink, J. Kärger, A. Tuel and M. Bée, *Microporous Mesoporous Mater.*, 1998, **26**, 67-75.
- 7. I. Matito-Martos, A. Martin-Calvo, C. O. Ania, J. B. Parra, J. M. Vicent-Luna and S. Calero, *Chem. Eng. J.*, 2020, **387**, 124062.
- 8. G. P. Pez, R. T. Carlin, D. V. Laciak and J. C. Sorensen, US Pat., 4 761 164, 1988.
- 9. D. V. Laciak, G. P. Pez and P. M. Burban, J. Membr. Sci., 1992, 65, 31-38.
- 10. G. P. Pez and D. V. Laciak, US Pat., 4 762 535, 1988.
- 11. S. Kulprathipanja and S. S. Kulkarni, US Pat., 4 608 060, 1986.
- 12. C. Y. Pan and E. M. Hadfield, US Pat., 4 793 829, 1988.
- 13. D. V. Laciak and G. P. Pez, US Pat., 4 758 250, 1988.
- S. F. Timashev, A. V. Vorobiev, V. I. Kirichenko, Y. M. Popkov, V. I. Volkov, R. R. Shifrina, A. Y. Lyapunov, A. G. Bondarenko and L. P. Bobrova, *J. Membr. Sci.*, 1991, 59, 117-131.
- 15. B. Bikson, J. K. Nelson and J. E. Perrin, US Pat., 5 009 678, 1991.
- 16. Y. He and E. L. Cussler, J. Membr. Sci., 1992, 68, 43-52.
- 17. I. V. Vorotyntsev, P. N. Drozdov and N. V. Karyakin, Inorg. Mater., 2006, 42, 231-235.
- 18. W. A. Phillip, E. Martono, L. Chen, M. A. Hillmyer and E. L. Cussler, *J. Membr. Sci.*, 2009, **337**, 39-46.
- 19. C. Makhloufi, B. Belaissaoui, D. Roizard and E.Favre, *Procedia Eng.*, 2012, 44, 143-146.
- O. Camus, S. Perera, B. Crittenden, Y. C. van Delft, D. F. Meyer, P. PAC Pex, I. Kumakiri, S. Miachon, J.A. Dalmon, S. Tennison, P. Chanaud, E. Groensmit and W. Nobel, *AIChE J.*, 2006, **52**, 2055-2065.
- 21. M. Kanezashi, A. Yamamoto, T. Yoshioka and T. Tsuru, *AIChE J.*, 2010, 56, 1204-1212.
- 22. W. J. Bakker, F. Kapteijn, J. Poppe and J. A. Moulijn, J. Membr. Sci., 1996, 117, 57-78.
- 23. L. J. P. Van Den Broeke, W. J. W. Bakker, F. Kapteijn and J. A. Moulijn, *AIChE J.*, 1999, **45**, 976–985.
- 24. J. Dong, Y. S. Lin and W. Liu, AIChE J., 2000, 46, 1957–1966.
- 25. L. Yu, M. Grahn, P. Ye and J. Hedlund, J. Membr. Sci., 2017, 524, 428–435.
- 26. R. Dragomirova, M. Stöhr, C. Hecker, U. Lubenau, D. Paschek and S. Wohlrab, *RSC Adv.*, 2014, **4**, 59831–59834.
- 27. L. Yu, M. Grahn and J. Hedlund, J. Membr. Sci., 2018, 551, 254–260.
- 28. B. Min, S. Yang, A. Korde, Y. H. Kwon, C. W. Jones and S. Nair, *Angew. Chem., Int. Ed.*, 2019, **58**, 8201–8205.
- 29. B. Min, S. Yang, A. Korde, C. W. Jones and S. Nair, *Adv. Mater. Interfaces*, 2020, 7, 2000926.
- 30. B. Min, A. Korde, S. Yang, Y. Kim, C. W. Jones and S. Nair, *AIChE J.*, 2020, e17048.