Photo-induced energy transfer relay of N-heterocyclic catalysis: asymmetric carbene An αfluorination/isomerization cascade

Xinhang Jiang,^[a,c,d] En Li, ^[a,c,d] Jiean Chen*^[c,d] and Yong Huang*^[b]

- [a] State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
 [b] Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
 [c] Pingshan Translational Medicine Center, Shenzhen Bay Laboratory
- [d] Shenzhen Public Platform of Drug Screening and Preclinical Evaluation, Peking University Shenzhen Graduate School, Shenzhen, 518055, China

Support Information

Table of Contents

General methods and materials	2
Condition screening	3
Synthesis of NHC-L	6
Synthesis of enal substrates	7
Synthesis of the chiral (Z)-allylic fluorides	14
Characterization of the chiral (Z)-allylic fluorides	14
Derivatization of the chiral (Z)-allylic fluoride ($3a$)	21
References	23
X-ray crystal structure of 4c	24
Chiral GC spectra	30
HPLC spectra	54
NMR spectra	57

General methods and materials.

All solvents were distilled according to general practice prior to use. All reagents were purchased and used without further purification unless specified otherwise. Solvents for flash column chromatography were technical grade and distilled prior to use. Analytical thin-layer chromatography (TLC) was performed using Huanghai silica gel plates with HSGF 254. Visualization of the developed chromatogram was performed by UV absorbance (254 nm) and appropriate stains. Flash column chromatography was performed using Oingdao Haiyang Chemical HG/T2354-92 silica gel (200-300 mesh) with the indicated solvent system according to standard techniques. ¹H NMR and ¹³C NMR data were recorded on Bruker 400 MHz (100 MHz for ¹³C. 376MHz for ¹⁹F) and 500 MHz (126 MHz for ¹³C) nuclear resonance spectrometers unless otherwise specified, respectively. Chemical shifts (δ) in ppm are reported as quoted relative to the residual signals of chloroform (¹H 7.26 ppm and ¹³C 77.16 ppm). Multiplicities are described as: s (singlet), bs (broad singlet), d (doublet), t (triplet), q (quartet), m (multiplet); and coupling constants (J) are reported in Hertz (Hz). ¹³C NMR spectra were recorded with total proton decoupling. Chiral HPLC was recorded on a Shimadzu LC-20A spectrometer using Daicel ChiralcelTM columns. Chiral GC was recorded on a Shimadzu GC-2014 Gas Chromatography using Astec CHIRALDEXTM β-DM column. HRMS (ESI) analysis was performed by The Analytical Instrumentation Center at Peking University; Shenzhen Graduate School and (HRMS) data were reported with ion mass/charge (m/z) ratios as values in atomic mass units.

Condition screening

A series of photosensitizers (PSs) were tested in this reaction, and we found using PS-C ($E_T = 54.2$ kcal mol⁻¹) as the photosensitizer can obtain relative high (Z/E)-selectivity with the overall good yield and enantioselectivity (**Table S1**, entry 3)^{1, 2}.

Table S1. Screening of photosensitizers (PSs) for the synergistic energy transfer relay^a

5	PS-E	15	1	3	17	1	n.d.	0.1:1
6	PS-F	20	7	4	3	17	84	7.7:1
7	PS-G	17	9	6	4	25	83	9.2:1
8	PS-H	27	17	14	1	8	85	10.4:1
9	PS-I	21	11	5	4	21	83	6.4:1

^aReaction conditions: **1a** (0.1 mmol), selectfluor (0.15 mmol), NHC-**A** (10 mol%), PS (1 mol%), NaOAc (0.4 mmol), CHCl₃ (1.5 mL), MeOH (0.5 mmol), irradiation with 45 W blue LEDs, 30 °C (with fan cooling), 12 h. ^bDetermined by GC. ^cDetermined by chiral GC.

Several bases were tested in this reaction, and we found using PivONa as the base can obtain highest yield with relatively high enantioselectivity and (Z/E)-selectivity (**Table S2**, entry 7). **Table S2.** Screening of bases for the synergistic energy transfer realy^{*a*}

	Ph, , U	+	–Cl 1 ∋BF₄1	0 mol% NHC- /	A, 1 mol% PS-	A	0	
	ОСО₂Ме	ŹŃ <u>ţ</u> ∕ F I	BF ₄ bas	e (4.0 eq.), CH 30 ^o C. 12 h. 45	Cl ₃ , MeOH (5. 5 W blue LEDs	0 eq.) Ph	F	
	1a (1.0 eq.)	(1.5 e	q.)	,			3a	
		Ph	O OMe Ph	O H OMe	Ph	OMe		
		(<i>E</i>)-4	2a	(<i>Z</i>)-2a	(<i>E</i>)-3a			
entry	base	1a / % ^b	(E)- 2a	(Z)- 2a	(E)- 3a	3a / % ^b	ee of 3a	3a /(<i>E</i>)- 3a
			/ % ^b	/ % ^b	/ % ^b		/ % ^c	
1	NaOAc	7	15	8	5	33	83	6.8:1
2^d	K_2CO_3	67	-	1	1	1	n.d.	0.7:1
3^d	Cs_2CO_3	2	1	4	20	11	39	0.5:1
4^d	KOAc	-	9	13	5	31	59	6.8:1
5^d	CsOAc	-	14	16	4	25	54	6.4:1
6	lithium isobutyrate	9	4	5	4	24	84	6.5:1
7	PivONa	2	7	8	6	39	83	6.8:1

^{*a*}Reaction conditions: **1a** (0.1 mmol), selectfluor (0.15 mmol), NHC-**A** (10 mol%), PS-**A** (0.001 mmol), base (0.4 mmol), CHCl₃ (1.5 mL), MeOH (0.5 mmol), irradiation with 45 W blue LEDs, 30 °C (with fan cooling), 12 h. ^{*b*}Determined by GC. ^{*c*}Determined by chiral GC. ^{*d*}Base (0.2 mmol). N.d. = not determined.

A series of solvents were tested in this reaction, and we found using CHCl₃/MeOH (15:1) as the mixed solvent can obtain relative high (Z/E)-selectivity with the highest yield and enantioselectivity (**Table S3**, entry 9).

Table S3. Screening of solvents for the synergistic energy transfer relay^a

								/ % °	
1	CHCl ₃	5.0 eq.	6	-	-	-	33	83	6.8:1
		MeOH							
2	CHCl ₃	5.0 eq. EtOH	10	14	82	-	8	83	-
3	CHCl ₃	5.0 eq. ⁱ PrOH	34	1	n.d.	-	17	84	-
4	DCE	5.0 eq.	9	-	-	-	28	81	2.9:1
		MeOH							
5	DCE	0.05 mL	8	-	-	-	33	79	4.3:1
		MeOH							
6	DCE	0.1 mL	10	-	-	-	33	78	5.5:1
		MeOH							
7	MeCN	5.0 eq.	96	-	-	-	trace	-	-
		MeOH							
8	CHCl ₃	0.05 mL	11	-	-	-	38	83	6.6:1
		MeOH							
9	CHCl ₃	0.1 mL	2	-	-	-	45	84	6.5:1
		MeOH							
10	-	1.5 mL	11	-	-	-	18	60	2.7:1
		MeOH							
11	CHCl ₃	0.1 mL EtOH	3	32	84	5.9:1	6	83	-
12	CHCl ₃	0.1 mL	12	4	n.d.	-	18	84	6.7:1
		ⁱ PrOH							

^{*a*}Reaction conditions: **1a** (0.1 mmol), selectfluor (0.15 mmol), NHC-**A** (10 mol%), PS-**A** (0.001 mmol), NaOAc (0.4 mmol), CHCl₃ (1.5 mL), alcohol (0.5 mmol), irradiation with 45 W blue LEDs, 30 °C (with fan cooling), 12 h. ^{*b*}Determined by GC. ^{*c*}Determined by chiral GC. DCE = 1,2-dichloroethane. ^{*i*}PrOH = isopropyl alcohol.

Different loading ratios of **1a** and selectfluor were tested in this reaction, and we found using **1a**/selectfluor (1.5:1) as the starting materials can obtain relative high yield with the enantioselectivity and (Z/E)-selectivity staying untouched (**Table S4**, entry 3).

Table S4. Screening of the loading ratio of **1a** and selectfluor for the synergistic energy transfer realy^a

	Ph OC 1a	O H + CO ₂ Me 1.0 eq.)	(1.5 eq.)	10 mc base (4. 30 °	0l% NHC- A , 1 0 eq.), CHCl ₃ C, 12 h, 45 W	mol% PS- A , MeOH (5.0 d blue LEDs	eq.) Ph	O F 3a	
		Ph_	O H (<i>E</i>)- 2a	DMe Ph H (Z	O OMe Ph	O F (E)-3a	DMe		
entry	1 a	select-fluor	1a / % ^b	(E)- 2a	(Z)-2a	(E)- 3a	3a / % ^b	ee of 3a	3a /(<i>E</i>)- 3a
				/ % ^b	/ % ^b	/ % ^b		/ % ^c	
1	0.1 mmol	0.15 mmol	6	15	8	5	33	83	6.8:1
2	0.125	0.1 mmol	8	4	6	7	48	83	6.7:1
	mmol								

3	0.15 mmol	0.1 mmol	10	4	7	9	58	83	6.8:1
4	0.175	0.1 mmol	-	19	15	9	59	83	6.7:1
	mmol								
^a Reactio	on conditions: 1	a (0.1 mmol), s	electfluor ((0.15 mmol)	, NHC-A (10	mol%), PS-	A (0.001 m	mol), NaOA	c (0.4 mmol),

CHCl₃ (1.5 mL), MeOH (0.5 mmol), irradiation with 45 W blue LEDs, 30 °C (with fan cooling), 12 h. ^bDetermined by GC. ^cDetermined by chiral GC.

A series of NHCs were tested in this reaction, and we found using NHC-N as the pre-catalyst can obtain highest yield and enantioselectivity with satisfactory (Z/E)-selectivity (**Table S5**). **Table S5.** The influence of NHC skeleton^{*a*}

^aReaction conditions: enal **1a** (0.15 mmol), selectfluor (0.1 mmol), NHC (10 mol%), PS-C (1 mmol%), PivONa (0.4 mmol), CHCl₃/MeOH (1.5 mL/0.1 mL), irradiation with 45 W blue LEDs, 30 °C (with fan cooling), 12 h. The yield and (*Z/E*) ratio were determined by GC. The ee value was determined by chiral GC.

Synthesis of NHC-L³

Following the reported procedure by Wang et al., we synthesized NHC-L as below³:

To a suspension of **5a** (2.66 g, 10.0 mmol), arylboronic acid **5b** (13.0 mmol), Pd(dppf)Cl₂ (0.365 g, 0.5 mmol) in dioxane (30.0 mL) was added 2 M aq. K₃PO₄ (4.24 g, 10.0 mmol). After being degassed under Ar for 15 min, the reaction mixture was heated at 80 °C until all the starting materials consumed. The dioxane was evaporated under vacuum and the aqueous layer was extracted with ethyl acetate (EtOAc, 3×50.0 mL). The combined organic layer was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The remained mixture was purified by flash column chromatography (1:2 hexane/EtOAc) to afford **5c**.

To a solution of **5c** (5.0 mmol) in CH₂Cl₂ (30.0 mL) was added Me₃OBF₄ (0.78 g, 5.5 mmol), and then stirred overnight at room temperature. Freshly prepared MesNHNH₂ (1.50 g, 10.0 mmol) in CH₂Cl₂ (5.0 mL) was added, and the mixture was stirred for 10 h. Then, CH₂Cl₂ was evaporated in vacuo, and the residue was dissolved in PhCl (30.0 mL) followed by the addition of (EtO)₃CH (8.0 mL, 50 mmol). The mixture was heated at 110 °C for 48 h. The solvent was evaporated, and the residue was purified by flash column chromatography (1:1 to 1:2 hexane/EtOAc) to afford NHC-L. Yield = 28%, white solid; ¹H NMR (400 MHz, DMSO) δ 11.21 (s, 1H), 7.83 (s, 1H), 7.66 (d, *J* = 7.9 Hz, 1H), 7.50 (d, *J* = 7.9 Hz, 1H), 7.43 (d, *J* = 7.8 Hz, 2H), 7.34 (t, *J* = 7.6 Hz, 1H), 7.26-7.08 (m, 3H), 6.13 (d, *J* = 4.0 Hz, 1H), 5.26 (d, *J* = 16.0 Hz, 1H), 5.09 (d, *J* = 16.0 Hz, 1H), 5.02 (t, *J* = 4.4 Hz, 1H), 3.51 (dd, *J* = 17.2, 4.8 Hz, 1H), 3.19 (d, *J* = 17.2 Hz, 1H), 2.36 (s, 6H), 2.14 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 155.27, 146.68, 144.99, 144.82, 143.15, 142.02, 139.98, 136.42, 134.64, 133.95, 133.37, 133.11, 132.63, 131.08, 129.05, 127.26, 82.18, 66.24, 64.90, 41.86, 26.30, 25.82, 22.06. HRMS (ESI-TOF) [M-BF₄]⁺ calculated for [C₂₈H₂₈ON₃]⁺ 422.2232, observed 422.2233. [α]²⁵_D = 7.8 (c = 1.0, CHCl₃).

Synthesis of enal substrates⁴

(*E*)-Methyl (4-oxo-1-phenylbut-2-en-1-yl) $(1a)^4$. To a solution of enal 6 (1.3 g, 10.0 mmol) in anhydrous THF (25.0 ml) at 0 °C was added PhMgCl (12.0 mL, 1.0 M in THF, 12.0 mmol) over 5 min. The reaction mixture was stirred for 30 min at the same temperature and methyl chloroformate (0.93 mL, 12.0 mmol) was added via syringe. After 2 h, the reaction mixture was quenched by 1 M HCl (5.0 mL) and stirred for 2 h at room temperature. The organic layer was separated, and the aqueous layer was extracted with diethyl ether. The combined organic layers were washed with brine, dried over NaSO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography (20:1 to 10:1 hexane/EtOAc) to afford enal **1a** (1.65 g, 75% overall yield). ¹H NMR (400 MHz, CDCl₃) δ 9.57 (d, J = 7.8 Hz, 1H), 7.47-7.23 (m, 5H), 6.87 (dd, J = 15.7, 4.8 Hz, 1H), 6.49-6.13 (m, 2H), 3.79 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 192.70 (s), 154.60 (s), 151.80 (s), 135.98 (s), 131.41 (s), 129.23 (s), 128.98 (s), 127.29 (s), 77.77 (s), 55.12 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for [C₁₂H₁₂O₄Na]⁺ 243.0628, observed 243.0629.

(E)-1-(4-fluorophenyl)-4-oxobut-2-en-1-yl methyl carbonate was prepared from enal 6, 4-

fluorophenylmagnesium bromide, methyl chloroformate following the same procedure that was used for preparation of enal **1a** (purified by flash column chromatography with 20:1 to 10:1 hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 9.58 (d, J = 7.7 Hz, 1H), 7.50-7.28 (m, 2H), 7.17-6.96 (m, 2H), 6.84 (dd, J = 15.8, 4.6 Hz, 1H), 6.32 (ddd, J = 8.1, 7.0, 3.2 Hz, 2H), 3.79 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 192.54 (s), 163.05 (d, J = 248.9 Hz), 154.52 (s), 151.33 (s), 131.55 (s), 129.37 (d, J = 8.5 Hz), 116.01 (d, J = 21.8 Hz), 77.02 (s), 55.17 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for [C₁₂H₁₁O₄FNa]⁺ 261.0534, observed 261.0531.

(*E*)-1-(4-chlorophenyl)-4-oxobut-2-en-1-yl methyl carbonate was prepared from enal 6, 4chlorophenylmagnesium bromide, methyl chloroformate following the same procedure that was used for preparation of enal 1a (purified by flash column chromatography: 5-10% EtOAc in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 9.58 (d, J = 7.6 Hz, 1H), 7.59-7.15 (m, 4H), 6.82 (dd, J = 15.7, 4.8 Hz, 1H), 6.30 (ddd, J = 10.3, 6.0, 4.6 Hz, 2H), 3.80 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 192.46 (s), 154.49 (s), 151.00 (s), 135.28 (s), 134.50 (s), 131.69 (s), 129.23 (s), 128.70 (s), 76.98 (s), 55.22 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for [C₁₂H₁₁O₄ClNa]⁺ 277.0238, observed 277.0239.

(*E*)-methyl (4-oxo-1-(4-(trifluoromethoxy)phenyl)but-2-en-1-yl) carbonate (1d)⁴. To a solution of bromo-4-(trifluoromethoxy)benzene (6.0 mmol) in anhydrous THF (10.0 mL) at -78 °C was added "BuLi (6.0 mmol) over 5 min. The reaction was stirred for 30 min at the same temperature and a solution of enal **6** (5.0 mmol) in THF (5 mL) was added via syringe. The mixture was slowly warmed to 0 °C and methyl chloroformate (6.0 mmol) was added at the same temperature. The reaction was monitored by TLC and quenched with 1 M HCl (5.0 mL). The resulting mixture was stirred at room temperature for 2 h. The organic layer was separated and the aqueous layer was extracted with diethyl ether (3×20.0 mL). The combined organic layer was washed with brine, dried over NaSO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography (20:1 to 10:1 hexane/EtOAc) to afford enal **1d** (40% overall yield). ¹H NMR (500 MHz, CDCl₃) δ 9.59 (d, J = 7.7 Hz, 1H), 7.50-7.33 (m, 2H), 7.25 (d, J = 8.8 Hz, 2H), 6.84 (dd, J = 15.9, 4.6 Hz, 1H), 6.33 (m, J = 8.1, 4.8, 1.6 Hz, 2H), 3.81 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 192.45 (s), 176.61 (s), 154.57 (s), 150.90 (s), 149.77 (s), 134.75 (s), 131.86 (s), 129.01 (s), 121.48 (s), 120.37 (d, *J* = 257.8 Hz), 55.32 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for [C₁₃H₁₁O₅F₃Na]⁺ 327.0451, observed 327.0449.

(*E*)-methyl (4-oxo-1-(p-tolyl)but-2-en-1-yl) carbonate was prepared from 4-bromotoluene, *n*-butyllithium, enal **6** and methyl chloroformate following the same procedure that was used for preparation of enal 1d (purified by flash column chromatography with 20:1 to 10:1 hexane/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 9.57 (d, J = 7.7 Hz, 1H), 7.33 – 7.23 (m, 2H), 7.20 (d, J = 8.0 Hz, 2H), 6.86 (dd, J = 15.7, 4.8 Hz, 1H), 6.33 (ddd, J = 15.7, 7.7, 1.7 Hz, 1H), 6.28 (dd, J = 4.7, 1.6 Hz, 1H), 3.79 (s, 3H), 2.35 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 192.83 (s), 154.72 (s), 152.11 (s), 139.39 (s), 133.07 (s), 131.37 (s), 129.73 (s), 127.40 (s), 77.81 (s), 55.15 (s), 21.23 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for [C₁₃H₁₄O₄Na]⁺ 257.0784, observed 257.0781.

(*E*)-1-(4-butylphenyl)-4-oxobut-2-en-1-yl methyl carbonate was prepared from 1-bromo-4butylbenzene, *n*-butyllithium, enal **6** and methyl chloroformate following the same procedure that was used for preparation of enal 1d (purified by flash column chromatography with 20:1 to 10:1 hexane/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 9.58 (d, J = 7.7 Hz, 1H), 7.27 (t, J = 5.9 Hz, 2H), 7.20 (d, J = 8.1 Hz, 2H), 6.87 (dd, J = 15.7, 4.8 Hz, 1H), 6.38 – 6.30 (m, 1H), 6.31 – 6.28 (m, 1H), 3.79 (s, 3H), 2.60 (d, J = 7.8 Hz, 2H), 1.65 – 1.49 (m, 2H), 1.34 (dq, J = 14.7, 7.4 Hz, 2H), 0.92 (t, J = 7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 192.82 (s), 154.73 (s), 152.14 (s), 144.37 (s), 133.19 (s), 131.35 (s), 129.09 (s), 127.41 (s), 77.83 (s), 55.14 (s), 35.38 (s), 33.48 (s), 22.32 (s), 13.91 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for [C₁₆H₂₀O₄Na]⁺ 299.1254, observed 299.1255.

(*E*)-1-(4-(tert-butyl)phenyl)-4-oxobut-2-en-1-yl methyl carbonate was prepared from 1bromo-4-tert-butylbenzene, *n*-butyllithium, enal **6**, and methyl chloroformate following the same procedure that was used for preparation of enal 1d (purified by flash column chromatography with 20:1 to 10:1 hexane/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 9.58 (d, J = 7.7 Hz, 1H), 7.48 – 7.35 (m, 2H), 7.33 – 7.28 (m, 2H), 6.87 (dd, J = 15.6, 4.8 Hz, 1H), 6.40 – 6.27 (m, 2H), 3.79 (s, 3H), 1.31 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 192.84 (s), 154.75 (s), 152.54 (s), 152.12 (s), 132.95 (s), 131.38 (s), 127.19 (s), 126.01 (s), 77.75 (s), 55.15 (s), 34.71 (s), 31.23 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for [C₁₆H₂₀O₄Na]⁺ 299.1254, observed 299.1256.

(*E*)-methyl (4-oxo-1-(m-tolyl)but-2-en-1-yl) carbonate was prepared from 1-bromo-3isopropylbenzene, *n*-butyllithium, enal 6 and methyl chloroformate following the same procedure that was used for preparation of enal 1d (purified by flash column chromatography with 20:1 to 10:1 hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 9.58 (d, J = 7.7 Hz, 1H), 7.32 – 7.26 (m, 1H), 7.20 – 7.11 (m, 2H), 6.86 (dd, J = 15.7, 4.8 Hz, 1H), 6.33 (ddd, J = 15.7, 7.7, 1.6 Hz, 1H), 6.28 (dd, J = 4.8, 1.6 Hz, 1H), 3.80 (s, 3H), 2.36 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 192.76 (s), 154.62 (s), 151.97 (s), 138.86 (s), 135.85 (s), 131.30 (s), 130.01 (s), 128.87 (s), 127.86 (s), 124.34 (s), 77.85 (s), 55.12 (s), 21.30 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for [C₁₃H₁₄O₄Na]⁺ 257.0784, observed 257.0785.

(*E*)-1-(3-isopropylphenyl)-4-oxobut-2-en-1-yl methyl carbonate was prepared from 1-bromo-3-methylbenzene, *n*-butyllithium, enal **6** and methyl chloroformate following the same procedure that was used for preparation of enal **1d** (purified by flash column chromatography with 20:1 to 10:1 hexane/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 9.59 (d, J = 7.6 Hz, 1H), 7.32 (t, J = 7.6 Hz, 1H), 7.25 (m, 1H), 7.22 – 7.16 (m, 2H), 6.88 (dd, J = 15.6, 4.9 Hz, 1H), 6.44 – 6.24 (m, 2H), 3.80 (s, 3H), 2.91 (dd, J = 13.8, 6.9 Hz, 1H), 1.25 (d, J = 6.9 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 192.85 (s), 154.73 (s), 152.14 (s), 149.92 (s), 135.92 (s), 131.36 (s), 129.05 (s), 127.39 (s), 125.54 (s), 124.82 (s), 78.08 (s), 55.18 (s), 34.09 (s), 23.91 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for [C₁₅H₁₈O₄Na]⁺ 285.1097, observed 285.1100.

(*E*)-1-(3-(tert-butyl)phenyl)-4-oxobut-2-en-1-yl methyl carbonate was prepared from 1bromo-3-(tert-butyl)benzene, *n*-butyllithium, enal **6** and methyl chloroformate following the same procedure that was used for preparation of enal **1d** (purified by flash column chromatography with 20:1 to 10:1 hexane/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 9.59 (d, J = 7.8 Hz, 1H), 7.41 (m, 1H), 7.35 (m, 2H), 7.21 – 7.16 (m, 1H), 6.95 – 6.78 (m, 1H), 6.34 (m, 2H), 3.81 (s, 3H), 1.32 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 192.83 (s), 176.61 (s), 154.75 (s), 152.21 (s), 135.64 (s), 131.35 (s), 128.80 (s), 126.44 (s), 124.48 (s), 124.30 (s), 78.27 (s), 55.17 (s), 34.82 (s), 31.28 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for [C₁₆H₂₀O₄Na]⁺ 299.1254, observed 299.1255.

(*E*)-1-(3-chlorophenyl)-4-oxobut-2-en-1-yl methyl carbonate was prepared from enal 6, 3-chlorophenylmagnesium bromide and methyl chloroformate following the same procedure that was used for preparation of enal 1a (purified by flash column chromatography with 20:1 to 10:1 hexane/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 9.58 (d, J = 7.6 Hz, 1H), 7.40 – 7.30 (m, 3H), 7.28 – 7.21 (m, 1H), 6.82 (dd, J = 15.7, 4.8 Hz, 1H), 6.33 (ddd, J = 15.7, 7.6, 1.6 Hz, 1H), 6.28 (dd, J = 4.8, 1.5 Hz, 1H), 3.81 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 192.47 (s), 154.45 (s), 150.77 (s), 137.96 (s), 134.93 (s), 131.80 (s), 130.29 (s), 129.41 (s), 127.33 (s), 125.37 (s), 76.91 (s), 55.27 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for [C₁₂H₁₁O₄ClNa]⁺ 277.0238, observed 277.0231.

(*E*)-1-(3-methoxyphenyl)-4-oxobut-2-en-1-yl methyl carbonate was prepared from enal 6, 3-methoxyphenylmagnesium bromide and methyl chloroformate following the same procedure that was used for preparation of enal 1a (purified by flash column chromatography with 20:1 to 10:1 hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 9.57 (d, J = 7.7 Hz, 1H), 7.38 – 7.20 (m, 1H), 7.00 – 6.73 (m, 4H), 6.48 – 6.21 (m, 2H), 3.80 (s, 3H), 3.80 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 192.72 (s), 159.96 (s), 154.58 (s), 151.71 (s), 137.43 (s), 131.39 (s), 130.08 (s), 119.40 (s), 114.65 (s), 112.71 (s), 77.64 (s), 55.20 (d, J = 9.8 Hz). HRMS (ESI-TOF) [M+Na]⁺ calculated for [C₁₂H₁₄O₅Na]⁺ 273.0733, observed 273.0734.

(*E*)-1-(3-isopropoxyphenyl)-4-oxobut-2-en-1-yl methyl carbonate was prepared from 1bromo-3-isopropoxybenzene, *n*-butyllithium, enal 6 and methyl chloroformate following the same procedure that was used for preparation of enal 1d (purified by flash column chromatography with 20:1 to 10:1 hexane/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 9.58 (d, J = 7.7 Hz, 1H), 7.33 – 7.24 (m, 1H), 6.94 – 6.78 (m, 4H), 6.33 (ddd, J = 15.7, 7.7, 1.6 Hz, 1H), 6.27 (dd, J = 4.8, 1.6 Hz, 1H), 4.55 (dt, J = 12.1, 6.1 Hz, 1H), 3.80 (s, 3H), 1.33 (d, J = 6.1 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 192.78 (s), 158.38 (s), 154.69 (s), 151.84 (s), 137.50 (s), 131.46 (s), 130.13 (s), 119.22 (s), 116.21 (s), 114.85 (s), 77.74 (s), 69.97 (s), 55.20 (s), 21.97 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for [C₁₅H₁₈O₅Na]⁺ 301.1046, observed 301.1048

(*E*)-1-(3,5-dimethylphenyl)-4-oxobut-2-en-1-yl methyl carbonate was prepared from 1bromo-3,5-dimethylbenzene, *n*-butyllithium, enal **6** and methyl chloroformate following the same procedure that was used for preparation of enal **1d** purified by flash column chromatography with 20:1 to 10:1 hexane/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 9.58 (d, J = 7.7 Hz, 1H), 6.99 (d, J = 13.7 Hz, 3H), 6.85 (dd, J = 15.7, 4.8 Hz, 1H), 6.33 (ddd, J = 15.7, 7.7, 1.6 Hz, 1H), 6.24 (dd, J = 4.8, 1.6 Hz, 1H), 3.80 (s, 3H), 2.32 (d, J = 0.4 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 192.89 (s), 154.72 (s), 152.20 (s), 138.79 (s), 135.89 (s), 131.27 (s), 130.96 (s), 125.03 (s), 78.00 (s), 55.16 (s), 21.24 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for [C₁₅H₁₈O₅Na]⁺ 271.0941, observed 271.0942.

(E)-1-(3,5-di-tert-butylphenyl)-4-oxobut-2-en-1-yl methyl carbonate was prepared from 1bromo-3,5-di-tert-butylbenzene, *n*-butyllithium, enal 6 and methyl chloroformate following the same procedure that was used for preparation of enal **1d** (purified by flash column chromatography with 20:1 to 10:1 hexane/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 9.59 (d, J = 7.9 Hz, 1H), 7.45 (t, J = 1.6 Hz, 1H), 7.19 (d, J = 1.6 Hz, 2H), 6.90 (dd, J = 15.9, 4.6 Hz, 1H), 6.46 – 6.27 (m, 2H), 3.81 (s, 3H), 1.32 (s, 18H). ¹³C NMR (126 MHz, CDCl₃) δ 192.95 (s), 154.80 (s), 152.59 (s), 151.74 (s), 135.11 (s), 131.15 (s), 123.54 (s), 121.56 (s), 78.64 (s), 55.15 (s), 34.98 (s), 31.40 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for [C₁₅H₁₈O₅Na]⁺ 355.1880, observed 355.1879.

(*E*)-1-(2-fluorophenyl)-4-oxobut-2-en-1-yl methyl carbonate was prepared from 2bromofluorobenzene, *n*-butyllithium, enal **6** and methyl chloroformate following the same procedure that was used for preparation of enal 1d (purified by flash column chromatography with 20:1 to 10:1 hexane/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 9.59 (d, J = 7.7 Hz, 1H), 7.37 (m, 2H), 7.19 (m, 1H), 7.13 – 7.07 (m, 1H), 6.92 – 6.84 (m, 1H), 6.63 (dd, J = 4.8, 1.6 Hz, 1H), 6.32 (ddd, J = 15.8, 7.7, 1.6 Hz, 1H), 3.82 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 192.63 (s), 159.82 (d, J = 249.2 Hz), 154.51 (s), 150.54 (s), 131.85 (s), 130.99 (d, J = 8.2 Hz), 128.30 (d, J = 3.0 Hz), 124.81 (d, J = 3.6 Hz), 123.65 (d, J = 13.4 Hz), 116.00 (d, J = 21.1 Hz), 71.97 (d, J = 3.1 Hz), 55.34 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for [C₁₂H₁₁O₄FNa]⁺ 261.0534, observed 261.0532

(*E*)-1-(2-fluoro-4-methylphenyl)-4-oxobut-2-en-1-yl methyl carbonate was prepared from 1bromo-2-fluoro-4-methylbenzene, *n*-butyllithium, enal **6** and methyl chloroformate following the same procedure that was used for preparation of enal 1d (purified by flash column chromatography with 20:1 to 10:1 hexane/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 9.57 (d, J = 7.7 Hz, 1H), 7.24 (m, 1H), 6.98 (d, J = 7.9 Hz, 1H), 6.94 – 6.83 (m, 2H), 6.57 (dd, J = 4.8, 1.6 Hz, 1H), 6.30 (ddd, J = 15.8, 7.7, 1.6 Hz, 1H), 3.80 (s, 3H), 2.34 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 192.73 (s), 159.75 (d, J = 248.9 Hz), 152.72 (d, J = 459.1 Hz), 141.92 (d, J = 8.2 Hz), 131.71 (s), 126.82 (dd, J = 330.6, 3.3 Hz), 120.45 (d, J = 13.9 Hz), 116.48 (d, J = 21.0 Hz), 72.02 (d, J = 2.9 Hz), 55.27 (s), 21.17 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for [C₁₃H₁₃O₄FNa]⁺ 275.0690, observed 275.0689.

(*E*)-1-(2,4-dichlorophenyl)-4-oxobut-2-en-1-yl methyl carbonate was prepared from 1-bromo-2,4-dichlorobenzene, *n*-butyllithium, enal **6** and methyl chloroformate following the same procedure that was used for preparation of enal 1d (purified by flash column chromatography with 20:1 to 10:1 hexane/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 9.57 (d, J = 7.6 Hz, 1H), 7.40 (m, 2H), 7.30 (dd, J = 8.4, 1.9 Hz, 1H), 6.82 (dd, J = 15.8, 4.7 Hz, 1H), 6.72 – 6.61 (m, 1H), 6.31 (ddd, J =

15.8, 7.6, 1.2 Hz, 1H), 3.82 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 192.46 (s), 154.34 (s), 149.52 (s), 135.64 (s), 133.25 (s), 132.91 (s), 132.00 (s), 129.80 (s), 128.93 (s), 128.08 (s), 73.81 (s), 55.47 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for [C₁₂H₁₀O₄ Cl₂Na]⁺ 310.9848, observed 310.9849.

(*E*)-1-(3-chloro-4-fluorophenyl)-4-oxobut-2-en-1-yl methyl carbonate was prepared from 4bromo-2-chloro-1-fluorobenzene, *n*-butyllithium, enal **6** and methyl chloroformate following the same procedure that was used for preparation of enal **1d** (purified by flash column chromatography with 20:1 to 10:1 hexane/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 9.58 (d, J = 7.6 Hz, 1H), 7.42 (dd, J = 7.8, 7.3 Hz, 1H), 7.32 – 7.19 (m, 1H), 7.13 (t, J = 8.0 Hz, 1H), 6.86 (dd, J = 15.8, 4.8 Hz, 1H), 6.60 (d, J = 4.8 Hz, 1H), 6.34 – 6.28 (m, 1H), 3.82 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 192.46 (s), 156.36 (s), 154.38 (s), 149.67 (s), 132.11 (s), 131.51 (s), 126.48 (s), 125.45 (d, J = 13.3 Hz), 125.24 (d, J = 4.6 Hz), 121.85 (d, J = 17.8 Hz), 71.79 (d, J = 2.8 Hz), 55.46 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for [C₁₂H₁₀O₄FClNa]⁺ 295.0144, observed 295.0142.

(*E*)-1-(4-fluoro-3-methylphenyl)-4-oxobut-2-en-1-yl methyl carbonate was prepared from 4bromo-1-fluoro-2-methylbenzene, *n*-butyllithium, enal **6** and methyl chloroformate following the same procedure that was used for preparation of enal **1d** (purified by flash column chromatography with 20:1 to 10:1 hexane/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 9.58 (d, J = 7.7 Hz, 1H), 7.17 (m, 2H), 7.01 (t, J = 8.8 Hz, 1H), 6.83 (dd, J = 15.7, 4.7 Hz, 1H), 6.31 (ddd, J = 15.7, 7.7, 1.6 Hz, 1H), 6.26 (dd, J = 4.7, 1.6 Hz, 1H), 3.79 (s, 3H), 2.27 (d, J = 1.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 192.65 (s), 162.67 (s), 160.70 (s), 154.63 (s), 151.61 (s), 131.55 (d, J = 8.3 Hz), 130.69 (d, J = 5.6 Hz), 126.63 (d, J = 8.5 Hz), 125.87 (d, J = 17.9 Hz), 115.62 (d, J = 22.9 Hz), 77.26(s), 5.21 (s), 14.54 (d, J = 3.1 Hz). HRMS (ESI-TOF) [M+Na]⁺ calculated for [C₁₃H₁₃O₄Na]⁺ 275.0690, observed 275.0691.

(*E*)-1-(3-fluoro-4-methylphenyl)-4-oxobut-2-en-1-yl methyl carbonate was prepared from 4bromo-2-fluoro-1-methylbenzene, *n*-butyllithium, enal **6** and methyl chloroformate following the same procedure that was used for preparation of enal **1d** (purified by flash column chromatography with 20:1 to 10:1 hexane/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 9.58 (d, J = 7.7 Hz, 1H), 7.20 (m, 1H), 7.07 – 7.00 (m, 1H), 6.83 (dd, J = 15.7, 4.8 Hz, 1H), 6.32 (ddd, J = 15.7, 7.7, 1.6 Hz, 1H), 6.26 (dd, J = 4.8, 1.5 Hz, 1H), 3.80 (s, 1H), 2.26 (d, J = 1.8 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 192.60 (s), 161.37 (d, J = 246.6 Hz), 154.60 (s), 151.21 (s), 135.56 (s), 132.06 (d, J = 5.4 Hz), 131.73 (s), 126.24 (d, J = 17.2 Hz), 122.71 (d, J = 3.2 Hz), 113.97 (d, J = 23.6 Hz), 77.29 (s), 55.25 (s), 14.38 (s). HRMS (ESI-TOF) $[M+Na]^+$ calculated for $[C_{13}H_{13}O_4Na]^+$ 275.0690, observed 275.0689.

(*E*)-1-(4-chloro-3-methylphenyl)-4-oxobut-2-en-1-yl methyl carbonate was prepared from 4bromo-1-chloro-2-methylbenzene, *n*-butyllithium, enal **6** and methyl chloroformate following the same procedure that was used for preparation of enal **1d** (purified by flash column chromatography with 20:1 to 10:1 hexane/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 9.58 (dd, J = 7.7, 2.2 Hz, 1H), 7.36 (dd, J = 8.2, 1.7 Hz, 1H), 7.28-7.21 (m, 1H), 7.13 (dd, J = 8.2, 1.6 Hz, 1H), 6.82 (dd, J = 15.7, 4.7 Hz, 1H), 6.32 (ddd, J = 15.8, 7.7, 1.3 Hz, 1H), 6.25 (dd, J = 4.7, 1.3 Hz, 3H), 3.80 (d, J = 1.7 Hz, 1H), 2.38 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 192.59 (s), 154.60 (s), 151.28 (s), 137.07 (s), 135.47 (s), 134.58 (s), 131.66 (s), 129.82 (s), 129.72 (s), 126.05 (s), 77.20 (s), 55.27 (s), 20.10 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for [C₁₃H₁₃O₄ClNa]⁺ 291.0395, observed 275.0696.

(*E*)-methyl (1-(naphthalen-1-yl)-4-oxobut-2-en-1-yl) carbonate was prepared from 1bromonaphthalene, *n*-butyllithium, enal **6** and methyl chloroformate following the same procedure that was used for preparation of enal 1d (purified by flash column chromatography with 20:1 to 10:1 hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 9.60 (s, 1H), 8.04-7.84 (m, 4H), 7.71-7.51 (m, 2H), 7.45 (dd, J = 8.4, 1.8 Hz, 1H), 6.94 (dd, J = 15.8, 4.7 Hz, 1H), 6.49 (dd, J = 4.7, 1.6 Hz, 1H), 6.40 (ddd, J = 15.8, 7.7, 1.6 Hz, 1H), 3.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 192.67 (s), 154.65 (s), 151.67 (s), 133.46 (s), 133.21 (s), 133.05 (s), 131.59 (s), 129.05 (s), 128.10 (s), 127.72 (s), 126.97 (s), 126.86 (s), 126.67 (s), 124.27 (s), 77.95 (s), 55.18 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for [C₁₆H₁₄O₄Na]⁺ 293.0784, observed 293.0784.

Synthesis of the chiral (*Z*)-allylic fluorides

General procedure: NHC-N (10 mol%), PS-C ([Ir(dF-ppy)₂(bpy)]PF₆, 1 mol%), Selectfluor (0.1 mmol) and PivONa (0.4 mmol) were weighted into a 10 mL vial successively. Mixed solvent (CHCl₃/MeOH (1.5 mL/0.1 mL)) was added, followed by the addition of enal **1** (0.15 mmol). The reaction flask was sealed with a rubber septum, degassed and back-filled with argon (3x). The resulting mixture was stirred and irradiated with 45 W blue LEDs at -5 °C for 18h. Upon complete consumption of the enal, the reaction was filtered through a plug of silica gel and concentrated under reduced pressure. The residue was purified by flash column chromatography (50:1 hexane/EtOAc) to afford the desired product **3**. The ee value was determined by chiral GC. The (*Z/E*) ratio was determined by GC.

The racemic products was obtained using racemic NHC-A with the same procedure as asymmetric one.

Characterization of the chiral (Z)-allylic fluorides

methyl (S,Z)-2-fluoro-4-phenylbut-3-enoate

O F OMe 3a Colorless oil, 15.7 mg, yield : 81%. ee: 98%, determined by chiral GC. Z/E = 9:1, determined by GC. ¹H NMR (400 MHz, CDCl₃) δ 7.57-7.27 (m, 5H), 6.98 (dd, J = 11.3, 3.6 Hz, 1H), 5.82 (dt, J = 11.3, 9.9 Hz, 1H), 5.75 – 5.54 (m, 1H), 3.83 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.46 (d, J = 26.5 Hz), 138.41 (d, J = 10.6 Hz), 135.05 (s), 128.99 (d, J = 2.7 Hz), 128.67 (s), 128.55 (s), 122.98 (d, J = 20.2 Hz),

84.50 (d, J = 177.5 Hz), 52.84 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -174.72 (s); HRMS (ESI-TOF) [M+Na]⁺ calculated for [C₁₁H₁₁O₂FNa]⁺ 217.0635, observed 217.0635. GC (Astec CHIRALDEXTM β-DM column(cat# 77023 AST; serial# 58478-03B), 110 °C isotherm, hold time: 50 min): t_{major} = 34.689 min; t_{minor} = 31.936 min. [α]²⁵_D = 159.4 (c = 1.0, CHCl₃).

methyl (S,Z)-2-fluoro-4-(4-fluorophenyl)but-3-enoate

Colorless oil, 14.8 mg, yield : 70%. ee: 97%, determined by chiral GC. Z/E = 10:1, determined by GC. ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.29 (m, 2H), 7.06 (t, J = 8.6 Hz, 2H), 6.92 (dd, J = 11.3, 3.4 Hz, 1H), 5.80 (dd, J = 20.9, 10.1 Hz, 1H), 5.59 (dd, J = 47.8, 9.6 Hz, 1H), 3.83 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.34 (d, J = 26.7 Hz), 162.88 (d, J = 248.7 Hz), 137.21 (d, J = 10.4 Hz), 130.84 (dd, J = 8.2, 2.7 Hz), 122.99 (d, J = 20.4 Hz), 115.71 (d, J = 21.6 Hz), 84.37 (d, J = 178.1 Hz), 52.89

(s). ¹⁹F NMR (376 MHz, CDCl₃) δ -112.76 (s), -174.86 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for [C₁₁H₁₀O₂F₂Na]⁺ 235.0541, observed 235.0539. GC (Astec CHIRALDEXTM β -DM column(cat# 77023 AST; serial# 58478-03B), 110 °C isotherm, hold time: 50 min): t_{major} = 36.840 min; t_{minor} = 34.874 min. [α]²⁵_D = 108.7 (c = 1.0, CHCl₃).

methyl (S,Z)-4-(4-chlorophenyl)-2-fluorobut-3-enoate

Colorless oil, 16.2 mg, yield : 71%. ee: 92%, determined by chiral GC. Z/E = 6:1, determined by GC. ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.25 (m, 4H), 6.92 (dd, J = 11.4, 3.5 Hz, 1H), 5.84 (dt, J = 11.4, 9.9 Hz, 1H), 5.59 (ddd, J = 47.8, 9.6, 0.8 Hz, 1H), 3.84 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.01 (d, J = 26.3 Hz), 136.83 (d, J = 10.4 Hz), 134.44 (s), 133.21 (d, J = 3.1 Hz), 130.11 (d, J = 2.8 Hz), 128.70 (s), 123.43 (d, J = 20.4 Hz), 84.11 (d, J = 178.4 Hz), 52.71 (s). ¹⁹F NMR

(376 MHz, CDCl₃) δ -175.14 (s). HRMS (ESI-TOF) $[M+Na]^+$ calculated for $[C_{11}H_{10}O_2FCINa]^+$ 251.0246, observed 251.0245. GC (Astec CHIRALDEXTM β-DM column(cat# 77023 AST; serial# 58478-03B), 130 °C isotherm, hold time: 50 min): $t_{major} = 38.335$ min; $t_{minor} = 37.237$ min. $[\alpha]^{25}_{D} = 105.5$ (c = 1.0, CHCl₃).

methyl (S,Z)-2-fluoro-4-(4-(trifluoromethoxy)phenyl)but-3-enoate

Colorless oil, 17.0 mg, yield : 61%. ee: 94%, determined by chiral GC. Z/E = 9:1, determined by GC. ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 8.6 Hz, 2H), 7.29 – 7.13 (m, 2H), 6.94 (dd, J = 11.4, 3.5 Hz, 1H), 5.99 – 5.76 (m, 1H), 5.58 (dd, J = 47.8, 9.6 Hz, 1H), 3.84 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.19 (d, J = 26.3 Hz), 149.33 (s), 136.78 (d, J = 10.4 Hz), 133.64 (s), 130.52 (d, J = 2.7 Hz), 123.90 (d,

J = 20.5 Hz), 121.07 (s), 120.55 (d, *J* = 257.6 Hz), 84.29 (d, *J* = 178.6 Hz), 52.94 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -57.82 (s), -175.33 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for [C₁₂H₁₀O₃F₄Na]⁺ 301.0458, observed 301.0458. GC (Astec CHIRALDEXTM β-DM column(cat# 77023 AST; serial# 58478-03B), 105 °C isotherm, hold time: 60 min): t_{major} = 48.790 min; t_{minor} = 46.418 min. [α]²⁵_D = 112.8 (c = 1.0, CHCl₃).

methyl (S,Z)-2-fluoro-4-(p-tolyl)but-3-enoate

Colorless oil, 12.1 mg, yield : 58%. ee: 98%, determined by chiral GC. Z/E = 6:1, determined by GC. ¹H NMR (400 MHz, CDCl₃) δ 7.29 (d, J = 8.0 Hz, 2H), 7.19 (d, J = 7.9 Hz, 2H), 6.94 (dd, J = 11.0, 3.6 Hz, 1H), 5.84 – 5.39 (m, 2H), 3.83 (s, 3H), 2.36 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.57 (d, J = 26.6 Hz), 138.58 (s), 138.40 (d, J = 10.5 Hz), 132.22 (s), 129.39 (s), 128.99 (d, J = 2.7 Hz), 122.26 (d, J = 20.1 Hz), 84.58 (d, J = 177.4 Hz), 52.81 (s), 21.37 (s). ¹⁹F NMR (376 MHz,

CDCl₃) δ -174.25 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for [C₁₂H₁₃O₂FNa]⁺ 231.0792, observed 231.0799. GC (Astec CHIRALDEXTM β -DM column(cat# 77023 AST; serial# 58478-03B), 120 °C isotherm, hold time: 50 min): t_{major} = 37.374 min; t_{minor} = 34.940 min. [α]²⁵_D = 66.6 (c = 1.0, CHCl₃).

methyl (S,Z)-4-(4-butylphenyl)-2-fluorobut-3-enoate

Colorless oil, 12.5 mg, yield : 50%. ee: 94%, determined by chiral GC. Z/E = 5:1, determined by GC. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, J = 8.0 Hz, 2H), 7.20 (d, J = 8.1 Hz, 2H), 6.96 (dd, J = 10.7, 3.7 Hz, 1H), 5.95-5.51 (m, 2H), 3.84 (s, 3H), 2.83-2.53 (m, 2H), 1.82-1.51 (m, 3H), 1.43-1.25 (m, 2H), 0.93 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.37 (d, J = 26.7 Hz), 143.40 (s), 138.23 (d, J = 10.5 Hz), 132.17 (s), 128.78 (d, J = 2.7 Hz), 128.53 (s), 121.99 (d, J = 20.0

Hz), 84.39 (d, J = 177.3 Hz), 52.60 (s), 35.31 (s), 33.40 (s), 22.25 (s), 13.84 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -174.19 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for [C₁₅H₁₉O₂FNa]⁺ 273.1261, observed 273.1261. GC (Astec CHIRALDEXTM β -DM column(cat# 77023 AST; serial# 58478-03B), 150 °C isotherm, hold time: 50 min): t_{major} = 37.956 min; t_{minor} = 36.651 min. [α]²⁵_D = 199.8 (c = 1.0, CHCl₃).

methyl (S,Z)-4-(4-(tert-butyl)phenyl)-2-fluorobut-3-enoate

Colorless oil, 18.8 mg, yield : 75%. ee: 95%, determined by chiral GC. Z/E = 6:1, determined by GC. ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.40 (m, 2H), 7.34 (d, J = 8.3 Hz, 2H), 6.96 (dd, J = 10.5, 3.7 Hz, 1H), 5.89-5.44 (m, 2H), 3.84 (s, 3H), 1.33 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 169.35 (d, J = 26.7 Hz), 151.56 (s), 138.07 (d, J = 10.4 Hz), 132.02 (s), 128.64 (d, J = 2.7 Hz), 125.41 (s), 122.14 (d, J = 20.3 Hz), 84.40 (d, J = 177.3 Hz), 52.58 (s), 34.59 (s), 31.15 (s). ¹⁹F NMR

(376 MHz, CDCl₃) δ -174.21 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for [C₁₅H₁₉O₂FNa]⁺ 273.1261, observed 273.1261. GC (Astec CHIRALDEXTM β-DM column(cat# 77023 AST; serial# 58478-03B), 145 °C isotherm, hold time: 50 min): t_{major} = 35.246 min; t_{minor} = 33.961 min. [α]²⁵_D = 147.2 (c = 1.0, CHCl₃).

methyl (S,Z)-2-fluoro-4-(m-tolyl)but-3-enoate

Colorless oil, 17.5 mg, yield : 84%. ee: 95%, determined by chiral GC. Z/E = 9:1, determined by GC. ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.25 (m, 1H), 7.20-7.12 (m, 3H), 6.95 (dd, J = 11.2, 3.6 Hz, 1H), 5.98-5.42 (m, 2H), 3.83 (s, 3H), 2.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.52 (d, J = 26.6 Hz), 138.61 (d, J = 10.5 Hz), 138.34 (s), 135.00 (s), 129.68 (d, J = 2.6 Hz), 129.32

(s), 128.57 (s), 126.06 (d, J = 2.7 Hz), 122.76 (d, J = 20.1 Hz), 84.56 (d, J = 177.3 Hz), 52.81 (s), 21.53 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -174.62 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for [C₁₂H₁₃O₂FNa]⁺ 231.0792, observed 231.0789. GC (Astec CHIRALDEXTM β -DM column(cat# 77023 AST; serial# 58478-03B), 120 °C isotherm, hold time: 50 min): t_{major} = 32.632 min; t_{minor} = 30.694 min. [α]²⁵_D = 169.7 (c = 1.0, CHCl₃).

methyl (S,Z)-2-fluoro-4-(3-isopropylphenyl)but-3-enoate

Colorless oil, 19.8 mg, yield : 84%. ee: 95%, determined by chiral GC. Z/E = 9:1, determined by GC. ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.27 (m, 1H), 7.24 (s, 1H), 7.24-7.14 (m, 2H), 6.98 (dd, J = 11.2, 3.6 Hz, 1H), 5.80 (dd, J = 21.1, 10.1 Hz, 1H), 5.66 (dd, J = 47.3, 9.8 Hz, 1H), 3.84 (s, 3H), 2.92 (dt, J = 13.8, 6.9 Hz, 1H), 1.26 (d, J = 6.9 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 169.54 (d, J = 26.4 Hz), 149.34 (s), 138.76 (d, J = 10.6 Hz), 135.03 (s), 128.62 (s), 127.15 (d, J = 26.4 Hz), 149.34 (s), 138.76 (d, J = 10.6 Hz), 140.20 (s), 128.62 (s), 127.15 (d, J = 26.4 Hz), 149.34 (s), 138.76 (d, J = 10.6 Hz), 140.20 (d), 140.2

= 2.7 Hz), 126.85 (s), 126.44 (d, J = 2.7 Hz), 122.69 (d, J = 20.3 Hz), 84.65 (d, J = 177.2 Hz), 52.83 (s), 34.16 (s), 24.04 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -174.25 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for [C₁₄H₁₇O₂FNa]⁺ 259.1105, observed 259.1108. GC (Astec CHIRALDEXTM β-DM column(cat# 77023 AST; serial# 58478-03B), 130 °C isotherm, hold time: 50 min): t_{major} = 39.116 min; t_{minor} = 37.509 min. [α]²⁵_D = 145.3 (c = 1.0, CHCl₃).

methyl (S,Z)-4-(3-(tert-butyl)phenyl)-2-fluorobut-3-enoate

Colorless oil, 12.3 mg, yield : 52%. ee: 97%, determined by chiral GC. *Z/E* = 8:1, determined by GC. ¹H NMR (400 MHz, CDCl₃) δ 7.44 (s, 1H), 7.41-7.29 (m, 2H), 7.20 (d, J = 7.4 Hz, 1H), 7.01 (dd, J = 11.2, 3.6 Hz, 1H), 5.89-5.40 (m, 2H), 3.86 (s, 3H), 1.34 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 169.33 (d, J = 26.7 Hz), 151.43 (s), 138.69 (d, J = 10.5 Hz), 134.49 (s), 128.18 (s), 126.02 (d, J = 2.7 Hz), 125.88 (d, J = 2.7 Hz), 125.39 (s), 122.43

(d, J = 20.5 Hz), 84.47 (d, J = 177.2 Hz), 52.62 (s), 34.63 (s), 31.18 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -174.14 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for [C₁₅H₁₉O₂FNa]⁺ 273.1261, observed 259.1108. GC (Astec CHIRALDEXTM β -DM column(cat# 77023 AST; serial# 58478-03B), 135 °C isotherm, hold time: 50 min): t_{major} = 39.322min; t_{minor} = 37.596 min. [α]²⁵_D = 164.4 (c = 1.0, CHCl₃). [α]²⁵_D = 149.5 (c = 1.0, CHCl₃).

methyl (S,Z)-4-(3-chlorophenyl)-2-fluorobut-3-enoate

Colorless oil, 14.3 mg, yield : 63%. ee: 94%, determined by chiral GC. Z/E = 7:1, determined by GC. ¹H NMR (400 MHz, CDCl₃) δ 7.39 (s, 1H), 7.37-7.27 (m, 3H), 6.91 (dd, J = 11.4, 3.4 Hz, 1H), 5.87 (dt, J = 11.3, 9.9 Hz, 1H), 5.60 (ddd, J = 47.8, 9.6, 0.7 Hz, 1H), 3.85 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.94 (d, J = 26.3 Hz), 136.62 (s), 136.52 (s), 134.44 (s), 129.74 (s), 128.76 (d, J = 2.8 Hz), 128.44 (s), 126.90 (d, J = 2.7 Hz), 124.08 (d, J = 2.8 Hz), 128.44 (s), 126.90 (d, J = 2.7 Hz), 128.44 (s), 126.90 (d, J = 2.7 Hz), 128.44 (s), 128.44 (s)

20.5 Hz), 84.05 (d, J = 178.4 Hz), 52.73 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -176.61 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for [C₁₁H₁₀O₂FClNa]⁺ 251.0246, observed 251.0247. GC (Astec CHIRALDEXTM β-DM column(cat# 77023 AST; serial# 58478-03B), 130 °C isotherm, hold time: 50 min): t_{major} = 33.258min; t_{minor} = 31.450 min. [α]²⁵_D = 133.9 (c = 1.0, CHCl₃).

methyl (S,Z)-2-fluoro-4-(3-methoxyphenyl)but-3-enoate

Colorless oil, 16.3 mg, yield : 75%. ee: 93%, determined by chiral GC. Z/E = 8:1, determined by GC. ¹H NMR (400 MHz, CDCl₃) δ 7.29 (t, J = 8.0 Hz, 1H), 7.01-6.91 (m, 3H), 6.88 (dd, J = 7.5, 2.0 Hz, 1H), 5.80 (dd, J = 21.1, 10.3 Hz, 1H), 5.68 (dd, J = 47.4, 9.7 Hz, 1H), 3.83 (s, 3H), 3.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.45 (d, J = 26.4 Hz), 159.77 (s), 138.24 (d, J = 10.6

Hz), 136.33 (s), 129.70 (s), 123.20 (d, J = 20.4 Hz), 121.41 (d, J = 2.7 Hz), 114.42 (s), 114.31 (d, J = 2.8 Hz), 84.58 (d, J = 177.6 Hz), 55.39 (s), 52.85 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -174.87 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for $[C_{12}H_{13}O_3FNa]^+$ 247.0741, observed 247.0742. GC (Astec CHIRALDEXTM β-DM column(cat# 77023 AST; serial# 58478-03B), 135 °C isotherm, hold time: 50 min): $t_{major} = 34.960$ min; $t_{minor} = 32.344$ min. $[\alpha]^{25}_{D} = 101.5$ (c = 1.0, CHCl₃).

methyl (S,Z)-2-fluoro-4-(3-isopropoxyphenyl)but-3-enoate

Colorless oil, 16.3 mg, yield : 73%. ee: 95%, determined by chiral GC. Z/E = 7:1, determined by GC. ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.19 (m, 1H), 6.95-6.92 (m, 3H), 6.86 (dd, J = 8.0, 1.5 Hz, 1H), 5.94-5.53 (m, 2H), 4.55 (dt, J = 12.1, 6.0 Hz, 1H), 3.83 (s, 3H), 1.34 (s, 3H), 1.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.48 (d, J = 26.5 Hz), 158.11 (s), 138.41 (d, J = 10.5 Hz), 136.34 (s), 129.72 (s), 122.98 (d, J = 20.3 Hz), 121.21 (d, J = 2.7 Hz), 116.33

(s), 116.10 (s), 84.57 (d, J = 177.6 Hz), 70.10 (s), 52.84 (s), 22.16 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -174.72 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for $[C_{14}H_{17}O_3FNa]^+$ 247.0741, observed 247.0747. GC (Astec CHIRALDEXTM β-DM column(cat# 77023 AST; serial# 58478-03B), 140 °C isotherm, hold time: 50 min): t_{major} = 37.935 min; t_{minor} = 35.719 min. [α]²⁵_D = 147.4 (c = 1.0, CHCl₃).

methyl (S,Z)-4-(3,5-dimethylphenyl)-2-fluorobut-3-enoate

Colorless oil, 17.5 mg, yield : 79%. ee: 94%, determined by chiral GC. Z/E = 7:1, determined by GC. ¹H NMR (400 MHz, CDCl₃) δ 7.02-7.00 (m, 3H), 6.94 (dd, J = 11.1, 3.7 Hz, 1H), 5.89-5.52 (m, 2H), 3.85 (s, 3H), 2.35 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 169.55 (d, J = 26.4 Hz), 138.78 (d, J = 10.4 Hz), 138.22 (s), 134.95 (s), 130.21 (s), 126.78 (d, J = 2.7 Hz), 122.58 (d, J = 19.8

Hz), 84.62 (d, J = 177.2 Hz), 52.75 (s), 21.40 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -174.34 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for $[C_{13}H_{15}O_2FNa]^+$ 245.0948, observed 245.0945. GC (Astec CHIRALDEXTM β-DM column(cat# 77023 AST; serial# 58478-03B), 130 °C isotherm, hold time: 50 min): t_{major} = 29.467 min; t_{minor} = 27.635 min. [α]²⁵_D = 70.0 (c = 1.0, CHCl₃).

methyl (S,Z)-4-(3,5-di-tert-butylphenyl)-2-fluorobut-3-enoate

Colorless oil, 24.2 mg, yield : 79%. ee: 96%, determined by chiral GC. Z/E = 7:1, determined by GC. ¹H NMR (400 MHz, CDCl₃) δ 7.44 (t, J = 1.6 Hz, 1H), 7.28 (d, J = 1.6 Hz, 2H), 7.03 (dd, J = 10.9, 3.6 Hz, 1H), 6.00-5.48 (m, 2H), 3.88 (s, 3H), 1.36 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 169.57 (d, J = 26.8 Hz), 151.16 (s), 139.34 (d, J = 10.6 Hz), 134.32 (d, J = 3.0 Hz), 123.40 (d, J = 2.6 Hz), 122.66 (s), 122.34 (d, J = 20.8 Hz), 84.87 (d, J = 176.9 Hz), 52.76

(s), 34.99 (s), 31.52 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -173.64 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for [C₁₉H₂₇O₂FNa]⁺ 329.1887, observed 329.1888. GC (Astec CHIRALDEXTM β -DM column(cat# 77023 AST; serial# 58478-03B), 155 °C isotherm, hold time: 50 min): t_{major} = 34.624 min; t_{minor} = 32.882 min. [α]²⁵_D = 121.7 (c = 1.0, CHCl₃).

methyl (S,Z)-2-fluoro-4-(2-fluorophenyl)but-3-enoate

Colorless oil, 11.0 mg, yield : 52%. ee: 95%, determined by chiral GC. Z/E = 9:1, determined by GC. ¹H NMR (400 MHz, CDCl₃) δ 7.47 (td, J = 7.6, 1.3 Hz, 1H), 7.35 (tdd, J = 7.3, 5.4, 1.7 Hz, 1H), 7.17 (t, J = 7.3 Hz, 1H), 7.10 (t, J = 8.8 Hz, 1H), 7.03 (d, J = 12.1 Hz, 1H), 5.94 (dt, J = 11.4, 9.7 Hz, 1H), 5.59 (dd, J = 47.8, 9.7 Hz, 1H), 3.85 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.15 (d, J = 26.1 Hz),

131.20 (dd, J = 10.4, 4.1 Hz), 130.84 (s), 130.81 (s), 130.78 (s), 130.57 (d, J = 8.5 Hz), 124.83 (d, J = 20.2 Hz), 124.23 (d, J = 3.8 Hz), 115.71 (d, J = 21.4 Hz), 84.64 (d, J = 178.2 Hz), 52.88 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -114.28 (s), -176.35 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for [C₁₁H₁₀O₂F₂Na]⁺ 235.0541, observed 235.0540. GC (Astec CHIRALDEXTM β-DM column(cat# 77023 AST; serial# 58478-03B), 110 °C isotherm, hold time: 50 min): t_{major} = 31.556 min; t_{minor} = 28.600 min. [α]²⁵_D = 59.3 (c = 1.0, CHCl₃).

$methyl\ (S,Z) - 2-fluoro - 4-(2-fluoro - 4-methylphenyl) but - 3-enoate$

Colorless oil, 15.4 mg, yield : 68%. ee: 94%, determined by chiral GC. Z/E = 9:1, determined by GC. ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.29 (m, 1H), 7.13 – 6.96 (m, 2H), 6.91 (d, J = 11.0 Hz, 1H), 5.88 (dt, J = 11.3, 9.7 Hz, 1H), 5.59 (dd, J = 47.8, 9.6 Hz, 1H), 3.83 (s, 3H), 2.36 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.06 (d, *J* = 26.3 Hz), 160.08 (d, *J* = 251.5 Hz), 141.23 (d, *J* = 7.9 Hz), 131.05 (dd, *J* = 10.5, 4.0 Hz), 130.21 (d, *J* = 3.0 Hz), 124.73 (d, *J* = 3.2 Hz), 123.87

(d, J = 20.2 Hz), 119.67 (dd, J = 14.3, 3.2 Hz), 116.05 (d, J = 21.3 Hz), 84.49 (d, J = 177.9 Hz), 52.65 (s), 21.12 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -115.38 (s), -175.87 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for [C₁₂H₁₂O₂F₂Na]⁺ 249.0698, observed 249.0698. GC (Astec CHIRALDEXTM β -DM column(cat# 77023 AST; serial# 58478-03B), 120 °C isotherm, hold time: 50 min): t_{major} = 34.498 min; t_{minor} = 31.909 min. [α]²⁵_D = 151.2 (c = 1.0, CHCl₃).

methyl (S,Z)-4-(2,4-dichlorophenyl)-2-fluorobut-3-enoate

Colorless oil, 18.0 mg, yield : 69%. ee: 88%, determined by chiral GC. Z/E = 9:1, determined by GC. ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.39 (m, 2H), 7.34-7.14 (m, 1H), 6.97 (dd, J = 11.4, 3.3 Hz, 1H), 5.94 (dt, J = 11.4, 9.6 Hz, 1H), 5.43 (ddd, J = 47.8, 9.6, 0.8 Hz, 1H), 3.82 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.94 (d, J = 26.1 Hz), 135.25 (s), 134.72 (d, J = 2.9 Hz), 134.36 (d, J = 10.3 Hz), 131.92 (d, J = 2.9 Hz), 131.58 (d, J = 2.7 Hz), 129.66 (s),

127.25 (s), 125.02 (d, J = 20.4 Hz), 84.40 (d, J = 179.3 Hz), 52.97 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -176.83 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for $[C_{11}H_9O_2FCl_2Na]^+$ 284.9856, observed 284.9857. GC (Astec CHIRALDEXTM β-DM column(cat# 77023 AST; serial# 58478-03B), 140 °C isotherm, hold time: 50 min): t_{major} = 39.296 min; t_{minor} = 37.594 min. $[\alpha]^{25}_{D}$ = 115.2 (c = 1.0, CHCl₃).

methyl (S,Z)-4-(3-chloro-4-fluorophenyl)-2-fluorobut-3-enoate

Colorless oil, 14.8 mg, yield : 60%. ee: 88%, determined by chiral GC. Z/E = 3:1, determined by GC. ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.32 (m, 2H), 7.11 (td, J = 7.9, 0.9 Hz, 1H), 6.98 (d, J = 11.6 Hz, 1H), 5.98 (dt, J = 11.4, 9.8 Hz, 1H), 5.53 (ddd, J = 47.8, 9.5, 0.8 Hz, 1H), 3.84 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.69 (d, J = 26.0 Hz), 155.59 (d, J = 251.4 Hz), 130.85 (s), 130.01 (dd, J = 10.3, 3.8 Hz), 128.84 (t, J = 2.5 Hz), 125.73 (d, J = 20.6 Hz), 124.42 (d, J =

4.9 Hz), 124.24 (dd, J = 14.4, 2.9 Hz), 121.46 (d, J = 17.8 Hz), 84.25 (d, J = 179.1 Hz), 52.76 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -116.42 (s), -177.10 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for [C₁₁H₉O₂F₂ClNa]⁺ 269.0151, observed 269.0150. GC (Astec CHIRALDEXTM β -DM column(cat# 77023 AST; serial# 58478-03B), 130 °C isotherm, hold time: 50 min): t_{major} = 32.409 min; t_{minor} = 30.030 min. [α]²⁵_D = 121.8 (c = 1.0, CHCl₃).

methyl (S,Z)-2-fluoro-4-(4-fluoro-3-methylphenyl)but-3-enoate

Colorless oil, 16.5 mg, yield : 73%. ee: 96%, determined by chiral GC. Z/E = 8:1, determined by GC. ¹H NMR (400 MHz, CDCl₃) δ 7.21-7.12 (m, 2H), 7.06-6.95 (m, 1H), 6.89 (dd, J = 11.3, 3.6 Hz, 1H), 5.77 (dd, J = 21.0, 9.9 Hz, 1H), 5.61 (dd, J = 47.8, 9.7 Hz, 1H), 3.83 (s, 3H), 2.28 (d, J = 1.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.42 (d, J = 26.6 Hz), 161.49 (d, J = 247.5 Hz), 137.54 (d, J = 10.5 Hz), 132.26 (dd, J = 5.4, 2.8 Hz), 130.81 (s), 128.11

(dd, J = 8.1, 2.9 Hz), 125.26 (d, J = 17.8 Hz), 122.66 (d, J = 20.3 Hz), 115.28 (d, J = 22.6 Hz), 84.45 (d, J = 178.0 Hz), 52.87 (s), 14.69 (d, J = 3.5 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -117.09 (s), -174.61 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for $[C_{12}H_{12}O_2F_2Na]^+$ 249.0698, observed 249.0702. GC (Astec CHIRALDEXTM β-DM column(cat# 77023 AST; serial# 58478-03B), 120 °C isotherm, hold time: 50 min): t_{major} = 33.745 min; t_{minor} = 31.740 min. [α]²⁵_D = 135.8 (c = 1.0, CHCl₃).

methyl (S,Z)-2-fluoro-4-(3-fluoro-4-methylphenyl)but-3-enoate

Colorless oil, 16.3 mg, yield: 72%. ee: 96%, determined by chiral GC. Z/E = 6:1, determined by GC. ¹H NMR (400 MHz, CDCl₃) δ 7.21-7.13 (m, 1H), 7.05 (d, J = 9.1 Hz, 1H), 6.88 (dd, J = 11.3, 3.5 Hz, 1H), 5.80 (dd, J = 21.1, 10.1 Hz, 1H), 5.72-5.50 (m, 1H), 3.83 (s, 1H), 2.28 (d, J = 1.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 169.30 (d, J = 26.4 Hz), 161.25 (d, J = 245.7 Hz), 137.10 (dd, J = 10.5, 2.0 Hz), 134.40 (dd, J = 7.9, 3.2 Hz), 131.67 (d, J = 5.6 Hz), 125.42

(d, J = 17.1 Hz), 124.55 (t, J = 3.0 Hz), 123.34 (d, J = 20.4 Hz), 115.48 (d, J = 20.4 Hz), 84.37 (d, J = 178.0 Hz), 52.89 (s), 14.54 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -116.91 (s), -175.15 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for $[C_{12}H_{12}O_2F_2Na]^+$ 249.0698, observed 249.0700. GC (Astec CHIRALDEXTM β-DM column(cat# 77023 AST; serial# 58478-03B), 120 °C isotherm, hold time: 50 min): t_{major} = 36.900 min; t_{minor} = 34.063 min. [α]²⁵_D = 164.4 (c = 195.7, CHCl₃).

methyl (S,Z)-4-(4-chloro-3-methylphenyl)-2-fluorobut-3-enoate

Colorless oil, 17.6 mg, yield: 73%. ee: 96%, determined by chiral GC. Z/E = 5:1, determined by GC. ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, J = 8.2 Hz, 1H), 7.24 (s, 1H), 7.16 (dd, J = 8.2, 1.9 Hz, 1H), 6.89 (dd, J = 11.3, 3.5 Hz, 1H), 5.81 (dt, J = 11.3, 9.8 Hz, 1H), 5.60 (ddd, J = 47.8, 9.6, 0.6 Hz, 1H), 3.83 (s, 3H), 2.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.31 (d, J = 26.2 Hz), 137.33 (d, J = 10.5 Hz), 136.43 (s), 134.82 (s), 133.52 (s), 131.48 (d, J = 2.8 Hz), 129.33 (s),

127.66 (d, J = 2.8 Hz), 123.36 (d, J = 20.3 Hz), 84.41 (d, J = 178.2 Hz), 52.89 (s), 20.22 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -174.93 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for [C₁₂H₁₂O₂FClNa]⁺ 265.0402, observed 265.0399. GC (Astec CHIRALDEXTM β-DM column(cat# 77023 AST; serial# 58478-03B), 140 °C isotherm, hold time: 50 min): t_{major} = 35.405 min; t_{minor} = 33.976 min. [α]²⁵_D = 164.4 (c = 1.0, CHCl₃).

methyl (S,Z)-2-fluoro-4-(naphthalen-1-yl)but-3-enoate

Colorless oil, 6.1 mg, yield : 25%. ee: 97%, determined by chiral GC. Z/E =0.5:1, determined by GC. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (s, 1H), 7.90-7.81 (m, 3H), 7.56-7.49 (m, 2H), 7.47 (dd, J = 8.5, 1.6 Hz, 1H), 7.15 (dd, J = 11.3, 3.6 Hz, 1H), 5.92 (dd, J = 21.1, 9.8 Hz, 1H), 5.76 (dd, J = 47.5, 9.7 Hz, 1H), 3.87 (s, 3W 3H) ¹³C NMR (101 MHz, CDCl₂) δ 169 28 (d, J = 26.5 Hz) 138 29 (d, J = 10.5

3w 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.28 (d, J = 26.5 Hz), 138.29 (d, J = 10.5 Hz), 132.97 (d, J = 13.9 Hz), 132.30 (d, J = 3.3 Hz), 128.24 (s), 128.20 (s), 128.14 (s), 127.58 (s), 126.50 (d, J = 11.5 Hz), 126.36 (d, J = 2.5 Hz), 123.07 (d, J = 20.2 Hz), 84.44 (d, J = 177.8 Hz), 52.68 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -174.52 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for [C₁₅H₁₃O₂FNa]⁺ 267.0792, observed 267.0790. GC (Astec CHIRALDEXTM β-DM column(cat# 77023 AST; serial# 58478-03B), 165 °C isotherm, hold time: 50 min): t_{major} = 37.483 min; t_{minor} = 36.302 min. [α]²⁵_D = 202.1 (c = 1.0, CHCl₃).

Derivatization of the chiral (Z)-allylic fluoride (3a)^{5,6}

To a solution of **3a** (0.1 mmol) in EtOH (1.0 mL) was added NaBH₄ (6.0 mg, 0.3 mmol) and CeCl₃·7H₂O (4.0 mg, 0.01 mmol). The resulting suspension was stirred at -15 °C for 24 h. The solvent was evaporated, and the residue was treated with 1N HCl (2.0 mL) at 0 °C. The aqueous solution was extracted with ethyl acetate (3×5.0 mL). The organic layer was combined and subsequently washed with saturated NaHCO₃ and brine. After drying over anhydrous Na₂SO₄, the solvent was evaporated, and the residue was purified by flash column chromatography (10:1 hexane/EtOAc) to afford homoallylic alcohol **4a**⁵. Colorless oil, 20.7 mg, yield = 78%. ee = 91% ee, determined by chiral HPLC. *Z/E* = 8:1, determined by GC. ¹H NMR (400 MHz, CDCl₃) δ 7.61-7.16 (m, 5H), 6.84 (dd, J = 11.7, 3.3 Hz, 1H), 5.78 (dt, J = 11.7, 9.3 Hz, 1H), 5.60-5.14 (m, 1H), 3.91-3.60 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 136.44 (d, J = 10.8 Hz), 135.53 (d, J = 3.1 Hz), 128.66 (d, J = 2.7 Hz), 128.44 (s), 127.96 (s), 124.82 (d, J = 19.1 Hz), 89.63 (d, J = 162.1 Hz), 64.96 (d, J = 24.4 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -177.06 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for [C₁₀H₁₂OF]⁺ 167.0867, observed 167.0864. HPLC (Chiralpak-IA column, 98: 2 hexane/ethanol, flow rate: 1.0 mL/min): t_{major} = 19.410 min; t_{minor} = 14.982 min. [α]²⁵_D = 5.3 (c = 1.0, CHCl₃).

A flame-dried round bottom flask charged with 4-methylbenzenesulfonyl chloride (20.6 mg, 0.12 mmol), CH₂Cl₂ (1.0 mL), TEA (0.12 mmol), and 4a (0.1 mmol) was stirred at -15 °C for 12 h. The reaction mixture was quenched with H₂O (1.0 mL), and extracted with CH₂Cl₂ (3×5.0 mL). The combined organic layer was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography (20:1 hexane/EtOAc) to afford $4b^6$. Colorless oil, 18.9 mg, yield = 59%. ee = 90%, determined by chiral HPLC. Z/E > 10:1, determined by GC.. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 8.3 Hz, 2H), 7.41-7.28 (m, 5H), 7.24-7.18 (m, 2H), 6.84 (dd, J = 11.6, 3.2 Hz, 1H), 5.67 (dt, J = 11.6, 9.2 Hz, 1H), 5.53-5.18 (m, 1H), 4.28-4.23 (m, 1H), 4.19 (d, J = 4.9 Hz, 1H), 2.45 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 145.04 (s), 137.54 (d, J = 10.4 Hz), 134.97 (d, J = 3.0 Hz), 132.57 (s), 129.84 (s), 128.57 (s), 128.53 (s), 128.23 (s), 127.92 (s), 123.07 (d, J = 19.2 Hz), 85.65 (d, J = 169.6 Hz), 70.25 (d, J = 25.8 Hz), 21.61 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -174.20 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for $[C_{17}H_{17}O_3FNaS]^+$ 343.0775, observed 343.0773. HPLC (Chiralpak-IA column, 98: 2 hexane/ethanol, flow rate: 1.0 mL/min): $t_{major} = 19.879 \text{ min}$; $t_{minor} = 18.145 \text{ min}$. $[\alpha]^{25}_{D} = 10.4 \text{ (c} = 10.4 \text{ mm})$ 1.0, CHCl₃).

To a solution of 4a (0.1 mmol) in CH_2Cl_2 (1.0 mL) was added 2-pyrenyl acyl chloride (0.12 mmol), TEA (0.12 mmol) and DMAP (0.01 mmol). The reaction mixture was stirred at -15 °C for 12 h. Then, the reaction mixture was quenched with H_2O (1.0 mL), and extracted with CH_2Cl_2 (3×30.0 mL). The combined organic layer was washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography (20:1 hexane/EtOAc) to afford $4c^6$. Yellow solid, 20.5 mg, yield : 52%. ee: 90%, determined by chiral HPLC. Z/E > 10:1, determined by GC. ¹H NMR (400 MHz, CDCl₃) δ 9.27 (d, J = 9.4 Hz, 1H), 8.68 (d, J = 8.1 Hz, 1H), 8.35-8.22 (m, 3H), 8.17 (t, J = 8.3 Hz, 2H), 8.07 (dd, J = 12.2, 4.5 Hz, 2H), 7.51-7.23 (m, 5H), 6.95 (dd, J = 11.6, 3.2 Hz, 1H), 5.97 (dt, J = 11.6, 9.3 Hz, 1H), 5.88-5.53 (m, 1H), 4.94-4.43 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 167.45 (s), 136.93 (d, J = 10.5 Hz), 135.39 (d, J = 2.9Hz), 134.51 (s), 131.29 (s), 130.91 (s), 130.27 (s), 129.65 (d, *J* = 14.8 Hz), 128.77 (d, *J* = 2.7 Hz), 128.56 (s), 128.55 (s), 128.11 (s), 127.08 (s), 126.30 (d, J = 5.3 Hz), 126.22 (s), 124.74 (s), 124.71 (s), 124.60 (s), 124.41 (s), 124.06 (s), 122.68 (s), 86.57 (d, J = 166.7 Hz), 66.10 (d, J = 24.7 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -173.83 (s). HRMS (ESI-TOF) [M+Na]⁺ calculated for [C₂₇H₁₉O₂FNa]⁺ 417.1261, observed 417.1260. HPLC (Chiralpak-IA column, 99.5: 0.5 hexane/ethanol, flow rate: 1.0 mL/min): $t_{major} = 21.961 \text{ min}; t_{minor} = 20.758 \text{ min}. [\alpha]^{25} = 32.9 (c = 1.0, CHCl_3).$

References

[1] A. Singh, K. Teegardin, M. Kelly, K. S. Prasad, S. Krishnan, J. D. Weaver, *J. Organomet. Chem.* **2015**, *776*, 51-59.

[2] C. Zhu, H. Yue, B. Maity, I. Atodiresei, L. Cavallo, M. Rueping, Nat. Catal. 2019, 2, 678-687.

[3] C. G. Zhao, F. Y. Li, J. Wang, *Angew. Chem.* **2016**, *128*, 1852-1856; *Angew. Chem. Int. Ed.* **2016**, *55*, 1820-1824.

[4] a) D. Frederico, P. M. Donate, J. Org. Chem. 2003, 68, 9126-9128; b) G. M. Coppola, Synthesis
1984, 12, 1021-1023; c) Y.-M. Zhao, M. S. Cheung, Z. Lin, J. Sun, Angew. Chem. 2012, 124, 10505-10509; Angew. Chem., Int. Ed. 2012, 51, 10359-10363.

[5] Y. Xu, Y. Wei, Synthetic Commun. 2010, 40, 3423-3429.

[6] a) Q. Zhang, H. M. Nguyen, Chem. Sci. 2014, 5, 291-296; b) X.-S. Ning, M.-M. Wang, C.-Z. Yao,

X.-M. Chen, Y.-B. Kang, Org. Lett. 2016, 18, 2700-2703.

Figure S1. ORTEP drawing of the compound 4c (CCDC: 2005670)

Table SU. Crystal data and	1 structure refinement for 40.
Identification code	4c
Empirical formula	$C_{27}H_{19}FO_2$
Formula weight	394.42
Temperature/K	100.0(2)
Crystal system	monoclinic
Space group	P21
a/Å	13.5867(11)
b/Å	4.3673(4)
c/Å	16.8442(12)
α/°	90
β/°	104.545(8)
$\gamma/^{\circ}$	90
Volume/Å ³	967.45(14)
Z	2
$ ho_{calc}g/cm^3$	1.354
μ/mm^{-1}	0.733
F(000)	412.0
Crystal size/mm ³	$0.14 \times 0.12 \times 0.1$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	5.42 to 149.418
Index ranges	$-16 \le h \le 16, -5 \le k \le 5, -9 \le l \le 20$
Reflections collected	3636
Independent reflections	3636 [$R_{int} = 0.0505, R_{sigma} = 0.0473$]
Data/restraints/parameters	3636/1/272
Goodness-of-fit on F ²	1.065
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0973, wR_2 = 0.2945$
Final R indexes [all data]	$R_1 = 0.0997, wR_2 = 0.2962$
Largest diff. peak/hole / e Å ⁻³	0.53/-0.44

Table S6. Crystal data and structure refinement for 4c.

Flack/Hooft parameter	0.01(15)/0.00(10)
-----------------------	-------------------

Atom	x	у	Z	U(eq)
F1	2531(2)	1315(6)	4802.3(15)	38.0(7)
O1	386(2)	5278(10)	6175.1(17)	41.5(9)
O2	1880(2)	5385(9)	5834.4(17)	36.1(8)
C1	1945(3)	6085(10)	7221(2)	29.4(10)
C2	2805(3)	7881(12)	7309(3)	36.8(11)
C3	3394(3)	8633(11)	8068(3)	34.9(11)
C4	3178(3)	7459(11)	8774(3)	34.2(11)
C5	2319(3)	5517(12)	8710(2)	31.2(10)
C6	1675(3)	4855(10)	7913(2)	29.1(10)
C7	3792(4)	8126(12)	9581(3)	38.3(12)
C8	3593(3)	6937(14)	10256(3)	42.1(13)
C9	2752(3)	4898(11)	10211(2)	33.2(11)
C10	2105(3)	4252(11)	9417(3)	31.2(10)
C11	1267(3)	2300(11)	9360(3)	32.3(11)
C12	1074(4)	1024(13)	10066(3)	39.0(12)
C13	1709(4)	1727(12)	10838(3)	41.2(13)
C14	2528(4)	3618(11)	10902(3)	37.6(12)
C15	627(3)	1668(12)	8562(3)	36.3(12)
C16	818(3)	2899(12)	7879(3)	33.7(11)
C17	1292(3)	5492(12)	6372(2)	35.0(11)
C18	1345(3)	5075(13)	4981(2)	33.9(11)
C19	2161(3)	4268(11)	4550(2)	33.1(11)
C20	1784(3)	4350(11)	3630(3)	33.0(11)

Table S7. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **4c**. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Table S8. Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for **4c**. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

	Idet	or exponent take	-2π			
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
F1	42.9(12)	30.5(14)	41.8(11)	0.0(11)	13.1(10)	3.8(11)
01	30.5(13)	64(2)	33.5(13)	2.0(16)	13.6(10)	2.3(16)
O2	32.8(13)	49.8(19)	28.6(11)	-3.2(13)	13.1(10)	0.5(15)
C1	36.5(19)	20(2)	34.5(17)	-1.0(16)	14.1(14)	3.5(17)
C2	42(2)	39(3)	34.2(18)	-0.8(19)	17.3(15)	6(2)
C3	36.1(19)	31(2)	39.2(19)	-6.6(18)	12.3(16)	2.7(19)
C4	33.7(19)	34(2)	36.4(19)	-4.3(18)	11.0(15)	6.5(18)

	Tacto	of exponent tak	es the form: -2π	$11 a^{+} U_{11} + 211k$	$a^{+}0^{+}0_{12}+$].	
Atom	U11	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C5	27.2(16)	37(2)	31.4(16)	-2.0(17)	11.3(13)	11.8(18)
C6	27.4(17)	29(2)	33.5(17)	-5.9(16)	12.5(13)	7.3(16)
C7	33(2)	37(3)	44(2)	-11(2)	7.8(17)	-1(2)
C8	32(2)	61(3)	32.1(18)	-18(2)	4.8(16)	5(2)
C9	33.4(19)	35(2)	31.8(17)	-7.1(17)	8.4(15)	10.6(19)
C10	30.7(18)	31(2)	34.1(18)	-2.1(17)	13.0(14)	10.0(17)
C11	32.3(19)	31(2)	35.6(18)	1.1(17)	11.4(15)	8.4(18)
C12	40(2)	42(3)	37.0(19)	5(2)	12.1(16)	3(2)
C13	58(3)	39(3)	29.4(17)	5.2(18)	15.8(16)	13(2)
C14	47(2)	35(3)	32.5(19)	0.1(18)	13.2(16)	9(2)
C15	34.0(19)	40(3)	35.5(19)	-1.8(19)	10.5(15)	-4(2)
C16	32.0(19)	38(2)	31.3(17)	-0.6(19)	8.3(15)	5.0(19)
C17	40.8(19)	39(2)	31.3(16)	3.2(18)	19.9(13)	7.4(19)
C18	32.0(18)	42(3)	29.3(16)	4.8(18)	9.9(14)	2(2)
C19	39(2)	32(2)	29.9(18)	-2.0(17)	11.4(16)	2.3(19)
C20	34(2)	29(2)	34.4(19)	-3.9(17)	5.2(16)	0.4(18)
C21	41(2)	37(2)	25.0(16)	-4.4(18)	5.2(15)	8(2)
C22	42(2)	26(2)	30.8(16)	-6.2(16)	16.2(14)	3.8(18)
C23	50(2)	45(3)	31.2(18)	-1(2)	15.9(16)	1(2)
C24	39(2)	33(2)	48(2)	-2.0(19)	20.6(16)	1(2)
C25	32.7(19)	34(2)	55(2)	-16(2)	17.7(16)	-12.5(19)
C26	38(2)	40(3)	36.0(18)	-11.2(19)	10.7(16)	2(2)
C27	35.5(19)	35(2)	31.5(17)	-3.9(17)	12.7(14)	6.7(19)

Table S8. Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for **4c**. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Table S9. Bond Lengths for 4c.

Atom	Atom	Length/Å	Atom Atom	Length/Å
F1	C19	1.410(5)	C9 C14	1.391(7)
01	C17	1.195(5)	C10 C11	1.406(6)
O2	C17	1.351(5)	C11 C12	1.397(7)
O2	C18	1.445(5)	C11 C15	1.433(6)
C1	C2	1.384(7)	C12 C13	1.402(6)
C1	C6	1.412(6)	C13 C14	1.369(7)
C1	C17	1.504(5)	C15 C16	1.353(7)
C2	C3	1.368(6)	C18 C19	1.511(7)
C3	C4	1.391(7)	C19 C20	1.505(6)
C4	C5	1.425(7)	C20 C21	1.299(7)
C4	C7	1.435(6)	C21 C22	1.495(6)

Atom Atom		Length/Å	Atom Atom	Length/Å		
C5	C6	1.436(5)	C22 C23	1.394(7)		
C5	C10	1.407(6)	C22 C27	1.394(6)		
C6	C16	1.435(6)	C23 C24	1.373(7)		
C7	C8	1.338(7)	C24 C25	1.371(6)		
C8	C9	1.436(7)	C25 C26	1.382(7)		
C9	C10	1.433(5)	C26 C27	1.399(7)		

Table S9.Bond Lengths for 4c.

Table S10. Bond Angles for 4c.

				ia i ing	105 101	10.	
Atom Atom Atom		Angle/°	Atom	Atom	Atom	Angle/°	
C17	O2	C18	115.8(3)	C12	C11	C10	120.4(4)
C2	C1	C6	121.0(4)	C12	C11	C15	121.5(4)
C2	C1	C17	118.7(4)	C11	C12	C13	120.0(5)
C6	C1	C17	120.4(4)	C14	C13	C12	120.2(5)
C3	C2	C1	121.1(4)	C13	C14	C9	121.4(4)
C2	C3	C4	120.7(5)	C16	C15	C11	121.4(4)
C3	C4	C5	120.0(4)	C15	C16	C6	122.0(4)
C3	C4	C7	122.5(4)	01	C17	O2	123.6(4)
C5	C4	C7	117.5(4)	01	C17	C1	126.7(4)
C4	C5	C6	119.0(4)	O2	C17	C1	109.6(4)
C10	C5	C4	120.6(4)	O2	C18	C19	104.7(3)
C10	C5	C6	120.3(4)	F1	C19	C18	108.5(4)
C1	C6	C5	118.1(4)	F1	C19	C20	109.6(4)
C1	C6	C16	124.7(4)	C20	C19	C18	112.8(4)
C16	C6	C5	117.1(4)	C21	C20	C19	127.6(4)
C8	C7	C4	122.3(5)	C20	C21	C22	128.0(4)
C7	C8	C9	121.6(4)	C23	C22	C21	119.2(4)
C10	C9	C8	117.7(4)	C27	C22	C21	122.6(4)
C14	C9	C8	122.9(4)	C27	C22	C23	118.1(4)
C14	C9	C10	119.4(4)	C24	C23	C22	120.8(4)
C5	C10	C9	120.3(4)	C25	C24	C23	121.2(5)
C11	C10	C5	121.1(4)	C24	C25	C26	119.4(4)
C11	C10	C9	118.6(4)	C25	C26	C27	120.0(4)
C10	C11	C15	118.1(4)	C22	C27	C26	120.4(4)

 Table 11. Torsion Angles for 4c.

A B C D	Angle/°	A B C D	Angle/°
F1 C19 C20 C21	-93.6(6)	C8 C9 C14C13	178.8(5)
O2C18C19 F1	67.8(5)	C9 C10C11C12	0.0(7)

 Table 11. Torsion Angles for 4c.

A B C D	Angle/°	A B C D	Angle/°
O2C18C19C20	-170.6(4)	C9 C10C11C15	-179.9(4)
C1 C2 C3 C4	3.9(8)	C10 C5 C6 C1	-177.6(4)
C1 C6 C16C15	176.6(5)	C10 C5 C6 C16	0.4(6)
C2 C1 C6 C5	-0.1(6)	C10 C9 C14C13	0.7(7)
C2 C1 C6 C16	-178.0(5)	C10C11C12C13	1.0(7)
C2 C1 C17 O1	-144.1(6)	C10C11C15C16	0.1(7)
C2 C1 C17 O2	32.6(6)	C11C12C13C14	-1.2(8)
C2 C3 C4 C5	-1.7(7)	C11C15C16C6	1.0(8)
C2 C3 C4 C7	178.4(5)	C12C11C15C16	-179.8(5)
C3 C4 C5 C6	-1.3(7)	C12C13C14C9	0.3(8)
C3 C4 C5 C10	178.5(4)	C14 C9 C10 C5	-179.8(4)
C3 C4 C7 C8	-178.5(5)	C14 C9 C10C11	-0.8(7)
C4 C5 C6 C1	2.2(6)	C15C11C12C13	-179.1(5)
C4 C5 C6 C16	-179.8(4)	C17 O2 C18C19	-167.0(4)
C4 C5 C10 C9	-0.2(7)	C17 C1 C2 C3	176.3(5)
C4 C5 C10C11	-179.1(4)	C17 C1 C6 C5	-179.4(4)
C4 C7 C8 C9	0.3(8)	C17 C1 C6 C16	2.7(7)
C5 C4 C7 C8	1.6(7)	C18 O2 C17 O1	1.7(8)
C5 C6 C16C15	-1.3(7)	C18 O2 C17 C1	-175.2(4)
C5 C10 C11 C12	179.0(5)	C18C19C20C21	145.3(5)
C5 C10 C11 C15	-0.9(7)	C19C20C21C22	3.7(9)
C6 C1 C2 C3	-2.9(7)	C20 C21 C22 C23	-151.8(5)
C6 C1 C17 O1	35.2(8)	C20 C21 C22 C27	32.1(8)
C6 C1 C17 O2	-148.1(4)	C21 C22 C23 C24	-178.7(5)
C6 C5 C10 C9	179.6(4)	C21 C22 C27 C26	178.8(4)
C6 C5 C10C11	0.6(7)	C22 C23 C24 C25	0.0(8)
C7 C4 C5 C6	178.6(4)	C23 C22 C27 C26	2.6(7)
C7 C4 C5 C10	-1.6(7)	C23 C24 C25 C26	2.2(8)
C7 C8 C9 C10	-2.1(7)	C24 C25 C26 C27	-2.0(7)
C7 C8 C9 C14	179.8(5)	C25 C26 C27 C22	-0.4(7)
C8 C9 C10 C5	2.0(7)	C27 C22 C23 C24	-2.4(7)
C8 C9 C10C11	-179.0(4)		

Table 12. Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$)

for 4c .					
Atom	x	У	Z.	U(eq)	
H2	2984.65	8587.98	6844.01	44	
H3	3944.99	9942.96	8113.54	42	

101 4C.						
Atom	x	у	Z	U(eq)		
H7	4346.39	9429.07	9637	46		
H8	4010.54	7442.17	10766.9	50		
H12	525.36	-290.88	10024.2	47		
H13	1572.51	905.21	11308.75	49		
H14	2944.65	4056.86	11418.16	45		
H15	68.99	384.56	8512.51	44		
H16	379.14	2463.38	7371.59	40		
H18A	1012.35	6978.58	4770.4	41		
H18B	838.13	3467.12	4909.51	41		
H19	2720.58	5735.07	4717.06	40		
H20	1114.69	3737.17	3414.55	40		
H21	1917.72	5199.29	2555.57	42		
H23	3189.25	8903.84	2283.22	49		
H24	4856.06	10316.29	2483.05	46		
H25	6079.55	8489.89	3581.24	47		
H26	5640.29	4931.33	4452.88	45		
H27	3952.88	3442.5	4257.56	40		

Table 12. Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for **4**c

Crystal structure determination of 4c

Crystal Data for C₂₇H₁₉FO₂ (*M* =394.42 g/mol): monoclinic, space group P2₁ (no. 4), *a* = 13.5867(11) Å, *b* = 4.3673(4) Å, *c* = 16.8442(12) Å, β = 104.545(8)°, *V* = 967.45(14) Å³, *Z* = 2, *T* = 100.0(2) K, μ (Cu K α) = 0.733 mm⁻¹, *Dcalc* = 1.354 g/cm³, 3636 reflections measured (5.42° $\leq 2\Theta \leq 149.418^{\circ}$), 3636 unique (*R*_{int} = 0.0505, R_{sigma} = 0.0473) which were used in all calculations. The final *R*₁ was 0.0973 (I > 2 σ (I)) and *wR*₂ was 0.2962 (all data).

Chiral GC spectra

Peak#	Ref.Time	Area	Height	Area%	Height%
1	31.936	15757	549	1.19	2.19
2	34.689	1311864	24575	98.81	97.81
Total		1327621	25124	100.00	100.00

 1
 33.250
 4007329
 111586
 50.24
 62.66

 2
 35.659
 3968459
 66497
 49.76
 37.34

 Total
 7975788
 178083
 100.00
 100.00

3077741

40232

Total

100.00

100.00

Intensity 300000

200000-

50

1 21 202 2025112 55545 40 52 44 4
1 31.380 2927113 77547 49.73 44.44
2 33.215 2959363 96939 50.27 55.50
Total 5886476 174486 100.00 100.00
Intensity

100.00

100.00

8697481

Total

100.00

100.00

1855273

53844

Total

Peak#	Ret.Time	Area	Height	Area%	Height%
1	27.635	24653	813	1.61	1.68
2	29.467	1509342	47616	98.39	98.32
Total		1533995	48429	100.00	100.00

Peak#	Ret. I fine	Area	Height	Area%	Height%
1	28.600	55175	2186	2.72	4.31
2	31.556	1975451	48546	97.28	95.69
Total		2030626	50732	100.00	100.00

1	0	20	20 30			0	
Peak#	Ret.Time	Area	Height	Area%	Height%		
1	33.976	26561	891	1.92	2.63		
2	35.405	1359293	33036	98.08	97.37		
Total		1385854	33927	100.00	100.00		

min

Intensity

HPLC spectra

Ch1 254m	Ch1 254nm 4nm PeakTable						
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	14.927	951537	52841	49.897	55.578		
2	19.328	955465	42234	50.103	44.422		
Total		1907002	95075	100.000	100.000		

PeakTable

			-	cuit i troit	
Ch1 254mm	14mm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	14.982	64423	3701	4.272	5.440
2	19.410	1443504	64337	95.728	94.560
Total		1507927	68038	100.000	100.000

PeakTable

	I Cak lable					
PDA Ch1 2	54nm 4nm					
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	18.176	359610	16827	49.873	53.221	
2	19.935	361444	14790	50.127	46.779	
Total		721054	31618	100.000	100.000	

1 PDA Multi 1 / 254mm 4mm

PeakTable

			1 Carlaoic			
PDA Ch1 2	54nm 4nm					
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	18.145	19588	995	4.764	5.836	
2	19.879	391567	16046	95.236	94.164	
Total		411155	17041	100.000	100.000	

1 PDA Multi 1 / 254nm 4nm

PeakTable

	r can la Ulc				
PDA Ch1 2	54nm 4nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	19.795	1417953	49590	49.912	56.118
2	21.122	1422931	38778	50.088	43.882
Total		2840884	88367	100.000	100.000

PeakTable

	FeakTable					
PDA Ch1 2	54nm 4nm					
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	20.758	83414	2932	4.373	5.864	
2	21.961	1824043	47067	95.627	94.136	
Total		1907457	49999	100.000	100.000	

NMR spectra

<u>ک</u> OCO₂Me 1b ¹H NMR ^{(400 MHz, CDCI} 3) 1.00-J 3.05-I 1.96-[6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 f1(ppm) 1.5 10.0 9.5 9.0 8.5 8.0 7.5 ~164.29 ~161.81 ~154.52 ~151.33 131.55
129.41
129.33
116.12
115.90 77.29 77.02 76.97 76.65 ≥0 OCO₂Me 1b ¹³C NMR ^{(101 MHz, CDCI}₃₎ 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

---3.79

----3.80

—1.31

---3.82

---3.80

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 11 (ppm)

Me 19F NMR (376 MHz, CDCI 3)

3k ¹H NMR (400 MHz, CDCI ₃)

O CI CI 19F NMR (376 MHz, CDCI 3)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

√1.32 1.32

-174.72

^O Pro ¹⁹F NMR ⁽³⁷⁶MHz, CDCI ₃)

⁰ ¹⁹F NMR^{(400 MHz, CDCI} 3)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

																				· · ·	· · · ·	
10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100 f1 (ppm	-110)	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210

_																							
	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100 f1 (ppm	-110)	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210

10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100 f1 (ppm	-110)	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

1)	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100 f1 (ppm	-110)	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

7.191 7.187 7.187 7.187 7.187 7.187 7.187 7.187 7.187 7.187 7.187 7.187 7.187 7.148 7.175 7.1487 7.1487 7.1487 7.1487 7.1487 7.1487 7.1487 7.1487 7.1487 7.1487 7.

3w ¹H NMR (400 MHz, CDCI ₃)

---3.87

0 ↓ ¹⁹F NMR^{(376 MHz, CDCI}₃₎

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 11 (ppm)

7,735 7,737 7,737 7,737 7,737 7,737 7,737 7,737 6,685 6,573 6,5756 7,5756 7,5756 7,5756 7,

Рh F ОН 4а 19F NMR ^{(376 MHz, CDCI}з)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

---177.05

4b 1H NMR (400 MHz, CDCI 3)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

29.28 29.28 20.28 20.28 20.28 20.28 20.28 20.28 20.29 20.29 20.29 20.29 20.20

Ph F C CDCI ¹⁹F NMR ^{(376 MHz, CDCI} ³)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)