Electronic Supplementary Information for

Metal-metal multiple bond formation induced by σ-acceptor Lewis acid ligands

Shin Takemoto,* Kaname Yoshii, Takahiro Yamano, Akihiro Tsurusaki and Hiroyuki Matsuzaka*

Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.

Table of Contents

General considerations	S2
Experimental procedure and characterization data	S2
NMR spectra of new compounds	S4
X-ray crystallography	S10
Computational study	. S 11
References	S26

General considerations

All operations were performed under an inert atmosphere of nitrogen or argon using standard Schlenk line or glovebox techniques, employing dry solvents and glassware unless otherwise noted. The starting material [Cp*Ru(µ-NHPh)]₂ (1) was prepared as described previously.¹ Deuterated solvents were degassed by freeze-pump-thaw cycles and stored over molecular sieves which had been dried at 300 °C under vacuum overnight. Other reagents and solvents were purchased from commercial venders and used as received. NMR spectra were obtained on a JEOL JNM-AL400 or a ECP400 spectrometers at 22 °C unless otherwise specified. Variable-temperature ¹H NMR spectra were obtained on a JEOL ECZ500R spectrometer. Elemental analyses were performed on a Perkin Elmer 2400 Series II analyzer.

Experimental procedure and characterization data

Synthesis of [(Cp*Ru)₂(µ-NHPh)₂ZnCl₂] (2)

Complex **1** (215 mg, 0.327 mmol) was placed in a Schlenk tube and dissolved in THF (15 mL). The solution was cooled to -80 °C with a hexane-liquid N₂ bath and treated with a slurry of ZnCl₂ (44.6 mg, 0.327 mmol) in THF (5 mL) via a Teflon tubing. The resulting mixture was warmed slowly to room temperature and stirred for 3 h, giving a dark red solution. The solvent was removed in vacuo, and the residue was extracted with CH₂Cl₂ (10 mL). The extract was filtered into a clean Schlenk tube through a Teflon tubing fitted with a plug of filter paper at one end, concentrated to ca. 2 mL under reduced pressure, and layered with hexane (8 mL). The red crystalline solid that deposited was collected by filtration and dried in vacuo. Yield: 211 mg (0.266 mmol, 81%). Anal. Calcd. for C₃₂H₄₂Cl₂N₂Ru₂Zn: C, 48.46; H, 5.34; N, 3.53. Found: C, 48.28; H, 5.38; N, 3.42. ¹H NMR(400 MHz, CD₂Cl₂): δ 8.76 (br s, 2H, NH), 7.37 (m, 4H, Ph), 7.21 (m, 2H, Ph), 7.13 (m, 2H, Ph), 7.05 (m, 2H, Ph), 1.41 (s, 30H, Cp*). ¹³C{¹H} NMR (100 MHz, CD₂Cl₂): δ 156.0, 129.9, 128.4, 126.3, 124.4, 120.6 (Ph), 94.2 (*C*₅Me₅), 9.3 (C₅Me₅). Single-crystals suitable for X-ray analysis were grown from THF-hexane.

Synthesis of [(Cp*Ru)₂(µ-NHPh)₂PbCl₂] (3)

A solution of 1 (1.76 g, 2.69 mmol) in THF (20 mL) was transferred via a Teflon tubing to a stirred slurry of PbCl₂ (3.81 g, 13.7 mmol) in THF (5 mL). The resulting mixture was stirred at room temperature for 3 h, giving a dark brown suspension. The solvent was removed in vacuo, and the residue was extracted with CH_2Cl_2 (30 mL). The extract was filtered into a

clean Schlenk tube through a Teflon tubing fitted with a plug of Celite at one end, concentrated to ca. 6 mL under reduced pressure, layered with acetonitrile (24 mL), and stored in a freezer (-30 °C). The black plates that deposited were collected by filtration and dried in vacuo. Yield: 1.82 g (1.95 mmol, 72%). Anal. Calcd. for $C_{32}H_{42}Cl_2N_2PbRu_2$: C, 41.11; H, 4.53; N, 3.00. Found: C, 41.26; H, 4.84; N, 2.73. ¹H NMR (400 MHz, CDCl₃): δ 13.54 (br s, 2H, NH), 7.98 (m, 2H, Ph), 6.89 (m, 2H, Ph), 7.32 (m, 4H, Ph), 7.20 (m, 2H, Ph), 1.11 (s, 30H, Cp*). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 156.6, 129.5, 128.6, 125.7, 124.8, 122.8 (Ph), 96.0 (C_5Me_5), 7.7 (C_5Me_5). Single-crystals suitable for X-ray analysis were grown from CH₂Cl₂-acetonitrile.

Synthesis of [(Cp*Ru)₂(µ-NHPh)₂SnCl(OTf)] (4)

Complex 1 (151 mg, 0.211 mmol) was placed in a Schlenk tube and dissolved in THF (10 mL). The solution was cooled to -80 °C with a hexane-liquid N₂ bath and treated with a solution of SnCl₂ (40 mg, 0.211 mmol) in THF (5 mL) via a syringe. After 5 minutes, a solution of NaOTf (500 mg, 2.91 mmol) in THF (10 mL) was added dropwise to the reaction solution. The resulting greenish brown mixture was then slowly warmed to room temperature and stirred for 3 h. The solvent was removed in vacuo, and the residue was extracted with CH₂Cl₂ (15 mL). The extract was filtered into a clean Schlenk tube through a Teflon tubing fitted with a plug of filter paper at one end, concentrated to ca. 3 mL under reduced pressure, and layered with hexane (9 mL). The black blocks that deposited were collected by filtration and dried in vacuo. Yield: 128 mg (0.133 mmol, 79%). Anal. Calcd. for C₃₃H₄₂ClF₃N₂O₃Ru₂SSn: C, 41.29; H, 4.41; N, 2.92. Found: C, 41.46; H, 4.43; N, 2.76. ¹H NMR(400 MHz, CD₂Cl₂): δ 11.98 (br, 2H, NH), 7.90 (m, 2H, Ph), 7.42 (m, 2H, Ph), 7.35 (m, 2H, Ph), 7.24 (m, 2H, Ph), 6.70 (m, 2H, Ph), 1.16 (s, 30H, Cp*). ¹³C{¹H} NMR (100 MHz, CD₂Cl₂): δ 156.5, 130.2, 129.2, 125.8, 125.4, 122.4 (Ph), 121.1 (q, J = 320 Hz, CF₃), 96.7 (C₅Me₅), 8.4 (C₅Me₅). ¹⁹F NMR (376) MHz, CD₂Cl₂): δ –78.4 (s, CF₃SO₃). Single-crystals suitable for X-ray analysis were grown from CH₂Cl₂-hexane.

Synthesis of [(Cp*Ru)₂(µ-NHPh)₂Sn(OTf)₂] (5)

Complex 1 (132 mg, 0.201 mmol) was placed in a Schlenk tube and dissolved in THF (6 mL). To this solution was added a solution of $Sn(OTf)_2$ (83.8 mg, 0.201 mmol) in THF (4 mL) by a syringe. The resulting greenish brown solution was stirred at room temperature for 15 min. The solvent was removed in vacuo, and the residue was recrystallized from CH₂Cl₂-hexane (2 mL/7 mL). The black plates that deposited were collected by filtration and dried in vacuo. Yield: 178 mg (0.165 mmol, 82%). Anal. Calcd. for C₃₄H₄₂F₆N₂O₆Ru₂S₂Sn: C, 38.04; H,

3.94; N, 2.61. Found: C, 37.88; H, 3.68; N, 2.48. ¹H NMR(400 MHz, CD₂Cl₂): δ 11.67 (br s, 2H, NH), 7.73 (m, 2H, Ph), 7.40 (m, 4H, Ph), 7.32 (m, 2H, Ph), 6.70 (m, 2H, Ph), 1.20 (s, 30H, Cp*). ¹³C{¹H} NMR (100 MHz, CD₂Cl₂): δ 155.8, 130.4, 129.6, 126.3, 125.1, 122.3 (Ph), 120.2 (q, *J* = 320.5 Hz, CF₃), 97.9 (*C*₅Me₅), 8.3 (C₅*Me*₅). ¹⁹F NMR (376 MHz, CD₂Cl₂): δ -78.1 (s, CF₃SO₃). Single-crystals suitable for X-ray analysis were grown from CH₂Cl₂-hexane.

Fig. S1 ¹H NMR spectrum of $[(Cp*Ru)_2(\mu-NHPh)_2ZnCl_2]$ (2) (400 MHz, CD₂Cl₂).

Fig. S2 ${}^{13}C{}^{1}H$ NMR spectrum of [(Cp*Ru)₂(μ -NHPh)₂ZnCl₂] (2) (100 MHz, CD₂Cl₂).

Fig. S3 ¹H NMR spectrum of $[(Cp*Ru)_2(\mu-NHPh)_2PbCl_2]$ (3) (400 MHz, CDCl₃).

Fig. S4 ${}^{13}C{}^{1}H$ NMR spectrum of [(Cp*Ru)₂(μ -NHPh)₂PbCl₂] (3) (100 MHz, CDCl₃).

Fig. S5 1 H NMR spectrum of [(Cp*Ru)₂(μ -NHPh)₂SnCl(OTf)] (4) (400 MHz, CD₂Cl₂).

Fig. S6 ${}^{13}C{}^{1}H$ NMR spectrum of [(Cp*Ru)₂(μ -NHPh)₂SnCl(OTf)] (4) (100 MHz, CD₂Cl₂).

Fig. S7 19 F NMR spectrum of [(Cp*Ru)₂(μ -NHPh)₂SnCl(OTf)] (4) (376 MHz, CD₂Cl₂).

Fig. S8 Variable-temperature ¹H NMR spectra of [(Cp*Ru)₂(μ-NHPh)₂SnCl(OTf)] (4) (500 MHz, CD₂Cl₂, NH and aromatic region). Asterisks denote impurities.

Fig. S9 1 H NMR spectrum of [(Cp*Ru)₂(μ -NHPh)₂Sn(OTf)₂] (5) (400 MHz, CD₂Cl₂).

Fig. S11 ¹⁹F NMR spectrum of $[(Cp*Ru)_2(\mu-NHPh)_2Sn(OTf)_2]$ (5) (376 MHz, CD₂Cl₂).

X-ray crystallography

Single crystals of each compound were prepared as described in the synthetic procedures. All measurements were performed on a Rigaku R-AXIS Rapid imaging plate detector with graphite monochromated Mo K α radiation ($\lambda = 0.71069$ Å). The frame data were processed using Rigaku PROCESS-AUTO,² and the reflection data were corrected for absorption with ABSCOR.³ The structures were solved by SHELXS-97 and refined by SHELXL-97.⁴ All non-hydrogen atoms were refined with anisotropic displacement parameters unless otherwise mentioned. Hydrogen atoms were placed at calculated positions and treated as riding models unless otherwise mentioned. Selected crystallographic data are summarized in Table S1. CCDC 2041261-2041264.

	01	, ,		
	2	3	4 •(CH ₂ Cl ₂)	5
formula	C32H42Cl2N2Ru2Zn	C ₃₃ H ₄₂ ClF ₃ N ₂ O ₃ Ru ₂ SSn	C35H44Cl2F3N2O3 Ru2SSn	C32H42Cl2N2PbRu2
M	793.09	960.04	1158.59	934.91
T/K	293(2)	173(2)	173(2)	293(2)
size (mm)	$0.50 \times 0.20 \times 0.20$	$0.40 \times 0.20 \times 0.02$	$0.40 \times 0.20 \times 0.10$	$0.50 \times 0.05 \times 0.02$
crystal system	orthorhombic	monoclinic	triclinic	orthorhombic
space group	Pbca	$P2_{1}/c$	<i>P</i> -1	Pbca
Ζ	8	8	2	8
<i>a</i> (Å)	17.836(4)	21.6780(5)	10.4804(7)	17.5750(6)
<i>b</i> (Å)	18.860(3)	15.5432(4)	10.7740(8)	18.5880(6)
<i>c</i> (Å)	19.709(4)	21.2981(5)	19.5872(14)	20.2407(8)
α (deg)	90.0000	90.0000	90.737(6)	90.0000
β (deg)	90.0000	94.863(7)	94.454(7)	90.0000
γ (deg)	90.0000	90.0000	104.508(7)	90.0000
$V(Å^3)$	6630(2)	7150.5(3)	2133.5(3)	6612.3(4)
$D_{\rm calc}$ (g/cm ³)	1.589	1.783	1.803	1.878
μ (mm ⁻¹)	1.802	1.711	1.573	6.176
reflns collected	56481	102766	19784	57606
unique reflns	7479	16257	9517	7513
GOF on F^2	1.016	1.030	1.315	1.000
R1 $[I > 2\sigma(I)]^a$	0.0256	0.0480	0.0604	0.0440
wR2 (all data) ^{b}	0.0666	0.1149	0.1718	0.0741

Table S1Crystallographic data for 2, 3, 4 and 5.

^{*a*} R1 = ($\Sigma ||Fo| - |Fc||$) / $\Sigma |Fo|$, ^{*b*}wR2 = [{ $\Sigma (w(Fo^2 - Fc^2)^2)$ } / $\Sigma w(Fo^2)^2$]^{1/2}

Computational study

Geometry optimizations were performed with the B3PW91 hybrid functional⁵ using the Gaussian 09 program⁶ without any symmetry constraints in the gas phase. Ruthenium, zinc, tin, and lead atoms were described with the SDD effective core potentials and the associated basis sets,⁷ while the 6-31G(d) basis set⁸ was applied for all other atoms. The optimized geometries were checked by frequency calculations to confirm all positive frequencies. Natural bond orbital analyses were performed with NBO 6.0.19.⁹ Molecular orbitals and natural bond orbitals were visualized by using the ChemCraft software.¹⁰

Table 52. Optimized geometries of 2, 5, 4 and 1 with selected bond lengths (11).							
	$\begin{array}{c} CI \\ Zn \\ H \\ Ru \\ Ru \\ Cp^{*} \end{array} \begin{array}{c} CI \\ Cp^{*} \\ Ph \\ Cp^{*} \end{array} \begin{array}{c} Ph \\ Ph \\ Cp^{*} \end{array} \begin{array}{c} Ph \\ Ph \\ Ph \end{array}$		$\begin{array}{c} Cl & \overrightarrow{Pb} & Cl \\ H & & & Cp^* H \\ N & & & Ru & N \\ Ph & & & Ru & N \\ Cp^* & & Ph \end{array}$		CI H Ph Cp*	Sn Cp* H Ru N Ph	H N Ru Ph Cp* Ph
			the second				
	2 (N	M = Zn)	3 (N	A = Pb)	4 (1	$M = Sn)^a$	1'
	opt.	exp.	opt.	exp.	opt.	exp.	opt.
Ru1–Ru2	2.438	2.4201(5)	2.440	2.4309(6)	2.439	2.4195(6)	2.448
Ru1–M	2.619	2.5981(5)	2.950	2.8331(5)	2.784	2.7617(5)	
Ru2–M	2.619	2.5975(5)	2.950	2.8468(5)	2.781	2.7722(6)	
M-Cl1	2.256	2.2438(9)	2.884	2.867(2)	2.530	2.534(1)	
M-Cl2	2.253	2.2246(9)	2.884	2.861(2)			
Ru1–N1	2.068	2.058(1)	2.068	2.056(4)	2.082	2.060(4)	2.067
Ru1–N2	2.069	2.057(1)	2.069	2.071(4)	2.073	2.067(4)	2.066
Ru2–N1	2.069	2.064(1)	2.069	2.064(4)	2.083	2.060(4)	2.065
Ru2–N2	2.069	2.050(2)	2.068	2.055(4)	2.072	2.067(4)	2.064

Table S2. Optimized geometries of 2, 3, 4 and 1' with selected bond lengths (Å).^a

^{*a*} The OTf anion in **4** is omitted in the structral optimization.

NBO 58	NBO 60	NBO 78	
LP (Ru1)	LP (Ru2)	BD (Ru1-Ru2)	
occ. 1.89	occ. 1.89	occ. 1.96	
Ru1:	Ru1: Ru2:		Ru2:
s (1.59%)	s (1.59%)	s (1.12 %)	s (1.11 %)
p (0.19%)	p (0.19%) p (0.04%) p		p (0.04%)
d (98.22%)	d (98.22%)	d (98.22%) d (98.84%) d (98.85%	

Table S3.	NBO analysis	for [(Cp*Ru) ₂ (µ	ι -NHPh) ₂ ZnCl ₂] (2).
-----------	--------------	------------------------------	--

NBO 79		NBO 170	
BD (Rı	11-Ru2)	LV (Zn1)	
occ.	1.80	occ. 0.64	
Ru1:	Ru2:	Zn1:	
s (3.18%)	s (3.21%)	s (99.14%)	
p (0.54%) p (0.54%)		p (0.43%)	
d (96.28%)	d (96.24%)	d (0.42%)	

SECOND ORDER PERTURBATION THEORY ANALYSIS OF FOCK MATRIX IN NBO BASIS				
Donor NBO	Acceptor NBO	E(2) kcal/mol		
58, LP(Ru1)	170, LV (Zn1)	24.38		
60, LP(Ru2)	170, LV (Zn1)	24.46		
79, BD (Ru1-Ru2)	170, LV (Zn1)	77.20		
68, LP (Cl)	177, BD* (N-H)	4.52		
72, LP(Cl)	180, BD* (N-H)	3.97		

NBO 53	NBO 55	NBO 57	NBO	O 70
LP (Pb1)	LP (Ru1)	LP (Ru2)	BD (Ru	11-Ru2)
occ. 1.97	occ. 1.83	occ. 1.83	occ.	1.95
Pb1:	Ru1:	Ru2:	Ru1:	Ru2:
s (97.16%)	s (1.19%)	s (1.19%)	s (0.64%)	s (0.64%)
p (2.82%)	p (0.11%)	p (0.11%)	p (0.04%)	p (0.04%)
d (0.02%)	d (98.71%)	d (98.71%)	d (99.32%)	d (99.32%)

Table S4. NBO analysis for $[(Cp^*Ru)_2(\mu\text{-NHPh})_2PbCl_2]$ (3).

NBO 71		NBO 160	NBO 162
BD (Ru1-Ru2)		LV (Pb1)	LV (Pb1)
occ. 1.75		occ. 0.51	occ. 0.31
Ru1:	Ru2:	Pb1:	Pb1:
s(2.49%) s(2.49%)		s (2.90%)	s(0.00%)
p (0.29%) p (0.29%)		p (97.09%)	p (100.00%)
d (97.22%)	d (97.22%)	d (0.01%)	d (0.00%)

SECOND ORDER PERTURBATION THEORY ANALYSIS OF FOCK MATRIX IN NBO BASIS				
Donor NBO	Acceptor NBO	E(2) kcal/mol		
55, LP(Ru1)	162, LV (Pb1)	37.78		
57, LP(Ru2)	162, LV (Pb1)	37.77		
55, LP(Ru1)	160, LV (Pb1)	11.74		
57, LP(Ru2)	160, LV (Pb1)	11.75		
71, BD (Ru1-Ru2)	160, LV (Pb1)	37.34		
60, LP (Cl)	171, BD* (N-H)	13.10		
64, LP (Cl)	174, BD* (N-H)	13.10		

-

NBO 48	NBO 50	NBO 52	NBO	0 62
LP (Sn1)	LP (Ru1)	LP (Ru2)	BD (Ru	1-Ru2)
occ. 1.96	occ. 1.80	occ. 1.80	occ.	1.95
Sn1:	Ru1:	Ru2:	Ru1:	Ru2:
s (91.47%)	s (1.11%)	s (1.11%)	s (0.70%)	s (1.12%)
p (8.53%)	p (0.12%)	p (0.12%)	p (0.04%)	p (0.03%)
	d (98.78%)	d (98.77%)	d (99.26%)	d (98.84%)

Table S5.	NBO analysis	s for [(Cp*Ru) ₂ (µ	$-NHPh)_2SnCl]^+(4).$
-----------	--------------	--------------------------------	-----------------------

NBO	D 63	NBO 151	NBO 152
NBO 63			
BD (Rı	11-Ru2)	LV (Sn1)	LV (Sn1)
occ.	1.75	occ. 0.60	occ. 0.29
Ru1:	Ru2:	Sn1:	Sn1:
s(2.27%)	s(1.75%)	s (7.22%)	s(0.00%)
p (0.18%)	p (0.15%)	p (92.78%)	p (100.00%)
d (97.55%)	d (98.10%)		

SECOND ORDER PERTURBATION THEORY ANALYSIS OF FOCK MATRIX IN NBO BASIS			
Donor NBO	Acceptor NBO	E(2) kcal/mol	
50, LP(Ru1)	151, LV (Sn1)	21.14	
50, LP(Ru1)	152, LV (Sn1)	40.39	
52, LP(Ru2)	151, LV (Sn1)	21.17	
52, LP(Ru2)	152, LV (Sn1)	41.12	
63, BD (Ru1-Ru2)	151, LV (Sn1)	55.01	
55, LP (Cl)	163, BD* (N-H)	10.90	

Cartesian coordinates for [(Cp*Ru)₂(µ-NHPh)₂ZnCl₂] (2)

44	0.036588000	1.218537000	0.020332000
44	-0.042304000	-1.217933000	0.018262000
30	0.017829000	0.001295000	-2.298598000
17	2.044290000	-0.058491000	-3.288264000
17	-1.974733000	0.061784000	-3.347677000
7	1.660468000	-0.053192000	0.175110000
7	-1.667742000	0.053685000	0.155595000
6	2.590943000	-0.084463000	1.243625000
6	2.179606000	-0.070820000	2.582336000
6	3.119906000	-0.099745000	3.606876000
6	4.486191000	-0.142725000	3.317994000
6	4.901954000	-0.157119000	1.987427000
6	3.963940000	-0.128792000	0.956630000
6	-2.607468000	0.082059000	1.216314000
6	-3.978170000	0.124477000	0.919065000
6	-4.923875000	0.149524000	1.943057000
6	-4.518028000	0.133829000	3.276629000
6	-3.153833000	0.092949000	3.575549000
6	-2.206119000	0.067334000	2.557993000
6	0.120222000	3.079708000	-1.290046000
6	-1.047006000	3.106973000	-0.458180000
6	-0.627416000	3.162712000	0.927353000
6	0.798259000	3.115619000	0.951233000
6	1.258383000	3.032282000	-0.420056000
6	0.147544000	3.239851000	-2.778215000
6	-2.455678000	3.211810000	-0.956103000
6	-1.524051000	3.406267000	2.099682000
6	1.669183000	3.308816000	2.151944000
6	2.688388000	3.047829000	-0.864956000
6	0.582360000	-3.163944000	0.951549000
6	1.056635000	-3.110493000	-0.416092000
6	-0.075515000	-3.079311000	-1.294649000
6	-1.248274000	-3.027400000	-0.471795000
6	-0.843006000	-3.110799000	0.917055000
6	1.429531000	-3.413208000	2.158856000
6	2.484189000	-3.219654000	-0.856034000
6	-0.044090000	-3.237478000	-2.782921000
6	-2.659335000	-3.041728000	-0.973956000

6	-1.763501000	-3.294466000	2.081963000
1	-0.751925000	2.832309000	-3.248189000
1	0.202500000	4.308878000	-3.031498000
1	1.013359000	2.745989000	-3.228097000
1	-2.704725000	4.257729000	-1.182935000
1	-2.598762000	2.625431000	-1.869063000
1	-3.174395000	2.857563000	-0.211208000
1	3.027694000	4.080777000	-1.024630000
1	2.821706000	2.500389000	-1.802881000
1	3.347753000	2.597899000	-0.116621000
1	1.913408000	4.374019000	2.272655000
1	1.174711000	2.977514000	3.069414000
1	2.611882000	2.762132000	2.069710000
1	-1.698825000	4.484583000	2.223839000
1	-1.086809000	3.032298000	3.029625000
1	-2.497915000	2.925923000	1.977537000
1	-1.143606000	0.033512000	2.778097000
1	-2.826002000	0.080596000	4.612337000
1	-5.254503000	0.153121000	4.075245000
1	-5.981307000	0.181352000	1.693067000
1	-4.298790000	0.136700000	-0.120840000
1	-2.171656000	0.069718000	-0.735053000
1	2.171899000	-0.067642000	-0.711609000
1	1.115684000	-0.035548000	2.795193000
1	2.784414000	-0.088357000	4.641200000
1	5.216655000	-0.164634000	4.122051000
1	5.961143000	-0.190472000	1.745204000
1	4.291799000	-0.140054000	-0.080972000
1	3.172753000	-2.865622000	-0.083207000
1	2.666526000	-2.636372000	-1.763938000
1	2.739104000	-4.266768000	-1.070575000
1	0.865177000	-2.814845000	-3.219458000
1	-0.073753000	-4.306649000	-3.039842000
1	-0.900768000	-2.755988000	-3.262835000
1	-3.348371000	-2.594922000	-0.250789000
1	-2.756221000	-2.490815000	-1.914359000
1	-2.715382000	-2.777169000	1.937894000
1	-1.324277000	-2.921574000	3.011380000
1	-1.984619000	-4.362211000	2.222681000

1	0.945104000	-3.059886000	3.073497000
1	1.613570000	-4.490855000	2.275422000
1	2.401053000	-2.917984000	2.088017000
1	-2.991425000	-4.074285000	-1.150322000

Cartesian coordinates for [(Cp*Ru)₂(µ-NHPh)₂PbCl₂] (3)

82	-0.000501000	-2.425320000	-0.000135000
44	0.048647000	0.260215000	1.219091000
44	-0.048515000	0.260365000	-1.219026000
17	2.882705000	-2.496430000	0.012539000
17	-2.883723000	-2.495231000	-0.012962000
7	1.657862000	0.449691000	-0.066706000
7	-1.657663000	0.450316000	0.066789000
6	2.553771000	1.545895000	-0.116311000
6	3.931198000	1.285327000	-0.208142000
6	4.843135000	2.337046000	-0.270614000
6	4.399990000	3.659535000	-0.240872000
6	3.031451000	3.920862000	-0.145992000
6	2.115203000	2.875512000	-0.084527000
6	-2.553231000	1.546798000	0.116504000
6	-3.930750000	1.286633000	0.208158000
6	-4.842373000	2.338612000	0.270771000
6	-4.398825000	3.660973000	0.241363000
6	-3.030198000	3.921902000	0.146669000
6	-2.114255000	2.876286000	0.085052000
6	0.285430000	-0.964429000	3.144223000
6	1.334667000	0.005662000	3.055715000
6	0.742292000	1.324063000	3.089552000
6	-0.674185000	1.161371000	3.150948000
6	-0.963220000	-0.255854000	3.150496000
6	-0.285850000	-0.963799000	-3.144454000
6	0.963164000	-0.255876000	-3.150515000
6	0.674843000	1.161504000	-3.150727000
6	-0.741546000	1.324910000	-3.089373000
6	-1.334599000	0.006798000	-3.055769000
6	2.317080000	-0.871768000	-3.323370000
1	2.493715000	-1.112832000	-4.380940000
1	3.108336000	-0.188306000	-3.003639000

1	2.431599000	-1.786895000	-2.735522000
6	-0.468844000	-2.431787000	-3.368340000
1	-1.353932000	-2.822587000	-2.854622000
1	-0.604876000	-2.625711000	-4.442067000
1	0.407702000	-3.009513000	-3.053413000
6	-2.800261000	-0.295856000	-3.084488000
1	-3.386972000	0.521595000	-2.656169000
1	-3.135792000	-0.436806000	-4.121527000
1	-3.036476000	-1.202522000	-2.519438000
6	-1.485474000	2.615271000	-3.223569000
1	-1.684126000	2.827172000	-4.283874000
1	-2.446283000	2.590025000	-2.704738000
1	-0.914647000	3.456345000	-2.819395000
6	1.676066000	2.251068000	-3.367673000
1	1.857993000	2.376442000	-4.44440000
1	1.325725000	3.209393000	-2.976388000
1	2.635715000	2.032822000	-2.892886000
6	2.800174000	-0.297775000	3.084302000
1	3.135656000	-0.439251000	4.121286000
1	3.035894000	-1.204392000	2.518966000
1	3.387323000	0.519496000	2.656243000
6	0.467693000	-2.432542000	3.367872000
1	0.603553000	-2.626704000	4.441574000
1	-0.409112000	-3.009788000	3.052774000
1	1.352623000	-2.823669000	2.854126000
6	1.486916000	2.614005000	3.223959000
1	1.685860000	2.825517000	4.284285000
1	2.447618000	2.588383000	2.704944000
1	0.916465000	3.455489000	2.820094000
6	-1.674815000	2.251441000	3.368074000
1	-2.634642000	2.033723000	2.893409000
1	-1.856530000	2.376889000	4.444869000
1	-1.324012000	3.209588000	2.976768000
6	-2.317454000	-0.871096000	3.323231000
1	-2.432420000	-1.786132000	2.735323000
1	-2.494264000	-1.112159000	4.380774000
1	-3.108362000	-0.187222000	3.003521000
1	4.272816000	0.252458000	-0.227924000
1	5.905581000	2.118272000	-0.341793000

1	5.112317000	4.478703000	-0.289258000
1	2.675275000	4.948028000	-0.119098000
1	1.050290000	3.069682000	-0.008515000
1	2.209507000	-0.422543000	-0.076391000
1	-2.209597000	-0.421731000	0.076370000
1	-4.272682000	0.253862000	0.227705000
1	-5.904891000	2.120136000	0.341805000
1	-5.110899000	4.480352000	0.289871000
1	-2.673705000	4.948965000	0.120047000
1	-1.049279000	3.070183000	0.009176000

Cartesian coordinates for [(Cp*Ru)2(µ-NHPh)2SnCl]⁺ (4)

50	0.884473000	-0.077472000	-2.410260000
44	-0.180865000	-1.207506000	-0.099575000
44	0.042429000	1.221057000	-0.099190000
17	3.320842000	-0.300888000	-1.767847000
7	1.344630000	-0.122875000	0.790627000
7	-1.678450000	0.154409000	-0.587252000
6	1.704081000	-0.156161000	2.163497000
6	3.059479000	-0.295195000	2.503950000
6	3.447984000	-0.334426000	3.841254000
6	2.493933000	-0.235429000	4.854263000
6	1.145653000	-0.095859000	4.518460000
6	0.751987000	-0.056325000	3.184454000
6	-2.937128000	0.267075000	0.066574000
6	-4.102100000	0.365147000	-0.708175000
6	-5.349533000	0.474319000	-0.096673000
6	-5.450252000	0.488006000	1.294159000
6	-4.291808000	0.391672000	2.067549000
6	-3.044100000	0.282539000	1.461381000
1	-2.140947000	0.207402000	2.057356000
6	-0.228230000	-3.120607000	1.115472000
6	0.860859000	-3.192538000	0.166451000
6	0.311135000	-3.187844000	-1.156379000
6	-1.108838000	-3.014018000	-1.033907000
6	-1.443162000	-3.011488000	0.375491000
6	0.282936000	3.123280000	1.120662000
6	1.412242000	2.986305000	0.228132000

6	0.938910000	3.070432000	-1.121262000
6	-0.494346000	3.158313000	-1.071390000
6	-0.892357000	3.227929000	0.318690000
6	2.300473000	-3.418272000	0.505454000
1	2.560808000	-2.986908000	1.475553000
1	2.505628000	-4.495819000	0.559092000
1	2.967074000	-2.987554000	-0.246703000
6	-0.106491000	-3.305071000	2.593522000
1	-0.121314000	-4.377030000	2.834155000
1	0.826200000	-2.891958000	2.983816000
1	-0.932732000	-2.835106000	3.133286000
6	1.061336000	-3.476415000	-2.417181000
1	1.091235000	-4.562449000	-2.581445000
1	0.582395000	-3.038581000	-3.299998000
1	2.096516000	-3.124705000	-2.374629000
6	-2.092586000	-3.038752000	-2.162984000
1	-2.375971000	-4.073017000	-2.398960000
1	-3.010870000	-2.500141000	-1.911419000
1	-1.680109000	-2.598572000	-3.076961000
6	-2.825682000	-3.071140000	0.940631000
1	-3.547561000	-2.521540000	0.332018000
1	-3.156176000	-4.117971000	0.983028000
1	-2.871297000	-2.668287000	1.955000000
6	-1.398931000	3.353259000	-2.248675000
1	-1.478920000	4.419740000	-2.497583000
1	-1.025957000	2.838302000	-3.140036000
1	-2.410946000	2.990490000	-2.046573000
6	1.789635000	3.214837000	-2.342455000
1	2.007262000	4.278970000	-2.508389000
1	2.747152000	2.694837000	-2.247579000
1	1.288604000	2.853588000	-3.248056000
6	-2.267905000	3.540363000	0.813465000
1	-2.441074000	3.149107000	1.818608000
1	-2.400012000	4.630192000	0.852393000
1	-3.046682000	3.137286000	0.161682000
6	0.358225000	3.298678000	2.603190000
1	0.533486000	4.356788000	2.841573000
1	-0.571277000	3.000911000	3.095758000
1	1.172581000	2.721186000	3.046217000

6	2.849744000	2.941672000	0.640362000
1	3.252409000	3.961663000	0.699371000
1	2.974779000	2.481637000	1.623959000
1	3.459554000	2.381961000	-0.074478000
1	-4.032204000	0.355548000	-1.795140000
1	-6.242563000	0.548999000	-0.710855000
1	-6.421881000	0.573170000	1.771585000
1	-4.361578000	0.401775000	3.152107000
1	-1.863120000	0.169661000	-1.589624000
1	2.200180000	-0.202321000	0.231238000
1	-0.293365000	0.052680000	2.917108000
1	0.396422000	-0.017577000	5.301824000
1	2.797396000	-0.266107000	5.896612000
1	4.500066000	-0.442454000	4.089686000
1	3.805760000	-0.371828000	1.715979000

Cartesian coordinates for [Cp*Ru(µ-NHPh)]₂ (1)

7	1.286382000	-0.105638000	-0.922704000
6	2.684914000	-0.209642000	-0.839387000
6	3.312235000	-0.308552000	0.412451000
6	4.697223000	-0.407083000	0.510237000
6	5.494852000	-0.410874000	-0.636314000
6	4.880805000	-0.315397000	-1.884500000
6	3.494712000	-0.215758000	-1.986838000
6	0.323469000	3.612938000	-0.540385000
6	1.459833000	3.201615000	0.253060000
6	0.950400000	2.677481000	1.479996000
6	0.499278000	-2.818062000	1.472403000
6	0.882050000	-3.424225000	0.237856000
6	-0.323270000	-3.613109000	-0.539169000
6	-0.881940000	3.424429000	0.236597000
6	-0.499343000	2.818780000	1.471441000
6	-0.950486000	-2.676871000	1.480760000
6	-1.459749000	-3.201569000	0.253989000
7	-1.286469000	0.105455000	-0.922677000
6	-2.684997000	0.209317000	-0.839145000
6	-3.312103000	0.308878000	0.412748000
6	-4.697085000	0.407254000	0.510741000
6	-5.494938000	0.410224000	-0.635658000

6	-4.881112000	0.314094000	-1.883902000
6	-3.495021000	0.214616000	-1.986440000
6	0.394148000	4.248202000	-1.892874000
1	0.501688000	5.339145000	-1.804426000
1	1.249878000	3.877567000	-2.465746000
1	-0.510554000	4.051511000	-2.476623000
6	-2.263765000	3.837952000	-0.161171000
1	-3.018806000	3.150128000	0.230889000
1	-2.494988000	4.845522000	0.213020000
1	-2.381149000	3.857583000	-1.249255000
6	-1.393863000	2.539052000	2.636780000
1	-1.358562000	3.370236000	3.356152000
1	-2.434494000	2.418910000	2.324125000
1	-1.093580000	1.631832000	3.171558000
6	1.751429000	2.210996000	2.653022000
1	2.759990000	1.908891000	2.358516000
1	1.848870000	3.013133000	3.398931000
1	1.274923000	1.358055000	3.147198000
6	2.897387000	3.336490000	-0.136821000
1	3.294031000	4.320173000	0.152268000
1	3.516619000	2.569173000	0.336214000
1	3.029353000	3.230285000	-1.218188000
6	2.263921000	-3.837869000	-0.159608000
1	3.018923000	-3.149931000	0.232327000
1	2.495096000	-4.845326000	0.214919000
1	2.381435000	-3.857830000	-1.247672000
6	-0.393788000	-4.248850000	-1.891438000
1	-0.501331000	-5.339765000	-1.802627000
1	-1.249464000	-3.878421000	-2.464528000
1	0.510979000	-4.052351000	-2.475150000
6	-2.897231000	-3.336747000	-0.136035000
1	-3.293539000	-4.320709000	0.152570000
1	-3.516748000	-2.569893000	0.337355000
1	-3.029195000	-3.230074000	-1.217358000
6	-1.751629000	-2.210101000	2.653610000
1	-2.760102000	-1.907880000	2.358936000
1	-1.849272000	-3.012118000	3.399619000
1	-1.275058000	-1.357151000	3.147715000
6	1.393653000	-2.537681000	2.637699000

1	1.358147000	-3.368382000	3.357620000
1	2.434344000	-2.417863000	2.325121000
1	1.093369000	-1.630073000	3.171807000
1	5.158999000	-0.482925000	1.492590000
1	6.575813000	-0.487437000	-0.557111000
1	5.483325000	-0.317405000	-2.790087000
1	2.685016000	-0.309382000	1.298166000
1	3.029017000	-0.140611000	-2.969027000
1	1.035979000	-0.078776000	-1.916742000
1	-1.036267000	0.078252000	-1.916751000
1	-3.029502000	0.138944000	-2.968673000
1	-5.483802000	0.315458000	-2.789378000
1	-6.575896000	0.486664000	-0.556290000
1	-5.158686000	0.483610000	1.493136000
1	-2.684721000	0.310295000	1.298339000
44	-0.123542000	-1.518182000	-0.160573000
44	0.123555000	1.518197000	-0.160973000

Cartesian coordinates for [Cp*Ru(µ-NHPh)]₂ (1')

44	1.229774000	0.016577000	-0.410033000
44	-1.217552000	-0.014238000	-0.444488000
7	0.027925000	-1.661056000	-0.368889000
7	-0.014294000	1.664330000	-0.369025000
6	0.028586000	-2.631961000	0.660989000
6	0.119380000	-3.995750000	0.345945000
6	0.117638000	-4.961494000	1.352234000
6	0.023153000	-4.582907000	2.689537000
6	-0.068219000	-3.224728000	3.008596000
6	-0.064644000	-2.258366000	2.009144000
6	-0.039486000	2.635819000	0.660110000
6	-0.001714000	4.001715000	0.342909000
6	-0.030411000	4.968340000	1.347690000
6	-0.099097000	4.588800000	2.686344000
6	-0.137511000	3.228702000	3.007814000
6	-0.107470000	2.261342000	2.009479000
6	3.040119000	0.102363000	-1.817566000
6	3.074433000	-1.089530000	-1.026194000
6	3.219249000	-0.726534000	0.371419000
6	3.222926000	0.695474000	0.449106000

6	3.070604000	1.201820000	-0.899247000
6	3.037558000	0.186011000	-3.311144000
6	3.109437000	-2.487726000	-1.562241000
6	3.457409000	-1.678193000	1.501373000
6	3.467114000	1.520563000	1.673057000
6	3.100418000	2.649357000	-1.282381000
6	-2.956452000	0.682516000	-1.655404000
6	-3.170724000	1.104468000	-0.285624000
6	-3.331208000	-0.051913000	0.540768000
6	-3.137668000	-1.192006000	-0.301530000
6	-2.936162000	-0.746407000	-1.665193000
6	-2.889047000	1.578089000	-2.853010000
6	-3.374706000	2.517984000	0.163993000
6	-3.702803000	-0.068572000	1.989268000
6	-3.298034000	-2.616737000	0.129562000
6	-2.841643000	-1.624140000	-2.874041000
1	-3.837624000	-1.867730000	-3.272211000
1	-2.273343000	-1.140817000	-3.675256000
1	-2.347076000	-2.574492000	-2.645984000
1	-2.307343000	1.122348000	-3.660770000
1	-2.423277000	2.540147000	-2.613652000
1	-3.892295000	1.796443000	-3.247481000
1	-4.442935000	2.775717000	0.139582000
1	-2.851226000	3.231845000	-0.478199000
1	-3.015770000	2.678550000	1.184934000
1	-4.794692000	-0.110135000	2.121804000
1	-3.345852000	0.828399000	2.504942000
1	-3.278433000	-0.937313000	2.502565000
1	-2.741741000	-3.305099000	-0.513153000
1	-4.356287000	-2.911020000	0.088333000
1	-2.947122000	-2.775518000	1.153448000
1	4.061515000	0.230588000	-3.712284000
1	2.509711000	1.077861000	-3.663748000
1	2.546786000	-0.682172000	-3.762057000
1	2.569812000	2.829306000	-2.224019000
1	4.134387000	2.995035000	-1.421211000
1	2.643677000	3.281042000	-0.514463000
1	2.901795000	2.456858000	1.653697000
1	4.532342000	1.778925000	1.768277000

1	3.175827000	0.984038000	2.581380000
1	4.528049000	-1.910336000	1.600812000
1	2.927046000	-2.623898000	1.356770000
1	3.118633000	-1.260945000	2.454440000
1	2.673337000	-3.202203000	-0.856800000
1	4.142976000	-2.807744000	-1.755077000
1	2.562083000	-2.571287000	-2.507955000
1	0.047683000	4.307186000	-0.701391000
1	-0.000950000	6.021433000	1.078279000
1	-0.122029000	5.340378000	3.470880000
1	-0.190066000	2.919318000	4.049175000
1	-0.135875000	1.200200000	2.239192000
1	0.187144000	-4.300517000	-0.697562000
1	0.187652000	-6.013210000	1.084958000
1	0.020621000	-5.333836000	3.475024000
1	-0.141546000	-2.916395000	4.049027000
1	-0.133745000	-1.198612000	2.236301000
1	0.062483000	-2.135211000	-1.270182000
1	0.006323000	2.138642000	-1.270582000

References

- (1) S. Takemoto, Y. Yamazaki, T. Yamano, D. Mashima and H. Matsuzaka, *J. Am. Chem. Soc.* 2012, **134**, 17027.
- (2) PROCESS AUTO, Automatic Data Acquisition and Processing Package for Imaging Plate Diffractometer; Rigaku Corporation: Tokyo, Japan, 1998.
- (3) T. Higashi, *ABSCOR, Empirical Absorption Correction Based on Fourier Series Approximation*; Rigaku Corporation: Tokyo, Japan, 1995.
- G. M. Sheldrick, SHELX97, Program for Crystal Structure Determination; University of Göttingen: Göttingen, Germany, 1997.
- (5) (a) A. D. Becke, J. Chem. Pys., 1993, 98, 5648. (b) J. P. Perdew, Y. Wang, Phys. Rev. 1992, B45, 13244.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision C.01; Gaussian, Inc., Walling-ford CT, 2010.
- D. Andrae, U. Haussermann, M. Dolg, H. Stoll, H. Preuss, *Theor. Chim. Acta*, 1990, 77, 123
- (8) P. C. Harihara, J. A. Pople, *Theor. Chim. Acta*, 1973, 28, 213
- NBO 6.0. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann,
 C. M. Morales, C. R. Landis, F. Weinhold, Theoretical Chemistry Institute, University of Wisconsin, Madison, 2013.
- (10) www.chemcraftprog.com