Supporting Information for

Cu-catalyzed *O*-alkylation of phenol derivatives with alkylsilyl peroxides

Shunya Sakurai,[†] Taichi Kano,[†] and Keiji Maruoka*,^{†,‡,§}

E-mail: maruoka.keiji.4w@kyoto-u.ac.jp

[†] Department of Chemistry, Graduate School of Science, Kyoto University Sakyo, Kyoto 606-8502, Japan

[‡] Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo, Kyoto 606-8501, Japan

§ School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006, China

Table of Contents

1. General Information	S2
2. Synthesis of Alkylsilyl Peroxide (ASP) 1a	S2
3. Further Ligand Screening	S 3
4. General Procedure for Cu-Catalyzed O-Alkylation of Phenol Derivatives	S4
with Alkylsilyl Peroxides (ASPs) and Spectral Data of Products 3 and 4	
5. A Control Experiment using Tetrachloromethane	S13
6. Enantioselective Synthesis of 4d	S14
7. References	S15
8. ¹ H NMR and ¹³ C NMR Spectra	S16

1. General Information

¹H NMR spectra were measured on JEOL JNM-ECA500 (500 MHz) spectrometer. Data were reported as follows: chemical shifts in ppm from tetramethylsilane as an internal standard in CDCl₃, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet-doublet, dt = doublet-triplet, dq = doublet-quartet, td = triplet-doublet, ddd = doublet-doublet, m = multiplet, br = broad, app = apparent), coupling constants (Hz), and assignment.¹³C NMR spectra were measured on JEOL JNM-ECA500 (125 MHz) spectrometer with complete proton decoupling. Chemical shifts were reported in ppm from the residual solvent as an internal standard. High-resolution mass spectra (HRMS) were performed on Thermo Exactive plus (ESI) spectrometer. High performance liquid chromatography (HPLC) was performed on Shimadzu 20A instruments using Daicel CHIRALPAK IC-3 (4.6 mm × 25 cm) column. Optical rotation was measured on a JASCO DIP-1000 digital polarimeter. For thin layer chromatography (TLC) analysis throughout this work, Merck precoated TLC plates (Merck, TLC Silica gel 60 F₂₅₄) were used. The products were purified by flash column chromatography on silica gel (Kanto Chemical, Silica gel 60 N, spherical, neutral, 40-50 µm or FUJIFILM Wako, Wakosil[®], 60, spherical, 64-210 µm). Commercially available reagents and solvents were purchased from CHEM-IMPEX INT'L INC., FUJIFILM Wako, Oakwood Chemical, Sigma-Aldrich and TCI, and used as received. Alkylsilyl peroxides (ASPs) were prepared according to the literate procedures.¹ All reactions were performed under N₂ atmosphere, and NMR yields were determined by ¹H NMR spectroscopy using 1,3,5trimethoxybenzene as an internal standard.

2. Synthesis of Alkylsilyl Peroxide (ASP) 1a

This procedure is a slightly modified version from the author's previously reported one.¹

[Step 1]

To flame-dried Mg turnings (1.44 g, 60 mmol, 1.2 equiv) in anhydrous THF (100 mL) was added PhBr (6.3 mL, 60 mmol, 1.2 equiv) carefully under N₂ atmosphere. After being refluxed for 1 h, the obtained PhMgBr/THF solution was cooled down to 0 $^{\circ}$ C and then cyclopentanone (4.4 mL, 50 mmol, 1.0 equiv) was added dropwisely. After being

stirred at room temperature for 1.5 h, the reaction mixture was quenched with sat. NH_4Cl aq. at 0 °C and extracted with a solution of hexane / EtOAc (4 / 1) three times. The combined organic layer was dried over Na_2SO_4 and concentrated. The crude product **S1** was used for the next step without further purification.

[Step 2]

To **S1** in a flask was added a solution of $H_2SO_4 / 30\% H_2O_2$ aq. (1.5 mL / 50 mL) slowly. After being stirred vigorously at room temperature for 20 h, the reaction mixture was diluted with H_2O (100 mL) and then extracted with CH_2Cl_2 three times. The combined organic layer was dried over Na_2SO_4 and concentrated. The residue was purified by flash column chromatography on silica gel (hexane / $CH_2Cl_2 = 1 / 1$) to afford hydroperoxide **S2** as a pale-yellow oil (5.85 g, 66% over 2 steps). Spectral data of **S2** matched those previously reported in the literature.^{1b}

[Step 3]

To a solution of **S2** (5.85 g, 33 mmol, 1.0 equiv) and 1,4-diazabicyclo[2.2.2]octane (DABCO, 4.8 g, 43 mmol, 1.3 equiv) in anhydrous CH_2Cl_2 (100 mL) was added Me_3SiCl (5.4 mL, 43 mmol, 1.3 equiv) dropwisely at 0 °C under argon atmosphere. After being stirred at room temperature for 3 h, the reaction mixture was diluted with hexane (80 mL) and passed through a celite pad to remove white precipitates, eluting with hexane. The obtained filtrate was concentrated and purified by flash column chromatography on silica gel (hexane / EtOAc = 20 / 1) to afford trimethyl((1-phenylcyclopentyl)peroxy)silane (1a) as a colorless oil (6.15 g, 77% [49% in total]). Spectral data of 1a matched those previously reported in the literature.¹

3. Further Ligand Screening

4. General Procedures for Cu-Catalyzed *O*-Alkylation of Phenol Derivatives with Alkylsilyl Peroxides (ASPs) and Spectral Data of Products 3 and 4

To the solution of a phenol derivative (0.2 mmol, 1.0 equiv), $Cu(MeCN)_4BF_4$ (6.2 mg, 0.02 mmol, 10 mol%) and a ligand (L1; 5.8 mg, 0.02 mmol, 10 mol% or L2; 4.2 mg, 0.02 mmol, 10 mol%) in MeCN (2.0 mL) was added ASP (0.5 mmol, 2.5 equiv) at room temperature under N₂ atmosphere. After being stirred at same temperature for 1 h, the reaction mixture was diluted with a solution of hexane / EtOAc (2 / 1, 3 mL) and then passed through a short silica gel / Na₂SO₄ plug eluting with a solution of hexane / EtOAc (2 / 1). The obtained solution was concentrated and the residue was purified by flash column chromatography on silica gel (hexane / EtOAc = 10 / 1) or washed with hexane to afford the following products **3** or **4**.

5-(4-(*Tert*-butyl)phenoxy)-1-phenylpentan-1-one (3a)

L2 was used for the reaction. Colorless oil, 52.8 mg, 85% yield.

¹**H NMR (500 MHz, CDCl₃)** δ 7.97 (2H, app d, *J* = 7.1 Hz), 7.56 (1H, app t, *J* = 7.4 Hz), 7.46 (2H, app t, *J* = 7.9 Hz), 7.29 (2H, d, *J* = 8.8 Hz), 6.82 (2H, d, *J* = 8.8 Hz), 4.00 (2H, t, *J* = 6.1 Hz), 3.06 (2H, t, *J* = 6.9 Hz), 1.97-1.85 (4H, m), 1.30 (9H, s).

¹³C NMR (125 MHz, CDCl₃) δ 200.2, 156.8, 143.4, 137.1, 133.1, 128.7, 128.2, 126.3, 114.0, 67.7, 38.2, 34.2, 31.7, 29.0, 21.1.

HRMS (ESI) Calcd. For C₂₁H₂₇O₂: 311.2006 ([M + H]⁺), Found: 311.2010 ([M + H]⁺).

5-(4-Ethylphenoxy)-1-phenylpentan-1-one (3b)

L2 was used for the reaction. White solid, 52.0 mg, 92% yield.

¹**H NMR (500 MHz, CDCl₃)** δ 7.97 (2H, app dt, *J* = 8.2, 1.6 Hz), 7.58-7.54 (1H, m), 7.48-7.45 (2H, m), 7.10 (2H, d, *J* = 8.8 Hz), 6.81 (2H, d, *J* = 8.8 Hz), 3.99 (2H, t, *J* = 6.1 Hz), 3.06 (2H, t, *J* = 7.1 Hz), 2.58 (2H, q, *J* = 7.7 Hz), 1.97-1.85 (4H, m), 1.21 (3H, t, *J* = 7.7 Hz).

¹³C NMR (125 MHz, CDCl₃) δ 200.2, 157.1, 137.1, 136.4, 133.1, 128.8, 128.7, 128.1, 114.5, 67.7, 38.2, 29.0, 28.1, 21.1, 16.0.

HRMS (ESI) Calcd. For C₁₉H₂₃O₂: 283.1693 ([M + H]⁺), Found: 283.1693 ([M + H]⁺).

5-(4-Fluorophenoxy)-1-phenylpentan-1-one (3c)

L2 was used for the reaction. White solid, 37.6 mg, 69% yield.

¹**H NMR (500 MHz, CDCl₃)** δ 7.96 (2H, app d, *J* = 7.1 Hz), 7.56 (1H, app t, *J* = 7.1 Hz), 7.46 (2H, app t, *J* = 7.8 Hz), 6.95 (2H, app t, *J* = 8.4 Hz), 6.82-6.80 (2H, m), 3.97 (2H, t, *J* = 6.0 Hz), 3.06 (2H, t, *J* = 6.9 Hz), 1.96-1.86 (4H, m).

¹³C NMR (125 MHz, CDCl₃, C–F coupling) δ 200.1, 157.3 (d, J_{C-F} = 237.2 Hz), 155.2, 137.1, 133.1, 128.7, 128.2, 115.9 (d, J_{C-F} = 23.8 Hz), 115.5 (d, J_{C-F} = 8.3 Hz), 68.4, 38.2, 29.0, 21.0. (One C–F coupling was not observed.) HRMS (ESI) Calcd. For C₁₇H₁₈O₂F: 273.1285 ([M + H]⁺), Found: 273.1289 ([M + H]⁺).

5-(4-Chlorophenoxy)-1-phenylpentan-1-one (3d)

L2 was used for the reaction. White solid, 34.7 mg, 60% yield.

¹**H** NMR (500 MHz, CDCl₃) δ 7.97-7.95 (2H, m), 7.58-7.55 (1H, m), 7.48-7.45 (2H, m), 7.21 (2H, d, J = 9.1 Hz), 6.80 (2H, d, J = 9.1 Hz), 3.98 (2H, t, J = 6.1 Hz), 3.06 (2H, t, J = 7.1 Hz), 1.97-1.85 (4H, m).

¹³C NMR (125 MHz, CDCl₃) δ 200.1, 157.7, 137.1, 133.2, 129.4, 128.7, 128.1, 125.5, 115.9, 68.0, 38.2, 28.9, 20.9. HRMS (ESI) Calcd. For C₁₇H₁₈O₂Cl: 289.0990 ([M + H]⁺), Found: 289.0986 ([M + H]⁺).

5-(4-Bromophenoxy)-1-phenylpentan-1-one (3e)

L1 was used for the reaction. White solid, 62 mg, 93% yield.

¹H NMR (500 MHz, CDCl₃) δ 7.96 (2H, app d, J = 8.2 Hz), 7.58-7.55 (1H, m), 7.46 (2H, app t, J = 7.8 Hz), 7.35 (2H, d, J = 8.2 Hz), 6.76 (2H, d, J = 8.2 Hz), 3.97 (2H, t, J = 6.0 Hz), 3.06 (2H, t, J = 6.8 Hz), 1.96-1.86 (4H, m).
¹³C NMR (125 MHz, CDCl₃) δ 200.1, 158.2, 137.1, 133.2, 132.4, 128.8, 128.2, 116.4, 112.8, 68.0, 38.2, 28.8, 21.0.
HRMS (ESI) Calcd. For C₁₇H₁₇O₂BrNa: 355.0304 ([M + Na]⁺), Found: 355.0303 ([M + Na]⁺).

5-(4-Iodophenoxy)-1-phenylpentan-1-one (3f)

L1 was used for the reaction. White solid, 70 mg, 92% yield.

¹**H NMR (500 MHz, CDCl₃)** *δ* 7.96 (2H, app dd, *J* = 8.4, 1.3 Hz), 7.58-7.53 (3H, m), 7.46 (2H, app t, *J* = 7.7 Hz), 6.66 (2H, d, *J* = 8.8 Hz), 3.97 (2H, t, *J* = 6.1 Hz), 3.06 (2H, t, *J* = 7.1 Hz), 1.96-1.86 (4H, m).

¹³C NMR (125 MHz, CDCl₃) δ 200.0, 159.0, 138.3, 137.1, 133.2, 128.8, 128.2, 117.0, 82.7, 67.9, 38.2, 28.8, 21.0. HRMS (ESI) Calcd. For C₁₇H₁₇O₂INa: 403.0165 ([M + Na]⁺), Found: 403.0160 ([M + Na]⁺).

5-(4-Acetylphenoxy)-1-phenylpentan-1-one (3g)

L1 was used for the reaction. The crude mixture was washed with hexane to afford pure 3g. White solid, 48.0 mg, 81% yield.

¹**H NMR (500 MHz, CDCl₃)** *δ* 7.96 (2H, app dd, *J* = 8.2, 1.1 Hz), 7.92 (2H, d, *J* = 9.1 Hz), 7.58-7.55 (1H, m), 7.47 (2H, app t, *J* = 7.7 Hz), 6.91 (2H, d, *J* = 9.1 Hz), 4.08 (2H, t, *J* = 6.0 Hz), 3.07 (2H, t, *J* = 6.8 Hz), 2.55 (3H, s), 1.98-1.88 (4H, m).

¹³C NMR (125 MHz, CDCl₃) δ 199.9, 196.9, 163.0, 137.0, 133.2, 130.7, 130.3, 128.7, 128.1, 114.2, 68.0, 38.1, 28.7, 26.4, 20.9.

HRMS (ESI) Calcd. For C₁₉H₂₀O₃Na: 319.1305 ([M + Na]⁺), Found: 319.1304 ([M + Na]⁺).

Methyl 4-((5-Oxo-5-phenylpentyl)oxy)benzoate (3h)

L1 was used for the reaction. The crude mixture was washed with hexane to afford pure 3h. White solid, 53.1 mg, 85% yield.

¹**H NMR (500 MHz, CDCl₃)** δ 7.99-7.95 (4H, m), 7.58-7.55 (1H, m), 7.48-7.45 (2H, m), 6.89 (2H, d, *J* = 8.8 Hz), 4.07 (2H, t, *J* = 6.1 Hz), 3.88 (3H, s), 3.07 (2H, t, *J* = 6.9 Hz), 1.99-1.88 (4H, m).

¹³C NMR (125 MHz, CDCl₃) δ 199.9, 167.0, 162.9, 137.0, 133.2, 131.7, 128.7, 128.1, 122.6, 114.1, 67.9, 51.9, 38.1, 28.8, 20.9.

HRMS (ESI) Calcd. For $C_{19}H_{20}O_4Na$: 335.1254 ($[M + Na]^+$), Found: 335.1251 ($[M + Na]^+$).

N-Methoxy-N-methyl-4-((5-oxo-5-phenylpentyl)oxy)benzamide (3i)

L1 was used for the reaction. The crude mixture was purified by flash column chromatography on silica gel (hexane / EtOAc = 2 / 1 to 1 / 1, gradient) to afford pure **3i**. White solid, 64.9 mg, 83% yield.

¹**H NMR (500 MHz, CDCl₃)** *δ* 7.97 (2H, app dd, *J* = 8.2, 1.1 Hz), 7.71 (2H, d, *J* = 9.1 Hz), 7.57 (1H, app t, *J* = 7.4 Hz), 7.47 (2H, app t, *J* = 7.8 Hz), 6.88 (2H, d, *J* = 9.1 Hz), 4.05 (2H, t, *J* = 6.0 Hz), 3.56 (3H, s), 3.35 (3H, s), 3.07 (2H, t, *J* = 6.9 Hz), 1.98-1.87 (4H, m).

¹³C NMR (125 MHz, CDCl₃) δ 200.0, 169.5, 161.0, 137.0, 133.1, 130.6, 128.7, 128.1, 125.9, 113.8, 67.8, 61.0, 38.1, 34.0, 28.8, 20.9.

HRMS (ESI) Calcd. For $C_{20}H_{23}O_4NNa$: 364.1519 ([M + Na]⁺), Found: 364.1521 ([M + Na]⁺).

5-(4-Methoxyphenoxy)-1-phenylpentan-1-one (3j)

L2 was used for the reaction. White solid, 17.1 mg, 30% yield.

¹**H NMR (500 MHz, CDCl₃)** δ 7.97-7.96 (2H, m), 7.58-7.54 (1H, m), 7.48-7.45 (2H, m), 6.82 (4H, s), 3.96 (2H, t, J = 6.2 Hz), 3.77 (3H, s), 3.06 (2H, t, J = 7.2 Hz), 1.97-1.83 (4H, m).

¹³C NMR (125 MHz, CDCl₃) δ 200.2, 153.9, 153.3, 137.1, 133.1, 128.7, 128.2, 115.6, 114.8, 68.4, 55.9, 38.3, 29.1, 21.1.

HRMS (ESI) Calcd. For C₁₈H₂₀O₃Na: 307.1305 ([M + Na]⁺), Found: 307.1308 ([M + Na]⁺).

Methyl 3-((5-Oxo-5-phenylpentyl)oxy)benzoate (3k)

L1 was used for the reaction. The crude mixture was purified by flash column chromatography on silica gel (hexane / EtOAc = 8 / 1) to afford pure **3k**. White solid, 60.0 mg, 96% yield.

¹**H NMR (500 MHz, CDCl₃)** δ 7.97-7.96 (2H, m), 7.62 (1H, app dt, *J* = 7.7, 1.1 Hz), 7.58-7.54 (2H, m), 7.48-7.45 (2H, m), 7.33 (1H, app t, *J* = 8.1 Hz), 7.08 (1H, app dq, *J* = 8.2, 1.1 Hz), 4.06 (2H, t, *J* = 6.0 Hz), 3.91 (3H, s), 3.07 (2H, t, *J* = 6.9 Hz), 1.99-1.87 (4H, m).

¹³C NMR (125 MHz, CDCl₃) δ 200.0, 167.1, 159.0, 137.0, 133.1, 131.5, 129.5, 128.7, 128.1, 122.0, 120.0, 114.7, 67.9, 52.2, 38.1, 28.8, 20.9.

HRMS (ESI) Calcd. For C₁₉H₂₀O₄Na: 335.1254 ([M + Na]⁺), Found: 335.1254 ([M + Na]⁺).

N-(3-((5-Oxo-5-phenylpentyl)oxy)phenyl)benzamide (3l)

L1 was used for the reaction. The crude mixture was purified by flash column chromatography on silica gel (hexane / EtOAc = 4 / 1 to 2 / 1, gradient) to afford pure 3l. White solid, 57.5 mg, 77% yield.

¹**H NMR (500 MHz, CDCl₃)** δ 7.98-7.96 (2H, m), 7.88-7.86 (2H, m), 7.78 (1H, br s), 7.58-7.54 (2H, m), 7.52-7.41 (5H, m), 7.25 (2H, app t, *J* = 8.2 Hz), 7.09 (1H, app d, *J* = 6.8 Hz), 6.69 (1H, app dd, *J* = 7.8, 2.1 Hz), 4.06 (2H, t, *J* = 6.0 Hz), 3.08 (2H, t, *J* = 6.9 Hz), 1.98-1.89 (4H, m).

¹³C NMR (125 MHz, CDCl₃) δ 200.3, 166.0, 159.6, 139.3, 137.0, 135.1, 133.1, 131.9, 129.8, 128.8, 128.7, 128.2, 127.2, 112.4, 111.2, 106.5, 67.7, 38.2, 28.8, 21.0.

HRMS (ESI) Calcd. For $C_{24}H_{23}O_3NNa$: 396.1570 ([M + Na]⁺), Found: 396.1570 ([M + Na]⁺).

5-(3-Methoxyphenoxy)-1-phenylpentan-1-one (3m)

3m Ph OMe

L2 was used for the reaction. Colorless oil, 39.8 mg, 70% yield.

¹**H NMR (500 MHz, CDCl₃)** *δ* 7.98-7.96 (2H, m), 7.58-7.54 (1H, m), 7.48-7.45 (2H, m), 7.17 (1H, app t, *J* = 8.2 Hz), 6.49 (2H, app ddd, *J* = 8.2, 3.6, 2.5 Hz), 6.45 (1H, app t, *J* = 2.4 Hz), 4.00 (2H, t, *J* = 6.1 Hz), 3.78 (3H, s), 3.06 (2H, t, *J* = 7.1 Hz), 1.98-1.85 (4H, m).

¹³C NMR (125 MHz, CDCl₃) δ 200.1, 160.9, 160.3, 137.1, 133.1, 130.0, 128.7, 128.2, 106.7, 106.4, 101.0, 67.7, 55.4, 38.2, 28.9, 21.0.

HRMS (ESI) Calcd. For C₁₈H₂₀O₃Na: 307.1305 ([M + Na]⁺), Found: 307.1309 ([M + Na]⁺).

5-(3,5-Bis(trifluoromethyl)phenoxy)-1-phenylpentan-1-one (3n)

L1 was used for the reaction. Colorless oil, 25.8 mg, 33% yield.

¹**H NMR (500 MHz, CDCl₃)** δ 7.97-7.96 (2H, m), 7.57 (1H, app t, *J* = 7.4 Hz), 7.47 (2H, app t, *J* = 7.8 Hz), 7.44 (1H, s), 7.26 (2H, s), 4.09 (2H, t, *J* = 5.8 Hz), 3.09 (2H, t, *J* = 6.7 Hz), 2.00-1.92 (4H, m).

¹³C NMR (125 MHz, CDCl₃, C–F coupling) δ 199.8, 159.6, 137.0, 133.3, 132.9 (q, $J_{C-F} = 33.4$ Hz), 128.8, 128.1, 123.3 (q, $J_{C-F} = 273.0$ Hz), 114.9, 114.3, 68.7, 38.0, 28.6, 20.8.

HRMS (ESI) Calcd. For C₁₉H₁₆O₂F₆Na: 391.1127 ([M + Na]⁺), Found: 391.1125 ([M + Na]⁺).

1-Phenyl-5-(o-tolyloxy)pentan-1-one (3o)

L2 was used for the reaction. Colorless oil, 29.5 mg, 55% yield.

¹**H** NMR (500 MHz, CDCl₃) δ 7.98-7.95 (2H, m), 7.58-7.54 (1H, m), 7.48-7.45 (2H, m), 7.16-7.12 (2H, m), 6.84 (1H, app td, J = 7.4, 0.9 Hz), 6.81 (1H, app d, J = 7.9 Hz), 4.02 (2H, t, J = 6.0 Hz), 3.08 (2H, t, J = 7.1 Hz), 2.21 (3H, s), 2.00-1.88 (4H, m).

¹³C NMR (125 MHz, CDCl₃) δ 200.2, 157.2, 137.1, 133.1, 130.7, 128.7, 128.2, 126.9, 126.9, 120.3, 110.9, 67.6, 38.3, 29.1, 21.2, 16.4.

HRMS (ESI) Calcd. For C₁₈H₂₀O₂Na: 291.1356 ([M + Na]⁺), Found: 291.1359 ([M + Na]⁺).

5-Phenoxy-1-phenylpentan-1-one (3p)

L2 was used for the reaction. The reaction was performed in 6.0 mmol scale (Phenol; 564.7 mg, 6.0 mmol, ASP 1a; 3.76 g, 15 mmol, Cu(MeCN)₄BF₄; 188.7 mg, 0.6 mmol, L2; 125.6 mg, 0.6 mmol, MeCN; 40 mL [0.15 M]). After

the reaction mixture was stirred for 1 h under N₂ atmosphere, the solvent was evaporated and then H₂O was poured into the residue. The aqueous layer was extracted with a solution of hexane / EtOAc (3 / 1). The obtained organic layer was concentrated and the residue was purified by flash column chromatography on silica gel (hexane / EtOAc = 20 / 1 to 15 / 1, gradient) to afford the desired product **3p**. White solid, 1.39 g, 91% yield.

¹H NMR (500 MHz, CDCl₃) δ 7.97-7.96 (2H, m), 7.58-7.55 (1H, m), 7.48-7.45 (2H, m), 7.29-7.27 (2H, m), 6.93 (1H, app td, J = 7.4, 1.1 Hz), 6.89-6.88 (2H, m), 4.01 (2H, t, J = 5.7 Hz), 3.07 (2H, t, J = 6.7 Hz), 1.98-1.86 (4H, m). ¹³C NMR (125 MHz, CDCl₃) δ 200.2, 159.1, 137.1, 133.1, 129.6, 128.7, 128.2, 120.7, 114.6, 67.6, 38.2, 29.0, 21.1. HRMS (ESI) Calcd. For C₁₇H₁₈O₂Na: 277.1199 ([M + Na]⁺), Found: 277.1203 ([M + Na]⁺).

(8*R*,9*S*,13*S*,14*S*)-13-Methyl-3-((5-oxo-5-phenylpentyl)oxy)-6,7,8,9,11,12,13,14,15,16-decahydro-17*H*-cyclopenta[*a*]phenanthren-17-one (3q)

L2 was used for the reaction. The crude mixture was purified by flash column chromatography on silica gel (hexane / EtOAc = 8 / 1) to afford pure **3q**. White solid, 62.9 mg, 73% yield.

¹**H NMR (500 MHz, CDCl₃)** δ 7.97-7.96 (2H, m), 7.58-7.55 (1H, m), 7.48-7.45 (2H, m), 7.19 (1H, app d, J = 8.8 Hz), 6.70 (1H, app dd, J = 8.5, 2.8 Hz), 6.63 (1H, app d, J = 2.8 Hz), 3.99 (2H, t, J = 6.1 Hz), 3.06 (2H, t, J = 7.1 Hz), 2.89 (2H, dd, J = 9.8, 6.9 Hz), 2.50 (1H, dd, J = 18.8, 8.6 Hz), 2.42-2.37 (1H, m), 2.27-2.22 (1H, m), 2.18-2.10 (1H, m), 2.08-1.98 (2H, m), 1.96-1.85 (5H, m), 1.67-1.58 (2H, m), 1.53-1.41 (4H, m), 0.91 (3H, s).

¹³C NMR (125 MHz, CDCl₃) δ 221.1, 200.1, 157.1, 137.8, 137.1, 133.1, 132.1, 128.7, 128.1, 126.4, 114.6, 112.2, 67.6, 50.5, 48.1, 44.1, 38.5, 38.2, 36.0, 31.7, 29.8, 29.0, 26.7, 26.0, 21.7, 21.1, 14.0.

HRMS (ESI) Calcd. For C₂₉H₃₄O₃Na: 453.2400 ([M + Na]⁺), Found: 453.2401 ([M + Na]⁺).

Methyl 4-((5-Oxoheptyl)oxy)benzoate (4a)

L1 was used for the reaction and the reaction was performed at 50 °C for 3 h. The crude mixture was purified by flash column chromatography on silica gel (hexane / EtOAc = 5 / 1) to afford pure **4a**. White solid, 37.5 mg, 71% yield.

¹**H NMR (500 MHz, CDCl₃)** *δ* 7.97 (2H, d, *J* = 8.8 Hz), 6.89 (2H, d, *J* = 9.1 Hz), 4.01 (2H, t, *J* = 6.0 Hz), 3.88 (3H, s), 2.50 (2H, t, *J* = 6.9 Hz), 2.44 (2H, q, *J* = 7.3 Hz), 1.84-1.74 (4H, m), 1.06 (3H, t, *J* = 7.2 Hz).

¹³C NMR (125 MHz, CDCl₃) δ 211.3, 167.0, 162.9, 131.7, 122.6, 114.1, 67.9, 52.0, 41.9, 36.1, 28.7, 20.5, 8.0.

 $\label{eq:HRMS} \textbf{(ESI)} \ Calcd. \ For \ C_{15}H_{20}O_4Na; \ 287.1254 \ ([M+Na]^+), \ Found: \ 287.1258 \ ([M+Na]^+).$

L1 was used for the reaction. The crude mixture was purified by flash column chromatography on silica gel (hexane / EtOAc = 5 / 1) to afford pure 4b. White solid, 41.8 mg, 64% yield.

¹**H NMR (500 MHz, CDCl₃)** δ 7.99-7.95 (4H, m), 7.56 (1H, app t, *J* = 7.4 Hz), 7.46 (2H, app t, *J* = 7.8 Hz), 6.90 (2H, d, *J* = 8.8 Hz), 4.03 (2H, t, *J* = 6.5 Hz), 3.88 (3H, s), 3.02 (2H, t, *J* = 7.4 Hz), 1.90-1.80 (4H, m), 1.61-1.58 (2H, m).

¹³C NMR (125 MHz, CDCl₃) δ 200.3, 167.0, 163.0, 137.1, 133.1, 131.7, 128.7, 128.1, 122.5, 114.2, 68.0, 52.0, 38.5, 29.1, 25.9, 24.0.

HRMS (ESI) Calcd. For $C_{20}H_{22}O_4Na$: 349.1410 ($[M + Na]^+$), Found: 349.1417 ($[M + Na]^+$).

Methyl 4-((7-Oxo-7-phenylheptyl)oxy)benzoate (4c)

L1 was used for the reaction. The crude mixture was washed with hexane to afford pure 4c. White solid, 60.6 mg, 89% yield.

¹**H NMR (500 MHz, CDCl₃)** *δ* 7.99-7.95 (4H, m), 7.57-7.54 (1H, m), 7.48-7.44 (2H, m), 6.89 (2H, d, J = 8.8 Hz), 4.01 (2H, t, *J* = 6.5 Hz), 3.88 (3H, s), 2.99 (2H, t, *J* = 7.2 Hz), 1.85-1.76 (4H, m), 1.56-1.43 (4H, m).

¹³C NMR (125 MHz, CDCl₃) δ 200.4, 167.0, 163.0, 137.1, 133.0, 131.7, 128.7, 128.1, 122.4, 114.1, 68.1, 51.9, 38.5, 29.1, 29.0, 26.0, 24.2.

HRMS (ESI) Calcd. For $C_{21}H_{24}O_4Na$: 363.1567 ($[M + Na]^+$), Found: 363.1573 ($[M + Na]^+$).

Methyl 4-((6-Oxo-6-phenylhexan-2-yl)oxy)benzoate (4d)

L1 was used for the reaction. The crude mixture was purified by flash column chromatography on silica gel (hexane / EtOAc = 5 / 1) to afford pure 4d. Colorless oil, 62.0 mg, 95% yield.

¹**H NMR (500 MHz, CDCl₃)** *δ* 7.97-7.93 (4H, m), 7.57-7.54 (1H, m), 7.47-7.44 (2H, m), 6.88 (2H, d, J = 9.1 Hz), 4.54-4.49 (1H, m), 3.88 (3H, s), 3.05-3.00 (2H, m), 1.97-1.69 (4H, m), 1.35 (3H, d, *J* = 6.0 Hz).

¹³C NMR (125 MHz, CDCl₃) δ 200.0, 166.9, 162.0, 137.0, 133.1, 131.7, 128.7, 128.1, 122.3, 115.1, 76.9, 73.8, 51.9, 38.3, 35.9, 20.2, 19.6.

HRMS (ESI) Calcd. For C₂₀H₂₂O₄Na: 349.1410 ([M + Na]⁺), Found: 349.1417 ([M + Na]⁺).

1-Bromo-4-isopropoxybenzene (4e)

L1 was used for the reaction. The crude mixture was purified by flash column chromatography on silica gel (hexane) to afford pure **4e**. Colorless oil, 40.4 mg, 94% yield.

¹**H NMR (500 MHz, CDCl₃)** δ 7.35 (2H, d, J = 9.1 Hz), 6.76 (2H, d, J = 9.1 Hz), 4.53-4.45 (1H, m), 1.32 (6H, d, J = 6.0 Hz).

¹H NMR spectrum and other spectral data matched those reported in the literature.²

Methyl 4-(Cyclohexyloxy)benzoate (4f)

L1 was used for the reaction. Colorless oil, 44.5 mg, 95% yield.

¹**H NMR (500 MHz, CDCl₃)** δ 7.96 (2H, d, J = 9.1 Hz), 6.89 (2H, d, J = 8.8 Hz), 4.36-4.31 (1H, m), 3.88 (3H, s), 2.00-1.97 (2H, m), 1.84-1.79 (2H, m), 1.56-1.51 (3H, m), 1.43-1.28 (3H, m).

¹H NMR spectrum and other spectral data matched those reported in the literature.³

Methyl 4-((Tetrahydro-2H-pyran-4-yl)oxy)benzoate (4g)

L1 was used for the reaction. The crude mixture was purified by flash column chromatography on silica gel (hexane / EtOAc = 10 / 1 to 3 / 1, gradient) to afford pure 4g. Colorless oil, 45.4 mg, 96% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.98 (2H, d, *J* = 9.1 Hz), 6.92 (2H, d, *J* = 8.8 Hz), 4.61-4.56 (1H, m), 4.01-3.96 (2H, m), 3.92-3.88 (3H, m), 3.62-3.58 (2H, m), 2.07-2.01 (2H, m), 1.84-1.78 (2H, m). ¹³C NMR (125 MHz, CDCl₃) δ 166.8, 161.2, 131.7, 122.7, 115.2, 71.6, 65.0, 51.9, 31.7. HRMS (ESI) Calcd. For C₁₃H₁₇O₄: 237.1121 ([M + H]⁺), Found: 237.1121 ([M + H]⁺).

Methyl 4-((4-Methylcyclohex-3-en-1-yl)oxy)benzoate (4h)

L1 was used for the reaction and the reaction was performed at 50 °C for 3 h. Colorless oil, 15.3 mg, 31% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.96 (2H, d, *J* = 8.8 Hz), 6.91 (2H, d, *J* = 8.8 Hz), 5.32 (1H, app t, *J* = 1.4 Hz), 4.61-4.56 (1H, m), 3.88 (3H, s), 2.47-2.44 (1H, m), 2.23-1.99 (4H, m), 1.90-1.83 (1H, m), 1.69 (3H, s). ¹³C NMR (125 MHz, CDCl₃) δ 167.0, 161.9, 134.3, 131.7, 122.4, 117.9, 115.3, 72.7, 51.9, 31.1, 28.2, 27.7, 23.4. HRMS (ESI) Calcd. For C₁₅H₁₈O₃Na: 269.1148 ([M + Na]⁺), Found: 269.1145 ([M + Na]⁺).

Methyl 4-((3-(2-Oxo-2-phenylethyl)cyclopentyl)oxy)benzoate (4i)

L1 was used for the reaction. The crude mixture was purified by flash column chromatography on silica gel (hexane / EtOAc = 5 / 1) to afford the single diastereomers A and B of **4i** (separable by flash column chromatography on silica gel).

• Diastereomer A ($R_f = 0.29$, hexane / EtOAc = 5 / 1), white solid, 31.8 mg, 47% yield.

¹**H NMR (500 MHz, CDCl₃)** *δ* 7.98-7.94 (4H, m), 7.57-7.54 (1H, m), 7.46 (2H, app t, *J* = 7.8 Hz), 6.86 (2H, d, *J* = 9.1 Hz), 4.86-4.82 (1H, m), 3.88 (3H, s), 3.18-3.09 (2H, m), 2.61-2.55 (1H, m), 2.51-2.45 (1H, m), 2.05-1.92 (3H, m), 1.54-1.50 (2H, m).

¹³C NMR (125 MHz, CDCl₃) δ 199.8, 167.0, 161.9, 137.2, 133.2, 131.7, 128.7, 128.2, 122.3, 115.1, 79.3, 52.0, 44.9, 39.5, 34.5, 32.9, 31.0.

HRMS (ESI) Calcd. For $C_{21}H_{22}O_4Na : 361.1410 ([M + Na]^+)$, Found : $361.1411 ([M + Na]^+)$.

• Diastereomer B ($R_f = 0.25$, hexane / EtOAc = 5 / 1), white solid, 30.5 mg, 45% yield.

¹**H NMR (500 MHz, CDCl₃)** δ 7.95 (4H, app dt, *J* = 7.9, 1.1 Hz), 7.58-7.55 (1H, m), 7.47 (2H, app t, *J* = 7.9 Hz), 6.85 (2H, d, *J* = 8.5 Hz), 4.86 (1H, t, *J* = 6.1 Hz), 3.87 (3H, s), 3.05 (2H, d, *J* = 7.1 Hz), 2.80-2.73 (1H, m), 2.23-2.11 (3H, m), 1.91-1.85 (1H, m), 1.62-1.58 (1H, m), 1.36-1.28 (1H, m).

¹³C NMR (125 MHz, CDCl₃) δ 199.7, 167.1, 161.9, 137.1, 133.2, 131.6, 128.7, 128.2, 122.2, 115.1, 79.0, 51.9, 44.3, 39.8, 34.2, 32.4, 31.1.

HRMS (ESI) Calcd. For $C_{21}H_{22}O_4Na$: 361.1410 ([M + Na]⁺), Found: 361.1411 ([M + Na]⁺).

5. A Control Experiment using Tetrachloromethane

When tetrachloromethane (CCl₄, 97 μ L, 5.0 equiv) was added to the reaction (0.2 mmol scale) using **1a** and methyl 4-hydroxybenzoate (**2h**), the yield of desired *O*-alkylated product (**3h**) was dropped down to 61% NMR yield and 5-chloro-1-phenylpentan-1-one (**5**) was obtained in 75% isolated yield (based on **2h**) as a white solid, which was purified by flash column chromatography on silica gel (hexane / EtOAc = 10 / 1, 29.5 mg). This result would also support that our Cu-catalyzed *O*-alkylation of phenol derivatives with ASPs proceeded via a radical mechanism.⁴

5-Chloro-1-phenylpentan-1-one (5)

¹**H NMR (500 MHz, CDCl₃**) δ 7.97-7.95 (2H, m), 7.59-7.55 (1H, m), 7.49-7.45 (2H, m), 3.59 (2H, t, *J* = 6.4 Hz), 3.02 (2H, t, *J* = 6.9 Hz), 1.95-1.85 (4H, m).

¹H NMR spectrum and other spectral data matched those reported in the literature.⁵

6. Enantioselective Synthesis of 4d

The reaction (0.2 mmol scale) was performed for 2 h, using **1e**, **2h** and a chiral bis(oxazoline) (BOX) ligand **L15** (8.6 mg, 12 mol%) instead of **L1**. The enantiomeric excess (ee) of **4d** was determined by HPLC after purified by flash column chromatography on silica gel (16.3 mg, 25% yield, 33% ee).

 $[\alpha]_{\mathbf{D}}^{23} = -1.6 \ (c = 1.0, \text{ CHCl}_3, 33\% \text{ ee}).$

HPLC analysis: Daicel CHIRALPAK IC-3, hexane / ^{*i*}PrOH = 3 / 1, flow rate = 1.0 mL/min, λ = 254 nm, retention time: 15.3 min (minor) and 23.5 min (major).

7. References

- [1] (a) R. Sakamoto, S. Sakurai, and K. Maruoka, Chem. Eur. J. 2017, 23, 9030.
 - (b) R. Sakamoto, T. Kato, S. Sakurai, and K. Maruoka, Org. Lett. 2018, 20, 1400.
 - (c) T. Seihara, S. Sakurai, T. Kato, R. Sakamoto, and K. Maruoka, Org. Lett. 2019, 21, 2477.
 - (d) S. Sakurai, S. Tsuzuki, R. Sakamoto, and K. Maruoka, J. Org. Chem. 2020, 85, 3973.
 - (e) S. Sakurai, A. Matsumoto, T. Kano, and K. Maruoka, J. Am. Chem. Soc. 2020, 142, 19017.
- [2] X. Xiong, F. Tan, and Y.-Y. Yeung, Org. Lett. 2017, 19, 4243.
- [3] L. Yang, H.-H. Lu, C.-H. Lai, G. Li, W. Zhang, R. Cao, F. Li, C. Wang, J. Xiao, and D. Xue, Angew. Chem. Int. Ed. 2020, 59, 12714.
- [4] H. G. Yayla, H. Wang, K. T. Tarantino, H. S. Orbe, and R. R. Knowles, J. Am. Chem. Soc. 2016, 138, 10794.
- [5] C. Monasterolo, H. Műller-Bunz, and D. G. Gilheany, Chem. Sci. 2019, 10, 6531.

8. ¹H NMR and ¹³C NMR Spectra

¹H NMR spectrum of **3a** (500 MHz, CDCl₃)

¹³C NMR spectrum of **3a** (125 MHz, CDCl₃)

¹H NMR spectrum of **3b** (500 MHz, CDCl₃)

¹³C NMR spectrum of **3b** (125 MHz, CDCl₃)

¹H NMR spectrum of **3c** (500 MHz, CDCl₃)

¹³C NMR spectrum of **3c** (125 MHz, CDCl₃)

¹H NMR spectrum of **3d** (500 MHz, CDCl₃)

¹³C NMR spectrum of **3d** (125 MHz, CDCl₃)

¹H NMR spectrum of **3e** (500 MHz, CDCl₃)

¹³C NMR spectrum of **3e** (125 MHz, CDCl₃)

¹H NMR spectrum of **3f** (500 MHz, CDCl₃)

¹³C NMR spectrum of **3f** (125 MHz, CDCl₃)

¹H NMR spectrum of **3g** (500 MHz, CDCl₃)

¹³C NMR spectrum of **3g** (125 MHz, CDCl₃)

¹H NMR spectrum of **3h** (500 MHz, CDCl₃)

¹³C NMR spectrum of **3h** (125 MHz, CDCl₃)

¹H NMR spectrum of **3i** (500 MHz, CDCl₃)

¹³C NMR spectrum of **3i** (125 MHz, CDCl₃)

¹H NMR spectrum of **3j** (500 MHz, CDCl₃)

¹³C NMR spectrum of **3j** (125 MHz, CDCl₃)

¹H NMR spectrum of **3k** (500 MHz, CDCl3)

¹³C NMR spectrum of **3k** (125 MHz, CDCl₃)

¹H NMR spectrum of **3l** (500 MHz, CDCl₃)

¹³C NMR spectrum of **3l** (125 MHz, CDCl₃)

¹H NMR spectrum of **3m** (500 MHz, CDCl₃)

¹³C NMR spectrum of **3m** (125 MHz, CDCl₃)

¹H NMR spectrum of **3n** (500 MHz, CDCl₃)

¹³C NMR spectrum of **3n** (125 MHz, CDCl₃)

¹H NMR spectrum of **30** (500 MHz, CDCl₃)

¹³C NMR spectrum of **3o** (125 MHz, CDCl₃)

¹H NMR spectrum of **3p** (500 MHz, CDCl₃)

¹³C NMR spectrum of **3p** (125 MHz, CDCl₃)

¹H NMR spectrum of **3q** (500 MHz, CDCl₃)

¹³C NMR spectrum of **3q** (125 MHz, CDCl₃)

¹H NMR spectrum of 4a (500 MHz, CDCl₃)

¹³C NMR spectrum of 4a (125 MHz, CDCl₃)

¹H NMR spectrum of **4b** (500 MHz, CDCl₃)

¹³C NMR spectrum of **4b** (125 MHz, CDCl₃)

¹H NMR spectrum of **4c** (500 MHz, CDCl₃)

¹³C NMR spectrum of 4c (125 MHz, CDCl₃)

¹H NMR spectrum of 4d (500 MHz, CDCl₃)

¹³C NMR spectrum of 4d (125 MHz, CDCl₃)

¹H NMR spectrum of **4e** (500 MHz, CDCl₃)

¹H NMR spectrum of **4f** (500 MHz, CDCl₃)

 1 H NMR spectrum of **4g** (500 MHz, CDCl₃)

¹³C NMR spectrum of 4g (125 MHz, CDCl₃)

¹H NMR spectrum of **4h** (500 MHz, CDCl₃)

¹³C NMR spectrum of **4h** (125 MHz, CDCl₃)

¹³C NMR spectrum of diastereomer A of **4i** (125 MHz, CDCl₃)

¹H NMR spectrum of diastereomer B of 4i (500 MHz, CDCl₃)

¹³C NMR spectrum of diastereomer B of 4i (125 MHz, CDCl₃)

1 H NMR spectrum of **5** (500 MHz, CDCl₃)

