Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2020

Supporting information

for

Electronically interacted Co₃O₄/WS₂ as superior oxygen electrode for

rechargeable zinc-air batteries

Ying Ling^a, Min Li^a, Konggang Qu^b and Zehui Yang^{a*}

^aSustainable Energy Laboratory, Faculty of Materials Science and Chemistry,

China University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074,

China.

^bShandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng, 252059, China.

Experimental section

Synthesis of WS₂: 1 g of $(NH_4)_6H_2W_{12}O_{40}\cdot XH_2O$ and 17 mL of $(NH_4)_2S$ solution were heated at 70 °C and 2 M HCl was added to the above mixed solution. The resultant precipitate was washed to neutral and dried in oven at 50 °C. The powder was placed in a tubular furnace and kept calcination at 450 °C for 4 h in an Ar/H₂ atmosphere with the heating up of 5 °C min⁻¹. The obtained black powder was placed in the 2 M KOH solution for ultrasonic cleaning, then washed with water to neutral and the pure phase WS₂ was obtained after drying at 50 °C.

Synthesis of Co₃**O**₄/**WS**₂: 0.05 g of WS₂ and 0.01 g of Co(Ac)₂·4H₂O were dissolved in the mixed solution with CH₃CH₂OH and NH₃·H₂O, then the mixed solution was heated at 80 °C under protection of N₂ atmosphere and kept stirring for 20 h. Then, the black power was collected by filtration and drying at 150 °C for 3 h. Finally, the Co₃O₄/WS₂ was obtained.

Synthesis of Co₃**O**₄/**C**: 0.05 g of Vulcan-XC72 and 0.01 g of Co(Ac)₂·4H₂O were dissolved in CH₃CH₂OH and NH₃·H₂O solution, heated at 80 °C and kept stirring for 20 h under N₂ atmosphere. After cooling down, the solution was washed to natural and dried at 50 °C. Then, the black power was kept at 150 °C for 3h in oven. Finally, the Co₃O₄/C was prepared successfully.

Material characterizations: X-ray powder diffraction (XRD) patterns were obtained using an X-ray diffractometer (Rigaku D/max 2500) at a scan rate of 10° min⁻¹ in the range of 10–80°. XPS experiments were performed on a

Kratos AXIS Ultra DLD system with AI Kα radiation as the X-ray source. SEM was carried out using a Hitachi SU8010 scanning electron microscope operated at an accelerating voltage of 10 kV. HRTEM was achieved using a FEI Talos F200X S/TEM with a field-emission gun at 200 kV.

Electrochemical measurement: The electrochemical measurement system was carried out by CHI-660E in three-electrode system, which contained working electrode (rotating disk electrode), counter electrode (carbon rod) and reference electrode (Hg/HgO). The electrochemical tests were conducted in O_2 -saturated 1.0 M KOH electrolyte and the catalyst load was 2.0 mg cm⁻². The linear sweep voltammetry (LSV) measurement was carried out at the scan rate of 5 mV s⁻¹ in OER and ORR. All potential was calibrated to standard potential according to Nernst equation, which is described as E (vs. RHE)=E(Hg/HgO) +0.098+0.059×pH. The H₂O₂ yield was calculated based

on the equation: $H_2O_2\%=200 \times \frac{I_{ring}/N}{I_{ring}/N+I_{disk}}$, and the corresponding electron

transfer number was evaluated based on the equation: $n=4 \times \frac{I_{disk}}{I_{disk} + I_{ring}/N}$. I_{ring} and I_{disk} are the ring and disk current densities, respectively. N is the collection efficiency of the RRDE, which was measured in 0.1M KNO₃ electrolyte with additional K₃[Fe(CN)₆].

Zn-air battery measurement: The catalyst was sprayed on carbon paper, which was used as cathode and the load was 2 mg cm⁻². Zn plate played the role of anode and nickel foam was used as current collector. The filled

electrolyte between the catalyst and Zn plate was 6 M KOH containing 0.2 M Zn (CH₃COO)₂. Differently, in terms of the all-solid-state zinc-air battery, the electrolyte was PVA membrane. All zinc-air battery measurements were recorded by Arbin testing system.

Figure S1. XPS survey scan of WS_2, Co_3O_4/WS_2 and Co_3O_4/C

electrocatalysts.

Figure S2. HAADF-STEM image and EDS mapping of WS_2 electrocatalyst.

Figure S3. HAADF-STEM image and EDS mapping of Co_3O_4/C electrocatalyst.

Figure S4. LSV curves of (a) Co₃O₄/WS₂, (b) Co₃O₄/C, (c) WS₂ and (d) Pt/C

with different scan rates.

Figure S5. LSV curves of Co_3O_4/WS_2 -1wt% and Co_3O_4/WS_2 -10wt% electrocatalysts recorded at 1600 rpm.

Figure S6. (a) The RRDE polarization curves and (b) the H_2O_2 selectivity of different catalysts.

Prior to H_2O_2 assessment, the collection efficiency (N) was evaluated in 0.1 M KNO₃ electrolyte with additional K_3 [Fe(CN)₆] and calculated as 0.26 (**Fig. S6a**).

Figure S7. (a) LSV curves of Co_3O_4/WS_2 after 1000 cycles with different scan

rates and (b) LSV plots of Pt/C before and after 1000 cycles.

Figure S8. OER performance of Co_3O_4/WS_2 -1wt% and Co_3O_4/WS_2 -10wt%

electrocatalysts.

Figure S9. Calculated double-layer capacitances (C_{dl}) of different catalysts.

Figure S10. Electrochemical impedance spectra (EIS) plots of different catalysts.

Figure S11. (a) Calculated double-layer capacitances (C_{dl}) and (b) electrochemical impedance spectra (EIS) of Co_3O_4/WS_2 before and after 1000 cycles.

Figure S12. (a) LSV curves, CV curves (b, c) and ECSAs (d) of IrO_2/C before

and after 1000 cycles.

Figure 13. The open circuit voltage of rechargeable zinc-air battery fabricated from Co_3O_4/WS_2 .

Figure S14. Specific activities of Co_3O_4/WS_2 and Pt/C-IrO₂ tested with 10 mA cm⁻².

Figure S15. Cyclic performance of Co_3O_4/WS_2 and Pt/C-IrO₂ at 10 mA cm⁻².

Figure S16. The discharge-charge potential curves at different current density

of Co_3O_4/WS_2 .

Figure S17. TEM image and EDS mapping of Co_3O_4/WS_2 after stability test.

Figure S18. (a) Open circuit voltage and (b) light bulb test of two all-solidstate zinc air batteries in series of Co_3O_4/WS_2 .

Meaningfully, two batteries can light LED bulbs shown in **Fig. S18**, suggesting the potential applications of the constructed powerful rechargeable ZABs.