Supporting information

Highly crystalline $Na_{0.5}Bi_{0.5}TiO_3$ of a photocatalyst valence-band-controlled with Bi(III) for solar water splitting

Kenta Watanabe,¹ Yoichi likubo,¹ Yuichi Yamaguchi,^{1,2} Akihiko Kudo*^{1,2}

¹Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

²Photocatalysis International Research Center, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki Noda-shi, Chiba-ken 278-8510, Japan

Experimental

Characterization

The crystal structure of the synthesized Na_{0.5}Bi_{0.5}TiO₃ was identified by powder X-ray diffraction (Rigaku; MiniFlex600). The surface areas (S.A.) were determined by a BET measurement (Coulter; SA3100). Morphologies of the Na_{0.5}Bi_{0.5}TiO₃ particles were observed with scanning electron microscope (JEOL; JSM-7400F). Diffuse reflectance spectra (DRS) were measured using UV-vis-NIR spectrometer with an integrating sphere (Jasco; UbeatV-570) and were converted from reflectance to absorbance mode by the Kubelka-Munk method. The elemental composition of obtained Na_{0.5}Bi_{0.5}TiO₃ was measured with an X-ray fluorescence spectrometer (Rigaku; NEX DE). Chemical states of cocatalysts and photocatalysts were investigated with X-ray photoelectron spectroscope (XPS) (JEOL; JPS-9010MC).

Photocatalytic reaction

Photocatalytic water splitting was carried out in a gas-closed-circulation system. Photocatalyst powder (0.3 g) was dispersed in distilled water (120 mL) in a top-irradiation cell with a Pyrex window. A 300 W Xearc lamp (PerkinElmer; Cermax-PE300BF) and a solar simulator (Asahi spectra; HAL-320) were employed as a light source. Amounts of evolved H₂ and O₂ gasses were determined with a gas chromatograph (Shimadzu; GC-8A, MS-5A, Ar carrier gas, TCD detector).

Apparent quantum yields (AQY) were measured using a 300 W Xe-arc lamp (PerkinElmer; Cermax-PE300BF) with band-pass filters. The photon flux of the monochromatic light was measured using a silicon photodiode head (OPHIR; PD300-UV head and NOVA display). An AQY and a solar to hydrogen energy conversion efficiency (STH) were estimated using the following the equations (1) and (2).

[AQY %] = [the number of reacted electrons or holes]/[the number of incident photons] x 100 $= [(the number of evolved H_2 molecules) x 2]/[the number of incident photons] x 100 (1)$

[STH %] = ([$\Delta G^0(H_2O)/kJ \text{ mol}^{-1}$] x [rate of H₂ evolution/µmol h⁻¹])

/([irradiation time/s] x [solar energy (AM-1.5 G)/mW cm⁻²] x [irradiation area/cm²]) x 100

(2)

= (237 x [rate of H₂ evolution/μmol h⁻¹])/(3600 x 100 x 25) x 100

Loading cocatalyst

RhCr₂O_x and CoOOH cocatalysts were simultaneously loaded *in situ* by a photodeposition (PD) method using aqueous solutions of Rh(NO₃)₃ (Kanto Chemical; > 80.0% as anhydrous), Cr(NO₃)₃·9H₂O (Kanto Chemical; 98.0~103.0%) and Co(NO₃)₂·6H₂O (Wako Pure Chemical; 99.5%), according to previous reports.¹⁻⁴ An added amount of a cocatalyst was calculated as a molar ratio (mol%) of a cocatalyst to Na_{0.5}Bi_{0.5}TiO₃.

Material	Lattice constants				M-O-M bond angle / °
	a,b / Å	c / Å	α,β/°	γ/°	
^a AgTaO₃	5.5281	13.7159	90	120	164
^{<i>b</i>} Na _{0.5} Bi _{0.5} TaO ₃	5.4779	13.485	90	120	165
⁰Na₀.₅La₀.₅TaO₃	5.4839	13.4183	90	120	168

Table S1 Lattice constants and M-O-M (M = Ti, Ta) bond angles of AgTaO₃, Na_{0.5}Bi_{0.5}TaO₃ and Na_{0.5}La_{0.5}TaO₃ with trigonal crystal systems.

^aICSD 40830, ^bICSD 193813, ^cICSD 245626.

Synthesis condition		Molar ratio of Bi/Ti	
Method	Temperature/K	-	
SSR	1173	0.45	
SSR	1273	0.46	
SSR	1373	0.46	
FM	1173	0.42	
FM	1273	0.43	
FM	1373	0.42	
FM	1473	0.46	

Photocatalyst	Cocatalyst(mol%)	yst(mol%) Activity/µmol h ⁻¹	
		H ₂	O ₂
Na _{0.5} Bi _{0.5} TiO ₃	-	Trace	0
Na _{0.5} Bi _{0.5} TiO ₃	RhCr ₂ O _x (0.05)	122	59
Na _{0.5} Bi _{0.5} TiO ₃	RhCr ₂ O _x (0.75)	126	60
Na _{0.5} Bi _{0.5} TiO ₃	RhCr ₂ O _x (0.1)	131	63
Na _{0.5} Bi _{0.5} TiO ₃	RhCr ₂ O _x (0.1) + CoOOH(0.01)	150	71
Na _{0.5} Bi _{0.5} TiO ₃	RhCr ₂ O _x (0.1) + CoOOH(0.02)	160	77
Na _{0.5} Bi _{0.5} TiO ₃	RhCr ₂ O _x (0.1) + CoOOH(0.025)	153	73
Na _{0.5} Bi _{0.5} TiO ₃	RhCr ₂ O _x (0.1) + CoOOH(0.05)	142	67
Na _{0.5} Bi _{0.5} TiO ₃	RhCr ₂ O _x (0.1) + CoOOH(0.1)	140	67
Na _{0.5} Bi _{0.5} TiO ₃	$RhCr_2O_x(0.2)$	102	50
Na _{0.5} Bi _{0.5} TiO ₃	$RhCr_2O_x(0.3)$	113*	53*
Na _{0.5} La _{0.25} Bi _{0.25} TiO ₃	RhCr ₂ O _x (0.1) + CoOOH(0.02)	20	9.7
Na _{0.5} La _{0.5} TiO ₃	RhCr ₂ O _x (0.1) + CoOOH(0.02)	14	6.8

Table S3 Photocatalytic overall water splitting over Na_{0.5}La_{0.5-x}Bi_xTiO₃ synthesized by a flux method at 1273 K for 5 h under UV irradiation

Photocatalyst: 0.3 g, cocatalyst: PD (in situ),

reactant solution: distilled water (120 mL), cell: top-irradiation cell with a Pyrex window, light source: 300 W Xe-arc lamp ($\lambda > 300$ nm). *The activities were not stable.

over RhCr ₂ O _x (0.1mol%)/Na _{0.5} Bi _{0.5} TiO ₃ /CoOOH(0.02mol%)					
Incident light / nm	Photon flux / mW	Photon number / h	Activity / μmol h ⁻¹		AQY %
			H_2	O ₂	
440	28.9	4.65 x 10 ³²	0	0	0
420	76.5	5.82 x 10 ³²	0.2	0.1	0.041
400	86.6	6.28 x 10 ³²	4.2	1.9	0.77

5.4

14

14

21

12

1.2

2.5

6.9

6.6

10

5.8

0.5

3.0

3.5

4.0

5.1

4.7

3.5

2.05 x 10³²

4.78 x 10³²

4.23 x 10³²

4.73 x 10³²

3.10 x 10³²

3.41 x 10³¹

29.7

71.3

64.8

74.6

50.3

5.88

380

370

360

350

340

320

Table S4 Photon flux of incident light and rates of gas evolutions

 on AQY measurements for photocatalytic water splitting

Fig. S1 Crystal structure of trigonal $Na_{0.5}Bi_{0.5}TiO_3$ (ICSD 193813).

Fig. S2 XRD patterns of ICSD Collection Code 193813 (trigonal Na_{0.5}Bi_{0.5}TiO₃) with/without peaks due to K α_2 and Na_{0.5}Bi_{0.5}TiO₃ synthesized by a solid state reaction and a flux method at various calcination temperatures. Peaks due to K α_2 in the measured XRD patterns were not removed. The intensity of patterns in right side figure were enlarged 5 times. Plane indices for Na_{0.5}Bi_{0.5}TiO₃ were referred to PDF No. 1-74-9525.

Fig. S3 Diffuse reflectance spectra of Na_{0.5}La_{0.5-x}Bi_xTiO₃ (x = 0, 0.25, 0.5) synthesized by a flux method at 1273 K for 5 h.

Fig. S4 XPS spectra at valence band regions of $Na_{0.5}M_{0.5}TiO_3$ (M = La, Bi) synthesized by a flux method at 1273 K for 5 h. Binding energies were corrected with $Ti2p_{3/2}$ peaks (458.7 eV). Backgrounds of the spectra were subtracted by the Shirley method.

Fig. S5 Photocatalytic overall water splitting over RhCr₂O_x(0.1mol%)/Na_{0.5}Bi_{0.5}TiO₃/CoOOH(0.02mol%) under UV irradiation. Na_{0.5}Bi_{0.5}TiO₃ was synthesized by FM at 1273 K. Photocatalyst: 0.3 g, cocatalyst: PD (*in situ*), reactant solution: distilled water (120 mL), cell: top-irradiation cell with a Pyrex window, light source: 300 W Xe-arc lamp ($\lambda > 300$ nm).

Fig. S6 Rh 3d X-ray photoelectron spectra of RhCr₂O_x(0.1mol%)/Na_{0.5}Bi_{0.5}TiO₃/CoOOH(0.02mol%) loaded by PD (*in situ*, after the reaction seen in Fig. S5) and Rh_{0.5}Cr_{1.5}O₃(0.2mol%)/Na_{0.5}Bi_{0.5}TiO₃ loaded by an impregnation method at 625 K for 1 h. Na_{0.5}Bi_{0.5}TiO₃ was synthesized by FM at 1273 K. Binding energies of all peaks were corrected with C 1s (284.2 eV). All assigned binding energies for Rh, Rh₂O₃ and Rh_{0.5}Cr_{1.5}O₃ were referred to a previous report.^{5,6}

References

- 1 T. Takata, J. Jiang, Y. Sakata, M. Nakabayashi, N. Shibata, V. Nandal, K. Seki, T. Hisatomi and K. Domen, *Nature*, 2020, **581**, 411–414.
- 2K. Maeda, D. Lu, K. Teramura and K. Domen, J. Mater. Chem., 2008, 18, 3539–3542.
- 3K. Maeda, D. Lu, K. Teramura and K. Domen, Energy Environ. Sci., 2010, 3, 470-477.
- 4 H. Lyu, T. Hisatomi, Y. Goto, M. Yoshida, T. Higashi, M. Katayama, T. Takata, T. Minegishi, H. Nishiyama,T. Yamada, Y. Sakata, K. Asakura and K. Domen, *Chem. Sci.*, 2019, **10**, 3196–3201.
- 5C. D. Wagner and G. E. Muilenberg, *Handbook of x-ray photoelectron spectroscopy : a reference book of standard data for use in x-ray photoelectron spectroscopy*, Physical Electronics Division, Perkin-Elmer Corp., Eden Prairie, Minn., 1979.
- 6K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue and K. Domen, *J. Phys. Chem. B*, 2006, **110**, 13753–13758.