Electronic Supplementary Information

Oxidative Addition of Bi-C Bonds to Pt(0): Reaction of Pt(PEt₃)₃ with 12-Phenyl- and 12-Chloro-5,6,7,12tetrahydrodibenz[c,f][1,5]azabismocines

Shigeru Shimada,* Xiang-Bo Wang, and Masato Tanaka

National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1–1–1 Higashi, Tsukuba, Ibaraki 305–8565 (Japan). Tel: (+81) 29-861-6257; E-mail: s-shimada@aist.go.jp

Table of Contents

2. Reaction of 12-phenyl-5,6,7,12-tetrahydrodibenzo[c,f][1,5]azabismocine 1with Pt(PEt_3)_3.(Figs. S1-S2)3. Reaction of 12-chloro-5,6,7,12-tetrahydrodibenzo[c,f][1,5]azabismocine 2a
with $Pt(PEt_3)_3$ (Figs. S1-S2) S2 3. Reaction of 12-chloro-5,6,7,12-tetrahydrodibenzo[c,f][1,5]azabismocine 2a
3. Reaction of 12-chloro-5,6,7,12-tetrahydrodibenzo[<i>c</i> , <i>f</i>][1,5]azabismocine 2a
• • • • •
or 2b with Pt(PEt ₃) ₃ . (Figs. S3-S7) S5
4. Synthesis of complex 6a S10
5. Monitoring the change of complex 6a in C_6D_6 or THF- d_8 by ¹ H NMR.
(Figs. S8-S10) S10
6. Single crystal X-ray structure analysis S12
7. References S13
8. NMR spectra of complexes 4, 5a and 6a. (Figs. S11-S45) S14

1. General.

All manipulations of air-sensitive materials were carried out under a nitrogen atmosphere using standard Schlenk techniques or in a glovebox. Anhydrous toluene, hexane and THF were purchased from Kanto Chemicals and degassed before use. C₆D₆, THF-*d*₈, and CD₂Cl₂ were dried over molecular sieves and degassed. NMR spectra were recorded on Jeol LA500, JNM-ECX400P spectrometers, or Bruker AVANCE III HD 600 spectrometer with a CryoProbe. Chemical shifts are reported in δ (ppm) and are referenced to the (residual) solvent signals for ¹H and ¹³C^{S1} or to the external standard (85% H₃PO₄ (0 ppm)) for ³¹P. Coupling constants were reported in Hertz. 5,6,7,12-Tetrahydrodibenz[c,f][1,5]azabismocines **1**,^{S2} **2a**,^{S2} and **2b**^{S3} and Pt(PEt₃)4^{S4} were prepared according to literature procedures.

Safety Caution: Pt(PEt₃)₄ and PEt₃ are pyrophoric and should be handled with great care.

2. Reaction of 12-phenyl-5,6,7,12-tetrahydrodibenzo[*c*,*f*][1,5]azabismocine 1 with Pt(PEt₃)₃.

Monitoring of the reaction of 1 and Pt(PEt₃)₃ by NMR. Pt(PEt₃)₄ (35.6 mg, 0.066 mmol) was placed in a Schlenk tube and heated at 60 °C for 10 min under vacuum to form Pt(PEt₃)₃ as an orange oil. Compound **1** (43.8 mg, 0.066 mmol) and C₆D₆ (0.8 mL) were added to the Schlenk tube to form an orange solution. Ca. 0.5 mL of the solution was transferred to an NMR tube and the tube was sealed with a PTFE valve. The reaction progress at room temperature was periodically monitored by NMR. After 91 h, volatiles were removed under vacuum and the residue was dissolved again in C₆D₆. The reaction was further monitored by NMR. The progress of the reaction was shown in Fig. S1 (${}^{31}P{}^{1}H{}$ NMR) and Fig. S2 (${}^{1}H$ NMR).

Fig. S1³¹P{¹H} NMR spectra (161 MHz, C₆D₆) of the reaction mixture of **1** and Pt(PEt₃)₃ after 30 min (orange), 14 h (red), 24 h (green), 91 h (blue) and 91 h + evacuation + 62 h (pink).

Fig. S2 ¹H NMR spectra (400 MHz, C_6D_6) of the reaction mixture of **1** and Pt(PEt₃)₃ after 30 min (orange), 14 h (red), 24 h (green), 91 h (blue) and 91 h + evacuation + 62 h (pink).

Synthesis of complex 4. A mixture of Pt(PEt₃)₃ (0.378 mmol, prepared from 203 mg of Pt(PEt₃)₄ by heating at 60 °C under vacuum) and 1 (254 mg, 0.380 mmol) in benzene (5 mL) was stirred at room temperature for 43 h. The color of the mixture changed from light orange to brown. A small aliquot of the mixture was taken for ¹H NMR analysis, which showed the molar ratio of 1:4 = ca 43:57. After the volatiles were removed under vacuum, the residue was again dissolved in benzene (6 mL) and stirred at room temperature for further 24 h. After the volatiles were removed under vacuum, the residue was dissolved in hexane (10 mL) and the hexane solution was kept at -32 °C for 4 days, resulting the formation of orange crystals. The supernatant was removed and the crystals were washed with cold hexane (cooled at -32 °C, 3 \times 0.7 mL) and dried under vacuum to give 4 (151 mg, 41% yield). The stability of 4 in deuterated solvents was checked and found to be $C_6D_6 > THF-d_8$ (more than 2/3 of 4 changed to unknown species after 24 h) >> CD₂Cl₂ (immediate (partial) change to unknown species). However, signal separation was better in THF- d_8 than in C₆D₆. Therefore, full NMR characterization was done in THF- d_8 . ¹H NMR (499 MHz, C₆D₆, Fig. S11) δ 0.78-0.93 (m, 18H), 0.92 (s, 9H), 1.40 (quint, J = 7.6 Hz, 6H), 1.61 (quint, J = 7.5 Hz, 6H), 3.76 (d, J = 15.1 Hz, 2H), 3.84 (d, J = 15.1 Hz, 2H), 6.86 (dt, J = 1.1, 7.3 Hz, 1H), 7.11-7.24 (m, 8H), 7.72 (dt, J = 1.1, 5.9 Hz, ${}^{3}J_{Pt-H} = 45$ Hz, 2H), 9.09 (d, J = 6.6 Hz, 2H). ${}^{13}C$ NMR (126 MHz, C₆D₆) δ 8.46 ($J_{Pt-C} = 12 \text{ Hz}$), 9.83 ($J_{Pt-C} = 21 \text{ Hz}$), 15.5-16.1 (m), 20.6-21.3 (m), 28.04, 56.54, 57.28, 121.51, 126.27, 128.35, 128.76 (br, $J_{Pt-C} = ca. 60 Hz$), 139.50 (d, $J_{P-C} = 2 Hz$, $J_{Pt-C} = ca. 28$ Hz), 143.96 (J_{Pt-C} = ca. 33 Hz), 149.36, 150.27 (br). ³¹P NMR (202 MHz, C₆D₆) δ –0.22 (s, ${}^{1}J_{\text{Pt-P}} = 2149 \text{ Hz}$), 32.98 (s, ${}^{1}J_{\text{Pt-P}} = 1605 \text{ Hz}$).

Atomic numbering of complex 4 for the NMR signal assignment

¹H NMR (600 MHz, THF-*d*₈, Fig. S13) δ 0.86-0.96 (m, 9H, H-17), 0.96 (s, 9H, H-9), 1.09-1.16 (m, 9H, H-15), 1.64 (quint, *J* = 7.6 Hz, 6H, H-14), 1.72 (quint, *J* = 7.5 Hz, 6H, H-16), 3.61 (d, *J* = 15.0 Hz, 2H, H-7a), 3.80 (d, *J* = 15.0 Hz, 2H, H-7b), 6.55 (t, *J* = 7.1 Hz, 1H, H-13), 6.81-6.88 (m, 4H, H-3 & H-12), 6.96-7.02 (m, 4H, H-4 & H-5), 7.37 (t with Pt satellites, *J* = 6.1 Hz, ³*J*_{Pt-H} = 44 Hz, 2H, H-11), 8.69 (d, *J* = 6.9 Hz, 2H, H-2). ¹³C{¹H} NMR (151 MHz, THF-*d*₈, Figs. S14-S18) δ 8.6 (s with Pt satellites, ³*J*_{Pt-C} = 12 Hz, C-15), 9.9 (s with Pt satellites, ³*J*_{Pt-C} = 21 Hz, C-17), 15.8-16.2 (m, C-14), 20.9-21.5 (m, C-16), 28.1 (s, C-9), 56.7 (s, C-8), 57.3 (s, C-7), 121.1 (s, C-13), 126.1 (s, C-4), 128.0 (s, C-5), 128.1 (s, C-3), 128.4 (dd with Pt satellites, ⁴*J*_{P-C} = 2, 6 Hz, ³*J*_{Pt-C} = 58 Hz, C-12), 139.7 (dd with Pt satellites, ³*J*_{P-C} = 1, 3 Hz, ²*J*_{Pt-C} = 28 Hz, C-11), 143.9 (s with Pt satellites, ³*J*_{Pt-C} = 721 Hz, C-10). ³¹P{¹H} NMR (243 MHz, THF-*d*₈, Fig. S19) δ -0.9 (s with Pt satellites, ¹*J*_{Pt-P} = 2147 Hz, P-2), 32.6 (s with Pt satellites, ${}^{1}J_{Pt-P} = 1650$ Hz, P-1). Anal. Calcd for C₃₆H₅₆BiNP₂Pt: C, 44.63%; H, 5.83%; N, 1.45%. Found: C, 44.95%; H, 5.78%; N, 1.38%.

3. Reaction of 12-chloro-5,6,7,12-tetrahydrodibenzo[*c*,*f*][1,5]azabismocine 2a or 2b with Pt(PEt₃)₃.

Synthesis of complex 5a. A mixture of Pt(PEt₃)₃ (0.30 mmol, prepared from 200 mg of Pt(PEt₃)₄ by heating at 60 °C under vacuum) and 2a (149 mg, 0.30 mmol) in THF (20 mL) was stirred for 30 h at room temperature and then 60 h at 40 °C. After the volatiles were removed under vacuum, the residue was washed with hexane (2 × 20 mL) and then with hexane/THF (1/2, 15 mL). The residual yellow powder was dried under vacuum to give 5a (144 mg, 52%). Because NMR signal separation was better in CD₂Cl₂ than in C₆D₆, full NMR characterization was done in CD₂Cl₂. ¹H NMR (499 MHz, C₆D₆, Fig. S25) δ 0.63 (dt, *J*_{P-H} = 15 Hz, *J*_{H-H} = 7.6 Hz, 9H), 1.07-1.30 (m, 6H), 1.08 (dt, *J*_{P-H} = 15 Hz, *J*_{H-H} = 7.6 Hz, 9H), 1.18 (s, 9H), 1.98 (quasi sept, *J* = 7.3 Hz, 3H), 2.27 (quasi sept, *J* = 7.6 Hz, 3H), 3.40 (d, *J* = 9.8 Hz, 2H), 3.73 (d, *J* = 15.8 Hz, 2H), 4.09 (d, *J* = 15.6 Hz, 2H), 4.63 (d, *J* = 9.9 Hz, 2H), 6.39 (t, *J* = 7.3 Hz, 1H), 6.85-6.94 (m, 2H), 6.98-7.28 (m, 3H), 8.99 (d, *J* = 7.5 Hz, 1H). ³¹P NMR (202 MHz, C₆D₆) δ 0.54 (d, ²*J*_{P-P} = 11, ¹*J*_{Pt-P} = 2063 Hz), 58.08 (d, ²*J*_{P-P} = 11, ¹*J*_{Pt-P} = 2036 Hz).

Atomic numbering of complex 5a for the NMR signal assignment

¹H NMR (600 MHz, CD₂Cl₂, Fig. S26) δ 0.92-0.98 (m, 9H, H-18), 1.20-1.27 (m, 9H, H-16), 1.46 (s, 9H, H-20), 1.43-1.52 (m, 3H, H-17), 1.57-1.65 (m, 3H, H-17), 2.12 (quasi septet, J = 7.4 Hz, 3H, H-15), 2.34 (quasi septet, J = 7.6 Hz, 3H, H-15), 3.61 (d, J = 10.2 Hz, 1H, H-8a), 3.98 (d, J = 15.9 Hz, 1H, H-7a), 4.31 (d, J = 15.9 Hz, 1H, H-7b), 4.69 (d, J = 10.2 Hz, 1H, H-8b), 6.08 (tt, J = 1.4, 7.3 Hz, 1H, H-11), 6.43 (t, J = 7.3 Hz, 1H, H-12), 6.71 (t, J = 7.2 Hz, 1H, H-3), 6.81 (t, J = 7.5 Hz, 1H, H-5), 6.83 (t, J = 7.5 Hz, 1H, H-4), 6.87 (td, J = 1.7, 7.4 Hz, 1H, H-10), 6.90-6.94 (m, 1H, H-13), 7.91 (d, J = 7.4 Hz, 1H, H-2). ¹³C {¹H} NMR (151 MHz, CD₂Cl₂, Figs. S27-S31) δ 8.5 (d with Pt satellites, $J_{P-C} = 1$ Hz, $^{3}J_{Pt-C} = 15$ Hz, C-18), 9.2 (s with Pt satellites, $^{3}J_{Pt-C} = 14$ Hz, C-16), 16.2-16.7 (m, C-17), 18.8-19.2 (m, C-15), 29.8 (br, C-20), 59.7 (s, C-7), 60.5 (s, C-19), 65.8 (s with Pt satellites, $^{3}J_{Pt-C} = 82$ Hz, C-8), 121.3 (d, $^{5}J_{P-C} = 3$ Hz, C-11), 124.3 (s, C-4), 125.59 (s, C-5), 125.66 (dd with Pt satellites, $^{4}J_{P-C} = 2$, 6 Hz, $^{3}J_{Pt-C} = 41$ Hz, C-10), 139.0 (d, $^{3}J_{P-C} = 5$ Hz, C-13), 139.5 (s, C-2), 143.2 (t with Pt satellites, $^{3}J_{P-C} = 2$

Hz, ${}^{2}J_{Pt-C} = 26$ Hz, C-9), 151.3 (s, C-6), 161.6 (dd with Pt satellites, ${}^{2}J_{P-C} = 9$, 93 Hz, ${}^{1}J_{Pt-C} = 693$ Hz, C-14), 169.2 (br, C-1). ${}^{31}P{}^{1}H$ NMR (162 MHz, CD₂Cl₂, Fig. S32) δ 0.3 (d with Pt satellites, ${}^{2}J_{P-P} = 12$ Hz, ${}^{1}J_{Pt-P} = 2029$ Hz, P-1), 62.2 (d with Pt satellites, ${}^{2}J_{P-P} = 12$ Hz, ${}^{1}J_{Pt-P} = 2154$ Hz, P-2).

Anal. Calcd for $C_{30}H_{51}BiClNP_2Pt$: C, 38.86%; H, 5.54%; N, 1.51%. Found: C, 39.06%; H, 5.46%; N, 1.42%.

Synthesis of complex 5b. A mixture of $Pt(PEt_3)_3$ (0.33 mmol, prepared from 222 mg of $Pt(PEt_3)_4$ by heating at 60 °C under vacuum) and 2b (183 mg, 0.33 mmol) in C₆H₆ (11 mL) was stirred for 92 h at room temperature and then for 23 h at 40 °C. After the volatiles were removed under vacuum, the residue was extracted with hexane (10 mL) and then with hexane/C₆H₆ (3/1, 8 mL). Cooling the hexane/C₆H₆ extract at -35 °C afforded 5b as a yellow powder, which was separated and dried under vacuum (107 mg, 33%).

Atomic numbering of complex 5b for the NMR signal assignment

¹H NMR (600 MHz, CD₂Cl₂) δ 0.92-0.98 (m, 9H, H-18), 1.07 (s, 9H, H-23), 1.21-1.28 (m, 9H, H-16), 1.43-1.73 (m, 13H, H-17, H-20 & one of H-21), 1.85 (d, J = 13.9 Hz, 1H, one of H-21), 2.12 (quasi septet, J = 7.4 Hz, 3H, H-15), 2.34 (quasi septet, J = 7.6 Hz, 3H, H-15), 3.66 (br s, 1H, H-8a), 4.00 (d, J = 16.0 Hz, 1H, H-7a), 4.30 (d, J = 16.0 Hz, 1H, H-7b), 4.68 (d, J = 9.7Hz, 1H, H-8b), 6.08 (t, J = 7.1 Hz, 1H, H-11), 6.43 (t, J = 7.3 Hz, 1H, H-12), 6.71 (dt, J = 1.0, 7.2 Hz, 1H, H-3), 6.80-6.86 (m, 2H, H-4 & H-5), 6.87-6.93 (m, 2H, H-10 & H-13), 7.93 (d, J = 6.5 Hz, 1H, H-2). ¹³C{¹H} NMR (151 MHz, CD₂Cl₂) δ 8.5 (d with Pt satellites, J_{P-C} = 1 Hz, ${}^{3}J_{\text{Pt-C}} = 15$ Hz, C-18), 9.3 (s, C-16), 16.2-16.7 (m, C-17), 18.8-19.2 (m, C-15), 33.2 (br), 32.1 (s, C-23), 36.4 (br), 44.2 (br), 58.9 (s, C-7), 64.5 (s with Pt satellites, ${}^{3}J_{Pt-C} = 81$ Hz, C-8), 64.7 (s, C-19), 121.3 (d, ${}^{5}J_{P-C} = 3$ Hz, C-11), 124.3 (s, C-4), 125.7 (dd with Pt satellites, ${}^{4}J_{P-C} = 1, 5$ Hz, ${}^{3}J_{Pt-C} = ca. 50$ Hz, C-12), 125.9 (s, C-5), 126.9 (s, C-3), 132.4 (br s with Pt satellites, ${}^{3}J_{Pt-C}$ = ca. 39 Hz, C-10), 139.0 (d, ${}^{3}J_{P-C}$ = 5 Hz, C-13), 139.5 (s, C-2), 143.6 (br, C-9), 151.9 (s, C-6), 161.5 (d with Pt satellites, ${}^{2}J_{P-C} = ca. 94 Hz$, ${}^{1}J_{Pt-C} = ca. 673 Hz$, C-14), 169.5 (br, C-1). ³¹P{¹H} NMR (162 MHz, CD₂Cl₂) δ 0.3 (br s with Pt satellites, ¹J_{Pt-P} = 2052 Hz, P-1), 63.5 (d with Pt satellites, ${}^{2}J_{P-P} = 10$ Hz, ${}^{1}J_{Pt-P} = 2152$ Hz, P-2). Anal. Calcd for C₃₄H₅₉BiClNP₂Pt: C, 41.53%; H, 6.05%; N, 1.42%. Found: C, 41.64%; H, 6.07%; N, 1.53%.

Monitoring of the reaction of 2b and Pt(PEt₃)₃ by NMR. $Pt(PEt_3)_4$ (26.5 mg, 0.048 mmol) was placed in a Schlenk tube and heated at 60 °C for 10 min under vacuum to form $Pt(PEt_3)_3$ as an orange oil. Compound **2b** (32.1 mg, 0.048 mmol) and C₆D₆ (1.2 mL) were added to the Schlenk tube to form an almost homogeneous orange mixture. The mixture was transferred to an NMR tube and the tube was sealed with a PTFE valve. The reaction progress at room temperature was periodically monitored by NMR.

The progress of the reaction was shown in Figs. S3 and S7 (${}^{31}P{}^{1}H{}$ NMR) and Figs. S4-S6 (${}^{1}H$ NMR).

Fig. S3 ³¹P{¹H} NMR spectrum (161 MHz, C_6D_6) of the reaction mixture of **2b** and Pt(PEt₃)₃ in C_6D_6 after 30 min

Fig. S4 ¹H NMR spectra (400 MHz, C_6D_6) of bismocine chloride **2b** (orange) and the reaction mixture of **2b** and Pt(PEt₃)₃ after 30 min (red), 14 h (green), 43 h (blue) and 67 h (pink).

Fig. S5 Expansion (3.4 - 4.8 ppm region) of Fig. S4

Fig. S6 Expansion (8.7 - 9.6 ppm region) of Fig. S4

Fig. S7¹³P{¹H} NMR spectra (161 MHz, C_6D_6) of the reaction mixture of **2b** and Pt(PEt₃)₃ after 30 min (red), 14 h (green), 43 h (blue) and 67 h (pink).

4. Synthesis of complex 6a

Synthesis of complex 6a. To a Schlenk tube containing Pt(PEt₃)₃ (0.24 mmol, prepared from 159 mg of Pt(PEt₃)₄ by heating at 60 °C under vacuum) was added a THF (12 mL) solution **2a** (90 mg, 0.18 mmol). The clear light orange solution was stirred for 30 min at room temperature. Then the volatiles were removed under vacuum to leave brown-yellow residue. The residue was extracted with hexane (1 × 10 mL, 3 × 5 mL). Each extract was kept in a freezer at -35 °C. From the first extract, **6a** was obtained as yellow crystals (42 mg, 25% yield). ¹H NMR (600 MHz, C₆D₆, Fig. S38) δ 0.93-1.06 (m, 27H, H-9 & H-11), 1.89 (very broad s, 12H, H-10), 3.69 (d, *J* = 15.4 Hz, 2H, H-7), 3.85 (d, *J* = 15.4 Hz, 2H, H-7), 6.98 (dd, *J* = 1.0, 7.3 Hz, 2H, H-5), 7.10 (dt, *J* = 1.5, 7.2 Hz, 2H, H-3), 7.15 (dt, *J* = 1.6, 7.2 Hz, 2H, H-4), 9.34 (dd, *J* = 1.5, 7.0 Hz, 2H, H-2). ¹³C{¹H} NMR (151 MHz, C₆D₆, Figs. S39-S41) δ 9.3 (br s, C-11), 17.0 (br s, C10), 27.9 (s, C-9), 57.1 (s, C-8), 57.3 (s, C-7), 127.25 (C-5), 127.33 (C-4), 128.8 (C-3), 142.4 (br s, C-1), 145.8 (s with Pt satellites, ³*J*_{Pt-C} = 46 Hz, C-2), 148.6 (C-6). ³¹P NMR (243 MHz, C₆D₆, Fig. S42) δ 0-21 (very broad multiplet). Anal. Calcd for C₃₀H₅₁BiClNP₂Pt: C, 38.86%; H, 5.54%; N, 1.51%.

Atomic numbering of complex 6a for the NMR signal assignment

5. Monitoring the change of complex 6a in C₆D₆ or THF-*d*₈ by ¹H NMR

Complex **6a** (ca. 2 mg) was dissolved in C₆D₆ or THF- d_6 (0.5 mL). ¹H NMR spectra of the solution were measured periodically during 4 days (Fig. S8 (C₆D₆) and Fig. S9 (THF- d_6)). Another sample containing **6a** (ca. 2 mg) and PEt₃ (20 wt% toluene solution, 2.5 µL, ca. 2 equiv) was also prepared and monitored by ¹H NMR (Fig. S10).

Fig. S8 Change of ¹H NMR spectra (400 MHz) of the C_6D_6 solution of **6a** after 30 min (orange), 3 h (red), 17 h (green), 1 day (blue) and 4 days (pink).

Fig. S9 Change of ¹H NMR spectra (400 MHz) of the THF- d_8 solution of **6a** after 20 min (orange), 3 h (red), 15 h (green), 1 day (blue) and 4 days (pink).

Fig. S10 Change of ¹H NMR spectra (400 MHz) of the C_6D_6 solution of **6a** and PEt₃ (ca. 2 equiv) after 20 min (orange), 2.5 h (red), 17 h (green), 1 day (blue) and 4 days (pink).

6. Single crystal X-ray structure analysis

Data collection of complexes **4** and **5a** was performed at -120 °C on a Bruker APEX II diffractometer using graphite monochromated Mo K α radiation. The determination of crystal class and unit cell parameters was carried out with the APEX2 program package.^{S5} The raw frame data were processed using SAINT^{S6} and SADABS^{S7} to yield the reduction data file. Structure solution and refinement were performed using CrystalStructure software package^{S8} with PATTY^{S9} and SHELXL^{S10} programs.

The crystals of **6a** was obtained directly from the hexane extract of the crude reaction mixture. Although the crystals were very small and their quality was not very good, recrystallization could not be attained due to the instability of **6a** in solution. Data collection of complex **6a** was performed at -180 °C on a Rigaku XtaLAB P200 diffractometer using multi-layer mirror optics monochromated Mo K α radiation. The determination of crystal class and unit cell parameters was carried out with the CrysAlisPro program package.^{S11} The raw frame data were processed using CrysAlisPro to yield the reduction data file. Structure solution and refinement were performed using Olex2 software package^{S12} with SHELXT and SHELXL programs.^{S10}

CCDC 1991384, 1991385 and 2043453 contain the supplementary crystallographic data for complexes **4**, **5a** and **6a**. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre at www.ccdc.cam.ac.uk/data_request/cif.

7. References:

- S1 G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, *Organometallics*, 2010, 29, 2176-2179.
- S2 S. Shimada, O. Yamazaki, T. Tanaka, Y. Suzuki and M. Tanaka, *J. Organomet. Chem.*, 2004, **689**, 3012-3023.
- S3 S. Shimada, J. Maruyama, Y.-K. Choe and T. Yamashita, *Chem. Commun.*, 2009, 6168-6170.
- S4 T. Yoshida, T. Matsuda, S. Otsuka, G. W. Parshall and W. G. Peet, *Inorg. Synth.*, 1979, **19**, 110-111.
- S5 APEX2 Version 2009.9 ; Bruker AXS Inc., Madison, WI 2009.
- S6 SAINT Version 7.68A; Bruker AXS Inc., Madison, WI 2009.
- S7 G. M. Sheldrick, SADABS. University of Göttingen, Germany, 2007.
- S8 CrystalStructure 4.3: Crystal Structure Analysis Package, Rigaku Corporation (2000-2018). Tokyo 196-8666, Japan.
- S9 P. T. Beurskens, G. Admiraal, H. Behm, G. Beurskens, J. M. M. Smits and C. Smykalla, Z. Kristallogr. 1991, Suppl.4, 99.
- S10 Shelxl Version 2018/3: G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112.
- S11 CrysAlisPro 1.171.40.67a. Rigaku OD, 2019.
- S12 Olex2 1.3: O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339.

8. NMR spectra of complexes 4, 5a and 6a

Fig. S11 ¹H NMR spectrum (499 MHz) of complex 4 in C₆D₆.

Fig. S12 Change of the shape of ¹H NMR (C₆D₆, 400 MHz) signal at 7.72 ppm by the ³¹P and ¹⁹⁵Pt decoupling.

*silicone grease

Fig. S13 ¹H NMR spectrum (600 MHz) of complex 4 in THF- d_8 .

*silicone grease

Fig. S14 ${}^{13}C{}^{1}H$ NMR spectrum (151 MHz) of complex 4 in THF- d_8 .

Fig. S15 A part (0–60 ppm region) of ${}^{13}C{}^{1}H$ NMR spectrum (151 MHz) of complex 4 in THF- d_8 .

Fig. S16 A part (0–60 ppm region) of ${}^{13}C{}^{1}H$ NMR spectrum (151 MHz) with dept 135 spectrum (upper) of complex 4 in THF- d_8 .

Fig. S17 A part (120–170 ppm region) of ${}^{13}C{}^{1}H$ NMR spectrum (151 MHz) of complex 4 in THF- d_8 .

Fig. S18 A part (120–170 ppm region) of ${}^{13}C{}^{1}H$ NMR spectrum (151 MHzd) with dept 135 spectrum (upper) of complex 4 in THF- d_8 .

Fig. S19 ¹³P{¹H} NMR spectrum (243 MHz) of complex 4 in THF- d_8 .

Fig. S20 $^{1}\text{H}-^{1}\text{H}$ COSY NMR spectrum (600 MHz) of complex 4 in THF- d_{8} .

Fig. S21 1 H $^{-13}$ C HSQC NMR spectrum (600 MHz for 1 H, 151 MHz for 13 C) of complex 4 in THF- d_8 .

Fig. S22 $^{1}H^{-13}C$ HMBC NMR spectrum (600 MHz for ^{1}H , 151 MHz for ^{13}C) of complex 4 in THF- d_8 .

Fig. S23 ${}^{1}\text{H}_{-}^{31}\text{P}$ HMBC NMR spectrum (600 MHz for ${}^{1}\text{H}$, 243 MHz for ${}^{31}\text{P}$) of complex 4 in THF- d_8 .

Fig. S24 NOESY NMR spectrum (600 MHz for ¹H) of complex 4 in THF- d_8 .

Fig. S25 ¹H NMR spectrum (499 MHz) of complex 5a in C₆D₆.

Fig. S26 ¹H NMR spectrum (600 MHz) of complex 5a in CD₂Cl₂.

Fig. S27 $^{13}C\{^{1}H\}$ NMR spectrum (151 MHz) of complex 5a in CD₂Cl₂.

Fig. S28 ${}^{13}C{}^{1}H$ NMR spectrum (151 MHz) with dept 135 spectrum (upper) of complex 5a in CD₂Cl₂.

Fig. S29 A part (120–140 ppm region) of ${}^{13}C{}^{1}H$ NMR spectrum (151 MHz) of complex 5a in CD₂Cl₂.

Fig. S30 A part (120–140 ppm region) of ${}^{13}C{}^{1}H$ NMR spectrum (151 MHz) of complex 5a in CD₂Cl₂.

Fig. S31 A part (140–175 ppm region) of ${}^{13}C{}^{1}H$ NMR spectrum (151 MHz) of complex 5a in CD₂Cl₂.

Fig. S32 ${}^{13}P{}^{1}H$ NMR spectrum (162 MHz) of complex 5a in CD₂Cl₂.

Fig. S33 ¹H–¹H COSY NMR spectrum (600 MHz) of complex 5a in CD₂Cl₂.

Fig. S34 1 H $-{}^{13}$ C HSQC NMR spectrum (600 MHz for 1 H, 151 MHz for 13 C) of 5a in CD₂Cl₂.

Fig. S35 ${}^{1}\text{H}-{}^{13}\text{C}$ HMBC NMR spectrum (600 MHz for ${}^{1}\text{H}$, 151 MHz for ${}^{13}\text{C}$) of complex 5a in CD₂Cl₂.

Fig. S36 ${}^{1}H{}^{-31}P$ HMBC NMR spectrum (400 MHz for ${}^{1}H$, 162 MHz for ${}^{31}P$) of complex 5a in CD₂Cl₂.

Fig. S37 NOESY NMR spectrum (600 MHz for ¹H) of complex 5a in CD₂Cl₂.

Fig. S38 ¹H NMR spectrum (600 MHz) of complex 6a in C₆D₆.

Fig. S39 ${}^{13}C{}^{1}H$ NMR spectrum (151 MHz) of complex 6a in C₆D₆.

Fig. S40 A part (5–60 ppm region) of ¹³C {¹H} NMR spectrum (151 MHz) with dept 135 spectrum (lower) of complex **6a** in C₆D₆.

Fig. S41 A part (126–150 ppm region) of ${}^{13}C{}^{1}H$ NMR spectrum (151 MHz) with dept 135 spectrum (lower) of complex 6a in C₆D₆.

Fig. S42 ¹³P{¹H} NMR spectrum (243 MHz) of complex **6a** in C₆D₆. The spectrum was obtained 2 h after the sample preparation and contained weak signals of **5a** and unidetified species.

Fig. S43 ${}^{1}\text{H}-{}^{1}\text{H}$ COSY NMR spectrum (600 MHz) of complex **6a** in C₆D₆.

Fig. S44 ${}^{1}H{-}^{13}C$ HSQC NMR spectrum (600 MHz for ${}^{1}H$, 151 MHz for ${}^{13}C$) of complex 6a in C₆D₆.

Fig. S45 ${}^{1}H^{-13}C$ HMBC NMR spectrum (600 MHz for ${}^{1}H$, 151 MHz for ${}^{13}C$) of complex 6a in C₆D₆.