Supplementary Information

Reactive strategy-based SERS Determination of O₂- Generated from

Sunscreen

Mingcong Shu, Ye Ying*, Haifeng Yang*

School of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China

^{*}Corresponding authors E-mail: ye.jade.ying@hotmail.com (Ye Ying); haifengyang@yahoo.com (Haifeng Yang)

Fig S1. Schematic illustration of CLA reaction with O_2 into dioxetane analog (CLN).

Fig S2. UV-Vis spectra of (a) Au NPs, (b) CLA, (c) CLN, (d) Au NPs and CLA, (e) Au NPs and CLN.

Fig S3. UV-Vis spectra of CLA (a) 0.1 mmol/L, (b) 10 µmol/L, (c) 1 µmol/L.

Fig S4. UV-vis spectra of TiO_2 with Au NPs/CLA under different radiation time (a) 2h, (b) 3h, (c) 4h.

Fig S6. FTIR spectra of (a) CLA, (b) Au NPs + CLA.

Fig S7. Raman spectra of (A) CLA, (B) CLN.

Principle of kit determination O₂⁻⁻ :

 O_2 reacts with hydroxylamine to form nitrite ions (reaction equation: NH₂OH + 2 O_2 + H⁺= NO²⁻ + H₂O₂ + H₂O. NO²⁻ reacts with p-aminobenzene sulfonic acid and α -naphthylamine to produce the pink azo dye, 4-((2-aminonaphthalen-1-yl)diazenyl)benzenesulfonic acid, i.e. PANE, which has significant light absorption at 530 nm.

Fig. S8. (A) UV-Vis spectra of PANE concentration (a) 10 μg/mL, (b) 8.0 μg/mL, (c) 6.0 μg/mL, (d) 4.0 μg/mL, (e) 2.0 μg/mL, (f) 1.0 μg/mL, (B) Standard curve line of O₂·(n=3), (C) UV-Vis Spectrum of PANE concentration under the ultraviolet analyzer for 3 hours, (D) molecular structure of PANE.

Fig. S9. (A) UV-Vis spectrum of PANE, (B) SERS spectrum of Au NPs/CLN. **Relative Error (RE) calculation :**

The concentration was $C_0 = 9.91 \times 10^{-6}$ mol/L by UV calculated. The concentration was $C_1 = 8.93 \times 10^{-6}$ mol/L by SERS calculated.

Computational formula: RE =
$$\frac{|C_1 - C_0|}{C_0} \times 100\%$$

$$RE = \frac{|8.93 - 9.91|}{9.91} \times 100\% = 9.86\%$$

Fig. S10. (A) SERS spectra of (a) Au NPs/CLA+ O_2 , (b) Au NPs/CLA, (c) Au NPs/CLA+NO₂, (d) Au NPs/CLA+H₂O₂, (e) Au NPs/CLA+ONOO, (f) Au NPs/CLA+•OH, (g) Au NPs/CLA+1O₂, (ROS concentration is 1.0 µmol/L), (B) Plot demonstrated the selectivity of the SERS nanosensors based on the band of 802 cm⁻¹.

Fig. S11. SERS spectra of (a) Au NPs/CLN, (b)Au NPs/sunscreen after UV irradiation.

Fig S12. SERS spectra of 1.0 g sunscreen under different UV exposure time: (a) 30 min, (b) 1 h, (c) 2 h.

Method	Linearity range	LOD	Ref
	(mol/L)	(nmol/L)	
Electrochemistry	3.0×10 ⁻⁸ — 2.1×10 ⁻⁷	17.5	1
Fluorescence	2.0×10 ⁻⁵ — 8.0×10 ⁻⁵	70.5	2
Bioluminescent	/	3.5	3
RSS	$5.0 \times 10^{-8} - 5.0 \times 10^{-5}$	9	This work

Table S1. Methods for the determination of superoxide anion radical

References:

1. X. Shen, Q. Wang, Y. Liu, W. Xue, L. Ma, S. Feng, C. Mao. Sci Rep-UK, 2016,

6, 28989.

2. J. Yang, X. L. Liu, H. L. Wang, H. Q. Tan, X. X. Xie, X. Zhang, C. C. Liu, X.

Qu, J. L. Hua. Analyst, 2018, 143, 1242-1249.

3. K. Thandavan, S. Gandhi, S. Sethuraman, J. B. Ravappan, U. K. Krishnan. Sens Actuators B, 2013, **176**, 884-892