Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

A radical mixed-ligand gold bis(dithiolene) complex

Romain Perochon, Frédéric Barrière, Olivier Jeannin, Lidia Piekara-Sady and Marc Fourmigué

Electronic Supplementary Information (ESI)

Experimental section	
(Synthesis, crystallography, Theoretical calculations)	page 2
Figures S1-S8	pages 3-7
Tables S1-S9	pages 8-15
References	page 16

Synthesis of [Au(D-bordt)(OC₄)] (1)

To a solution of $[Au(D-bordt)_2]$ (116 mg, 0.19 mmol) in dry THF (100 mL) is added a solution of $[Au(OC4)_2]$ (189 mg, 0.19 mmol) in THF (100 mL). After refluxing for 3 days, the solvent is evaporated and the residue separated from the starting complexes by preparative thin-layer chromatography. Recrystallization by slow diffusion of MeOH on a concentrated CH₂Cl₂ solution afforded **1** as black crystals (102 mg). Yield 33%. M.p. 109 °C. Elem. Anal. Calcd. for $C_{32}H_{40}AuO_2S_4$: C, 49.16; H, 5.16. Found : C, 49.17; H, 4.86. UV–vis–NIR (CH₂Cl₂): $\lambda_{max} =$ 1347 nm ($\varepsilon = 7$ 130 M⁻¹ cm⁻¹). $[\alpha]_D^{20} = -253^\circ$ (CH₂Cl₂). The paramagnetic nature of the complex does not allow its NMR characterization.

Crystallography

Data collection for **1** was performed on an APEXII Bruker-AXS diffractometer equipped with a CCD camera. Structures were solved by direct methods using either the *SIR97* program,¹ and then refined with full-matrix least-square methods based on F^2 (*SHELXL-97*)² with the aid of the *WINGX* program.³ All non-hydrogen atoms were refined with anisotropic atomic displacement parameters. H atoms were finally included in their calculated positions. Details are given in Table S3. CCDC 2044039.

Theoretical calculations

Theoretical calculations on the radical gold neutral complexes and radical anion nickel complexes (doublet state) were performed with Density Functional Theory using the Gaussian 09 Revision D.01 software⁴ with the B3LYP functional (hybrid Becke-3 parameter exchange functional⁵ and the Lee-Yang-Parr nonlocal correlation functional)⁶ and the LANL2DZ basis set.⁷ GaussView 5.0.9 (Gaussian Inc., Wallingford, CT, USA) was used to generate the figures. The butoxy group in the OC₄ ligand was modeled as a methoxy group. Cartesian coordinates for optimized complexes are reported in Tables S4-S9.

Fig. S1 Cyclic voltammetry of 1 and references complexes.

Fig. S2 UV-vis-NIR absorption of 1 and references complexes (in CH₂Cl₂, 10⁻⁴ M)

Fig. S3 Frontier molecular orbitals in the mixed ligand neutral radical complex **1** calculated by DFT shown with a cut-off of 0.04 [e/bohr³]^{1/2}. The first significant low energy transition as calculated by TD DFT and assigned to a SOMO-1 to LUMO transition is shown in red.

Fig. S4 Solution EPR (in CH₂Cl₂) of 1. In insert: frozen solution spectrum (at 77 K).

Fig. S5 Compared experimental bond distances (in Å) within the metallacycles in $[Au(D-bordt)_2]^*$ (top) and $[Au(OC_4)_2]^*$ (bottom). The butyl chains in $[Au(OC_4)_2]^*$ and all hydrogen atoms have been removed for clarity

Fig. S6 Compared calculated spin densities in the metallacycles

Fig. S7 Face-to-face association of 1 showing the large interplanar distance and strongly shifted overlap.

Fig. S8 Temperature dependence of the χ .T product for 1. The solid line is a fit to the Curie-Weiss model.

Table S1. Comparison of $\Delta E = E_{1/2}(-1/0) - E_{1/2}(-2/-1)$ values for reported mixed-ligand bis(dithiolene) Ni complexes [Ni(dt_{push})(dt_{pull})]^{-2,-1,0} with the push and pull dithiolene ligands and their symmetric precursors. ΔE values were calculated from reported $E_{1/2}$.^{8,9,10}

$ \begin{array}{c} \overset{R}{\underset{N}{\overset{O}}} & \overset{R}{\underset{N}{\overset{O}}} & \overset{R}{\underset{N}{\overset{N}}} \\ \overset{N}{\underset{N}{\overset{O}}} & \overset{R}{\underset{N}{\overset{N}}} \\ \overset{N}{\underset{N}{\overset{O}}} & \overset{R}{\underset{N}{\overset{N}}} \\ \overset{N}{\underset{N}{\overset{O}}} \\ \end{array} $	$ \stackrel{\Theta}{=} \underbrace{ \begin{pmatrix} 0 \\ 0 \\ 0 \\ s \\ 0 \\ s \\ \theta \\ s \\ s$	$ \begin{matrix} s \\ s \end{matrix} \\ s^{\Theta} \\ s^{\Theta} \\ s \end{matrix} \\ s^{s} \end{matrix} $	s^{\ominus} s^{\vee} s^{\vee} s^{\vee}	NC S ^O
$\stackrel{ }{R}_{R_2pipdt}$ $\stackrel{R}{R}_2timd$	t edo	dddt dmit	tdas	mnt
[Ni(push)(pull)]	$\Delta E [Ni(push)_2]$	ΔE [Ni(push)(pull)]	$\Delta E [Ni(pull)_2]$	Ref
[Ni(ⁱ Pr ₂ timdt)(mnt)]	0.50	0.66	0.84	8
[Ni(dmit)(mnt)]	0.425	0.67	0.84	8
[Ni(dddt)(mnt)]	0.75	0.77	0.84	8
[Ni(dmit)(dddt)]	0.425	0.61	0.75	8
[Ni(ⁱ Pr ₂ pipdt)(dmit)]	0.32	0.57	0.425	9
[Ni(Me2pipdt)(mnt)]	0.31	0.44	0.84	9
[Ni(Me2pipdt)(tdas)]	0.31	0.45	0.62	9
[Ni(edo)(dddt)]	0.69	0.73	0.75	10
[Ni(edo)(dmit)]	0.69	0.73	0.56	10
[Ni(edo)(mnt)]	0.69	0.80	0.91	10

Table S2 Averaged, DFT-calculated bond distances (Å) within the NiS₂C₂ metallacycles in the mixed-ligand symmetric nickel complex $[Ni(D-bordt)(OC_4)]^{-1}$ and the two symmetric complexes $[Ni(D-bordt)_2]^{-1}$ and $[Ni(OC_4)_2]^{-1}$.

	D-bordt side			OC ₄ side		
	Ni-S	S-C	C=C	Ni-S	S-C	C=C
$[Ni(D-bordt)_2]^{-1}$	2.302	1.781	1.372	_	_	_
$[Ni(D-bordt)(OC_4)]^{-1}$	2.312	1.770	1.380	2.253	1.822	1.377
$[Ni(OC_4)_2]^{-1}$	-	-	_	2.256	1.814	1.382

Compound	1
Formulae	$C_{32}H_{40}AuO_2S_4$
FW (g.mol ⁻¹)	781.85
System	triclinic
Space group	P1
a (Å)	10.7823(3)
b (Å)	11.0287(3)
c (Å)	15.3429(4)
α (deg)	107.822(4)
β (deg)	91.112(3)
γ (deg)	107.275(3)
V (Å ³)	1646.34(8)
T (K)	100(2)
Crystal size	$0.4 \times 0.3 \times 0.2$
Z	2
D _{calc} (g.cm ⁻¹)	1.577
μ (mm ⁻¹)	4.748
Total refls	21867
Abs corr	multi-scan
T_{min}, T_{max}	0.197, 0.387
Uniq refls (Rint)	13254 (0.0271)
Uniq refls (I > $2\sigma(I)$)	12219
$R_{1,} w R_{2}$	0.0301, 0.0683
$R_{1,} w R_{2}$ (all data)	0.0358, 0.0713
Flack param.	0.078(14)
GOF	1.021

 Table S3 Crystallographic data

Table S4 Cartesian coordinates for optimized neutral doublet [Au(D-bordt)(OC₄)]

Au	1.17738368	0.07582111	-0.07111191
S	3.02595451	-1.62375387	-0.05185260
ç	2 00574767	1 80150210	0.07701882
3	2.90374707	1.69130319	0.07791003
S	-0.64682/31	1.6/8321/8	0.10470363
S	-0.52339611	-1.64364252	-0.36123257
0	-6 86793979	3 83520661	-0.49223882
õ	6 51125520	1 24225768	0.06001500
Ũ	-0.31155559	-4.34223708	0.00991309
C	4.39334774	-0.52076826	0.07535704
С	4.33883766	0.87465221	0.14031900
C	5 76533628	1 36448462	0 36208995
C	6 57620210	0.20217272	0.47095266
C	0.3/039318	0.30317272	-0.4/985500
С	5.86557954	-0.93045645	0.24224309
С	6.16174460	-0.61072081	1.76469846
C	6 10317727	0.95301830	1 84310300
C	0.10517727	0.26040214	0.07205470
C	8.10001272	0.30949214	-0.27293479
C	6.30641568	0.38214568	-2.00048753
С	6.24648937	-2.34097716	-0.20004074
C	-2 14994074	0 64099077	-0.07533330
c	2.14774074	1.4(010(7	0.075555550
C	-3.38366834	1.46212667	-0.139/6938
С	-4.34934497	1.25675494	-1.16447423
С	-5.49087575	2.05627035	-1.25108840
C	-5 69998088	3 09511751	-0 31532030
c	175511170	2.2226(744	0.51552050
C	-4./55444/0	3.32300/44	0.70613010
С	-3.61180101	2.50944030	0.78311837
С	-7.13662107	4.94798339	0.40948120
C	-2 09909279	-0 72142989	-0 18505287
c	2.07707277	1.(20115(2	0.11524216
Č	-3.21212933	-1.02911505	-0.11554210
С	-3.43736975	-2.68541494	-1.05065327
С	-4.51965830	-3.56700862	-0.96449475
C	-5 46976777	-3 41587571	0.06812339
C	5 22264404	2 27740004	1.01200070
Ĉ	-3.52504494	-2.57749004	1.01388070
С	-4.23119655	-1.50139596	0.91680773
С	-7.53221593	-4.24797552	1.10538438
н	5,93957376	2,41717867	0.12856192
и и	5 42526200	1.00206708	2 41580140
п	5.42520200	-1.09290708	2.41360140
Н	7.14937344	-0.99796823	2.04104597
Н	7.06220028	1.38416434	2.15058080
н	5.33906961	1.31289715	2,53915803
ц	8 40450328	1 31057683	0.66433364
11	0.49430320	1.51957085	-0.00433304
Н	8.41937794	0.289/5661	0.//1/5093
Н	8.59987517	-0.43711777	-0.83065552
Н	6.70517566	1.32139425	-2.40679454
н	6 81078716	-0.44130843	-2 52308662
11	5.24142(00	0.22(20140	2.52500002
н	5.24143609	0.33629140	-2.24937735
Н	5.70036369	-3.09790012	0.37698283
Н	6.01794587	-2.50743335	-1.25977316
н	7 31900767	-2 51608770	-0.04758464
11	4.19(22520)	0.47027744	1 00712000
н	-4.18032320	0.4/23//44	-1.89/15089
Н	-6.22768887	1.90705735	-2.03445112
Н	-4.89626237	4.11488216	1.43539276
н	-2 89141170	2 68272532	1 57852287
11	0.00120206	5 27406114	0.06656149
п	-0.00130290	3.37400114	0.00030148
Н	-6.34436171	5.70687743	0.35027395
Н	-7.24137535	4.60250083	1.44737469
н	-2.71575809	-2.80349591	-1 85489874
 Ц	1 65247951	1 37226054	1 68022660
11	-4.03247831	-+.3/220930	-1.00055000
Н	-6.03757342	-2.24857577	1.82121703
Н	-4.11289689	-0.71434428	1.65559628
Н	-8.22864134	-5.06242993	0.89708106
ц.	8 06122661	3 78679167	1 05554029
11	-0.00152001	-3.20020407	1.05554028
Н	-/.09696458	-4.38000334	2.10558893

Table S5 Cartesian coordinates for optimized neutral doublet $[Au(OC_4)_2]$

Au	-0.01603543	-0.02483517	-0.01239909
S	1.77921264	1.64192754	-0.06234781
S	1.74096522	-1.72762925	0.09193494
S	-1.80690731	-1.69667799	-0.02887489
S	-1.77928118	1.67626388	-0.03189171
0	7.95195779	3.80610359	0.95376612
0	-7.99455894	-3.83543429	0.93382174
0	-7.94742576	3.90497925	-0.94400680
C	3.28505476	0.63420958	0.05929223
C	4.51186810	1.45353870	0.24035201
C	4.74423802	2.60477259	-0.54716607
С	5.45506691	1.14058870	1.25747520
С	5.87609318	3.41465872	-0.34992237
С	6.58106285	1.93858653	1.46693060
С	6.79946499	3.07989618	0.66226480
С	8.22895261	5.01971610	0.19566983
С	3.27078789	-0.75131422	0.04665334
С	-3.30551414	0.69402006	-0.06552501
С	-4.52221769	1.52768594	-0.24573420
С	-4.71023622	2.71474718	0.49963644
С	-5.50306111	1.18877883	-1.21780252
С	-6.62258760	1.99642604	-1.42418821
С	-5.83549349	3.53410931	0.30590342
С	-6.79712269	3.17312340	-0.66078108
С	-3.31656162	-0.69008716	0.01112096
С	-4.54506242	-1.50462748	0.19959577
С	-5.51237775	-1.15107518	1.17993302
С	-4.75624882	-2.68958003	-0.54280071
С	-5.89060582	-3.49345513	-0.33749974
C	-6.64080649	-1.94317408	1.39772576
C	-6.83798756	-3.11863450	0.63794821
С	-8.25830739	-5.0/43/932	0.21254802
C	-8.19139864	5.14295757	-0.2141/296
C	0.70428195	-3.208/2839	-0.34102/14
C	3.77801193	-3.30908023	0.02291383
C	4.03333480	1 5073/870	0.75200522
C	5 48380520	-1.31857000	-1.03143508
C	6 61337330	-2 13914624	-1 17535806
õ	7.84243186	-4.14888605	-0.39314930
Č	8.90160754	-3.90831718	-1.36502202
Н	9.15941041	5.41151556	0.61079255
Н	8.36385931	4.79920165	-0.87229395
Н	7.42598201	5.75858445	0.32294777
Н	-7.45987216	-5.80962508	0.38224411
Н	-9.19813095	-5.44995701	0.62144120
Н	-8.37047995	-4.89034932	-0.86482038
Н	-9.13187034	5.52951786	-0.61116205
Н	-8.29375629	4.95484521	0.86347270
Н	-7.38775266	5.87133318	-0.38893891
Н	4.03726051	2.86554231	-1.33042882
н	5.28/621/0	0.27648996	1.89262399
н	0.0233/32/	4.28024317	-0.97955005
H U	2.07446477	1./090498/	2.24844032
п	-5.97440477	2.99493943	1.24000433
н	-7 37042338	1 7/615886	-2 17020048
Н	-5.94943181	4 43223103	0.90428130
Н	-5.36186778	-0.25953244	1.78047106
Н	-4.03104565	-2.98101874	-1.29807872
Н	-6.02187961	-4.39082572	-0.93347093
Н	-7.37795341	-1.68222270	2.15076400
Н	5.91482578	-4.44275145	1.25246569
Н	3.90369277	-2.98364693	1.49986350
Н	5.36541814	-0.45966050	-1.68485018
Н	7.35328602	-1.89646985	-1.93139254
Н	9.38832757	-2.93895126	-1.19028462
Н	8.51426027	-3.94936223	-2.39229890
Н	9.62110407	-4.71459690	-1.21076158

Table S6 Cartesian coordinates for optimized neutral doublet [Au(D-bordt)2]

Au	0.00001486	-0.00003287	-0.10352611
S	1.62911134	-1.84549821	-0.10200039
S	1.83579008	1.64033622	-0.08132541
S	-1.62910079	1.84545379	-0.10200293
S	-1.83582941	-1.64035433	-0.08126038
С	3.12253580	-0.87122759	-0.04559190
С	4.54623447	-1.41757841	-0.10919716
С	5.04153879	-1.08957233	-1.56751848
С	5.13511088	0.47486240	-1.55872114
С	4.70000208	0.87634009	-0.09034203
С	3.20911568	0.49834875	-0.03761181
С	5.30742545	-0.33588278	0.75656215
С	4.89851626	-0.33370461	2.24799049
С	6.84770696	-0.44878588	0.69651884
C	5.07332813	2.29868380	0.32193242
C	-3.12251832	0.87122688	-0.04557029
Č	-4.54619505	1.41760558	-0.10917277
Ċ	-5.04156159	1.08965052	-1.56747461
Č	-5.13497279	-0.47479678	-1.55877487
C	-4 70000989	-0.87631041	-0.09034283
C	-3 20911713	-0.49835914	-0.03755178
C	-5 30743566	0.33587751	0.75654853
C	4 80857520	0.33375817	2 24708300
C	6 84771564	0.33373817	0.60643503
C	5 07245822	2 20862840	0.09043505
U U	-3.07343823	-2.29602649	0.32190912
п	4.00//20/4	-2.4011/435	0.19195577
н	4.33851412	-1.40339880	-2.31/43/8/
н	0.01428084	-1.55640060	-1.75925154
H	0.154/0385	0.824/6/56	-1./5955462
н	4.4/536114	0.93959761	-2.29888651
H	5.24055/68	-1.25/5/305	2.73405182
н	3.816/8140	-0.25845502	2.39222961
Н	5.3/053/35	0.50664312	2.77440056
Н	7.31142842	0.37029253	1.26212834
Н	7.25546290	-0.42474101	-0.31742463
Н	7.17081094	-1.38916009	1.1637/014
Н	4.60867723	3.03916770	-0.34207479
Н	6.16001249	2.44318380	0.26927114
Н	4.74663682	2.52220163	1.34496068
Н	-4.66769872	2.46118520	0.19203097
Н	-4.33866713	1.46559766	-2.31746600
Н	-6.01439096	1.55637023	-1.75902067
Н	-6.15454747	-0.82480378	-1.75981205
Н	-4.47504408	-0.93941651	-2.29886170
Н	-3.81680857	0.25905964	2.39225240
Н	-5.37017973	-0.50685764	2.77432200
Н	-5.24111934	1.25741801	2.73409984
Н	-7.31151494	-0.36960156	1.26280088
Н	-7.25549343	0.42392226	-0.31748287
Н	-7.17069939	1.38974035	1.16282379
Н	-4.60834071	-3.03919900	-0.34166876
Н	-6.16010240	-2.44320375	0.26859316
Н	-4.74738279	-2.52194370	1.34517641

Table S7 Cartesian coordinates for optimized monoanionic doublet [Ni(*D*-bordt)(OC₄)]⁻¹

Ni	1.36409578	0.08898987	-0.08255991
S	3.02102864	-1.52303527	-0.12497410
S	2.88939930	1.81487304	0.11690327
ŝ	-0.28172725	1 62460692	-0.01063634
S	-0 15710774	-1 56573085	-0 25279536
õ	-6 60176675	3 82016663	-0.46680402
Ő	-6 21202280	-/ 3/599015	0.05709666
C	4 45271280	0.40020627	0.02650135
C	4.43271280	0.89404172	0.02039133
C	4.39494740	1 27051092	0.12378003
C	5.61970556	0.22705726	0.30619443
C	5.02272077	0.55795720	-0.46223534
C	5.92572977	-0.90809149	0.20391588
C	0.21000000	-0.02302227	1./3283/31
C	6.15416556	0.94068233	1.8428/618
C	8.1/620332	0.39966815	-0.258/3915
С	6.39/54968	0.44815218	-2.00439045
С	6.30552518	-2.30880671	-0.26806852
С	-1.82266056	0.65575054	-0.10382276
С	-3.06849683	1.47186195	-0.16439081
С	-4.09222645	1.20209969	-1.11203335
С	-5.24622941	1.99191240	-1.18659997
С	-5.40824054	3.08670915	-0.31377876
С	-4.40405476	3.38835226	0.62619171
С	-3.24982174	2.58415035	0.68843267
С	-6.80115598	4.97944999	0.38291462
С	-1.76793676	-0.71830250	-0.17358914
С	-2.94613937	-1.62841023	-0.10449187
С	-3.06329261	-2.74033823	-0.97924287
С	-4.15217165	-3.61892588	-0.90496072
С	-5.15770852	-3.41163599	0.06021324
C	-5.05996263	-2.32653617	0.95308430
Ċ	-3 95974710	-1 45339823	0.86510068
Č	-7.27011815	-4.18020310	1.03604601
Ĥ	5.99702146	2.43776692	0.15545739
н	5 46538052	-1 11614653	2 36028573
н	7 20163086	-1.01510535	2.02130750
н	7.11010929	1 36434237	2.02130730
н	5 37485274	1 281//833	2.177000050
и П	8 57106845	1.26144655	0.63183047
и и	8.37100043	0.20480470	0.78070171
п u	0.4/4J04J4 8 67656115	0.30469479	0.76979171
п	6.07030113	1 20507927	-0.82101303
п	6.00291332	1.39397627	-2.30/09030
п	5.22242154	-0.30633747	-2.55691025
н	5.55542154	0.41003841	-2.25255005
H	5.72260421	-3.06857239	0.26829653
H	6.09/80/18	-2.43940108	-1.33//1549
H	7.37215929	-2.51014933	-0.092/2/16
H	-3.96882884	0.3/085084	-1./9931522
Н	-6.02477193	1.78454097	-1.91553883
H	-4.49982822	4.23258847	1.30288282
Н	-2.46973160	2.82364802	1.40570189
Н	-7.76875774	5.39465878	0.08905418
Н	-6.01428576	5.73230795	0.22789286
Н	-6.82826906	4.69987646	1.44670201
Η	-2.28391605	-2.90913099	-1.71705024
Η	-4.24050509	-4.46688859	-1.57843698
Η	-5.81489272	-2.15182066	1.71433863
Н	-3.88149592	-0.62670881	1.56482685
Н	-7.97088588	-4.99850843	0.85083188
Н	-7.78684491	-3.21704040	0.91155833
Н	-6.88307050	-4.25223724	2.06326418

Table S8 Cartesian coordinates for optimized monoanionic doublet $[Ni(OC_4)_2]^{-1}$

Ni	0 02285425	-0.03451997	-0.03133329
S	-1 58178444	1 55186582	-0.05030468
S	1.501769004	1.55100502	0.05575204
5	1 62712046	1 62020401	-0.05575204
3	1.02/12940	-1.02029401	-0.00949921
5	1.59441800	1.58326068	0.04597535
0	-7.82705333	3.85430619	-0.83286674
0	7.87892789	-3.90534747	-0.81550681
0	7.78929680	3.98397111	0.91661732
С	-3.14009666	0.62251065	-0.09385467
С	-4.36471192	1.45946551	-0.24618398
С	-4.54016346	2.63853614	0.51226152
Ċ	-5 36899120	1 13831975	-1 19841348
č	-5 67222802	3 46113995	0 35494630
C	6 40091261	1.04604005	1 26756580
C	-0.49981301	2 10065295	-1.30730380
C	-0.03770380	5.00642560	-0.38773039
C	-8.01945594	5.08643560	-0.09002245
С	-3.12502346	-0.75889790	-0.057/4131
С	3.17174174	0.68631399	0.05079363
С	4.37869896	1.54199058	0.23475377
С	4.53007087	2.75193082	-0.47890847
С	5.38892927	1.20573998	1.17520637
С	6.50249749	2.02976527	1.37637486
Ĉ	5 64488839	3 59092947	-0 28947332
Č	6 63660180	3 22494166	0.64118351
C	2 18608050	0.60275005	0.04008067
C	3.16006930	-0.09273093	-0.04008907
C	4.41239079	-1.32359319	-0.19924050
C	5.43449657	-1.1/053303	-1.11999063
С	4.57220053	-2./32408/5	0.51/50859
С	5.70538367	-3.55109231	0.34956808
С	6.56648264	-1.97418553	-1.29958378
С	6.70793918	-3.16705303	-0.56200993
С	8.06339686	-5.15782630	-0.10528555
С	7.96853972	5.23600217	0.20433159
С	-6.60623306	-3.31363798	0.32813344
Ċ	-5 59408277	-3 62874788	-0.60051056
Č	-4 47539001	-2 79/99137	-0.72415904
C	4 33/62767	1 62221647	0.06203632
C	5 25570716	-1.02221047	0.00293032
C	-5.555/0/10	-1.33/31323	0.99785855
C	-6.48530611	-2.16545860	1.13534008
0	-7.68975687	-4.21044053	0.37840069
С	-8.75936781	-3.93588932	1.32035493
Н	-3.77378770	2.91670196	1.23039885
Н	-5.24827832	0.25349815	-1.81568749
Н	-5.76573734	4.35744790	0.96118918
Н	-7.26316126	1.70049939	-2.10055786
Н	-8.96786053	5.49706474	-0.44589185
Н	-8.08227907	4.89893843	0.99219424
Н	-7 20974701	5.80457509	-0.28589087
н	3 75908774	3 04032307	-1 18801964
н	5 28667343	0 29520304	1 75749544
и и	7 27150060	1 77185046	2 00808800
и П	5 72102525	1.77103940	2.09898890
п	5.72103525	4.31020641	-0.80271323
H	5.52005215	-0.26221292	-1./04/2201
Н	3.79291378	-3.03521078	1.2113/92/
Н	5.78684262	-4.46922755	0.92399469
Н	7.34428255	-1.70251034	-2.00768828
Н	7.25890260	-5.87211763	-0.33405257
Н	9.01827847	-5.55571705	-0.45821175
Н	8.10924784	-5.00083499	0.98254500
Н	8.91027826	5.64989663	0.57379559
Н	8.03780124	5.07496413	-0.88166538
Н	7.14910970	5,93909930	0.41412791
Н	-5.70137732	-4.52334958	-1 20740517
н	-3 60180150	-3 0/601604	-1 43373680
н	-5 26027071	_0.46008810	1 63163016
11 TT	-5.2005/9/1	1 00000700	1.03103910
п	-/.24489624	-1.90808/23	1.80//9122
Н	-9.24161233	-2.9696/631	1.1110/90/
Н	-8.39303105	-3.94038940	2.35752524
Н	-9.48296283	-4.74373774	1.18433748

Table S9 Cartesian coordinates for optimized monoanionic doublet [Ni(D-bordt)2]-1

Ni	0.00000868	-0.00000689	-0.13342301
S	1.47871325	-1.76392878	-0.13280025
ŝ	1.68207851	1.57158938	-0.11843864
ŝ	-1.47869463	1.76389775	-0.13277030
S	-1.68209555	-1.57158558	-0.11838458
C	3.01591884	-0.87055817	-0.06485541
C	4.44194097	-1.41620106	-0.12574421
C	4.94801807	-1.08975602	-1.58114186
С	5.04363564	0.47689136	-1.57028065
С	4.59588244	0.87320747	-0.10477521
С	3.10334634	0.49836069	-0.05622317
С	5.20598055	-0.33728758	0.73815158
С	4.79466317	-0.33763191	2.22891365
С	6.74885876	-0.44914892	0.68369058
С	4.96701673	2.29471993	0.31158686
С	-3.01591384	0.87055684	-0.06479953
С	-4.44191350	1.41622676	-0.12560398
С	-4.94806897	1.08995884	-1.58099526
С	-5.04348390	-0.47670020	-1.57037310
С	-4.59587987	-0.87318122	-0.10484462
С	-3.10334005	-0.49836564	-0.05614898
С	-5.20599993	0.33719854	0.73818298
С	-4.79471242	0.33741423	2.22894969
С	-6.74887469	0.44913391	0.68368419
С	-4.96708241	-2.29474663	0.31127777
Н	4.56465201	-2.46084962	0.17611456
Н	4.23701616	-1.46018479	-2.32674759
Н	5.92208075	-1.55669829	-1.78200738
Н	6.06552774	0.82593171	-1.77682673
Н	4.37753715	0.94069225	-2.30583699
Н	5.13248079	-1.26473954	2.71539118
Н	3.71156028	-0.26250277	2.35528882
Н	5.26302931	0.50383814	2.76023802
Н	7.21175810	0.37659848	1.24302490
Н	7.15448482	-0.43148945	-0.33203195
Н	7.07324130	-1.38746095	1.15742131
Н	4.46348772	3.02884265	-0.33080454
Н	6.05150459	2.46113645	0.23529428
Н	4.65422604	2.50164808	1.34291675
Н	-4.56463590	2.46082804	0.17641062
Н	-4.23719583	1.46058898	-2.32662011
Н	-5.92222220	1.55679784	-1.78167141
Н	-6.06529813	-0.82583543	-1.77711748
Н	-4.37721416	-0.94030752	-2.30589926
Н	-3.71157256	0.26285909	2.35531807
Н	-5.26258373	-0.50445470	2.76006972
Н	-5.13308728	1.26420166	2.71565673
Н	-7.21181525	-0.37615042	1.24365787
Н	-7.15453896	0.43071739	-0.33200898
Н	-7.07316927	1.38782712	1.15671844
Н	-4.46338441	-3.02878202	-0.33107562
Н	-6.05154931	-2.46117230	0.23470609
Н	-4.65453965	-2.50179874	1.34265741

References

- ¹ A. Altomare, M. C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori and R. Spagna, *J. Appl. Cryst.*, 1999, **32**, 115–119.
- ² G. M. Sheldrick, Acta Crystallogr., 2008, A64, 112–122.
- ³ L. J. Farrugia, J. Appl. Cryst., 2012, 45, 849–854.
- ⁴ Gaussian 09, Revision A.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- ⁵ (a) A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098. (b) A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 1372. (c)
 A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 5648.
- ⁶ C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785.
- ⁷ (a) W. R. Wadt, P. J. Hay, *J. Chem. Phys.*, 1985, **82**, 284. (b) P. J. Hay, W. R. Wadt, *J. Chem. Phys.*, 1985, **82**, 299.
- ⁸ P. Deplano, L. Pilia, D. Espa, M. L. Mercuri and A. Serpe, *Coord. Chem. Rev.*, 2010, **254**, 1434–1447.
- ⁹ B. Mogesa, E. Perera, H. M. Rhoda, J. K. Gibson, J. Oomens, G. Berden, M. J. van Stipdonk, V. N. Nemykin and P. Basu, *Inorg. Chem.*, 2015, **54**, 7703–7716.
- ¹⁰ E. Watanabe, M. Fujiwara, J.-I. Yamaura and R. Kato, *J. Mater. Chem.*, 2001, **11**, 2131–2141.