Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Deaminative metal-free reaction of alkenylboronic acids, sodium metabisulfite and Katritzky salts

Tonghao Zhu, Jia Shen, Yuyuan Sun and Jie Wu*

*E-mail: jie_wu@fudan.edu.cn

Table of Contents

1.	General Information	S2
2.	General procedures for the synthesis of (E)-alkylsulfonyl olefins	S3
3.	Optimization of reaction conditions	S4
4.	Mechanistic studies	S5-S6
5.	References	S6
6.	Characterization data for all products	S7-S15
7.	¹ H, ¹⁹ F and ¹³ C NMR spectra of all products	S16-S43

General information.

All reactions were carried out in oven dried Schlenk tubes under nitrogen atmosphere. Substitutional alkenylboronic acids and Katritzky salts were prepared according to the reported method.¹ Styrylboronic acid was purchased from bidepharm. Dry 1-Methyl-2-pyrrolidinone (NMP) and *N*,*N*-diisopropylethylamine (DIPEA) were purchased from Energy Chemical. ¹H, ¹⁹F, ¹³C NMR spectra were recorded in CDCl₃ on Bruker Avance 400 MHz spectrometers. High resolution mass spectra (HRMS) were obtained using a commercial apparatus (ESI Source). Electrospray–ionisation HRMS data were acquired on a Q–Tof mass spectrometer (Waters SYNAPT G2-Si) LC-MS TOF. NMR spectra were taken using TMS (¹H, δ = 0), CDCl₃(¹H, δ = 7.26), CDCl₃(¹³C, CPD δ = 77.0) as the internal standards, respectively. Column chromatography was generally performed on silica gel (300-400 mesh) and reactions were monitored by thin layer chromatography (TLC) using UV light to visualize the course of the reactions.

Alkenylboronic acid **1** (0.3 mmol, 1.0 equiv), sodium metabisulfite (0.45 mmol, 1.5 equiv), and Katritzky salt **2** (0.36 mmol, 1.2 equiv) were added sequentially into Schlenk tube under nitrogen. Then NMP (1.5 mL) and DIPEA (0.45 mmol, 1.5 equiv) were added rapidly by syringe. The resulting mixture was allowed to stir at 80 °C oil bath for 12 hours as monitored by TLC. Upon completion, the mixture cooled to room temperature. Then, water (15 mL) was added, and the mixture was extracted with CH_2Cl_2 (3 × 10 mL). The organic phases were collected, washed with saturated brine solution and dried over anhydrous Na_2SO_4 . Then, the filtrate was concentrated under vacuum and the residue was purified by flash column chromatography using *n*-hexane/ethyl acetate as eluent to afford pure product **3**.

Alkenylboronic acid **1** (0.3 mmol, 1.0 equiv), sodium metabisulfite (0.45 mmol, 1.5 equiv), *N*-hydroxyphthalimide ester **4** (0.36 mmol, 1.2 equiv) and sodium formate (0.45 mmol, 1.5 equiv) were added sequentially into Schlenk tube under nitrogen. Then MeCN (1.5 mL) and DIPEA (0.3 mmol, 1.0 equiv) were added rapidly by syringe. The resulting mixture was allowed to stir at 80 °C oil bath for 12 hours as monitored by TLC. Upon completion, the mixture cooled to room temperature. Water (15 mL) was added, and the mixture was extracted with CH_2Cl_2 (3 × 10 mL). The organic phases were collected, washed with saturated brine solution and dried over anhydrous Na₂SO₄. The filtrate was concentrated under vacuum and the residue was purified by

flash column chromatography using *n*-hexane/ethyl acetate as eluent to afford pure product **3**.

Ph B(OH) ₂	Ph 2a	Base (2.0 equiv)	0 0
1a	+ +		S Cu
DABCO·(<mark>SO₂)</mark> 2	Ph´ N´ Ph └ Cy BF ₄	Cy = cyclohexyl	3aa
Entry	Base	Solvent	NMR Yield (%)
1	DBU	DMF	trace
2	DIPEA	DMF	32
3	Et₃N	DMF	20
4	DABCO	DMF	15
5	DMAP	DMF	23
6	TMEDA	DMF	9
7	Li ₂ CO ₃	DMF	12
8	Na ₂ CO ₃	DMF	24
9	K_2CO_3	DMF	17
10	Cs ₂ CO ₃	DMF	9
11	Na ₃ PO ₄	DMF	trace
12	Na ₂ HPO ₄	DMF	trace
13	NaHCO3	DMF	4
14	NaOAc	DMF	11
15	DIPEA	DMA	27
16	DIPEA	NMP	38
17	DIPEA	DMSO	17
18	DIPEA	t-BuOH	9
19	DIPEA	Toluene	13
20	DIPEA	1,4-dioxane	24
21	DIPEA	EA	23
22	DIPEA	Actone	26
23	DIPEA	DCE	trace
24	DIPEA	MeCN	13

Table S1. Optimization of reaction conditions ^a

^{*a*} Reaction condition: alkenylboronic acid **1a** (0.2 mmol, 1.0 equiv), DABCO·(SO₂)₂ (0.3 mmol, 1.5 equiv), 1-cyclohexyl-2,4,6-triphenyl-pyridin-1-ium tetrafluoroborate **2a** (0.3 mmol, 1.5 equiv), base (0.4 mmol, 2.0 equiv), solvent (1.0 mL), N₂, 80 °C, 12 h. ^{*b*} ¹H NMR yield using 1,3,5-trimethoxybenzene as internal standard.

Mechanistic studies

Ph Bpin + Na₂S₂O₅ + Ph 2a
$$H = \frac{1}{2}$$
 $H = \frac{1}{2}$ $H = \frac{1}{2$

4,4,5,5-Tetramethyl-2-styryl-1,3,2-dioxaborolane **1a'** (0.2 mmol, 1.0 equiv), sodium metabisulfite (0.3 mmol, 1.5 equiv), and Katritzky salt **2** (0.24 mmol, 1.2 equiv) were added sequentially into Schlenk tube under nitrogen. Then NMP (1.0 mL) and DIPEA (0.3 mmol, 1.5 equiv) were added rapidly by syringe. The resulting mixture was allowed to stir at 80 °C oil bath for 12 hours as monitored by TLC. Upon completion, the mixture cooled to room temperature. Then, water (10 mL) was added, and the mixture was extracted with CH_2Cl_2 (3 × 10 mL). The organic phases were collected, washed with saturated NaCl solution and dried over anhydrous Na₂SO₄. Then, the filtrate was concentrated and the crude was determined by NMR analysis using 1,3,5-trimethoxybenzene as the internal standard.

Ph + Na₂S₂O₅ + Ph 2a
+ Ph Ph
$$H$$
 Ph H DIPEA (1.5 equiv)
- MeCN, 80 °C Ph S Cy
- S Cy

Sodium metabisulfite (0.3 mmol, 1.5 equiv) and Katritzky salt **2** (0.24 mmol, 1.2 equiv) were added sequentially into Schlenk tube under nitrogen. Then styrene (0.2 mmol, 1.0 equiv), NMP (1.0 mL) and DIPEA (0.3 mmol, 1.5 equiv) were added rapidly by syringe. The resulting mixture was allowed to stir at 80 °C oil bath for 12 hours as monitored by TLC. Upon completion, the mixture cooled to room temperature. Then, water (10 mL) was added, and the mixture was extracted with CH_2Cl_2 (3 × 10 mL). The organic phases were collected, washed with saturated NaCl solution and dried over anhydrous Na₂SO₄. Then, the filtrate was concentrated and the crude was determined by NMR analysis using 1,3,5-trimethoxybenzene as the internal standard.

Styrylboronic acid **1a** (0.2 mmol, 1.0 equiv), sodium metabisulfite (0.3 mmol, 1.5 equiv), Katritzky salt **2** (0.24 mmol, 1.2 equiv) and 2,2,6,6-Tetramethylpiperidinooxy (TEMPO) (0.4 mmol, 2.0 equiv) were added sequentially into Schlenk tube under nitrogen. Then NMP (1.0 mL) and DIPEA (0.3 mmol, 1.5 equiv) were added rapidly by syringe. The resulting mixture was allowed to stir at 80 °C oil bath for 12 hours as monitored by TLC. Upon completion, the mixture cooled to room temperature. Then, water (10 mL) was added, and the mixture was extracted with CH_2Cl_2 (3 × 10 mL). The organic phases were collected, washed with saturated NaCl solution and dried over anhydrous Na_2SO_4 . Then, the filtrate was concentrated and the crude was determined by NMR analysis using 1,3,5-trimethoxybenzene as the internal standard.

References

1. J. Hu, B. Cheng, X. Yang and T. P. Loh, *Adv. Synth. Catal.*, 2019, **361**, 4902

Characterization data for compounds

(*E*)-(2-(cyclohexylsulfonyl)vinyl)benzene (**3aa**): 54.3 mg, yield = 72%, colorless oil. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.60 – 7.49 (m, 3H), 7.48 – 7.38 (m, 3H), 6.78 (d, *J* = 15.5 Hz, 1H), 2.88 (tt, *J* = 12.2, 3.5 Hz, 1H), 2.28 – 2.16 (m, 2H), 1.91 (dt, *J* = 12.5, 3.2 Hz, 2H), 1.78 – 1.67 (m, 2H), 1.50 (qd, *J* = 12.5, 3.4 Hz, 2H), 1.39 – 1.12 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 145.5, 132.4, 131.2, 129.1, 128.5, 122.7, 62.6, 25.4, 25.1. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₁₄H₁₈NaO₂S⁺ 273.0920, found 273.0932.

(*E*)-1-(2-(cyclohexylsulfonyl)vinyl)-4-methylbenzene (**3ba**): 58.0 mg, yield = 73%, white solid. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.52 (d, *J* = 15.5 Hz, 1H), 7.42 (d, *J* = 7.8 Hz, 2H), 7.23 (d, *J* = 7.7 Hz, 2H), 6.71 (d, *J* = 15.5 Hz, 1H), 2.86 (tt, *J* = 12.2, 3.5 Hz, 1H), 2.39 (s, 3H), 2.28 – 2.16 (m, 2H), 1.96 – 1.85 (m, 2H), 1.78 – 1.66 (m, 1H), 1.58 - 1.42 (m, 2H), 1.39 – 1.11 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 145.5, 141.8, 129.8, 129.6, 128.5, 121.5, 62.6, 25.4, 25.1, 21.5. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₁₅H₂₀NaO₂S⁺ 287.1076, found 287.1083.

(*E*)-1-(2-(cyclohexylsulfonyl)vinyl)-4-fluorobenzene (**3ca**): 64.1 mg, yield = 80%, light yellow solid. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.62 – 7.46 (m, 3H), 7.12 (t, *J* = 8.4 Hz, 2H), 6.71 (d, *J* = 15.5 Hz, 1H), 2.87 (tt, *J* = 12.2, 3.5 Hz, 1H), 2.28 – 2.16 (m, 2H), 2.00 – 1.87 (m, 2H), 1.80 – 1.64 (m, 1H), 1.50 (qd, *J* = 12.5, 3.4 Hz, 2H), 1.39 – 1.12 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 164.35 (d, *J* = 251.0 Hz), 144.2, 130.54 (d, *J* = 8.0 Hz), 128.66 (d, *J* = 3.0 Hz), 122.54 (d, *J* = 3.0 Hz), 116.32 (d, *J* = 22.0 Hz), 62.6, 25.4, 25.1. ¹⁹F

NMR (376 MHz, CDCl₃) δ ppm -107.62 – -107.82 (m). HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₁₄H₁₇FNaO₂S⁺ 291.0825, found 291.0834.

(*E*)-1-(2-(cyclohexylsulfonyl)vinyl)-2-fluorobenzene (**3da**): 48.2 mg, yield = 60%, white solid. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.62 (d, *J* = 15.7 Hz, 1H), 7.50 (td, *J* = 7.6, 1.7 Hz, 1H), 7.46 – 7.38 (m, 1H), 7.21 (td, *J* = 7.6, 1.2 Hz, 1H), 7.18 – 7.10 (m, 1H), 6.94 (d, *J* = 15.7 Hz, 1H), 2.88 (tt, *J* = 12.2, 3.5 Hz, 1H), 2.28 – 2.17 (m, 2H), 1.97 – 1.87 (m, 2H), 1.77 – 1.68 (m, 1H), 1.51 (qd, *J* = 12.4, 3.1 Hz, 2H), 1.39 – 1.12 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 161.51 (d, *J* = 254.0 Hz), 138.61 (d, *J* = 2.0 Hz), 132.72 (d, *J* = 9.0 Hz), 130.46 (d, *J* = 3.0 Hz), 125.96 (d, *J* = 9.0 Hz), 124.69 (d, *J* = 4.0 Hz), 120.61 (d, *J* = 11.0 Hz), 116.41 (d, *J* = 21.0 Hz), 62.5, 25.4, 25.1. ¹⁹F NMR (376 MHz, CDCl₃) δ ppm - 112.28 – -112.45 (m). HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₁₄H₁₇FNaO₂S⁺ 291.0825, found 291.0836.

(*E*)-1-chloro-4-(2-(cyclohexylsulfonyl)vinyl)benzene (**3ea**): 52.4 mg, yield = 61%, white solid. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.51 (d, *J* = 15.6 Hz, 1H), 7.46 (d, *J* = 8.5 Hz, 2H), 7.40 (d, *J* = 8.6 Hz, 2H), 6.76 (d, *J* = 15.5 Hz, 1H), 2.88 (tt, *J* = 12.2, 3.5 Hz, 1H), 2.26 – 2.16 (m, 2H), 1.98 – 1.88 (m, 2H), 1.76 – 1.68 (m, 1H), 1.50 (qd, *J* = 12.5, 3.4 Hz, 2H), 1.37 – 1.13 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 144.0, 137.3, 130.9, 129.7, 129.4, 123.5, 62.6, 25.4, 25.1. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₁₄H₁₇ClNaO₂S⁺ 307.0530, found 307.0545.

(*E*)-1-chloro-2-(2-(cyclohexylsulfonyl)vinyl)benzene (**3fa**): 48.2 mg, yield = 56%, white solid. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.95 (d, *J* = 15.6 Hz, 1H), 7.58 (dd, *J* = 7.7, 1.8

Hz, 1H), 7.46 (dd, J = 7.9, 1.4 Hz, 1H), 7.37 (td, J = 7.6, 1.8 Hz, 1H), 7.32 (td, J = 7.5, 1.4 Hz, 1H), 6.82 (d, J = 15.6 Hz, 1H), 2.89 (tt, J = 12.2, 3.5 Hz, 1H), 2.28 – 2.18 (m, 2H), 1.98 – 1.87 (m, 2H), 1.77 – 1.68 (m, 1H), 1.52 (qd, J = 12.5, 3.5 Hz, 2H), 1.38 – 1.14 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 141.7, 135.2, 131.9, 130.9, 130.4, 128.4, 127.2, 125.9, 62.6, 25.4, 25.1. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₄H₁₇ClNaO₂S⁺ 307.0530, found 307.0542.

(*E*)-1-bromo-3-(2-(cyclohexylsulfonyl)vinyl)benzene (**3ga**): 46.7 mg, yield = 47%, colorless oil. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.67 (t, *J* = 1.8 Hz, 1H), 7.59 – 7.54 (m, 1H), 7.49 (d, *J* = 15.5 Hz, 1H), 7.44 (d, *J* = 7.8 Hz, 1H), 7.30 (t, *J* = 7.9 Hz, 1H), 6.79 (d, *J* = 15.5 Hz, 1H), 2.88 (tt, *J* = 12.2, 3.5 Hz, 1H), 2.26 - 2.16 (m, 2H), 1.97 – 1.87 (m, 2H), 1.73 (m, 1H), 1.50 (qd, *J* = 12.5, 3.4 Hz, 2H), 1.38 – 1.13 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 143.8, 134.4, 134.0, 131.0, 130.6, 127.2, 124.5, 123.2, 62.6, 25.4, 25.1. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₁₄H₁₇Br⁷⁹NaO₂S⁺ 351.0025, found 351.0030, calcd for C₁₄H₁₇Br⁸¹NaO₂S⁺ 353.0004, found 353.0012.

(*E*)-1-(2-(cyclohexylsulfonyl)vinyl)-4-(trifluoromethyl)benzene (**3ha**): 81.0 mg, yield = 85%, white solid. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.79 – 7.52 (m, 5H), 6.89 (d, *J* = 15.5 Hz, 1H), 2.91 (t, *J* = 12.0 Hz, 1H), 2.33 – 2.13 (m, 2H), 2.01 – 1.86 (m, 2H), 1.81 – 1.69 (m, 1H), 1.51 (q, *J* = 11.5 Hz, 2H), 1.40 – 1.06 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 143.5, 135.7, 132.56 (q, *J* = 32.7 Hz), 128.7, 126.0 (q, *J* = 4.0 Hz), 125.7, 123.53 (q, *J* = 270.7 Hz), 62.5, 25.3, 25.0. ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -63.01. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₁₅H₁₇F₃NaO₂S⁺ 341.0794, found 341.0803.

(*E*)-4-(2-(cyclohexylsulfonyl)vinyl)benzonitrile (**3ia**): 30.8 mg, yield = 37%, light yellow sliod. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.73 (d, *J* = 8.4 Hz, 2H), 7.63 (d, *J* = 8.3 Hz, 2H), 7.57 (d, *J* = 15.6 Hz, 1H), 6.90 (d, *J* = 15.5 Hz, 1H), 2.91 (tt, *J* = 12.2, 3.5 Hz, 1H), 2.26 – 2.16 (m, 2H), 1.98 – 1.88 (m, 2H), 1.78 – 1.70 (m, 1H), 1.51 (qd, *J* = 12.5, 3.4 Hz, 2H), 1.27 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 143.0, 136.6, 132.8, 128.9, 126.7, 118.0, 114.4, 62.5, 25.3, 25.0. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for : C₁₅H₁₇NNaO₂S⁺ 298.0872, found 298.0886.

methyl (*E*)-4-(2-(cyclohexylsulfonyl)vinyl)benzoate (**3**ja): 37.9 mg, yield = 41%, white solid. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.09 (d, *J* = 8.0 Hz, 2H), 7.67 – 7.53 (m, 3H), 6.89 (d, *J* = 15.6 Hz, 1H), 3.94 (s, 3H), 2.90 (tt, *J* = 12.2, 3.5 Hz, 1H), 2.28 – 2.16 (m, 2H), 1.98 – 1.88 (m, 2H), 1.78 – 1.68 (m, 1H), 1.51 (qd, *J* = 12.5, 3.4 Hz, 2H), 1.38 – 1.13 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 166.1, 144.0, 136.4, 132.2, 130.2, 128.3, 125.4, 62.5, 52.3, 25.3, 25.0. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for : C₁₆H₂₀NaO₄S⁺ 331.0975, found 331.0986.

(*E*)-1-(2-(cyclohexylsulfonyl)vinyl)-4-methoxybenzene (**3ka**): 54.9 mg, yield = 65%, yellow solid. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.66 – 7.34 (m, 3H), 6.93 (d, *J* = 8.3 Hz, 2H), 6.62 (d, *J* = 15.5 Hz, 1H), 3.85 (s, 3H), 2.85 (tt, *J* = 12.3, 3.5 Hz, 1H), 2.32 – 2.12 (m, 2H), 2.00 – 1.84 (m, 2H), 1.77 – 1.65 (m, 1H), 1.49 (q, *J* = 12.2 Hz, 2H), 1.38 – 1.13 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 162.0, 145.1, 130.2, 125.0, 119.8, 114.4, 62.6, 55.4, 25.4, 25.0. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for : C₁₅H₂₀NaO₃S⁺ 303.1025, found 303.1042.

(*E*)-4-(2-(cyclohexylsulfonyl)vinyl)phenyl acetate (**3**Ia): 64.7 mg, yield = 70%, light yellow solid. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.53 (d, *J* = 15.5 Hz, 1H), 7.48 – 7.35 (m, 2H), 7.18 (d, *J* = 7.8 Hz, 1H), 6.78 (d, *J* = 15.5 Hz, 1H), 2.87 (tt, *J* = 12.3, 3.4 Hz, 1H), 2.33 (s, 3H), 2.25 – 2.15 (m, 2H), 1.96 – 1.86 (m, 2H), 1.77 – 1.67 (m, 1H), 1.49 (q, *J* = 11.7, 11.2 Hz, 2H), 1.37 – 1.15 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 169.1, 151.0, 144.3, 133.8, 130.0, 126.1, 124.3, 124.0, 121.2, 62.5, 25.3, 25.0, 21.0. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for : C₁₆H₂₀Na₀4S⁺ 331.0975, found 331.0988.

(*E*)-2-(2-(cyclohexylsulfonyl)vinyl)naphthalene (**3ma**): 68.3 mg, yield = 76%, light yellow solid. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.02 – 7.79 (m, 4H), 7.71 (d, *J* = 15.5 Hz, 1H), 7.65 – 7.46 (m, 3H), 6.88 (d, *J* = 15.5 Hz, 1H), 2.91 (t, *J* = 12.0 Hz, 1H), 2.34 – 2.17 (m, 2H), 2.02 – 1.84 (m, 2H), 1.78 – 1.67 (m, 1H), 1.53 (q, *J* = 11.7 Hz, 2H), 1.25 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 145.6, 134.5, 133.1, 130.8, 129.8, 128.9, 128.6, 127.8, 127.0, 123.3, 122.8, 62.6, 25.4, 25.1. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for : C₁₈H₂₀NaO₂S⁺ 323.1076, found 323.1086.

(*E*)-2-(2-(cyclohexylsulfonyl)vinyl)thiophene (**3na**): 32.3 mg, yield = 42%, light yellow solid. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.66 (d, *J* = 15.2 Hz, 1H), 7.47 (d, *J* = 5.1 Hz, 1H), 7.32 (d, *J* = 3.6 Hz, 1H), 7.09 (dd, *J* = 5.1, 3.7 Hz, 1H), 6.55 (d, *J* = 15.2 Hz, 1H), 2.86 (tt, *J* = 12.2, 3.4 Hz, 1H), 2.28 – 2.15 (m, 2H), 1.92 (dt, *J* = 12.7, 3.1 Hz, 2H), 1.76 – 1.69 (m, 1H), 1.49 (qd, *J* = 12.5, 3.4 Hz, 2H), 1.36 – 1.13 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 138.0, 137.0, 132.4, 129.9, 128.4, 120.9, 62.8, 25.5, 25.1. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for : C₁₂H₁₆NaO₂S₂⁺ 279.0484, found 279.0494.

(*E*)-(2-(cyclobutylsulfonyl)vinyl)benzene (**3ab**): 24.2 mg, yield = 36%, light yellow solid. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.60 (d, *J* = 15.5 Hz, 1H), 7.54 – 7.48 (m, 2H), 7.48 – 7.38 (m, 3H), 6.76 (d, *J* = 15.5 Hz, 1H), 3.79 (quint, *J* = 8.0 Hz, 1H), 2.65 – 2.51 (m, 2H), 2.38 – 2.26 (m, 2H), 2.11 – 2.00 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 145.1, 132.4, 131.3, 129.1, 128.5, 123.0, 55.7, 22.5, 17.1. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for : C₁₂H₁₄NaO₂S⁺ 245.0607, found 245.0619.

(*E*)-2-(styrylsulfonyl)-2,3-dihydro-1H-indene (**3ac**): 57.8 mg, yield = 68%, light yellow solid. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.61 (d, *J* = 15.5 Hz, 1H), 7.48 – 7.34 (m, 5H), 7.24 – 7.13 (m, 4H), 6.67 (d, *J* = 15.5 Hz, 1H), 3.97 (quint, *J* = 7.1 Hz, 1H), 3.51 (dd, *J* = 16.9, 6.6 Hz, 2H), 3.38 (dd, *J* = 17.0, 8.9 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 145.5, 139.7, 132.3, 131.3, 129.0, 128.5, 127.2, 124.5, 122.7, 62.6, 33.8. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for : C₁₇H₁₆NaO₂S⁺ 307.0763, found 307.0772.

(*E*)-(2-(cyclopent-3-en-1-ylsulfonyl)vinyl)benzene (**3ad**): 30.5 mg, yield = 43%, light yellow solid. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.62 (d, *J* = 15.5 Hz, 1H), 7.55 – 7.39 (m, 5H), 6.76 (d, *J* = 15.5 Hz, 1H), 5.70 (s, 2H), 3.88 – 3.72 (m, 1H), 3.01 – 2.74 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 145.2, 132.4, 131.3, 129.1, 128.51, 128.47, 122.6, 60.9, 34.0. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for : C₁₃H₁₄NaO₂S⁺ 257.0607, found 257.0621.

(*E*)-(2-((4,4-difluorocyclohexyl)sulfonyl)vinyl)benzene (**3ae**): 36.4 mg, yield = 42%, light yellow solid. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.70 – 7.39 (m, 6H), 6.77 (d, *J* = 15.5 Hz, 1H), 2.95 (t, *J* = 11.2 Hz, 1H), 2.40 – 2.20 (m, 4H), 2.02 – 1.70 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 146.6, 132.0, 131.6, 129.2, 128.6, 122.0, 59.9, 32.23 (t, *J* = 25.0 Hz), 22.3, 22.2. ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -94.22 (d, *J* = 240.3 Hz), -101.84 (dt, *J* = 240.4, 30.7 Hz). HRMS (ESI) *m/z*: [M+Na]⁺ calcd for : C₁₄H₁₆F₂NaO₂S⁺ 309.0731, found 309.0745.

(*E*)-3-(styrylsulfonyl)tetrahydrofuran (**3af**): 56.0 mg, yield = 78%, yellow solid. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.63 (d, *J* = 15.4 Hz, 1H), 7.57 – 7.38 (m, 5H), 6.80 (d, *J* = 15.5 Hz, 1H), 4.32 – 4.20 (m, 1H), 4.10 – 3.91 (m, 2H), 3.89 – 3.70 (m, 2H), 2.46 – 2.24 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 145.9, 132.1, 131.5, 129.2, 128.6, 122.8, 68.3, 67.6, 62.9, 27.5. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for : C₁₂H₁₄NaO₃S⁺ 261.0556, found 261.0566.

(*E*)-4-(styrylsulfonyl)tetrahydro-2*H*-pyran (**3ag**): 61.2 mg, yield = 81%, yellow solid. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.59 (d, *J* = 15.5 Hz, 1H), 7.55 – 7.48 (m, 2H), 7.49 – 7.40 (m, 3H), 6.78 (d, *J* = 15.5 Hz, 1H), 4.10 (dd, *J* = 11.3, 4.0 Hz, 2H), 3.39 (td, *J* = 11.9, 2.1 Hz, 2H), 3.13 (tt, *J* = 12.1, 3.9 Hz, 1H), 2.09 – 2.01 (m, 2H), 1.88 (qd, *J* = 12.5, 4.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 146.5, 132.0, 131.4, 129.1, 128.5, 121.9, 66.4, 59.5, 25.4. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for : C₁₃H₁₆NaO₃S⁺ 275.0712, found 275.0723.

tert-butyl (*E*)-4-(styrylsulfonyl)piperidine-1-carboxylate (**3ah**): 86.2 mg, yield = 82%, white solid. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.58 (d, *J* = 15.5 Hz, 1H), 7.55 – 7.50 (m, 2H), 7.49 – 7.40 (m, 3H), 6.78 (d, *J* = 15.5 Hz, 1H), 4.28 (br, 2H), 3.03 (tq, *J* = 10.4, 3.4 Hz, 1H), 2.73 (t, *J* = 13.5 Hz, 2H), 2.19 – 2.08 (m, 2H), 1.70 (qd, *J* = 12.5, 4.6 Hz, 2H), 1.45 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 154.2, 146.4, 132.0, 131.4, 129.1, 128.5, 122.0, 80.0, 60.6, 42.5, 28.2, 24.8. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for : C₁₈H₂₅NNaO₄S⁺ 374.1397, found 374.1410.

(*E*)-(2-(heptan-2-ylsulfonyl)vinyl)benzene (**3ai**): 61.9 mg, yield = 77%, light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.58 (d, *J* = 15.6 Hz, 1H), 7.55 – 7.49 (m, 2H), 7.48 – 7.39 (m, 3H), 6.78 (d, *J* = 15.6 Hz, 1H), 3.03 – 2.90 (m, 1H), 2.11 – 1.99 (m, 1H), 1.56 – 1.44 (m, 2H), 1.42 – 1.24 (m, 8H), 0.93 – 0.85 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 145.6, 132.4, 131.2, 129.1, 128.5, 122.7, 59.3, 31.4, 29.1, 26.3, 22.3, 13.9, 13.1. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for : C₁₅H₂₂NaO₂S⁺ 289.1233, found 289.1257.

(*E*)-(2-((4-phenylbutan-2-yl)sulfonyl)vinyl)benzene (**3aj**): 46.1 mg, yield = 51%, light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.57 (d, *J* = 15.5 Hz, 1H), 7.53 – 7.48 (m, 2H), 7.47 – 7.38 (m, 3H), 7.33 – 7.24 (m, 2H), 7.23 – 7.14 (m, 3H), 6.72 (dd, *J* = 15.7, 2.3 Hz, 1H), 3.03 – 2.84 (m, 2H), 2.73 – 2.61 (m, 1H), 2.50 – 2.36 (m, 1H), 1.91 – 1.75 (m, 1H), 1.43 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 145.8, 140.2, 132.3, 131.3, 129.1, 128.6, 128.5, 128.4, 126.4, 122.5, 58.3, 32.6, 30.8, 13.2. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for : C₁₈H₂₀NaO₂S⁺ 323.1076, found 323.1084.

(*E*)-(2-(hexylsulfonyl)vinyl)benzene (**3ak**): 23.7 mg, yield = 31%, light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.60 (d, *J* = 15.5 Hz, 1H), 7.55 – 7.50 (m, 2H), 7.48 – 7.40 (m, 3H), 6.82 (d, *J* = 15.5 Hz, 1H), 3.10 – 3.02 (m, 2H), 1.89 – 1.77 (m, 2H), 1.43 (quint, *J* = 7.5 Hz, 2H), 1.36 – 1.27 (m, 4H), 0.88 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 144.7, 132.3, 131.3, 129.1, 128.5, 124.7, 55.2, 31.2, 28.0, 22.5, 22.3, 13.9. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for : C₁₄H₂₀NaO₂S⁺ 275.1076, found 275.1084.

(*E*)-(2-((4-phenylbutyl)sulfonyl)vinyl)benzene (**3al**): 25.1 mg, yield = 28%, light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.58 (d, *J* = 15.5 Hz, 1H), 7.53 – 7.39 (m, 5H), 7.29 – 7.22 (m, 2H), 7.21 – 7.10 (m, 3H), 6.79 (d, *J* = 15.5 Hz, 1H), 3.11 – 3.02 (m, 2H), 2.65 (t, *J* = 7.5 Hz, 2H), 1.93 – 1.71 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 144.9, 141.2, 132.2, 131.4, 129.1, 128.6, 128.5, 128.3, 126.1, 124.7, 55.0, 35.3, 30.1, 22.2. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for : C₁₈H₂ONaO₂S⁺ 323.1076, found 323.1087.

(*E*)-(2-((3-methoxypropyl)sulfonyl)vinyl)benzene (**3am**): 26.9 mg, yield = 37%, colorless oil. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.60 (d, *J* = 15.5 Hz, 1H), 7.55 – 7.49 (m, 2H), 7.48 – 7.39 (m, 3H), 6.83 (d, *J* = 15.5 Hz, 1H), 3.49 (t, *J* = 5.9 Hz, 2H), 3.33 (s, 3H), 3.22 – 3.14 (m, 2H), 2.16 – 2.03 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 144.9, 132.2, 131.4, 129.1, 128.5, 124.7, 70.1, 58.6, 52.3, 23.1. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for : C₁₂H₁₆NaO₃S⁺ 263.0712, found 263.0724.

..... $\begin{array}{c} 7.58\\ 7.53\\ 7.53\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.25\\$ 10000 9000 8000 o o s 7000 6000 **3aa,** CDCI₃, 400 MHz 5000 4000 3000 2000 1000 0 3.06 3.08 3.08 **9** 2.05 2.07 1.53 Too 6 38 ~ -1000 4.0 3.5 f1 (ppm) 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 132.36 131.20 129.06 128.48 122.75 - 145.54 77.32 77.00 76.68 - 25.38 - 25.06 -62.5724000 22000 20000 0,0 18000 16000 3aa, CDCI₃, 100 MHz 14000 12000 10000 8000 6000 4000 2000 0 -2000 150 140 130 120 110 100 90 80 70 f1 (ppm) 60 50 40 30 20 10 0 -10

¹H, ¹⁹F and ¹³C NMR spectra of products (*E*)-(2-(cyclohexylsulfonyl)vinyl)benzene (**3aa**)

(E)-1-(2-(cyclohexylsulfonyl)vinyl)-4-methylbenzene (3ba)

S21

S25

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 -320 -340 f1 (ppm)

(E)-4-(styrylsulfonyl)tetrahydro-2H-pyran (3ag)

S38

(E)-(2-((4-phenylbutyl)sulfonyl)vinyl)benzene (3al)

(E)-(2-((3-methoxypropyl)sulfonyl)vinyl)benzene (3am)