Supporting Information

Dirhodium Complexes as Electrocatalysts for CO₂ Reduction to HCOOH: Role of Steric Hindrance on Selectivity

Hemanthi D. Manamperi, Curtis E. Moore, and Claudia Turro*

Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA Corresponding author: turro.1@osu.edu

Synthesis and Characterization

Materials. All materials were used as received without further purification unless otherwise noted. Rh₂(OAc)₄ was obtained from Pressure Chemicals. Formic acid (\geq 95.0%), triethyloxonium tetra fluoroborate (1.0 M in methylene chloride), 1,10-phenanthroline (99%), electrochemical grade tetrabutyl ammonium hexafluorophosphate (\geq 99.0%) and 4'-methylacetanilide (NtolylacamH) were purchased from Sigma-Aldrich. *Cis*-Rh₂(acam)₂(phen)₂Cl₂ was prepared by following previously published methods.^{S1} p-toluidine was recrystallized from petroleum ether prior to use. It should be noted that our attempts to synthesize *cis*-H,T-[Rh₂(L)₂(phen)₂]²⁺, where L = acetamidate, resulted in a mixture of the (H,H) and (H,T) isomers and we were unsuccessful in their isomer separation. Therefore, for complex 1, trifluoroacetamidate was employed as the bridging ligand instead of acetamidate, with a trifluoro methyl substituent at the central carbon of the bridgehead as opposed to methyl group at the same position in complexes 2 and 3. The presence of electron withdrawing CF₃ group in trifluoro acetamidate bridging ligand allowed us to follow a different synthetic route that exclusively resulted in the formation of the (H,T) isomer.

[**Rh**₂(acam)₂(phen)₂][**B**F₄]₂ (1). Rh₂(acam)₂phen)₂Cl₂ (100 mg, 0.1 mmol) was stirred in CH₃CN in the presence of 3 equivalents of NaBF₄ at room temperature. After 24 hours solution was filtered through celite and reduced in volume. Product was isolated as a yellow/orange colored solid upon adding excess diethyl ether (70 mg, 63 % yield). ¹H NMR in CD₃CN, (400 MHz): δ 8.55 (d, J = 4.8 Hz, 2H), 8.29 (t, J = 6.0 Hz), 8.06 (d, J = 7.2 Hz, 1H), 7.77 (m, 1H), 7.68 (d, J = 8.8 Hz, 1H), 7.59 (d, J = 8.8 Hz, 1H), 7.32 (t, J = 6.0 Hz, 1H). ESI-MS: [1]²⁺ = 394.99.

Figure S1. ¹H NMR of 1 in CD₃CN at 400 MHz.

Figure S2. ESI-MS spectrum of 1.

[Rh₂(Ntolylacam)₂(phen)₂][BF₄]₂ (2). Rh₂(OAc)₄ (200 mg, 0.45 mmol) and 20 equivalents of Ntolylacetamide were heated at reflux under N₂ for 72 hour in 10 ml of anhydrous chlorobenzene. Then the solvent was removed by rotary evaporation and residue was dissolved in ~ 100 ml of diethyl ether. Upon slow evaporation of solvent crystallization of the excess N-tolylacetamide ligand was noticed. At this point the solution was decanted into a separate beaker and this process was continued until no more ligand precipitation was noticed. Rh₂(N-tloylacam)₄ was obtained as a dark green colored powder. ESI-MS: $[Rh_2(Ntolylacam)_4]^+ = 798.20$. This was used without further purification for the next step. Next 30 mL of CH₃CN was added to Rh₂(N-tolylacam)₄ followed by 1 ml of triethyloxonium tetrafluoroborate (1 M in CH₂Cl₂), to result in an immediate color change from blue/purple to pink/magenta. This solution was stirred at 40 °C for 4 hours and then the stirring was continued for additional 12 hours at room temperature. The solution was then filtered through celite, reduced in volume and was added excess diethyl ether to precipitate $[Rh_2(Ntolacam)_2(CH_3CN)_6][BF_4]_2$ as a magenta colored solid. This solid was washed twice with diethyl ether and dried in air. ESI-MS: $[Rh_2(Notolacam)_2(CH_3CN)_n]^{2+}$ 312.55 (n = 3), 292.04 (n = 2), 271.52 (n = 1) and 251.00 (n = 0). The highly hydroscopic nature of the product prevented its analysis using ¹H NMR. Next [Rh₂(N-tolacam)₂(CH₃CN)₆][BF₄]₂ was combined with 2.2 equivalents of 1,10-phenanthroline in 30 mL CH₃CN and the solution was gently refluxed under N₂ for 16 hours. Upon completion of the reaction, the solvent was reduced in volume and the product was precipitated by adding excess diethyl ether as an olive green colored powder. Next the crude product was extracted into dichloromethane and the insoluble solid product, which mainly consist of Rh(phen)₃(BF₄)₃ was discarded. (151 mg, 32% overall yield). X-ray quality crystals were obtained by slow diffusion of diethyl ether into a concentrated solution of 2 in CH₃CN with added pyridine (0.2% v/v pyridine in CH₃CN) ¹H NMR in CD₃CN, (400 MHz): δ 9.20 (d, J = 4.8 Hz, 1H, phen), 8.34 (d, J = 7.6 Hz, 1H, phen), 8.22 (d, J = 5.2 Hz, 1H, phen), 8.00-7.97 (m, 2H, phen), 7.67 (d, J = 8.8 Hz, 1H, phen), 7.58 (d, J = 8.8 Hz, 1H, phen), 7.28-7.21 (m, 5H, phen+4'-methylacetanilide), 2.42 (s, 3H, CH₃), 2.36 (s, 3H, CH₃). ESI-MS: $[2]^{2+}$ m/z = 431.10.

Figure S3. ESI-MS spectrum of Rh₂(Ntolacam)₄.

Figure S4. ESI-MS spectrum of [Rh₂(Ntolacam)₂(CH₃CN)₆](BF₄)₂.

Figure S6. ESI-MS spectrum of 2.

N,N'-bis(tolyl)ethanimidamidine (MeDTolFH). This ligand precursor was synthesized by following similar synthesis method reported for N,N' -diarylethanimidine,^{S2} by substituting p-toluidine for aniline. Yield (72%). ¹H NMR in CDCl₃, (400 MHz): δ 7.14-7.04 (m, 8H), 2.33 (s, 6H), 2.00 (s, 3H).

Rh₂(MeDTolF)₄. This complex was synthesized using a molten reaction as reported elsewhere for similar paddle wheel formamidinate complexes.^{S3} ¹H NMR in CDCl₃, (400 MHz): δ 6.87 (d, J = 7.6 Hz, 4H), 6.05 (d, J = 7.6 Hz, 4H), 2.27 (s, 6H), 1.74 (s, 3H), ESI-MS: [Rh₂(MeDTolF)₄]⁺ = 1154.36.

[Rh₂(MeDTolF)₂(phen)₂][BF₄]₂ (3). This complex was synthesized by following a similar route as for 2, starting with Rh₂(MeDToLF)₄. Yield: 41%. ¹H NMR in CD₃CN, (400 MHz): δ 8.64 (br s, 2H), 8.17 (d, 2H, J = 4.0 Hz), 7.63 (s, 4H), 7.10 (d, 2H, J = 6.8 Hz), 6.96 (s, 4H), 2.29 (s, 6H) and 2.19 (s, 3H), ESI-MS: [Rh₂(MeDTolF)₂(phen)₂]²⁺ = 520.12 and [Rh₂(MeDTolF)₂(phen)₂)(BF₄)]⁺ = 1127.21.

Figure S7. ¹H NMR of MeDTolFH in CD₃Cl at 400 MHz.

Figure S9. ESI-MS spectrum of Rh₂(MeDTolF)₄.

Figure S10. ¹H NMR of 3 in CD₃CN at 400 MHz.

Figure S11. ESI-MS spectrum of 3.

X-ray crystal structure

The molecular structure of **2-py**₂ was determined by X-ray crystallography and consistent with two rhodium centers bridged by two N-tolylacetamide ligands in *cis*-H,T geometry (Figure S12a). The remaining equatorial sites and the two axial sites are occupied by two chelating phen (1,10-phenanthroline) ligands and pyridine molecules respectively. The Rh–Rh bond distance was 2.5785(4) Å, which is ~0.03 Å shorter than the bond distance reported for **1-py**₂ (2.612 Å) with similar pyridine coordination at both axial sites.^{S1} This may arise from the differences in electronic and steric properties between trifluoroacetate and N-tolylacetamidate bridging ligands, with former being more electron withdrawing and with no bulky groups at the vicinity of axial sites provided by the bridging ligand, and thus resulting in a longer Rh–Rh bond. Complex **3** possesses a Rh–Rh distance of 2.5329(5) and attributes to the shortest Rh–Rh distance within the series. It is also interesting to note that, between complexes **1** – **3**, complex **3** has an acetonitrile molecule coordinated at one axial site, whereas, complexes **1** and **2** has two pyridine molecules coordinated at both axial sites (Figure S12b).

Figure S12. Crystal structures of (a) 2-py₂ and (b) 3 (ellipsoid plots are drawn at 50% probability).

	2-py ₂	3
Empirical formula	$C_{52}H_{46}B_2F_8N_8O_2Rh_2$	$C_{62}H_{63}B_2F_8N_9ORh_2$
Molecular formula	C ₄₂ H ₃₆ N ₆ O ₂ Rh ₂ , 2(BF ₄), 2(C ₅ H ₅ N)	C ₅₆ H ₅₀ N ₈ Rh ₂ , 2(BF ₄), C ₂ H ₃ N, C ₄ H ₁₀ O
Formula weight	1194.41	1329.65
Temperature	100 K	100.0 K
Wavelength	0.71073 Å	0.71073 Å
Crystal system	Monoclinic	Orthorhombic
Space group	P 1 21/n 1	Pbca
Unit cell dimensions	$a = 11.9710(7)$ $\alpha = 90^{\circ}$	$a = 22.1265(5) \text{ Å} \qquad \alpha = 90^{\circ}$
	$b = 34.5822(18) \text{ Å} \beta = 97.196(2)^{\circ}$	$b = 20.9437(5) \text{ Å} \qquad \beta = 90^{\circ}$
	$c = 12.0112(6) \text{ Å} \qquad \gamma = 90^{\circ}$	$c = 24.5322(6) \text{ Å} \qquad \gamma = 90^{\circ}$
Volume	4933.3(5) Å ³	11368.5(5) Å ³
Ζ	4	8
Density (calculated)	1.608 Mg/m ³	1.554 Mg/m ³
Absorption coefficient	0.750 mm ⁻¹	0.659 mm ⁻¹
F(000)	2408	5424
Crystal size	0.164 x 0.127 x 0.059 mm ³	0.158 x 0.121 x 0.097 mm ³
Crystal color, habit	Dark Red Block	Dark Red Block
Theta range for data collection	2.826 to 26.378°	1.575 to 24.998°
Index ranges	-14<=h<=14, -43<=k<=43, -15<=l<=15	-26<=h<=26, -24<=k<=24, -29<=1<=29
Reflections collected	50853	161251
Independent reflections	10076 [R(int) = 0.0528, R(sigma) = 0.0447]	10012 [R(int) = 0.1088, R(sigma) = 0.0471]
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents
Max. and min. transmission	0.0932 and 0.0667	0.0916 and 0.0617
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
Data / restraints / parameters	10076 / 60 / 708	10012 / 0 / 766
Goodness-of-fit on F ²	1.082	1.060
Final R indices [I>2sigma(I)]	R1 = 0.0421, WR2 = 0.0756	R1 = 0.0472, wR2 = 0.0994
R indices (all data)	R1 = 0.0577, WR2 = 0.0801	R1 = 0.0800, wR2 = 0.1145
Extinction coefficient	n/a	n/a
Largest diff. peak and hole	0.588 and -1.110 e.Å ⁻³	1.037 and -0.668 e.Å ⁻³

Table S1. Crystal data and structure refinement for 2-py₂ and 3.

Methods and Instrumentation. Electrochemical experiments were carried out on a BASi model CV-50W voltammetric analyzer (Bioanalytical Systems, Inc.; West Lafayette, IN, USA). Cyclic voltammetry (CV) experiments were carried out with 0.5 mM Rh₂ solutions with a glassy carbon disk working electrode (3 mm diameter), platinum wire auxiliary electrode, and Ag/AgCl (3 M NaCl) reference electrode (calibrated with ferrocene; $Fc^{0/+} = 0.438$ vs Ag/AgCl) and the solutions were purged with either N₂ or CO₂ prior to each trial. Bulk electrolysis experiments were conducted in a custom made, air-tight two-compartment cell with a glassy carbon rod working electrode, platinum coil counter electrode, and Ag/AgCl (3 M NaCl) reference electrode. For each trial, a 5 mL solution of 0.5 mM Rh₂ in CH₃CN containing 0.1 M TBAPF₆ and 3 M H₂O was used. Both the auxiliary and working compartments were purged with either N₂ or CO₂ for 20 minutes prior to applying a negative bias. After one hour, a 200 µL aliquot of the 35 mL head space was removed using a Hamilton gas-tight syringe and injected into a Shimadzu GC-2014 gas chromatograph (GC) with a TCD-2014 thermal conductivity detector with Ar as the carrier gas, and equipped with a 5 Å molecular sieves packed column (6 ft long x 1/8 in OD x 201 mm ID). H₂ detection by GC was accomplished at an injection temperature of 41 °C, a column temperature of 30 °C, a detector temperature of 150 °C, a detector current of 60 mA and a gas flow of 25 mL/min. The H₂ in each injection was quantified using an external calibration curve. HCOOH was quantified using ¹H NMR with an internal standard as explained elsewhere.^{S4} Bulk electrolysis experiments under identical conditions were carried out in the absence of catalyst as control experiments, which did not result in the production of any HCOOH or H₂, showing that HCOOH stems from CO₂ and not from glassy carbon electrode decomposition.

Spectroelectrochemistry experiments were carried out using a custom-made air-tight quartz cell with a 1 cm path length as the working compartment that was separated from the auxiliary compartment by a glass frit. A glassy carbon rod, a Ag/AgCl reference electrode and a Pt coil were used as working, reference, and counter electrodes, respectively. The spectral changes were monitored upon applying a sufficiently negative potential to accumulate the desired reduced species.

Figure S13. CVs of (a) **1**, (b) **2** and (c) **3** collected in the presence of 0 mM (black), 5 (red), 10 (orange), 43 (green) and 68 (blue) mM pyridine, collected in $CH_3CN / 0.1$ M TBAPF₆ at 0.1 V/s scan rate under N₂.

Figure S14. (a) Electronic absorption spectrum of 1 in CH₃CN and difference spectra for the electrolysis of 1 at -1.60 V in CH₃CN / 3 M H₂O under (b) CO₂, (d) N₂ and (c) in the absence of H₂O under N₂ at -1.0 V (*vs* Ag/AgCl).

Figure S15. Variations of the formation of (a), (c), and (e) HCOOH and (b), (d), and (f) H_2 with increasing [Rh₂] concentration, upon electrolyzing a 3 mL solution of Rh₂ in 3 M $H_2O / CH_3CN / CO_2$ at -1.6 V vs Ag/AgCl for 25 minutes with complex (a) and (b) 1, (c) and (d) 2, and (e) and (f) and 3.

H/D Kinetic Isotope Effect

The H/D kinetic isotope effect (KIE) can be broadly defined as the ratio between the rate constants of reactions involving hydrogen to that of deuterium. This concept can be implemented in the CO₂ reduction catalysis by comparing the rates of the reactions employing either H₂O or D₂O as the proton source to aid elucidation of the mechanism. The overall rate of CO₂ reduction, k_{obs} (observed rate constant) with H₂O and D₂O can be compared to determine the H/D KIE.^{S5} The value of k_{obs} can be related to the current ratio, i_{cat}/i_p (i_{cat} = catalytic current in the saturated kinetic region, where the current is not limited by the substrate diffusion to the electrode surface and i_p = current in the absence of CO₂ and H₂O/D₂O) according to (1).^{S6}

$$\frac{i_{cat}}{i_p} = 2.424 \frac{n_{cat}}{n_p} \sqrt{\frac{RTk_{obs}}{n_p Fv}}$$
(1)

where n_{cat} is the number of electrons involved in the catalytic process (2 e⁻), n_p is the number of electrons for the non-catalytic redox process (1 e⁻), R is the ideal gas constant (8.314 V C K⁻¹ mol⁻¹), T is temperature (298 K), F is Faraday's constant (96 485 C mol⁻¹), v is the scan rate (0.1 V s⁻¹). Further, *i*_{cat} can be determined by the current in the [H₂O]/[D₂O] independent region, and the ratio (i_{cat}/i_p)²(H₂O)/(i_{cat}/i_p)²(D₂O) provides the numerical value of H/D KIE.^{S7}

Figure S16. Variation of i_{cat}/i_p with increasing concentrations of H₂O (green) or D₂O (purple) for (a) **2** and (b) **3**; for clarity not all the CVs are shown and only the forward scan is included.

Figure S17. (a) Electronic absorption spectrum of 2 in CH₃CN and difference spectra for electrolysis of 2 at -1.60 V in CH₃CN / 3 M H₂O under (b) CO₂ and (e) N₂ and under N₂ at -1.05 (yellow), -1.45 (blue) and -1.95 V (red) with (c) 0 M and (d) 3 M H₂O. Potentials are *vs* Ag/AgCl.

Figure S18. CVs of 2 under N_2 (black) and $CO_2 / 3$ M H_2O (red) upon reversing the CV scan followed by the 2^{nd} reduction event, collected in $CH_3CN / 0.1$ M TBAPF₆ at 0.1 V/s scan rate.

Figure S19. (a) Electronic absorption spectrum of **3** in CH₃CN and difference spectra for electrolysis of **3** at -1.60 V in CH₃CN / 3 M H₂O under (b) CO₂ and (d) N₂ and in the absence of H₂O under N₂ at -1.6 V (*vs* Ag/AgCl).

Figure S20. ¹H NMR spectra collected with a DMF internal standard in CH₃CN containing 3 M H₂O and 0.1 M TBAPF₆ of (a) HCOOH, (b) NaHCOO, and (c) reaction mixture of **2** after one hour electrolysis at -1.6 V vs Ag/AgCl under CO₂.

Figure S21. Bulk electrolysis curves for 1 (blue), 2 (green) and 3 (black) for one hour electrolysis with 0.5 mM [Rh₂] at -1.6 V vs Ag/AgCl under CO₂.

Figure S22. CVs of (a) 2 and (b) 3 collected in 3 M H_2O/CH_3CN under N_2 before (black) and after 1 hour bulk electrolysis with 0.5 mM [Rh₂] at -1.6 V vs Ag/AgCl under CO₂ (red). (a) Following the electrolysis at -1.6 V, complex 2 was re-oxidized by applying a positive bias of +0.6 V and then a CV was collected under N_2 (blue trace).

References

- S1. M. A. M. Daniels, N. Mehmet and D. A. Tocher, J. Chem. Soc., Dalton Trans., 1991, 2601-2606.
- S2. A. M. Fonseca, S. Gonçalves, P. Parpot and I. C. Neves, *Phys. Chem. Chem. Phys.*, 2009, 11, 6308-6314.
- S3. T. Ren, C. Lin, E. J. Valente and J. D. Zubkowski, *Inorg. Chim. Acta*, 2000, 297, 283-290.
- S4. H. D. Manamperi, S. E. Witt and C. Turro, *ACS Appl. Energy Mater.*, 2019, **2**, 7306-7314.
- S5. A. Taheri, C. R. Carr and L. A. Berben, ACS Catal., 2018, 8, 5787-5793.
- S6. T. A. White, S. E. Witt, Z. Li, K. R. Dunbar and C. Turro, *Inorg. Chem.*, 2015, 54, 10042-10048.
- S7. B. M. Ceballos and J. Y. Yang, Proc. Natl. Acad. Sci. U.S.A., 2018, 115, 12686.