Synthesis of functionalized copillar[4+1]arenes and rotaxane as heteromultivalent scaffolds

Wenzhang Chen, Tharwat Mohy EI Dine, Stéphane P. Vincent*
*Corresponding author: stephane.vincent@unamur.be

Table of Contents

S1. General Information 2
S2. General synthetic procedures 2
S3. Co-oligmerization of bisalkoxybenzene 1_{x} with 2 7
S4. Optimization of the co-oligomerization conditions of $\mathbf{1}_{\mathrm{D}}$ with 2 9
S5. General procedure A for the synthesis of copillar[5]arenes 3 and 4. 10
S6. Synthesis of clickable functional ligands $5,11,7 \mathrm{a}-\mathrm{h}, 9,13$ and 14 12
S8. General procedure B for the synthesis of compounds 8a-e and $\mathbf{8 g}$. 27
S9. Synthesis of clickable compound 10 38
S10. Synthesis of copillar[5]arene $\mathbf{S 5}$ with an inverse azide:alkyne ration (8:2) 40
S11. Synthesis of fluorescent rotaxane 16 44
Compound 17: 48
S12. Synthesis of Compound S6 50
S13. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ NMR Spectra of new compounds 51
S14. Fluorescence spectra of compounds $12,15,16$ and S6 76
S15.The ${ }^{1} H$ NMR spectra of compounds 15,16 and axle 76
S16.The ${ }^{1} H$ NMR and 1D NOESY spectra of compounds 15 and 16 77
S17. Temperature dependent ${ }^{1} \mathrm{H}$ NMR spectra of compounds 15,16 and 8c 79
Reference 81

S1. General Information

General methods and materials: The solvents used for chromatography were purchased in industrial grade and further distilled before their use. Dry dichloromethane was refluxed over calcium hydride $\left(\mathrm{CaH}_{2}\right)$. Reagents and chemicals were purchased from Sigma-Aldrich or Acros at ACS grade and were used without purification. All reactions were monitored by thin-layer chromatography (TLC) carried out on Merck aluminum roll silica gel 60-F F_{25} using UV light and a phosphomolybdic acid solution as revelator. Merck silica gel (60, particle size 40-63 $\mu \mathrm{m}$) was employed for flash column chromatography. IR spectra (cm^{-1}) were measured on a PerkinElmer Series FI-IR instrument. NMR spectra were recorded on a JEOL ECX 400 or 500 with solvent peaks as reference. All compounds were characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and Dept 135 as well as by ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ and 1 D NOESY correlation experiments when necessary. The abbreviations used to define the multiplicities are: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quadruplet, $\mathrm{m}=$ multiplet and br $=$ broad. Chemical shifts (δ) are reported in ppm and referenced indirectly to residual solvent signals. High resolution mass spectra (HRMS) were carried out on a Bruker MicroTOF-Q II XL spectrometer and MALDI-TOF-LD+ were recorded using Waters QTOF1 spectrometer. Fluorescence spectrophotometers were measured on an Agilent Cary Eclipse and excited at 380 nm .

S2. General synthetic procedures

Scheme S1. Synthesis of building blocks $\mathbf{1 A}_{\text {A }}$ and 2

1,4-bis(2-bromoethoxy)benzene (2)

To a vigorously stirred mixture of 1.4-bis(2-hydroxyethoxy)benzene 1B ($3.96 \mathrm{~g}, 20 \mathrm{mmol}$, 1 equiv.) and PPh_{3} ($11.5 \mathrm{~g}, 44 \mathrm{mmol}, 2.2$ equiv.) in dry acetone (80 mL) was slowly added CBr_{4} (14.6 g, $44 \mathrm{mmol}, 2.2$ equiv.) at the $0^{\circ} \mathrm{C}$ under argon atmosphere. After stirring for 4 h at room temperature, $\mathrm{H}_{2} \mathrm{O}(60 \mathrm{~mL})$ was added to the reaction mixture. The crude was filtered and washed with methanol/water ($3: 2,150 \mathrm{~mL}$) giving the desired compound $\mathbf{2}$ as a white solid ($6.1 \mathrm{~g}, 18.83 \mathrm{mmol}, 91 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.85(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times \mathrm{H}-4), 4.24(\mathrm{t}, J=6.3 \mathrm{~Hz}, 4 \mathrm{H}, 2$ x H-2), $3.61(\mathrm{t}, J=6.3 \mathrm{~Hz}, 4 \mathrm{H}, 2 \times \mathrm{H}-1) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.9(\mathrm{C}-3), 116.2$ (C-4), 68.8 (C-2), $29.4(\mathrm{C}-1)$. The data were in accordance with those described in the literature. ${ }^{[1]}$

1,4-bis(2-azidoethoxy)benzene (1A)

To a solution of 1,4-bis(2-bromoethoxy)benzene $2(3.24 \mathrm{~g}, 10 \mathrm{mmol}, 1$ equiv.) in dry DMF (60 mL) was added $\mathrm{NaN}_{3}(1.95 \mathrm{~g}, 30 \mathrm{mmol}, 3$ equiv.) and stirred overnight at room temperature. The reaction solution was then evaporated under vacuum. Afterwards, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ were added, the organic phase was separated and washed with brine (40 ml), dried over MgSO_{4} and filtered. The filtrate was evaporated to dryness to give the desired compound $\mathbf{1}_{\mathrm{A}}$ as a white solid ($2.35 \mathrm{~g}, 9.45 \mathrm{mmol}, 95 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.87(\mathrm{~s}, 4 \mathrm{H}, 4 \times \mathrm{H}-4), 4.11(\mathrm{t}, J=5.0 \mathrm{~Hz}, 4 \mathrm{H}, 2 \times \mathrm{H}-2), 3.58$ $(\mathrm{t}, J=5.0 \mathrm{~Hz}, 4 \mathrm{H}, 4 \mathrm{H}, 2 \times \mathrm{H}-1) .{ }^{13} \mathrm{C}$ NMR $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.0(\mathrm{C}-3), 115.9$ (C-4), 67.8 (C-2), 50.4 (C-1). The NMR data were in accordance with those described in the literature. ${ }^{[2]}$

${ }^{1} \mathrm{c}$	$1{ }_{\text {D }}$	$1{ }_{\text {E }}$	$1_{\text {F }}$
R	$\widehat{\approx}$		3

Scheme S2. Synthesis of building blocks of $\mathbf{1 c} \mathbf{- 1 F}$

1,4-bis(benzyloxy)benzene (1c)

To a solution of hydroquinone ($440 \mathrm{mg}, 4.0 \mathrm{mmol}, 1$ equiv.) in dry acetone (10 mL) was added KI ($166 \mathrm{mg}, 1.0 \mathrm{mmol}, 0.25$ equiv.) under argon atmosphere. The mixture was stirred for 0.3 h at $0^{\circ} \mathrm{C}$, then $\mathrm{BnBr}(1.2 \mathrm{~mL}, 10 \mathrm{mmol}, 2.5$ equiv.) was added dropwise and stirred for another 36 h at room temperature. The resulting mixture was filtered, the solid was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined solution were evaporated to dryness. Recrystallization from ethanol (10 mL) gave the compound 1c as a flaky crystal (844 mg , $2.9 \mathrm{mmol}, 73 \%)$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44-7.26(\mathrm{~m}, 10 \mathrm{H}, 4 \times \mathrm{H}-2,4 \times \mathrm{H}-3,2 \times \mathrm{H}-4), 6.9(\mathrm{~s}, 4 \mathrm{H}$, $4 \times \mathrm{H}-7$), $5.0(\mathrm{~s}, 4 \mathrm{H}, 2 \times \mathrm{H}-5) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.3$ (C-6), 137.4 (C-1), 128.7 (C-3), 128.0 (C-4), 127.6 (C-2), 115.9 (C-7), 70.8 (C-5). The NMR data were in accordance with those described in the literature. ${ }^{[3]}$

1,4-bis(propargyloxy)benzene (1m)

To a solution of hydroquinone ($4.4 \mathrm{~g}, 40 \mathrm{mmol}$, 1 equiv.) in dry acetone (100 mL) was added anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(27.6 \mathrm{~g}, 200 \mathrm{mmol}, 5$ equiv.) and the reaction mixture was refluxed for 0.5 h . Then, propargyl bromide ($10 \mathrm{~mL}, 120 \mathrm{mmol}, 3$ equiv.) was added dropwise over 2 h to the above reaction mixture. The resulting mixture was refluxed for 48 h before cooling down, followed by filtration. The filtrate was evaporated. The residue was purified by column chromatography on silica gel using $\mathrm{Cy} / \mathrm{EtOAc}$ (20:1) as eluent to give compound 1d as a white solid ($6.4 \mathrm{~g}, 34.3 \mathrm{mmol}, 86 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.94$ (s, $4 \mathrm{H}, 4 \times \mathrm{H}-5$), $4.64(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 4 \mathrm{H}, 2 \times \mathrm{H}-3$), 2.50 $(\mathrm{t}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-1) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.6$ (C-4), $116.2(\mathrm{C}-5), 78.9$ (C-2), 75.5 (C-1), 56.7 (C-3). The NMR data were in accordance with those described in the literature. ${ }^{[4]}$

1,4-bis(5-hexenyloxy)benzene (1_{E})

To a solution of the hydroquinone ($1.1 \mathrm{~g}, 10 \mathrm{mmol}, 1$ equiv.) in dry acetone (40 mL) was added anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($6.2 \mathrm{~g}, 45 \mathrm{mmol}$, 4.5 equiv.) and KI (0.17 g , 1 mmol , 0.1 equiv.) under argon atmosphere. Then 6-bromo-1-hexene ($3.1 \mathrm{~mL}, 22 \mathrm{mmol}, 2.2$ equiv.) was added dropwise over 1 h to the above reaction mixture. The resulting mixture was refluxed for 48 h before cooling down, followed by filtration and the filtrate was evaporated. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and the solution was washed with water $(3 \times 20 \mathrm{~mL})$ and saturated brine (40 mL). The organic layer was dried over anhydrous MgSO_{4} and then concentrated under vacuum. The residue was purified by column chromatography on silica
gel using $\mathrm{Cy} / \mathrm{EtOAc}(10: 1)$ as eluent to give compound $\mathbf{1}_{\mathrm{E}}$ as a white solid ($2.1 \mathrm{~g}, 7.7 \mathrm{mmol}$, $77 \%)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.82(\mathrm{~s}, 4 \mathrm{H}, 4 \times \mathrm{H}-8), 5.84$ (ddt, $J=16.9,10.2,6.6 \mathrm{~Hz}, 2 \mathrm{H}$, $2 \times \mathrm{H}-2), 5.07-4.96(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}-1), 3.92(\mathrm{t}, J=6.5 \mathrm{~Hz}, 4 \mathrm{H}, 2 \times \mathrm{H}-6), 2.16-2.10(\mathrm{~m}, 4 \mathrm{H}$, $2 \times \mathrm{H}-3), 1.82-1.75(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}-5), 1.61-1.54(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}-4) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 153.3(\mathrm{C}-7), 138.7(\mathrm{C}-2), 115.5(\mathrm{C}-8), 114.8(\mathrm{C}-1), 68.5(\mathrm{C}-6), 33.6(\mathrm{C}-3), 29.0$ (C-5), 25.5 (C-4). The NMR data were in accordance with those described in the literature. ${ }^{[5]}$

1,4-bis[(6-bromohexyl)oxy]benzene ($\mathbf{1}_{\mathrm{F}}$)

To a solution of 1,6-dibromohexane ($3.6 \mathrm{~mL}, 22 \mathrm{mmol}, 2.2$ equiv.) in dry acetone (40 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(6.9 \mathrm{~g}, 50 \mathrm{mmol}, 5$ equiv.) under argon atmosphere. After heating the solution to reflux for 5 min a solution of hydroquinone ($1.1 \mathrm{~g}, 10 \mathrm{mmol}$) in dry acetone (10 mL) was added dropwise over 1 h . The resulting mixture was refluxed for 48 h and allowed to cool down to room temperature, filtered. The filtrate was evaporated to dryness. The residue was purified by column chromatography on silica gel using Cy/DCM (2:1) as eluent to afford compound $\mathbf{1}_{\mathbf{F}}$ as a white solid ($1.4 \mathrm{~g}, 3.2 \mathrm{mmol}, 32 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.82(\mathrm{~s}, 4 \mathrm{H}, 4 \times \mathrm{H}-8), 3.90(\mathrm{t}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}, 2 \times \mathrm{H}-6), 3.42$ ($\mathrm{t}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}, 2 \times \mathrm{H}-1$), 1.93-1.86 (m, 4H, $2 \times \mathrm{H}-2$), 1.80-1.74 (m, 4H, $2 \times \mathrm{H}-5$), 1.511.47 (m, 8H, $2 \times \mathrm{H}-3,2 \times \mathrm{H}-4$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.3$ (C-7), 115.5 (C-8), 68.5 (C-6), 34.0 (C-1), 32.8 (C-2), 29.3 (C-5), 28.1 (C-3 or C-4), 25.4 (C-3 or C-4). The NMR data were in accordance with those described in the literature. ${ }^{[6]}$

S3. Co-oligmerization of bisalkoxybenzene 1_{x} with 2

Scheme S3. Co-oligomerization of $\mathbf{1}_{\mathrm{x}}$ with 2

Copillar[5]arene S1:

To a solution of 1,4-bis(benzyloxy)benzene 1c ($87 \mathrm{mg}, 0.3 \mathrm{mmol}, 1$ equiv.) and 1,4-bis(2bromoethoxy)benzene 2 ($1.56 \mathrm{~g}, 4.8 \mathrm{mmol}, 16$ equiv.) in DCE (20 mL) was added paraformaldehyde ($525 \mathrm{mg}, 37.1 \mathrm{mmol}, 53$ equiv.) under argon atmosphere. Then, $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}$ ($0.63 \mathrm{~mL}, 5.1 \mathrm{mmol}, 17$ equiv.) was added dropwise. After stirring for 1.5 h at room temperature, the solution was concentrated, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added and the reaction mixture was filtered. The filtrate was evaporated and the residue was purified by column chromatography on silica gel using DCM/Cy (1:4) as eluent and isolated copillar[5]arene $\mathbf{S 1}$ as a white solid ($54 \mathrm{mg}, 0.03 \mathrm{mmol}, 11 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.52(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Bn}), 7.43-7.33(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Bn}), 7.05(\mathrm{~s}, 2 \mathrm{H}$, $2 \times \mathrm{H}-7$), 6.94 ($\mathrm{s}, 2 \mathrm{H}, 2 \times \mathrm{H}-7$), 6.88 ($\mathrm{s}, 2 \mathrm{H}, 2 \times \mathrm{H}-7$), 6.85 ($\mathrm{s}, 2 \mathrm{H}, 2 \times \mathrm{H}-7$), 6.72 ($\mathrm{s}, 2 \mathrm{H}, 2$ x H-7), 5.07-5.00 (m, 4H, $2 \times \mathrm{H}-5$), 4.33-4.26 (m, 6H, $3 \times \mathrm{H}-10$), 4.19-4.07 (m, 6H, $3 \times$ H-10), 3.93-3.82 (m, 10H, $5 \times \mathrm{H}-9$), 3.66-3.53 (m, 16H, $2 \times \mathrm{H}-10,6 \times \mathrm{H}-11$), 3.47-3.33 ($\mathrm{m}, 4 \mathrm{H}, 2 \times \mathrm{H}-11$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.1$, $150.0,2 \times 149.6,149.5(\mathrm{Cq}, \mathrm{C}-$ 6), 138.14 (Cq, C-1), 129.6, 129.1, 128.9, 128.8 (Cq, C-8), 128.7 (Bn), 128.5 (Cq, C-8), 2 x $127.8(\mathrm{Bn}), 116.5,116.2,115.4,115.1\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-7\right), 70.4\left(\mathrm{OCH}_{2}, \mathrm{C}-5\right), 2 \times 69.2,69.0$, $67.9\left(\mathrm{OCH}_{2}, \mathrm{C}-10\right), 31.1,2 \times 30.8,30.7\left(\mathrm{CH}_{2} \mathrm{Br}, \mathrm{C}-11\right), 30.3,29.9,28.8\left(\mathrm{CH}_{2}, \mathrm{C}-9\right)$. HRMS $\left(\mathrm{ESI}^{+}-\mathrm{MS}, \mathrm{m} / \mathrm{z}\right.$): calculated for $\mathrm{C}_{65} \mathrm{H}_{70} \mathrm{Br}_{8} \mathrm{NO}_{10}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 1655.8461$; found 1655.8378.
Copillar[5]arene S2:

To a solution of 1,4-bis(6-bromohexyl)oxy)benzene $\mathbf{1 F}_{\mathbf{F}}$ ($109 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv.) and 1,4-bis(2-bromoethoxy)benzene $2(1.30 \mathrm{~g}, 4.0 \mathrm{mmol}$, 16 equiv.) in DCE (20 mL) was added paraformaldehyde ($438 \mathrm{mg}, 13.3 \mathrm{mmol}, 53$ equiv.) under argon atmosphere. Then, $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}$ ($0.52 \mathrm{~mL}, 4.25 \mathrm{mmol}, 17$ equiv.) was added dropwise. After stirring for 1.5 h at room temperature, $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added, separated the organic phase, washed with saturated brine (15 mL), dried over MgSO_{4}, filtered and concentrated under vacuum. The residue was purified by column chromatography on silica gel using DCM/Cy (2:3) as eluent and isolated copillar[5]arene $\mathbf{S} 2$ as a white solid ($125 \mathrm{mg}, 0.07 \mathrm{mmol}, 28 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.92-6.90(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{H}-8), 6.84-6.81(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}-8)$, 4.23-4.14 (m, 14H, H-6, $6 \times \mathrm{H}-11$), 4.06-4.04 (m, 4H, H-6, H-11), 3.93-3.81 (m, 12H, H$11,5 \times \mathrm{H}-10), 3.64-3.60(\mathrm{~m}, 12 \mathrm{H}, 6 \times \mathrm{H}-12), 3.46-3.41(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}-12), 3.25(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 4 \mathrm{H}, 2 \times \mathrm{H}-1), 1.83-1.76$ ($\mathrm{m}, 4 \mathrm{H}, 2 \times \mathrm{H}-5$), $1.73-1.66$ ($\mathrm{m}, 4 \mathrm{H}, 2 \times \mathrm{H}-2$), 1.47-1.38 (m, $8 \mathrm{H}, 2 \times \mathrm{H}-3,2 \times \mathrm{H}-4) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.9,150.0,149.9,149.8(\mathrm{Cq}, \mathrm{C}-7)$, 129.6, 129.3, 129.2, 128.9, 128.4 (Cq, C-9), 116.4, 116.2, 115.9, $115.9\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-8\right), 69.2$, 69.1, 68.9, 68.7, $68.7\left(\mathrm{OCH}_{2}, \mathrm{C}-6\right), 33.9\left(\mathrm{CH}_{2} \mathrm{Br}, \mathrm{C}-1\right), 32.7\left(\mathrm{CH}_{2}, \mathrm{C}-2\right), 30.7,30.6,30.5$, 29.8, 29.68, 29.2 ($\left.\mathrm{CH}_{2}, \mathrm{C}-5, \mathrm{C}-10, \mathrm{C}-12\right), 28.2\left(\mathrm{CH}_{2}, \mathrm{C}-3\right.$ or C-4), 25.4 (C-3 or C-4). HRMS $\left(\mathrm{ESI}^{+}-\mathrm{MS}, \mathrm{m} / \mathrm{z}\right)$: calculated for $\mathrm{C}_{63} \mathrm{H}_{80} \mathrm{Br}_{10} \mathrm{NO}_{10}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$1799.7610; found 1799.7610.

S4. Optimization of the co-oligomerization conditions of 1_{D} with 2

Table S1. Different optimization conditions

Entry	Conc. of $\mathbf{2}(\mathrm{mM})$	Activator (Eq.)	Eq. of $\mathbf{2}\left(\mathbf{1}_{\mathbf{D}}=1\right.$ eq.)	Yield (\%)
1	0.25	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(17)$	16	26
$2^{\text {ref } 16 \mathrm{a}}$	0.05	$\mathrm{FeCl}_{3}(2.56)$	16	17
$3^{\text {ref } 21}$	0.125	$\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}(50)$	16	16
4^{b}	0.125	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(17)$	16	15
5	0.125	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(17)$	16	37
6	0.0625	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(17)$	16	25
7	0.125	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(17)$	32	36
8	0.125	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(17)$	8	31
9	0.125	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(17)$	4	24
10	0.125	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(25.5)$	16	40
11	0.125^{c}	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(25.5)$	0.0625^{d}	40^{e}

(a) Isolated yield. (b) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was used as the solvent. (c) Conc. of $\mathbf{1}_{\mathbf{D}}$. (d) Ratio $\mathbf{1} \mathbf{D} / \mathbf{2}=1 / 16$. (e) Yield of the copillar[5]arene $\mathbf{4}$ (structure in Scheme $\mathbf{S 4}$ below).

S5. General procedure A for the synthesis of copilllar[5]arenes 3 and 4

Scheme S4. Synthesis of copillar[5]arene 3 and 4

To a solution of R^{1} substituted 1,4-dialkyloxybenzene ($0.125 \mathrm{mmol}, 1$ equiv.) and R^{2} substituted 1,4-dialkyloxybenzene (2.0 mmol , 16 equiv. 0.125 M) in DCE (16 mL) paraformaldehyde ($6.6 \mathrm{mmol}, 198 \mathrm{mg}$, 53 equiv.) was added under argon atmosphere. Then, $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}(0.39 \mathrm{~mL}, 3.19 \mathrm{mmol}, 25.5$ equiv.) was added dropwise to the reaction mixture. After stirring for 1.5 h at room temperature, the reaction was quenched by adding MeOH $(10 \mathrm{~mL})$ and stirred for another 5 min before being concentrated under vacuum. Afterwards, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added to the residue and filtered. The crude was concentrated under vacuum and the residue was purified by column chromatography on silica gel.

Copillar[5]arene 3:

The title compound was prepared according to the general procedure, purified using DCM/Cy (1:1) as eluent and isolated as a white solid ($78 \mathrm{mg}, 0.051 \mathrm{mmol}, 40 \%$). When the reaction was scaled up 10 times the yield is 38%.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.93(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{H}-5), 6.88(\mathrm{~s}, 6 \mathrm{H}, 6 \times \mathrm{H}-5), 6.77(\mathrm{~s}, 2 \mathrm{H}, 2$ x H-5), 4.60 ($\mathrm{s}, 4 \mathrm{H}, 2 \times \mathrm{H}-3$), 4.23-4.14 (m, 16H, $8 \times \mathrm{H}-8$), 3.87 (m, 10H, $5 \times \mathrm{H}-7$), 3.65$3.58(\mathrm{~m}, 16 \mathrm{H}, 8 \times \mathrm{H}-9), 2.21(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{H}-1) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2 \times 149.9$, 149.8, 149.5 (Cq, C-4), 129.6, 129.3, 129.2, 129.1, 129.0 (Cq, C-6), 116.4, 116.3, 116.1, 116.0, $115.9\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-5\right), 79.3(\mathrm{C}-2), 75.0(\mathrm{C}-1), 69.3,69.2,69.1,68.9\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 56.7$ $\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 30.8,30.7,30.6\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 29.9,29.8,29.5\left(\mathrm{CH}_{2}, \mathrm{C}-7\right)$. IR $\left(\mathrm{cm}^{-1}\right): 3292(\mathrm{CCH})$. HRMS (ESI ${ }^{+}-\mathrm{MS}, \mathrm{m} / \mathrm{z}$): calculated for $\mathrm{C}_{57} \mathrm{H}_{59} \mathrm{Br}_{8} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+}$1534.7570; found 1534.7569.

Copillar[5]arene 4:

The title compound was prepared according to the general procedure, purified using DCM/Cy (3:2) as eluent and isolated as a white solid ($57 \mathrm{mg}, 0.050 \mathrm{mmol}, 40 \%$). When the reaction was scaled up 16 times the yield is 37%.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.84-6.82(\mathrm{~m}, 8 \mathrm{H}, 8 \times \mathrm{H}-5), 6.77$ (s, 2H, $2 \times \mathrm{H}-5$), 4.52$4.46(\mathrm{~m}, 16 \mathrm{H}, 8 \times \mathrm{H}-3), 4.15(\mathrm{t}, J=6.1 \mathrm{~Hz}, 4 \mathrm{H}, 2 \times \mathrm{H}-8), 3.82(\mathrm{~m}, 10 \mathrm{H}, 5 \times \mathrm{H}-7), 3.57(\mathrm{t}$, $J=6.1 \mathrm{~Hz}, 4 \mathrm{H}, 2 \times \mathrm{H}-9), 2.29-2.24(\mathrm{~m}, 8 \mathrm{H}, 8 \times \mathrm{H}-1) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.8$, 2×149.5 (Cq, C-4), 129.2, 129.1, 129.0, 128.9 (Cq, C-6), 116.0, 115.8, 115.7, $115.6\left(\mathrm{CH}_{\mathrm{Ar}}\right.$, $\mathrm{C}-5), 2 \times 79.4,79.3(\mathrm{C}-2), 2 \times 75.1,75.0,74.98(\mathrm{C}-1), 68.9\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 56.9,56.8,56.7$, $56.6\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 30.3\left(\mathrm{CH}_{2} \mathrm{Br}, \mathrm{C}-9\right), 30.0,29.99,29.7\left(\mathrm{CH}_{2}, \mathrm{C}-7\right)$. IR $\left(\mathrm{cm}^{-1}\right): 3285,2126$ $(C C H)$. HRMS (ESI $-\mathrm{MS}, \mathrm{m} / \mathrm{z}$): calculated for $\mathrm{C}_{63} \mathrm{H}_{53} \mathrm{Br}_{2} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+} 1127.2000$; found 1127.1999.

S6. Synthesis of clickable functional ligands 5, 11, 7a-h, 9, 13 and 14

5-Azido-3-oxapentyl 2,3,4,6-tetra-O-acetyl- α-D-mannopyranoside (5)

The title compound was prepared following a literature procedure, ${ }^{[7]}$ purified using $\mathrm{EtOAc} / \mathrm{Cy}(1: 4)$ as eluent and isolated as a white solid ($2.3 \mathrm{~g}, 4.99 \mathrm{mmol}, 49 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.38-5.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 5.31-5.29(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 5.29-5.27$ (m, 1H, H-2), 4.88 (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 4.29 (dd, $J=12.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}), 4.12-$ 4.06 (m, 1H, H-6b, H-5), 3.86-3.81 (m, 1H, H-7a), 3.69-3.66 (m, 5H, H-7b, H-8, H-9), 3.39 (t, $J=5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-10), 2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCOCH}_{3}\right), 2.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCOCH}_{3}\right), 2.04(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCOCH}_{3}\right), 1.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCOCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.9,170.2,170.1$, 169.9 ($\mathrm{Cq}, \mathrm{C}=\mathrm{O}_{\text {acetyl }}$), 97.9 (C-1), 70.3 (C-8), 70.2 (C-9), 69.6 (C-2), 69.2 (C-3), 68.5 (C5), 67.4 (C-7), 66.2 (C-4), 62.6 (C-6), $50.9(\mathrm{C}-10), 21.1,2 \times 20.9\left(\mathrm{OCOCH}_{3}\right)$. The NMR data were in accordance with those described in the literature. ${ }^{[7]}$

N-(2-Azidoethyl)-5-(dimethylamino)naphthalene-1-sulfonamide (11)

To a solution of dansyl chloride ($540 \mathrm{mg}, 2.0 \mathrm{mmol}, 1$ equiv.) and 2-bromoethylamine hydrobromide ($410 \mathrm{mg}, 2.0 \mathrm{mmol}$, 1 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was slowly added $\mathrm{Et}_{3} \mathrm{~N}$ ($4.0 \mathrm{mmol}, 0.56 \mathrm{~mL}, 2$ equiv.). After stirring at room temperature for 4 h , the solvent was evaporated and acetonitrile (10 ml), $\mathrm{NaN}_{3}(0.36 \mathrm{~g}, 5 \mathrm{mmol}, 2.5$ equiv.) were added. The reaction mixture was allowed to reflux overnight before being cooled down. The solvent was evaporated and the crude was purified by column chromatography on silica gel using $\mathrm{EtOAc} / \mathrm{Cy}(5: 1)$ as eluent to give the desired product as a greenish yellow oil $(588 \mathrm{mg}, 1.84$ mmol, 92%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.56(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 8.29(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 8), 8.25 (dd, $J=7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), $7.58-7.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 7.51$ (dd, $J=8.5,7.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-7), 7.19$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 5.42-5.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 3.28(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{H}-12$), 3.05 (dd, $J=12.0,5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-11$), $2.88\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{NCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 152.1(\mathrm{Cq}, \mathrm{C}-1), 134.6(\mathrm{Cq}, \mathrm{C}-5), 130.8(\mathrm{C}-2), 130.0(\mathrm{C}-4), 129.6(\mathrm{Cq}, \mathrm{C}-9)$, 129.6 (Cq, C-10), 128.7 (C-3), 123.2 (C-7), 118.7 (C-8), 115.5 (C-6), 50.9 (C-12), 45.5 $\left(\mathrm{NCH}_{3}\right), 42.4$ (C-11). The NMR data were in accordance with those described in the literature. ${ }^{[8]}$

2-Propynyl 2,3,4,6-tetra- O-acetyl- $\boldsymbol{\beta}$-D-glucopyranoside (7a)

In an ice-water cooled solution of D-glucose pentaacetate ($772 \mathrm{mg}, 2.0 \mathrm{mmol}, 1$ equiv.) and propargyl alcohol ($0.17 \mathrm{~mL}, 3.0 \mathrm{mmol}, 1.5$ equiv.) in dry acetonitrile (10 mL) was added $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}(72 \mu \mathrm{~L}, 3.0 \mathrm{mmol}, 1.5$ equiv.) and TMSOTf ($0.38 \mathrm{~mL}, 0.4 \mathrm{mmol}, 0.2$ equiv.) dropwise under argon atmosphere. After stirring overnight at room temperature, the reaction was quenched with solution of saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, extracted with EtOAc ($2 \times 15 \mathrm{~mL}$). The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{ml})$, brine (30 mL) and dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude was purified by column chromatography on silica gel using EtOAc/Cyc (1:5) as eluent and isolated 7 a as a white solid ($324 \mathrm{mg}, 0.84 \mathrm{mmol}, 42 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.23(\mathrm{dd}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.08(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 4), 5.00 (dd, $J=9.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), $4.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.36(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H}-7$), 4.26 (dd, $J=12.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}$), 4.13 (dd, $J=12.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}$), 3.72 (ddd, $J=10.0,4.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 2.46(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9), 2.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCOCH}_{3}\right)$, $2.04\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{OCOCH}_{3}\right), 2.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCOCH}_{3}\right), 1.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCOCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7,170.3,2 \times 169.5\left(\mathrm{Cq}, \mathrm{C}=\mathrm{O}_{\text {acetyl }}\right.$), $98.2(\mathrm{C}-1), 78.2(\mathrm{C}-8), 75.6$ (C-9), 72.8 (C-3), 72.0 (C-5), 71.0 (C-2), 68.4 (C-4), 61.8 (C-6), 56.0 (C-7), 20.8, 20.7, 2 $x 20.6\left(\mathrm{OCOCH}_{3}\right)$. The NMR data were in accordance with those described in the literature.

Scheme S5. Synthesis of 7b

$\mathbf{2 , 3 , 4 , 6}$-Tetra- O-acetyl- β-D-galactopyranosyl-($1 \rightarrow 4$)-2,3,6-tri- O-acetyl- α / β-D-gluco-

pyranose ($7 \mathbf{b}-\mathbf{1}$): Hydrazine acetate ($0.3 \mathrm{~g}, 3.25 \mathrm{mmol}, 1.1$ equiv.) was added portionwise to a solution of lactose octaacetate ($2.0 \mathrm{~g}, 2.95 \mathrm{mmol}, 1$ equiv.) in dry DMF (8 mL) under argon and stirred at room temperature overnight. Then $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ was added and washed with $\mathrm{HCl}(20 \mathrm{~mL}, 1 \mathrm{~N}), \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, brine ($2 \times 30 \mathrm{~mL}$), dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude was purified by column chromatography on silica gel using EtOAc/Cy (1:4) as eluent to obtain compound $\mathbf{7 b - 1}$ as a white solid ($1.5 \mathrm{~g}, 2.36 \mathrm{mmol}, 80 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.44-5.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 5.26-5.25(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4$ '), 5.034.99 (m, 1H, H-2'), 4.90-4.86 (m, 1H, H-3'), 4.75-4.62 (m, 2H, H-2, H-1'), 4.45-4.39 (m, 2H, H-6), 4.11-3.97 (m, 3H, H-5, H-6'), 3.85-3.80 (m, 1H, H-5'), 3.76-3.67 (m, 1 H, H4), $2.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCOCH}_{3}\right), 2.03-2.04\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OCOCH}_{3}\right), 1.99-1.96(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{x}$ $\left.\mathrm{OCOCH}_{3}\right), 1.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCOCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.6,170.4,170.3$, 170.2, 170.1, 169.7, $169.0\left(\mathrm{Cq}, \mathrm{C}=\mathrm{O}_{\text {acetyl }}\right.$), 100.9 (C-1'), 90.0 (C-1), 76.3 (C-4), 71.3 (C3^{\prime}), 71.0 (C-5), 70.5 (C-5'), 69.5 (C-2), 69.0 (C-2'), 68.0 (C-3), 66.6 (C-4'), 61.88 (C-6), 60.8 (C-6'), $2 \times 20.8,20.70,20.620 .5\left(\mathrm{OCOCH}_{3}\right)$. The NMR data were in accordance with those described in the literature. ${ }^{[10]}$

2,3,4,6-Tetra- O-acetyl- β-D-galactopyranosyl- $(1 \rightarrow 4)$-2,3,6-tri- O-acetyl- α-D-gluco-

pyranose trichloracetimidate (7b-2): The anomeric free lactoside 7b-1 ($665 \mathrm{mg}, 1.05$ mmol, 1 equiv.) and trichloroacetonitrile ($1.12 \mathrm{~mL}, 11.02 \mathrm{mmol}, 10$ equiv.) were dissolved
in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and $\mathrm{DBU}(20 \mu \mathrm{~L}, 0.112 \mathrm{mmol}, 0.1$ equiv.) was added. The reaction solution was stirred at room temperature overnight and purified by column chromatography on silica gel using EtOAc/Cy (1:4) as eluent to give compound 7b-2 as a white solid (640 $\mathrm{mg}, 0.82 \mathrm{mmol}, 78 \%)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 6.47(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.53(\mathrm{~d}, J$ $=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.34(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ '), $5.14-5.03(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-2$ '), 4.964.93 (m, 1H, H-3), 4.52-4.16 (m, 2H, H-1', H-6a), 4.17-4.05 (m, 4H, H-5, H-6b, H-6'), 3.89-3.84 (m, 2H, H-4, H-5'), 2.15 (s, 3H), 2.10 (s, 3H, 2 x), 2.06 ($\mathrm{s}, 6 \mathrm{H}, 2 \times \mathrm{OCOCH}_{3}$), $2.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCOCH}_{3}\right), 2.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCOCH}_{3}\right), 1.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCOCH}_{3}\right){ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.4,170.2,170.1,170.0,169.3,169.1\left(\mathrm{Cq}, \mathrm{C}=\mathrm{O}_{\text {acetyl }}\right), 160.8(\mathrm{Cq}, \mathrm{C}=\mathrm{NH})$, 101.12 ($\mathrm{C}-1^{\prime}$), 92.8 (C-1), $90.6\left(\mathrm{CCl}_{3}\right), 75.8$ (C-4), 71.0 (C-3'), 70.9 (C-5), 70.7 (C-5'), 69.9 (C-2), 69.2 (C-3), 69.1 (C-2'), 66.6 (C-4'), 61.5 (C-6), 60.7 (C-6'), 20.8, 20.7, 20.6, 2 x $20.4\left(\mathrm{OCOCH}_{3}\right)$. The NMR data were in accordance with those described in the literature. [10]

2-Propynyl $\mathbf{2 , 3 , 4 , 6 , 2}{ }^{\prime}, \mathbf{3}^{\prime}, \mathbf{6}^{\prime}$-hepta- \boldsymbol{O}-acetyl- $\boldsymbol{\beta}$-D-lactopyranoside (7b): To an ice-water cooled solution of $\mathbf{7 b} \mathbf{- 1}(120 \mathrm{mg}, 0.15 \mathrm{mmol}$, equiv.) and propargyl alcohol ($17 \mu \mathrm{~L}, 0.3$ mmol, 2 equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was slowly added $\mathrm{BF} 3 . \mathrm{Et}_{2} \mathrm{O}(0.15 \mathrm{mmol}, 19 \mu \mathrm{~L}, 1$ equiv.) under argon atmosphere. After stirring overnight, saturated $\mathrm{NaHCO}_{3}(8 \mathrm{~mL})$ was added and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The organic layer was combined, washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, brine (20 mL) and dried over MgSO_{4}, then filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using $\mathrm{EtOAc} / \mathrm{Cy}(3: 7)$ as eluent to give the desired compound 7b as a white solid ($64 \mathrm{mg}, 0.095 \mathrm{mmol}, 63 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.35-5.28(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{l}), 5.28-5.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 5.10-$ 5.06 (m, 1H, H-2'), 4.94-4.87 (m, 2H, H-2, H-3'), 4.73-4.70 (m, 1H, H-1), 4.49-4.45 (m, $2 \mathrm{H}, \mathrm{H}-1$ ', H-6 or H-6'), 4.31 (dd, $J=4.2,2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-7$ '), 4.12-4.03 (m, 3H, H-6, H-6'), 3.85 (t, J = 6.8 Hz, 1H, H-5'), 3.81-3.77 (m, 1H, H-4), 3.63-3.60 (m, 1H, H-5), 2.44 (td, J $=2.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9 '), 2.15-2.12\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OCOCH}_{3}\right), 2.10-2.09\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OCOCH}_{3}\right)$, 2.04-2.02 (m, 12H, $4 \times \mathrm{OCOCH}_{3}$), 1.94-1.93 (m, 3H, OCOCH 3). ${ }^{13} \mathrm{C}$ NMR (125 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 170.4,2 \times 170.2,2 \times 169.8\left(\mathrm{Cq}, \mathrm{C}=\mathrm{O}_{\text {aceetyl }}\right)$, 101.1 (C-1'), $97.9(\mathrm{CH}, \mathrm{C}-1), 78.1$ (Cq, C-8'), 76.2 (C-9'), 75.6 (C-4), 72.8, 72.7 (C-5, C-5'), 71.3, 71.0, 70.7, 69.1 (C-2, C2', C-3, C-3'), 66.7 (C-4'), 61.9, 60.9 (C-6, C-6'), 56.0 (C-7'), 21.0, 20.9, 20.8, 2×20.7, $20.6\left(\mathrm{OCOCH}_{3}\right)$. The NMR data were in accordance with those described in the literature. [11]

4-Methyl-7-(propargyloxy)coumarin (7c)

To a solution of 7-hydroxy-4-methylumbelliferone ($528 \mathrm{mg}, 3.0 \mathrm{mmol}, 1$ equiv.) and propargyl bromide ($0.34 \mathrm{~mL}, 3.6 \mathrm{mmol}, 1.2$ equiv.) in dry DMF (6 mL) was added anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(1.67 \mathrm{~g}, 12.0 \mathrm{mmol}, 4$ equiv.) under argon atmosphere. The reaction mixture was allowed to stir at $50^{\circ} \mathrm{C}$ for 5 h prior to dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and filtered at room temperature. The filtrate was evaporated under reduced pressure. The residue was purified by column chromatography on silica gel using EtOAc/Cy (1:2) as eluent to obtain the product 7 c as a white solid ($572 \mathrm{mg}, 2.67 \mathrm{mmol}, 89 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 6.94-6.92(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5$, $\mathrm{H}-7), 6.16$ (q, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.76(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-10), 2.57(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-12), 2.40\left(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.2(\mathrm{Cq}, \mathrm{C}-1)$, 160.5 (Cq, C-6), 155.1 (Cq, C-8), 152.6 (Cq, C-3), 125.7 (C-4), 114.4 (Cq, C-9), 112.8 (C5), 112.5 (C-2), $102.3(\mathrm{C}-7), 77.5(\mathrm{C}-11), 76.6(\mathrm{C}-12), 56.3\left(\mathrm{CH}_{2}, \mathrm{C}-10\right), 18.8\left(\mathrm{CH}_{3}\right)$. The NMR data were in accordance with those described in the literature. ${ }^{[12]}$

N-Propargyl-5-(dimethylamino)naphthalene-1-sulfonamide (7d):

A solution of dansyl chloride ($135 \mathrm{mg}, 0.5 \mathrm{mmol}, 1$ equiv.), propargylamine ($64 \mu \mathrm{~L}, 1$ mmol, 2 equiv.) and $\mathrm{Et}_{3} \mathrm{~N}$ ($0.1 \mathrm{~mL}, 0.75 \mathrm{mmol}, 1.5$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was stirred at
room temperature for 1 h . The solvent was evaporated under reduced pressure and the residue was purified by column chromatography on silica gel using EtOAc/Cyc (1:2) as eluent to afford a yellow powder ($140 \mathrm{mg}, 0.49 \mathrm{mmol}, 97 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.56(\mathrm{dd}, J=8.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 8.27(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}$, H-8), 8.26-8.24 (m, 1H, H-4), 7.59-7.53 (m, 1H, H-3), 7.51 (ddd, $J=8.5,7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-7), 7.18(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 5.07(\mathrm{~s}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 3.78-3.76$ (m, 2H, H11), $2.88\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{NCH}_{3}\right), 1.91-1.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-13) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 152.0 (Cq, C-1), 134.4 (Cq, C-5), 130.8 (C-2), 129.9 (C-4), 129.9 (Cq, C-9), 129.8 (Cq, C10), 128.6 (C-3), 123.3 (C-7), 118.7 C-8), 115.3 (, C-6), 77.9 (C-12), 72.7 (C-13), 45.5 $\left(\mathrm{NCH}_{3}\right), 33.0(\mathrm{C}-11)$. The NMR data were in accordance with those described in the literature. ${ }^{[13]}$

4-[(2S)-2-(\{[(9H-fluoren-9-yl)methoxy]carbonyl\}amino)-3-phenylpropanamido]-1propyne (7e)

To a solution of the Fmoc-L-phenylalanine ($425 \mathrm{mg}, 1.10 \mathrm{mmol}$, 1 equiv.) in dry DMF (10 mL), HBTU ($501 \mathrm{mg}, 1.32 \mathrm{mmol}, 1.2$ equiv.) and DIPEA ($0.23 \mathrm{~mL}, 1.32 \mathrm{mmol}, 1.2$ equiv.) were added under argon atmosphere. After stirring for 0.5 h propargylamine ($70 \mu \mathrm{~L}, 1.32$ mmol, 1.2 equiv.) in dry DMF (2 mL) was added and stirred at room temperature for 48 h . Then, $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ was added, filtered, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The organic layers were combined, washed with brine ($2 \times 50 \mathrm{~mL}$), dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using EtOAc/Cyc/DCM (4:5:5) as eluent to give a white solid ($373 \mathrm{mg}, 0.88 \mathrm{mmol}, 80 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{-1}$) $\delta 8.53\left(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}-\mathrm{CH}_{2}\right), 7.88(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}, 2 \times \mathrm{H}-12$), $7.75-7.58$ (m, 3H, $2 \times \mathrm{H}-13, \mathrm{NH}$), 7.41 (td, $J=7.5,3.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-14$ or $2 \times \mathrm{H}-15$), $7.34-7.24(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{H}-5,2 \times \mathrm{H}-6,2 \times \mathrm{H}-14$ or $2 \times \mathrm{H}-15$), 7.18-7.17 (m, $1 \mathrm{H}, \mathrm{H}-7$), 4.25-4.02 (m, 4H, H-2, H-9, H-10), 3.91-3.88 (m, 2H, H-17), 3.15 (t, J = 2.5 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{a}$), 2.97 (dd, $J=13.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{~b}), 2.82-2.76$ (m, 1H, H-19). ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d ${ }_{6}$) $\delta 171.3$ (Cq, C-1), 155.8 (Cq, C-8), 143.8, 143.7 (Cq, C-11), 140.6 (Cq, C-16), 138.1 (Cq, C-4), 129.2 (C-6), 128.0, 127.6 (C-14, C-15), 127.0 (C-5), 126.3 (C-7), 125.4, 125.3 (C-13), 120.1 (C-12), 80.9 (C-18), 73.2 (C-19), 65.6 (C-9), 56.1 (C-2), 46.5 (C-10), 37.4 (C-3), 28.0 (C-17). The NMR data were in accordance with those described in the literature. ${ }^{[14]}$

3-(D-Biotinylamido)-1-propyne (7f)

A solution of D-biotin ($80 \mathrm{mg}, 0.327 \mathrm{mmol}$, equiv.) and propargylamine ($26 \mu \mathrm{~L}, 0.392$ mmol, 1.2 equiv.) in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{MeOH}(3: 1,4 \mathrm{~mL})$ was stirred at room temperature for 6.5 h . Then the reaction was concentrated under reduced pressure. MeOH was added to the crude residue and the solution was filtered through a pad of celite. The filtrate was evaporated and the residue was purified by column chromatography on silica gel using $\mathrm{DCM} / \mathrm{MeOH}$ (10:1) as eluent and isolated as a white solid ($0.263 \mathrm{mmol}, 74 \mathrm{mg}, 80 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} H), 4.49$ (ddd, $J=7.9,4.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 3), 4.31 (dd, $J=7.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.95(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-12), 3.28-3.13(\mathrm{~m}, 1 \mathrm{H}$, H-6), 2.93 (dd, $J=12.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}), 2.71(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}), 2.58(\mathrm{t}, J=$ $2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-14$), 2.22 (dd, $J=11.0,4.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-10$), $1.79-1.54$ (m, 4H, H-7, H-9), 1.48-1.42 (m, 2H, H-8). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 175.6(\mathrm{Cq}, \mathrm{C}-11), 166.1(\mathrm{Cq}, \mathrm{C}-$ 4), 80.7 (C-13), 72.1 (C-14), 63.3 (C-5), 61.6 (C-3), 56.9 (C-6), 41.0 (C-2), 36.5 (C-10), 29.7, 29.4, 29.4, 26.7 (C-7, C-8, C-9, C-12). The NMR data were in accordance with those described in the literature. ${ }^{[15]}$

Scheme S6. Synthetic route for 7g
Maleimidoacetic acid (7g-1): To a solution of Maleic anhydride ($2.5 \mathrm{~g}, 25.5 \mathrm{mmol}, 1$ equiv.) in acetic acid (30 mL) was added to a suspension of glycine $(1.91 \mathrm{~g}, 25.5 \mathrm{mmol}, 1$ equiv.) in acetic acid (15 mL) and vigorously stirred for 7 h at room temperature. Afterwards, the reaction mixture was heated to reflux overnight, then cooled down before removal of the solvent under vacuum. The crude was then purified by column chromatography on silica gel using $\mathrm{DCM} / \mathrm{MeOH} / \mathrm{AcOH}$ (200:10:1) as eluent to yield product $\mathbf{7 g}-1$ as a white solid ($2.6 \mathrm{~g}, 16.8 \mathrm{mmol}, 66 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.80$ (s, 2H, H-3, H-4), 4.33 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H}-6$). ${ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.9$ (Cq, C-2, C-5), 169.7 (Cq, C-7), 134.7 (C-3, C-4), 38.4 (C-6). The NMR data were in accordance with those described in the literature. ${ }^{[16]}$

2-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)- N-(prop-2-yn-1-yl)acetamide (7g): Propargylamine ($139 \mu \mathrm{~L}, 2.35 \mathrm{mmol}, 0.9$ equiv.) was slowly added to a solution of $\mathbf{7 g} \mathbf{- 1}(267 \mathrm{mg}$, $2.37 \mathrm{mmol}, 1$ equiv.) and $\operatorname{EDCI}(500 \mathrm{mg}, 1.65 \mathrm{mmol}, 1.1$ equiv.) in dry THF/DMF ($3: 1,8$ mL) at $0^{\circ} \mathrm{C}$. Then the reaction was allowed to warm to room temperature and stirred overnight. Afterwards, the crude was concentrated under reduced pressure and the resulting residue was purified by column chromatography on silica gel using DCM/MeOH (200:1) as eluent to obtain the desired product 7 g as a white solid ($91 \mathrm{mg}, 0.474 \mathrm{mmol}, 20 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.80$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4$), 4.19 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H}-6$), 4.07 (dd, $J=5.2$, $2.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-8), 2.26(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.2(\mathrm{Cq}$, C-2, C-5), 165.7 (Cq, C-7), 134.7 (CH, C-3, C-4), 78.8 (C-9), 72.4 (C-10), $40.5\left(\mathrm{CH}_{2}, \mathrm{C}-\right.$ 6), $29.7\left(\mathrm{CH}_{2}, \mathrm{C}-8\right)$. HRMS ($\mathrm{ESI}^{+}-\mathrm{MS}, \mathrm{m} / \mathrm{z}$): calculated for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$193.0607; found 193.0607.

Scheme S7. Synthesis of 7h
N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)pent-4-ynamide (7h): To a solution of 4-(aminomethyl)phenylboronic acid pinacol ester hydrochloride ($50 \mathrm{mg}, 0.185$ mmol, 1 equiv.) and 4-pentynoic acid ($22 \mathrm{mg}, 0.222 \mathrm{mmol}$, 1.2 equiv.) in dry DCM/DMF ($10: 1,2.2 \mathrm{~mL}$) was added EDCI ($43 \mathrm{mg}, 0.222 \mathrm{mmol}, 1.2$ equiv.). After stirring at room temperature for 4 h , the solution was concentrated under reduced pressure and the resulting residue was purified by column chromatography on silica gel using Cy/EtOAc (4:1) as eluent to yield the desired product as a white solid ($54 \mathrm{mg}, 0.173 \mathrm{mmol}, 93 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{dd}, J=8.1,2.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-9), 7.24$ (dd, $J=4.4$, $3.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-8$), 4.41-4.38 (m, 2H, H-6), 2.56-2.46 (m, 2H, H-2), 2.38 (td, $J=6.0$, $1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3), 1.96(\mathrm{td}, J=2.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 1.31(\mathrm{~s}, 12 \mathrm{H}, 4 \times \mathrm{H}-12) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.1(\mathrm{Cq}, \mathrm{C}-1), 141.3(\mathrm{Cq}, \mathrm{C}-7), 135.2\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-9\right), 127.1\left(\mathrm{CH}_{\mathrm{Ar}}\right.$, $\mathrm{C}-8), 83.9(\mathrm{Cq}, \mathrm{C}-11), 83.0(\mathrm{C}-4), 69.5(\mathrm{C}-5), 43.7\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 35.3\left(\mathrm{CH}_{2}, \mathrm{C}-2\right), 24.9\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-12), 15.0\left(\mathrm{CH}_{2}, \mathrm{C}-3\right)$. HRMS ($\mathrm{ESI}^{+}-\mathrm{MS}, \mathrm{m} / \mathrm{z}$): calculated for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{BNO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 314.1925; found 314.1923.

Scheme S7. Synthesis of 9
8,8-Dibromobicyclo[5.1.0]octane (9a): A mixture of cycloheptene ($1.41 \mathrm{~mL}, 12 \mathrm{mmol}, 1$ equiv.) and potassium tert-butoxide ($24 \mathrm{mmol}, 672 \mathrm{mg}, 2$ equiv.) in pentane (9 mL) was cooled to $-10^{\circ} \mathrm{C} . \mathrm{CHBr}_{3}(1.6 \mathrm{~mL}, 18 \mathrm{mmol}, 1.5$ equiv.) was added dropwise over 0.3 h and allowed it to stir at room temperature overnight. Then, $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added, acidified using $\mathrm{HCl}(1 \mathrm{~N})$ and extracted with pentane (2 x 20 mL), the combined organic layers were washed with brine (30 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude was purified by column chromatography on silica gel using Cy as eluent to yield the desired compound 9a as a colorless oil ($1.52 \mathrm{~g}, 5.67 \mathrm{mmol}, 47 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.29-2.22(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2 \mathrm{a}, \mathrm{H}-6 \mathrm{a}), 1.91-1.79(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3 \mathrm{a}$, H-4a, H-5a), 1.43-1.38 (m, 2H, H-1, H-7), 1.22-1.11 (m, 3H, H-2b, H-4b, H-6b). ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 40.9$ (C-8), 34.8 (C-1, C-7), 32.3 (C-4), 29.0 (C-2, C-6), 28.1 (C-3, C-5). The NMR data were in accordance with those described in the literature. ${ }^{[17]}$
[(Z)-2-Bromo-2-cycloocten-1-yloxy]acetic acid methyl ester (9b): To a vigorously stirred solution of $9 \mathbf{a}(536 \mathrm{mg}, 2.0 \mathrm{mmol}, 1$ equiv.) and methyl glycolate ($0.93 \mathrm{~mL}, 12$ mmol, 6 equiv.) in dry toluene was added $\mathrm{AgClO}_{4}(7.5 \mathrm{mg}, 3.4 \mathrm{mmol}, 1.7$ equiv.) portionwise under argon atmosphere. The reaction vessel was protected from light by the use of aluminum foil. After stirring for 1.5 h at room temperature, the silver salts were removed by filtration and the residue was purified by column chromatography on silica gel using EtOAc/Cy (1:20) as eluent and isolated 9b a pale yellow oil ($200 \mathrm{mg}, 0.72 \mathrm{mmol}, 36 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.22(\mathrm{dd}, J=11.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.25(\mathrm{~d}, J=16.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-9 \mathrm{a}$), 4.13 (dd, $J=10.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$), 3.98 (d, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9 \mathrm{~b}$), 3.74 (s,

3H, H-11), 2.79-2.69 (m, 1H, H-3a), 2.32-2.27 (m, 1H, H-3b), 2.11-1.25 (m, 7H, H-4, H5, H-6a, H-7), 0.85-0.76 (m, 1H, H-6b). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.9(\mathrm{Cq}, \mathrm{C}=\mathrm{O})$, 133.1 (C-2), 131.6 (C-1), $85.0(\mathrm{CH}, \mathrm{C}-8), 65.6(\mathrm{C}-9), 52.0\left(\mathrm{CH}_{3}, \mathrm{C}-11\right), 39.5,36.7,33.5$, 28.2, 26.4 (C-4, C-5, C-6, C-7, C-8).
(2-Cyclooctyn-1-yloxy)acetic acid (9): To a solution of compound 9b ($166 \mathrm{mg}, 0.6 \mathrm{mmol}$, 1 equiv.) in dry DMSO (0.5 ml) was added DBU ($0.56 \mathrm{~mL}, 3.6 \mathrm{mmol}, 6$ equiv.) under argon atmosphere and the solution was allowed to stir at $60^{\circ} \mathrm{C}$ overnight. Afterwards, $\mathrm{H}_{2} \mathrm{O}$ $(0.1 \mathrm{~mL})$ was added and stirred for another 4 h before cooling down. Then, the solution was diluted with hydrochloride ($10 \mathrm{~mL}, 1 \mathrm{~N}$) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic layer was washed with brine ($3 \times 15 \mathrm{~mL}$), dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure to give the product 9 as a pale yellow solid ($0.86 \mathrm{mg}, 47 \mathrm{mmol}, 79 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.38-4.36(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 4.25(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9 \mathrm{a})$, 4.09 (d, $J=16.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9 \mathrm{~b}), 2.30-1.44\left(\mathrm{~m}, 10 \mathrm{H}, 5 \mathrm{xCH}_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 174.9(\mathrm{Cq}, \mathrm{C}-10)$, $102.29(\mathrm{C}-2), 91.1(\mathrm{C}-1), 73.3(\mathrm{C}-3), 65.8(\mathrm{C}-9), 42.3(\mathrm{C}-4), 34.4,29.7$, 26.3 (C-5, C-6, C-7), 20.8 (C-8). The NMR data were in accordance with those described in the literature. ${ }^{[17]}$

1-O-Propargyl-2,3,4-tri- O-acetyl- α-L-fucopyranose (13):

The title compound was prepared following a literature procedure, ${ }^{[18]}$ purified using $\mathrm{EtOAc} / \mathrm{Cy}(1: 4)$ as eluent to obtain a white powder $(0.74 \mathrm{~g}, 2.25 \mathrm{mmol}, 37 \%)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.36(\mathrm{dd}, J=10.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.31-5.30(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 4), $5.25(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.16(\mathrm{dd}, J=10.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.26(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H}-7), 4.20(\mathrm{dd}, J=6.6,0.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 2.43(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9), 2.17(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCOCH}_{3}\right), 2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCOCH}_{3}\right), 1.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCOCH}_{3}\right), 1.14\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7,170.6,170.1\left(\mathrm{Cq}, \mathrm{C}=\mathrm{O}_{\text {acetyl }}\right.$), $95.2(\mathrm{C}-1), 78.7$ (C-8),
75.0 (C-9), 71.2 (C-2), 67.9, 67.9 (C-4, C-3), 65.1 (C-5), 55.3 (C-7), 21.0, 20.8, 20.8 $\left(\mathrm{OCOCH}_{3}\right), 15.9(\mathrm{C}-6)$. The NMR data were in accordance with those described in the literature. ${ }^{[18]}$
α-L-Galactopyranoside, [1-(10-azidodecyl)-1H-1,2,3-triazol-4-yl]methyl 6-deoxy-2,3, 4-triacetate (14):

The title compound was prepared following a literature procedure, ${ }^{[19]}$ purified using $\mathrm{EtOAc} / \mathrm{Cy}(1: 2)$ as eluent and isolated as a colorless oil ($372 \mathrm{mg}, 0.67 \mathrm{mmol}, 74 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-9), 5.36(\mathrm{dd}, \mathrm{J}=3.2 \mathrm{~Hz}, \mathrm{~J}=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 3), $5.29(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.18(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.14(\mathrm{dd}, \mathrm{J}=3.7 \mathrm{~Hz}, \mathrm{~J}=$ $10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.84(\mathrm{AB}, \mathrm{J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a}), 4.66(\mathrm{AB}, \mathrm{J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{~b})$, 4.35 (t, J = 7.3 Hz, 2H, H-10), 4.20 ($\mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 3.26 (t, J = $7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-19$), $2.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCOCH}_{3}\right), 2.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCOCH}_{3}\right), 1.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCOCH}_{3}\right), 1.91(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.57\left(\mathrm{tt}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, 6 \times \mathrm{CH}_{2}\right), 1.34-1.25\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 1.14(\mathrm{~d}$, $\mathrm{J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-6) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.6,170.4,170.1\left(\mathrm{Cq}, \mathrm{C}=\mathrm{O}_{\text {acetyl }}\right)$, 143.9 (C-8), 122.5 (C-9), 95.7 (C-1), 71.1 (C-2), 2×68.0 (C-3, C-4), 64.7 (C-5), 61.4 (C7), 51.5 (C-10), 50.4 (C-19), 30.4, 29.3, 29.3, 29.1, 29.0, 28.8, 26.7, $26.5\left(\mathrm{CH}_{2}\right), 20.8,20.7$, $20.7\left(\mathrm{OCOCH}_{3}\right), 15.9(\mathrm{C}-6)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data were in accordance with those described in the literature. ${ }^{[19]}$

S7. Synthesis of the intermediate 6

Compound 6a:

To a vigorously stirred solution of copillar[5]arene 4 ($448 \mathrm{mg}, 0.4 \mathrm{mmol}, 1$ equiv.) and 5 ($2.196 \mathrm{~g}, 4.76 \mathrm{mmol}, 12$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ under argon atmosphere was added a freshly prepared solution of $\mathrm{CuSO}_{4}(23 \mathrm{mg}, 0.08 \mathrm{mmol}, 0.2$ equiv.) and NaAsc (52 mg , $0.264 \mathrm{mmol}, 0.66$ equiv.) in $\mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL})$. The reaction mixture was further vigorously stirred overnight at room temperature. Then, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ were added, the organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20$ mL). The combined organic phases, washed with brine, dried over anhydrous MgSO_{4} and concentrated. The obtained residue was purified by column chromatography on silica gel. The resulting crude was purified using $\mathrm{DCM} / \mathrm{MeOH}(30: 1)$ as eluent to give a white solid ($1.78 \mathrm{~g}, 0.37 \mathrm{mmol}, 93 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}-11), 7.86(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}-11), 7.78(\mathrm{~s}, 2 \mathrm{H}$, $2 \times \mathrm{H}-11$), 7.01 ($\mathrm{s}, 2 \mathrm{H}, 2 \times \mathrm{H}-15$), $6.94-6.90$ ($\mathrm{m}, 6 \mathrm{H}, 6 \times \mathrm{H}-15$), 6.76 ($\mathrm{m}, 2 \mathrm{H}, 2 \times \mathrm{H}-15$), 5.34-5.23 (m, 24H, $8 \times \mathrm{H}-2,8 \times \mathrm{H}-3,8 \times \mathrm{H}-4$), 5.17 (dd, $J=11.5,3.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-13$), 5.04 (d, $J=11.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-13$), $4.93-4.81(\mathrm{~m}, 20 \mathrm{H}, 6 \times \mathrm{H}-13,8 \times \mathrm{H}-1), 4.59-4.49(\mathrm{~m}, 16 \mathrm{H}, 8$ x H-10), 4.30-4.25 (m, 8H, $8 \times \mathrm{H}-6 \mathrm{a}$), 4.10-4.04 (m, 10H, $8 \times \mathrm{H}-6 \mathrm{~b}, \mathrm{H}-18$), 4.02-3.96 (m, 8H, $8 \times \mathrm{H}-5$), 3.94-3.86 (m, 18H, $8 \times \mathrm{H}-9, \mathrm{H}-18$), 3.79-3.74 (m, 18H, $5 \times \mathrm{H}-17,4 \times \mathrm{H}-7 \mathrm{a}$), $3.64-3.60(\mathrm{~m}, 24 \mathrm{H}, 4 \times \mathrm{H}-7 \mathrm{~b}, 8 \times \mathrm{H}-8), 3.55(\mathrm{t}, J=5.4 \mathrm{~Hz}, 4 \mathrm{H}, 2 \times \mathrm{H}-19), 2.14-2.13$ (m, $\left.24 \mathrm{H}, 8 \times \mathrm{OCOCH}_{3}\right), 2.08-2.07\left(\mathrm{~m}, 24 \mathrm{H}, 8 \times \mathrm{OCOCH}_{3}\right), 2.04-2.02\left(\mathrm{~m}, 24 \mathrm{H}, 8 \times \mathrm{OCOCH}_{3}\right)$, $1.97-1.94\left(\mathrm{~m}, 24 \mathrm{H}, 8 \times \mathrm{OCOCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,2 \times 169.8,2 \mathrm{x}$
169.7, 169.6, $169.5\left(\mathrm{Cq}, \mathrm{C}=\mathrm{O}_{\text {acetyl }}\right), 149.6,2 \times 149.5,149.4(\mathrm{Cq}, \mathrm{C}-14), 144.2,144.1,144.0$ (Cqtriazole, C-12), $2 \times 128.6,128.4,128.3,2 \times 128.2,128.1$ (Cq, C-16), $2 \times 123.8,123.7$ $\left(\mathrm{CH}_{\text {triazole }}, \mathrm{C}-11\right), 115.8,115.2\left(\mathrm{Cq}_{\mathrm{Ar}}, \mathrm{C}-15\right), 97.5(\mathrm{CH}, \mathrm{C}-1), 2 \times 69.8,69.7\left(\mathrm{CH}_{2}, \mathrm{C}-8\right)$, $69.4\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 69.2(\mathrm{CH}, \mathrm{C}-3), 68.9,68.8(\mathrm{CH}, \mathrm{C}-2), 68.5\left(\mathrm{CH}_{2}, \mathrm{C}-18\right), 68.3(\mathrm{CH}, \mathrm{C}-5)$, $2 \times 67.0\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 65.8(\mathrm{CH}, \mathrm{C}-4), 62.4\left(\mathrm{CH}_{2}, \mathrm{C}-13\right), 62.2\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 61.9\left(\mathrm{CH}_{2}, \mathrm{C}-13\right)$, 49.9, $49.8\left(\mathrm{CH}_{2}, \mathrm{C}-10\right), 31.0(\mathrm{C}-19), 29.5,29.2,28.9(\mathrm{C}-17), 2 \times 20.7,20.6,3 \times 20.5$ $\left(\mathrm{OCOCH}_{3}\right)$. Mass (MAlDI-TOF-MS, m/z): calculated for $\mathrm{C}_{207} \mathrm{H}_{268} \mathrm{Br}_{2} \mathrm{~N}_{24} \mathrm{O}_{98} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 4843.29; found 4843.58.

Compound 6: To a solution of $\mathbf{6 a}(1.75 \mathrm{~g}, 0.36 \mathrm{mmol}, 1$ equiv.) in dry DMF (5 mL) was added NaN_{3} ($94 \mathrm{mg}, 1.44 \mathrm{mmol}, 4$ equiv.). The mixture was stirred at room temperature overnight before evaporating to dryness under vacuum. Then, the crude slurry was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 40 \mathrm{~mL})$, brine (40 mL), dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure to afford the desired as a pale yellow solid ($1.62 \mathrm{~g}, 0.34 \mathrm{mmol}, 95 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90-7.89(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}-11), 7.84(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}-11), 7.78$ (s, 2H, $2 \times \mathrm{H}-11$), 6.95-6.93 (m, 4H, $4 \times \mathrm{H}-15$), 6.90 ($\mathrm{s}, 4 \mathrm{H}, 4 \times \mathrm{H}-15$), 6.76-6.75 (m, 2H, $2 \times \mathrm{H}-15), 5.32-5.23(\mathrm{~m}, 24 \mathrm{H}, 8 \times \mathrm{H}-4,8 \times \mathrm{H}-3,8 \times \mathrm{H}-2), 5.15(\mathrm{dd}, J=11.7,4.2 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{H}-13$), 5.03 (d, $J=11.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-13$), $4.91-4.82(\mathrm{~m}, 20 \mathrm{H}, 6 \times \mathrm{H}-13,8 \times \mathrm{H}-1), 4.57-4.53$ (m, 16H, $8 \times \mathrm{H}-10$), 4.30-4.23 (m, 8H, $4 \times \mathrm{H}-6$), 4.09-4.05 (m, 8H, $4 \times \mathrm{H}-6$), 4.01-3.96 (m, 8H, $8 \times \mathrm{H}-5$), 3.91-3.84 (m, 18H, $8 \times \mathrm{H}-9, \mathrm{H}-18$), 3.79-3.73 (m, 20H, $4 \times \mathrm{H}-7,5 \times \mathrm{H}-$ 17, H-18), 3.64-3.55 (m, 26H, $4 \times \mathrm{H}-7,8 \times \mathrm{H}-8, \mathrm{H}-19$), 3.47-3.43 (m, 2H, H-19), 2.14$2.13\left(\mathrm{~m}, 24 \mathrm{H}, 8 \times \mathrm{OCOCH}_{3}\right), 2.07\left(\mathrm{~s}, 24 \mathrm{H}, 8 \times \mathrm{OCOCH}_{3}\right), 2.03\left(\mathrm{~m}, 24 \mathrm{H}, 8 \times \mathrm{OCOCH}_{3}\right)$, $1.97\left(\mathrm{~s}, 24 \mathrm{H}, 8 \times \mathrm{OCOCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,169.8$, $169.6(\mathrm{Cq}$, $\left.\mathrm{C}=\mathrm{O}_{\text {acetyl }}\right), 149.7,149.6,149.4(\mathrm{Cq}, \mathrm{C}-14), 144.2,144.1\left(\mathrm{Cq}_{\text {triazole }}, \mathrm{C}-12\right), 128.5,128.2(\mathrm{Cq}$, C-16), 123.8 ($\mathrm{CH}_{\text {triazole }}$, $\mathrm{C}-11$), 115.3, $115.0(\mathrm{CHAr}, \mathrm{C}-15), 97.5(\mathrm{CH}, \mathrm{C}-1), 69.8\left(\mathrm{CH}_{2}, \mathrm{C}-\right.$ 8), $69.4\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 69.3(\mathrm{CH}, \mathrm{C}-3), 68.9(\mathrm{CH}, \mathrm{C}-2), 68.3(\mathrm{CH}, \mathrm{C}-5), 67.1\left(\mathrm{CH}_{2}, \mathrm{C}-7, \mathrm{C}-\right.$ 18), $65.9(\mathrm{CH}, \mathrm{C}-4), 62.3\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 62.0\left(\mathrm{CH}_{2}, \mathrm{C}-13\right), 50.7\left(\mathrm{CH}_{2}, \mathrm{C}-19\right), 49.9\left(\mathrm{CH}_{2}, \mathrm{C}-\right.$ 10), 29.7, 29.2, $29.1\left(\mathrm{CH}_{2}, \mathrm{C}-17\right), 2 \times 20.7,20.5\left(\mathrm{OCOCH}_{3}\right)$. HRMS (TOF-MS-ESI $\left.{ }^{+}, \mathrm{m} / \mathrm{z}\right)$: calculated for $\mathrm{C}_{207} \mathrm{H}_{268} \mathrm{~N}_{30} \mathrm{O}_{98} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 4767.52$; found 4767.77.

S8. General procedure B for the synthesis of compounds $8 \mathrm{Ba}-\mathrm{e}$ and $\mathbf{8 g}$

Scheme S9. Synthesis of compounds 8a-e and $\mathbf{8 g}$
To a vigorously stirred solution of compound 6 (1 equiv.) and one of the alkyne functionalized ligands $7 \mathbf{x}$ (3.2 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{v} \mathrm{mL})$, the same volume (v mL) of a freshly prepared solution of CuSO_{4} (0.2 equiv. $\times \mathrm{n}$) and NaAsc (0.66 equiv. $\times \mathrm{n}$) in distilled water ($\mathrm{v} \mathrm{mL} \times \mathrm{n}$) was taken and added under argon atmosphere. After stirring at room temperature for $20 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ were added and separated. The organic layer was washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel.

Compound 8a:

The title compound was prepared following the general procedure \mathbf{B} using $\mathbf{6}(110 \mathrm{mg}$, 0.023 mmol), $7 \mathbf{7 a}(29 \mathrm{mg}, 0.074 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL}), \mathrm{CuSO}_{4}(5.9 \mathrm{mg}, 0.037 \mathrm{mmol})$ and NaAsc ($21.3 \mathrm{mg}, 0.121 \mathrm{mmol}$) [$\mathrm{n}=8$], purified by using EtOAc/Cy (2:1) as eluent to remove excess $7 \mathbf{7 a}$, then $\mathrm{DCM} / \mathrm{MeOH}(30: 1)$ as eluent and isolated as a white solid (116 $\mathrm{mg}, 0.021 \mathrm{mmol}, 91 \%)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95-7.83(\mathrm{~m}, 10 \mathrm{H}, 8 \times \mathrm{H}-11,2 \times \mathrm{H}-20), 6.99-6.90(\mathrm{~m}, 8 \mathrm{H}$, $8 \times \mathrm{H}-15$), 6.75 (br, $2 \mathrm{H}, 2 \times \mathrm{H}-15$), $5.32-5.23$ (m, $24 \mathrm{H}, 8 \times \mathrm{H}-2,8 \times \mathrm{H}-3,8 \times \mathrm{H}-4$), $5.15-$ $5.02(\mathrm{~m}, 10 \mathrm{H}, 2 \times \mathrm{H}-13,2 \times \mathrm{H}-22 \mathrm{a}, 2 \times \mathrm{H}-25,2 \times \mathrm{H}-26), 4.96-4.84(\mathrm{~m}, 24 \mathrm{H}, 8 \times \mathrm{H}-1,5 \times$ $\mathrm{H}-13,2 \times \mathrm{H}-19 \mathrm{a}, 2 \times \mathrm{H}-22 \mathrm{~b}, 2 \times \mathrm{H}-24)$, 4.76-4.72(m, 4H, H-13, $2 \times \mathrm{H}-19 \mathrm{~b}$), 4.69 (d, $J=$ $7.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-23$), $4.59-4.54(\mathrm{~m}, 16 \mathrm{H}, 8 \times \mathrm{H}-10), 4.28-4.20(\mathrm{~m}, 12 \mathrm{H}, 8 \times \mathrm{H}-6 \mathrm{a}, \mathrm{H}-18$, $2 x \mathrm{H}-28 \mathrm{a}$), 4.10-4.06 (m, 10H, $8 \times \mathrm{H}-6 \mathrm{~b}, 2 \times \mathrm{H}-28 \mathrm{~b}$), 4.10-3.86 (m, 28H, $8 \times \mathrm{H}-5,8 \times \mathrm{H}-$ 9, H-18, $2 \times \mathrm{H}-27$), 3.79-3.70 (m, 16H, $5 \times \mathrm{H}-17,3 \times \mathrm{H}-7$), 3.65-3.61 (m, 24H, $4 \times \mathrm{H}-7,8$ x H-8), $3.42-3.49(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7), 2.14-2.12\left(\mathrm{~m}, 24 \mathrm{H}, 8 \times \mathrm{OCOCH}_{3}\right), 2.07-2.06(\mathrm{~m}, 24 \mathrm{H}, 8$ x OCOCH_{3}), 2.04-2.01 (m, 30H, $10 \times \mathrm{OCOCH}_{3}$), $1.99\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{OCOCH}_{3}\right), 1.96(\mathrm{~m}$, $30 \mathrm{H}, 10 \times \mathrm{OCOCH}_{3}$), $1.82-1.80\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{OCOCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $170.6,2 \times 170.1,169.91,169.7,169.4,169.3\left(\mathrm{Cq}, \mathrm{C}=\mathrm{O}_{\text {acetyl }}\right), 149.8,2 \times 149.7,2 \times 149.3$ (Cq, C-14), 144.3, 144.2 ($\mathrm{Cq}_{\text {triazole }}, \mathrm{C}-12$), 143.6, 143.5 ($\mathrm{Cq}_{\text {triazole }}, \mathrm{C}-21$), 128.7, 128.6, 128.5, $128.4,2 \times 128.0$ (Cq, C-16), 124.2, 124.1, 124.0, 123.9 ($\left.\mathrm{CH}_{\text {triazole }}, \mathrm{C}-11, \mathrm{C}-20\right), 115.6$, 115.4, 115.1, $114.9\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-15\right), 99.4,99.3(\mathrm{CH}, \mathrm{C}-23), 97.6(\mathrm{CH}, \mathrm{C}-1), 72.8,72.8(\mathrm{CH}$, $\mathrm{C}-25), 2 \times 71.7(\mathrm{CH}, \mathrm{C}-27), 71.1(\mathrm{CH}, \mathrm{C}-24), 69.9\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 69.6\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 69.4(\mathrm{CH}$, $\mathrm{C}-3), 69.0(\mathrm{CH}, \mathrm{C}-2), 68.5(\mathrm{CH}, \mathrm{C}-5), 68.3(\mathrm{CH}, \mathrm{C}-26), 67.2\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 66.8,66.7\left(\mathrm{CH}_{2}\right.$,
$\mathrm{C}-18), 66.0(\mathrm{CH}, \mathrm{C}-4), 62.5\left(\mathrm{CH}_{2}, \mathrm{C}-13, \mathrm{C}-22\right), 62.4\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 62.1\left(\mathrm{CH}_{2}, \mathrm{C}-13\right), 61.7$ $\left(\mathrm{CH}_{2}, \mathrm{C}-28\right)$, $50.1\left(\mathrm{CH}_{2}, \mathrm{C}-10, \mathrm{C}-19\right), 29.7$, $29.1\left(\mathrm{CH}_{2}, \mathrm{C}-17\right), 20.8,2 \times 20.7,2 \times 20.6$ $\left(\mathrm{OCOCH}_{3}\right)$. $\mathrm{HRMS}\left(\mathrm{ESI}^{+}-\mathrm{MS}, \mathrm{m} / \mathrm{z}\right)$: calculated for $\mathrm{C}_{241} \mathrm{H}_{316} \mathrm{~N}_{30} \mathrm{O}_{118}[\mathrm{M}+4 \mathrm{H}]^{4+} 1380.2430$; found 1380.2436 .

Compound 8b:

The title compound was prepared following the general procedure \mathbf{B} using $\mathbf{6}(100 \mathrm{mg}, 0.021$ $\mathrm{mmol}), 7 \mathbf{b}(45 \mathrm{mg}, 0.11 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL}), \mathrm{CuSO}_{4}(3.3 \mathrm{mg}, 0.021 \mathrm{mmol}, 0.2$ equiv.) and NaAsc ($12.2 \mathrm{mg}, 0.069 \mathrm{mmol}$) [$\mathrm{n}=5$], purified by using EtOAc/Cy (2:1) as eluent to remove excess 7b, then $\mathrm{DCM} / \mathrm{MeOH}(30: 1)$ as eluent and isolated a white solid (119 mg , $0.0195 \mathrm{mmol}, 93 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88-7.80(\mathrm{~m}, 10 \mathrm{H}, 8 \times \mathrm{H}-11,2 \times \mathrm{H}-20), 6.95-6.87(\mathrm{~m}, 8 \mathrm{H}$, $8 \times \mathrm{H}-15), 6.72$ (br, 2H, $2 \times \mathrm{H}-15$), $5.30-5.20$ (m, $28 \mathrm{H}, 8 \times \mathrm{H}-2,8 \times \mathrm{H}-3,8 \times \mathrm{H}-4,2 \times \mathrm{H}-$ 25, $2 \times \mathrm{H}-32$), $5.13-5.02(\mathrm{~m}, 8 \mathrm{H}, 2 \times \mathrm{H}-13,2 \times \mathrm{H}-30,2 \times \mathrm{H}-24), 4.93-4.81(\mathrm{~m}, 26 \mathrm{H}, 8 \mathrm{x}$ $\mathrm{H}-1,6 \times \mathrm{H}-13,2 \times \mathrm{H}-22,2 \times \mathrm{H}-31), 4.71-4.44(\mathrm{~m}, 26 \mathrm{H}, 8 \times \mathrm{H}-10,2 \times \mathrm{H}-19,2 \times \mathrm{H}-23,2 \times$ H-29, $2 \times \mathrm{H}-28 \alpha$), 4.27-4.10 (m, 12H, $8 \times \mathrm{H}-6 \mathrm{a}, 2 \times \mathrm{H}-18$), 4.07-4.01 (m, 14H, $8 \times \mathrm{H}-6 \mathrm{~b}$, $2 \times \mathrm{H}-28 \mathrm{~b}, 2 \times \mathrm{H}-34), 3.96-3.83$ (m, 26H, $8 \times \mathrm{H}-5,8 \times \mathrm{H}-9,2 \times \mathrm{H}-33$), 3.78-3.71 (m, 18H, $5 \times \mathrm{H}-17,6 \times \mathrm{H}-7 \mathrm{a}, 2 \times \mathrm{H}-26$), $3.62-3.58$ (m, 24H, $8 \times \mathrm{H}-7 \mathrm{~b}, 8 \times \mathrm{H}-8$), 3.40-3.36(m, 2H, $\mathrm{H}-7 \mathrm{a}), 2.11-2.10\left(\mathrm{~m}, 30 \mathrm{H}, 10 \times \mathrm{OCOCH}_{3}\right), 2.04\left(\mathrm{~m}, 30 \mathrm{H}, 10 \times \mathrm{OCOCH}_{3}\right), 2.06-2.03(\mathrm{~m}$, $30 \mathrm{H}, 10 \times \mathrm{OCOCH}_{3}$), 2.01-1.97 (m, 42H, $14 \times \mathrm{OCOCH}_{3}$), $1.81-1.78\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{OCOCH}_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.6,170.4,170.3,170.2,170.1,170.0,169.8,2 \times 169.7$,
169.1 (Cq, $\mathrm{C}=\mathrm{O}_{\text {acetyl }}$), 149.9, 149.8, 2×149.4 (Cq, C-14), 144.4, $2 \times 144.3,143.8,143.7$ (Cqutriazole, C-12, C-21), 128.8, 128.6, 128.5, 128.2, 128.1 (Cq, C-16), 124.2, 124.1, 124.01 $\left(\mathrm{CH}_{\text {triazole }}, \mathrm{C}-11, \mathrm{C}-20\right), 115.8,115.2\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-15\right), 101.1(\mathrm{CH}, \mathrm{C}-29), 99.5,99.3(\mathrm{CH}, \mathrm{C}-$ 23), 97.7 (CH, C-1), 76.3 (CH, C-26), 72.9 (CH, C-27), 72.7 (CH, C-30), 71.6, 71.1 (CH, $\mathrm{C}-24, \mathrm{C}-30), 70.7(\mathrm{CH}, \mathrm{C}-25), 2 \times 70.0\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 69.7\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 69.5\left(\mathrm{CH}_{2}, \mathrm{C}-3, \mathrm{C}-\right.$ 33), $69.1(\mathrm{CH}, \mathrm{C}-2), 68.6(\mathrm{CH}, \mathrm{C}-5), 67.3\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 66.8\left(\mathrm{CH}_{2}, \mathrm{C}-21\right), 66.7(\mathrm{CH}, \mathrm{C}-32)$, $66.2(\mathrm{CH}, \mathrm{C}-4), 62.6\left(\mathrm{CH}_{2}\right.$ or $\mathrm{CH}, \mathrm{C}-13$ or $\left.\mathrm{C}-22\right), 62.5\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 62.2\left(\mathrm{CH}_{2}, \mathrm{C}-13\right.$ or $\mathrm{C}-$ 22), $62.0\left(\mathrm{CH}_{2}, \mathrm{C}-28\right.$ or $\left.\mathrm{C}-34\right), 61.9\left(\mathrm{CH}_{2}, \mathrm{C}-13\right.$ or $\left.\mathrm{C}-22\right), 60.8\left(\mathrm{CH}_{2}, \mathrm{C}-28\right.$ or $\left.\mathrm{C}-34\right), 50.1$ $\left(\mathrm{CH}_{2}, \mathrm{C}-10, \mathrm{C}-19\right), 29.8,29.3\left(\mathrm{CH}_{2}, \mathrm{C}-17\right), 20.9,2 \times 20.8,3 \times 20.7,2 \times 20.6,20.5$ $\left(\mathrm{OCOCH}_{3}\right)$. $\mathrm{HRMS}\left(\mathrm{ESI}^{+}-\mathrm{MS}, \mathrm{m} / \mathrm{z}\right)$: calculated for $\mathrm{C}_{265} \mathrm{H}_{348} \mathrm{~N}_{30} \mathrm{O}_{134}[\mathrm{M}+4 \mathrm{H}]^{4+} 1524.2852$; found 1524.2868.

Compound 8c:

The title compound was prepared following the general procedure \mathbf{B} using $\mathbf{6}(100 \mathrm{mg}, 0.021$ mmol), 7 c ($23 \mathrm{mg}, 0.105 \mathrm{mmol}, 5$ equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1.5 \mathrm{~mL}\right.$), $\mathrm{CuSO}_{4}(5.3 \mathrm{mg}, 0.034 \mathrm{mmol})$ and NaAsc ($19.5 \mathrm{mg}, 0.111 \mathrm{mmol}$) [$\mathrm{n}=8$], purified by using EtOAc/Cy (2:1) as eluent to remove excess $7 \mathbf{c}$, then $\mathrm{DCM} / \mathrm{MeOH}$ (30:1) as eluent and isolated a yellow solid (107 mg , $0.0207 \mathrm{mmol}, 98 \%)$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90-7.85(\mathrm{~m}, 10 \mathrm{H}, 8 \times \mathrm{H}-11,2 \times \mathrm{H}-20), 7.37(\mathrm{~d}, J=6.1$ $\mathrm{Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-25$), 6.98-6.62 (m, 14H, $10 \times \mathrm{H}-15,2 \times \mathrm{H}-24,2 \times \mathrm{H}-31$), 6.02 ($\mathrm{s}, 2 \mathrm{H}, 2 \times \mathrm{H}-$ 28), $5.32-5.20(\mathrm{~m}, 24 \mathrm{H}, 8 \times \mathrm{H}-2,8 \times \mathrm{H}-3,8 \times \mathrm{H}-4), 5.03-4.71(\mathrm{~m}, 30 \mathrm{H}, 8 \times \mathrm{H}-1,8 \times \mathrm{H}-13$,

H-19, $2 \times \mathrm{H}-22$), 4.58-4.52 (m, 18H, $8 \times \mathrm{H}-10, \mathrm{H}-19$), 4.28-4.24 (m, $8 \mathrm{H}, 8 \times \mathrm{H}-6 \mathrm{a}$), 4.16 (br, 2H, H-18), 4.08-3.87 (m, 34H, $8 \times \mathrm{H}-5,8 \times \mathrm{H}-6 \mathrm{~b}, 8 \times \mathrm{H}-9, \mathrm{H}-18$), 3.79-3.71 (m, 16H, $6 \times \mathrm{H}-7 \mathrm{a}, 5 \times \mathrm{H}-17$) $3.64-3.60(\mathrm{~m}, 26 \mathrm{H}, 8 \times \mathrm{H}-7 \mathrm{~b}, 2 \times \mathrm{H}-7 \mathrm{a}, 8 \times \mathrm{H}-8), 2.28\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right)$, $2.12-2.11\left(\mathrm{~m}, 24 \mathrm{H}, 8 \times \mathrm{OCOCH}_{3}\right), 2.02-2.00\left(\mathrm{~m}, 24 \mathrm{H}, 8 \times \mathrm{OCOCH}_{3}\right), 2.02-2.00(\mathrm{~m}, 24 \mathrm{H}$, $\left.8 \times \mathrm{OCOCH}_{3}\right), 1.96-1.95\left(\mathrm{~m}, 24 \mathrm{H}, 8 \times \mathrm{OCOCH}_{3}\right) .{ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.6$, 170.0, $169.7\left(\mathrm{Cq}, \mathrm{C}=\mathrm{O}_{\text {acetyl }}\right)$, $161.1\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-23, \mathrm{C}-29\right), 154.9(\mathrm{Cq}, \mathrm{C}-30), 152.7(\mathrm{Cq}, \mathrm{C}-$ 27), 149.7, 149.5, 149.1 (Cq, C-14), 144.3 (Cqtriazole, C-12), 142.7 (Cq, C-14), 128.7, 128.5, 128.2, $127.9(\mathrm{Cq}, \mathrm{C}-16), 125.7\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-25\right)$, $124.8\left(\mathrm{CH}_{\text {triazole }}, \mathrm{C}-20\right), 124.2,123.9$ $\left(\mathrm{CH}_{\text {triazole }}, \mathrm{C}-11\right), 115.7,115.2,114.8\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-15\right), 113.8(\mathrm{Cq}, \mathrm{C}-26), 112.2\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-24\right)$, $111.9\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-28\right), 102.3\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-31\right), 97.7(\mathrm{CH}, \mathrm{C}-1), 69.9\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 69.5\left(\mathrm{CH}_{2}\right.$ and $\mathrm{CH}, \mathrm{C}-9, \mathrm{C}-3), 69.1(\mathrm{CH}, \mathrm{C}-2), 68.5(\mathrm{CH}, \mathrm{C}-5), 67.2\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 66.7\left(\mathrm{CH}_{2}, \mathrm{C}-21\right), 66.1$ $\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 62.4,61.9,61.6\left(\mathrm{CH}_{2}, \mathrm{C}-13, \mathrm{C}-22\right), 50.1\left(\mathrm{CH}_{2}, \mathrm{C}-10, \mathrm{C}-19\right), 29.9,29.7,29.0$ $\left(\mathrm{CH}_{2}, \mathrm{C}-17\right)$, 20.8, 20.7, $20.7\left(\mathrm{OCOCH}_{3}\right), 18.6\left(\mathrm{CH}_{3}\right) . \mathrm{HRMS}\left(\mathrm{ESI}^{+}-\mathrm{MS}, \mathrm{m} / \mathrm{z}\right)$: calculated for $\mathrm{C}_{233} \mathrm{H}_{292} \mathrm{~N}_{30} \mathrm{O}_{104}[\mathrm{M}+4 \mathrm{H}]^{4+} 1293.9631$; found 1293.9659 .

Compound 8d:

The title compound was prepared following the general procedure \mathbf{B} using $\mathbf{6}(110 \mathrm{mg}, 0.023$ mmol), $7 \mathbf{d}$ ($33 \mathrm{mg}, 0.11 \mathrm{mmol}, 5$ equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL}$), $\mathrm{NaAsc}(21.3 \mathrm{mg}, 0.121 \mathrm{mmol}$) [$\mathrm{n}=8$], purified by using EtOAc as eluent to remove excess 7d, then DCM/MeOH (20:1) as eluent and isolated a yellow solid ($118 \mathrm{mg}, 0.221 \mathrm{mmol}, 96 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.55(\mathrm{br}, 2 \mathrm{H}, 2 \times \mathrm{H}-24), 8.30(\mathrm{br}, 2 \mathrm{H}, 2 \times \mathrm{H}-30), 8.23(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-26), 7.98-7.80(\mathrm{~m}, 10 \mathrm{H}, 8 \times \mathrm{H}-11,2 \times \mathrm{H}-20), 7.52-7.48(\mathrm{~m}, 2 \mathrm{H}, 2 \times$ H-25), 7.44-7.39 (m, 2H, $2 \times \mathrm{H}-29$), 7.17 (br, $2 \mathrm{H}, 2 \times \mathrm{H}-28$), 6.98-6.74 (m, 10H, $10 \times \mathrm{H}-$ 15), $5.33-5.23$ (m, 26H, $8 \times \mathrm{H}-2,8 \times \mathrm{H}-3,8 \times \mathrm{H}-4,2 \times \mathrm{NH}$), $5.10-5.02$ (m, 4H, $2 \times \mathrm{H}-13$), 4.92-4.81 (m, 20H, $6 \times \mathrm{H}-13,8 \times \mathrm{H}-1$), 4.65-4.64 (m, 4H, $2 \times \mathrm{H}-19$), 4.58-4.47 (m, 16H, $8 \times \mathrm{H}-10$), 4.28-4.23 (m, 8H, $8 \times \mathrm{H}-6 \mathrm{a}$), 4.19-4.18 (m, 4H, $2 \times \mathrm{H}-22$), 4.09-4.07 (m, 12H, $8 \times \mathrm{H}-6 \mathrm{~b}, 2 \times \mathrm{H}-18$), 3.99 (br, 8H, $8 \times \mathrm{H}-5$), 3.91-3.83 (m, 16H, $8 \times \mathrm{H}-9$), 3.76 (br, 16H, 6 x H-7a, $5 \times \mathrm{H}-17$), $3.61-3.57$ (m, 24H, $8 \times \mathrm{H}-7 \mathrm{~b}, 8 \times \mathrm{H}-8$), 3.6-3.46 (m, 2H, $2 \times \mathrm{H}-7 \mathrm{a}$), $2.89\left(\mathrm{~s}, 12 \mathrm{H}, 4 \times \mathrm{NCH}_{3}\right), 2.13-2.11\left(\mathrm{~m}, 24 \mathrm{H}, 8 \times \mathrm{OCOCH}_{3}\right), 2.07-2.05(\mathrm{~m}, 24 \mathrm{H}, 8 \mathrm{x}$ $\left.\mathrm{OCOCH}_{3}\right), 2.03-2.01\left(\mathrm{~m}, 24 \mathrm{H}, 8 \times \mathrm{OCOCH}_{3}\right), 1.97-1.95\left(\mathrm{~m}, 24 \mathrm{H}, 8 \times \mathrm{OCOCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.6,170.0,169.9,169.7\left(\mathrm{Cq}, \mathrm{C}=\mathrm{O}_{\text {acetyl }}\right)$, 151.8 (Cq, C-23), $150.0,149.8,149.7,149.5$ (Cq, C-14), 144.4, 144.3, 144.2, 144.1 (Cqtriazole, C-12, C-21), $135.0(\mathrm{Cq}, \mathrm{C}-27), 130.3\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-24\right), 129.8,129.7(\mathrm{Cq}, \mathrm{C}-31, \mathrm{C}-32), 129.4\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-26\right)$, 128.9, 128.9, 128.8, 128.5, 128.4 (Cq, C-16), 128.2 (C-25), 124.3, $2 \times 124.0,123.6$ $\left(\mathrm{CH}_{\text {triazole }}, \mathrm{C}-11, \mathrm{C}-20\right), 123.3\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-29\right), 119.1\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-30\right), 115.7,115.3,115.2\left(\mathrm{CH}_{\mathrm{Ar}}\right.$, C-15, C-28), $97.7(\mathrm{CH}, \mathrm{C}-1), 69.9\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 69.5\left(\mathrm{CH}\right.$ and $\left.\mathrm{CH}_{2}, \mathrm{C}-2, \mathrm{C}-9\right), 69.1(\mathrm{CH}, \mathrm{C}-$ 3), $68.6(\mathrm{CH}, \mathrm{C}-5), 67.2\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 66.9\left(\mathrm{CH}_{2}, \mathrm{C}-18\right), 66.1(\mathrm{CH}, \mathrm{C}-4), 62.5\left(\mathrm{CH}_{2}, \mathrm{C}-6\right)$, $62.2,61.9\left(\mathrm{CH}_{2}, \mathrm{C}-13\right), 50.2\left(\mathrm{CH}_{2}, \mathrm{C}-10\right), 50.0\left(\mathrm{CH}_{2}, \mathrm{C}-19\right), 45.4\left(\mathrm{NCH}_{3}\right), 38.9\left(\mathrm{CH}_{2}, \mathrm{C}-\right.$ 22), 30.2, 29.6, $29.3\left(\mathrm{CH}_{2}, \mathrm{C}-17\right), 20.9,2 \times 20.7\left(\mathrm{OCOCH}_{3}\right) . \mathrm{HRMS}\left(\mathrm{ESI}^{+}-\mathrm{MS}, \mathrm{m} / \mathrm{z}\right)$: calculated for $\mathrm{C}_{237} \mathrm{H}_{304} \mathrm{~N}_{34} \mathrm{O}_{102} \mathrm{~S}_{2}[\mathrm{M}+4 \mathrm{H}]^{4+} 1330.9781$; found 1330.9803 .

Compound 8e:

The title compound was prepared following the general procedure \mathbf{B} using $\mathbf{6}(100 \mathrm{mg}, 0.021$ mmol), $7 \mathrm{e}(47 \mathrm{mg}, 0.11 \mathrm{mmol}$, $), \mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL}), \mathrm{CuSO}_{4}(5.3 \mathrm{mg}, 0.034 \mathrm{mmol})$ and NaAsc $(19.5 \mathrm{mg}, 0.111 \mathrm{mmol})$ [$\mathrm{n}=8]$, purified by using $\mathrm{EtOAc} / \mathrm{Cy}(2: 1)$ as eluent to remove excess $7 \mathbf{e}$, then $\mathrm{DCM} / \mathrm{MeOH}(25: 1)$ as eluent and isolated a white solid ($108 \mathrm{mg}, 0.019$ mmol, 92%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93-7.71\left(\mathrm{~m}, 14 \mathrm{H}, 8 \times \mathrm{H}-11,2 \times \mathrm{H}-20,4 \times \mathrm{H}_{\mathrm{Ar}}\right.$-Fmoc), 7.52-7.44 (m, 4H, $4 \times \mathrm{H}_{\mathrm{Ar}}$-Fmoc), 7.38-7.34 (m, 4H, $4 \times \mathrm{H}_{\mathrm{Ar}}$-Fmoc), 7.27-7.23(m, 4H, 2 x H-Ph, $2 \times \mathrm{H}_{\mathrm{Ar}}-\mathrm{Fmoc}$), 7.14-6.71 (m, 20H, $\left.10 \times \mathrm{H}-15,8 \times \mathrm{H}-\mathrm{Ph}, 2 \times \mathrm{H}_{\mathrm{Ar}}-\mathrm{Fmoc}\right)$, 5.90$5.80(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{NH}), 5.33-5.24(\mathrm{~m}, 24 \mathrm{H}, 8 \times \mathrm{H}-2,8 \times \mathrm{H}-3,8 \times \mathrm{H}-4), 5.11-5.00(\mathrm{~m}, 4 \mathrm{H}$, $2 \times \mathrm{H}-13$), $4.90-4.70$ (m, 24H, $8 \times \mathrm{H}-1,6 \times \mathrm{H}-13,2 \times \mathrm{H}-19$), 4.50-4.43 (m, 20H, $8 \times \mathrm{H}-10$, H-22, $2 \times \mathrm{H}-24$), 4.33-4.16 (m, 16H, $8 \times \mathrm{H}-6 \mathrm{a}, \mathrm{H}-18,2 \times \mathrm{CH}_{2}$-Fmoc, H-22), 4.09-4.04 (m, 10H, $8 \times \mathrm{H}-6 \mathrm{~b}, 2 \times \mathrm{CH}-\mathrm{Fmoc}$), 4.0-3.95 (m, 10H, $8 \times \mathrm{H}-5, \mathrm{H}-18$), 3.85-3.71 (m, 32H, $6 \times$ H-7a, $8 \times \mathrm{H}-9,5 \times \mathrm{H}-17$), $3.57-3.48$ (m, 26H, $2 \times \mathrm{H}-7 \mathrm{a}, 8 \times \mathrm{H}-7 \mathrm{~b}, 8 \times \mathrm{H}-8$), 3.05 (br, 2H, $2 \times \mathrm{H}-25 \mathrm{a}$), 2.95 (br, $2 \mathrm{H}, 2 \times \mathrm{H}-25 \mathrm{~b}$), 2.10-2.08 (m, 24H, $8 \times \mathrm{OCOCH}_{3}$), 2.05 (br, 24H, 8 x OCOCH_{3}), $2.00-1.97\left(\mathrm{~m}, 24 \mathrm{H}, 8 \times \mathrm{OCOCH}_{3}\right), 1.93-1.92\left(\mathrm{~m}, 24 \mathrm{H}, 8 \times \mathrm{OCOCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.0(\mathrm{Cq}, \mathrm{C}-23), 170.6,170.1,169.9,169.7\left(\mathrm{Cq}, \mathrm{C}=\mathrm{O}_{\text {acetyl }}\right)$, 155.8 (NHCOO), 149.8, 149.7, 149.5 (Cq, C-14), 144.6, 144.4 (Cquiriazole, C-12, C-21), 144.3 ($\mathrm{Cq}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{Fmoc}$), $143.9\left(\mathrm{Cq}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{Fmoc}\right), 141.3\left(\mathrm{CH}_{\mathrm{Ar}}-\mathrm{Fmoc}\right), 136.7(\mathrm{Cq}, \mathrm{C}-26), 129.4$ ($\mathrm{CH}-\mathrm{Ph}$), 128.8 ($\mathrm{Cq}, \mathrm{C}-16$), 128.4 ($\left.\mathrm{CH}_{\mathrm{Ar}}-\mathrm{Fmoc}\right), 128.2$ ($\left.\mathrm{Cq}, \mathrm{C}-16\right)$, 127.7 ($\left.\mathrm{CH}_{\mathrm{Ar}}-\mathrm{Fmoc}\right)$, 127.1, $126.8\left(\mathrm{CH}_{\mathrm{Ar}}-\mathrm{Ph}\right)$, $125.1\left(\mathrm{CH}_{\mathrm{Ar}}-\mathrm{Fmoc}\right), 124.3,124.0,123.1\left(\mathrm{CH}_{\text {triazole }}, \mathrm{C}-11\right.$ or $\left.\mathrm{C}-20\right)$,
$119.9\left(\mathrm{CH}_{\mathrm{Ar}}-\mathrm{Fmoc}\right), 115.7,115.4\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-15\right), 97.7(\mathrm{CH}, \mathrm{C}-1), 70.0\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 69.6$ $\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 69.5(\mathrm{CH}, \mathrm{C}-3), 69.1(\mathrm{CH}, \mathrm{C}-2), 68.6(\mathrm{CH}, \mathrm{C}-5), 67.3\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 66.9\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-18), 66.1(\mathrm{CH}, \mathrm{C}-4), 62.5\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 62.1,61.9\left(\mathrm{CH}_{2}, \mathrm{C}-13\right), 56.0(\mathrm{CH}, \mathrm{C}-24), 50.2$, $50.1\left(\mathrm{CH}_{2}, \mathrm{C}-10, \mathrm{C}-19\right), 47.1(\mathrm{CH}-\mathrm{Fmoc}), 38.7\left(\mathrm{CH}_{2}, \mathrm{C}-25\right), 35.1\left(\mathrm{CH}_{2}, \mathrm{C}-22\right), 29.9,29.7$, 29.4, $29.1\left(\mathrm{CH}_{2}, \mathrm{C}-17\right)$, 20.9, $2 \times 20.7\left(\mathrm{OCOCH}_{3}\right)$. HRMS (ESI+$\left.-\mathrm{MS}, \mathrm{m} / \mathrm{z}\right)$: calculated for $\mathrm{C}_{261} \mathrm{H}_{320} \mathrm{~N}_{34} \mathrm{O}_{104}[\mathrm{M}+4 \mathrm{H}]^{4+} 1398.7701$; found 1398.7730.

Compound 8g:

The title compound was prepared following the general procedure \mathbf{B} using $\mathbf{6}(77 \mathrm{mg}, 0.015$ mmol), 7 g ($17 \mathrm{mg}, 0.09 \mathrm{mmol}, 6$ equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1.5 \mathrm{~mL}\right.$), $\mathrm{CuSO}_{4}(4.8 \mathrm{mg}, 0.03 \mathrm{mmol}$, $)$ and NaAsc ($17.4 \mathrm{mg}, 0.099 \mathrm{mmol}$) [$\mathrm{n}=10$], purified using EtOAc/Cy (1:1) as eluent to remove excess $7 \mathbf{g}$, then $\mathrm{DCM} / \mathrm{MeOH}$ (25:1) as eluent and isolated a pale yellow solid (40 $\mathrm{mg}, 0.08 \mathrm{mmol}, 53 \%)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93-7.21(\mathrm{~m}, 10 \mathrm{H}, 8 \times \mathrm{H}-11,2 \times \mathrm{H}-20), 7.05-6.70(\mathrm{~m}, 10 \mathrm{H}$, $10 \times \mathrm{H}-15$), 6.63 (s, 4H, $4 \times \mathrm{H}-26$), 5.32-5.23 (m, 24H, $8 \times \mathrm{H}-2,8 \times \mathrm{H}-3,8 \times \mathrm{H}-4$), 5.044.96 (m, 4H, $2 \times \mathrm{H}-13$), 4.91-4.43 (m, 42H, $8 \times \mathrm{H}-1,8 \times \mathrm{H}-10,6 \times \mathrm{H}-13,2 \times \mathrm{H}-19,2 \times \mathrm{H}-$ 22a), 4.38-4.33 (m, 2H, $2 \times \mathrm{H}-22 \mathrm{~b}$), 4.28-4.24 (m, 8H, $8 \times \mathrm{H}-6 \mathrm{a}$), 4.21-4.13 (m, 6H, $2 \times$ H-18a, $2 \times \mathrm{H}-24$), 4.10-4.06 (m, 8H, $8 \times \mathrm{H}-6 \mathrm{~b}$), 4.01-3.84 (m, 26H, $8 \times \mathrm{H}-5,8 \times \mathrm{H}-9,2 \times$ H-18b), 3.78-3.73 (m, 14H, $2 \times \mathrm{H}-7,5 \times \mathrm{H}-17$), $3.62-3.52$ (m, 28H, $6 \times \mathrm{H}-7,8 \times \mathrm{H}-8$), 2.16-2.12 (m, 24H, $8 \times \mathrm{OCH}_{3}$), 2.09-2.06 (m, 24H, $8 \times \mathrm{OCOCH}_{3}$), 2.03-2.02 (m, 24H, 8 $\mathrm{x} \mathrm{OCOCH}_{3}$), $1.96\left(\mathrm{~m}, 24 \mathrm{H}, 8 \times \mathrm{OCOCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.7,170.3$, 170.1, 170.0, 169.8 (Cq, C=O ${ }_{\text {acetyl }}$), 166.5 (Cq, C-23), 149.8, 149.6 (Cq, C-14), 144.6, 144.3
(Cq triazole C-12 or C-21), 134.4 (C-26), 129.0, 128.5, (Cq, C-16), 124.4, 124.0, 123.2 ($\mathrm{CH}_{\text {triazole }}, \mathrm{C}-11$ or $\left.\mathrm{C}-20\right), 115.6,115.3\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-15\right), 97.8(\mathrm{CH}, \mathrm{C}-1), 70.0\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 69.5$ (CH and $\left.\mathrm{CH}_{2}, \mathrm{C}-9, \mathrm{C}-3\right), 69.2(\mathrm{CH}, \mathrm{C}-2), 68.6(\mathrm{CH}, \mathrm{C}-5), 67.3\left(\mathrm{CH}_{2}, \mathrm{C}-7, \mathrm{C}-18\right), 66.2(\mathrm{CH}$, $\mathrm{C}-4), 62.7\left(\mathrm{CH}_{2}, \mathrm{C}-13\right), 62.5\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 62.2,62.1\left(\mathrm{CH}_{2}, \mathrm{C}-13\right), 50.1\left(\mathrm{CH}_{2}, \mathrm{C}-10, \mathrm{C}-19\right)$, $40.3\left(\mathrm{CH}_{2}, \mathrm{C}-24\right), 35.3\left(\mathrm{CH}_{2}, \mathrm{C}-22\right), 30.0,29.8,29.4\left(\mathrm{CH}_{2}, \mathrm{C}-17\right), 21.0,20.8\left(\mathrm{OCOCH}_{3}\right)$. HRMS ($\mathrm{ESI}^{+}-\mathrm{MS}, \mathrm{m} / \mathrm{z}$): calculated for $\mathrm{C}_{225} \mathrm{H}_{288} \mathrm{~N}_{34} \mathrm{O}_{104}[\mathrm{M}+4 \mathrm{H}]^{4+}$ 1282.4568; found 1282.4615.

Compound 8f:

Firstly, a solution of $\mathrm{CuI}(2.8 \mathrm{mg}, 0.0147 \mathrm{mmol})$ in dry DMF (4 mL) was prepared. Afterwards, 0.5 mL this solution was taken and added to a mixture of $\mathbf{6}(44 \mathrm{mg}, 0.00927$ $\mathrm{mmol}), 7 \mathrm{f}(11 \mathrm{mg}, 0.037 \mathrm{mmol}) \mathrm{Et}_{3} \mathrm{~N}(5 \mu \mathrm{~L}, 0.037 \mathrm{mmol})$ under argon atmosphere. The reaction mixture was stirred overnight at room temperature. Then, it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$, washed with $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ and brine (25 mL), dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using DCM/MeOH (12:1) as eluent to afford $\mathbf{8 f}$ as a white solid (0.0049 mmol , $26 \mathrm{mg}, 53 \%)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02-7.77(\mathrm{~m}, 10 \mathrm{H}, 8 \times \mathrm{H}-11,2 \times \mathrm{H}-20), 7.19-6.59(\mathrm{~m}, 10 \mathrm{H}$, $10 \times \mathrm{H}-15), 5.24-5.13$ (m, 26H, $8 \times \mathrm{H}-2,8 \times \mathrm{H}-3,8 \times \mathrm{H}-4, \mathrm{H}-13$), 5.08-4.9 (m, 2H, H-13), 4.85-4.76 (m, 20H, $8 \times \mathrm{H}-1,6 \times \mathrm{H}-13$), 4.64-4.49 (m, 20H, $8 \times \mathrm{H}-10,2 \times \mathrm{H}-22$), 4.36-4.33 (m, 2H, H-19), 4.23-4.14 (m, 10H, $8 \times \mathrm{H}-6 \mathrm{a}, \mathrm{H}-19$), 4.05-3.84 (m, 36H, $8 \times \mathrm{H}-5,8 \times \mathrm{H}-$ $6 \mathrm{~b}, 8 \times \mathrm{H}-9,2 \times \mathrm{H}-18$), $3.72-3.68$ (m, 14H, $5 \times \mathrm{H}-17,2 \times \mathrm{H}-7$), $3.60-3.32$ (m, 28H, $6 \times \mathrm{H}-$

7, $8 \times \mathrm{H}-8$), $2.94-2.40(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{H}-28,2 \times \mathrm{H}-32), 2.21-2.07(\mathrm{~m}, 22 \mathrm{H}, 2 \times \mathrm{H}-24,6 \times$ $\left.\mathrm{OCOCH}_{3}\right), 2.02-2.01\left(\mathrm{~m}, 24 \mathrm{H}, 8 \times \mathrm{OCOCH}_{3}\right), 1.98-1.97\left(\mathrm{~m}, 24 \mathrm{H}, 8 \times \mathrm{OCOCH}_{3}\right), 1.91(\mathrm{~s}$, $24 \mathrm{H}, 8 \times \mathrm{OCOCH}_{3}$), $1.86\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCOCH}_{3}\right), 1.45(\mathrm{br}, 8 \mathrm{H}, 2 \times \mathrm{H}-25,2 \times \mathrm{H}-27), 1.19$ (br, 4H, $2 \times \mathrm{H}-26$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.6$ (Cq, C-23), 170.1, 2×170.0, 169.8 (Cq, C=O ${ }_{\text {aceetyl }}$), 164.1, 163.8 (C-30), 149.8, 149.7, 149.5, 149.4 (Cq, C-14), 144.4, 2 x 144.3, 144.1, 143.9 (Cq $_{\text {triazole }}$, C-12, C-21), 131.2, 128.8, 128.7 (Cq, C-16), 124.7, 124.5, 124.1, 124.0, $123.8\left(\mathrm{CH}_{\text {triazole }}, \mathrm{C}-11, \mathrm{C}-20\right), 115.9,115.4\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-15\right), 97.7,97.7(\mathrm{CH}, \mathrm{C}-$ 1), $70.0,69.9\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 69.6\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 69.5(\mathrm{CH}, \mathrm{C}-3), 69.10(\mathrm{CH}, \mathrm{C}-2), 68.6,68.5$ (CH, C-5), $67.3(\mathrm{CH}, \mathrm{C}-7, \mathrm{C}-18), 2 \times 66.1(\mathrm{CH}, \mathrm{C}-4), 62.5\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 62.0(\mathrm{CH}, \mathrm{C}-29)$, $61.8,61.2\left(\mathrm{CH}_{2}, \mathrm{C}-13\right), 60.0(\mathrm{CH}, \mathrm{C}-31), 55.5(\mathrm{CH}, \mathrm{C}-28), 50.1\left(\mathrm{CH}_{2}, \mathrm{C}-10\right), 49.6\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-19), 40.4\left(\mathrm{CH}_{2}, \mathrm{C}-32\right), 35.5,35.0\left(\mathrm{CH}_{2}, \mathrm{C}-22, \mathrm{C}-24\right), 29.7,29.2$, 28.1, $27.5,25.1\left(\mathrm{CH}_{2}\right.$, C-17, C-25, C-26, C-27), 2×20.9, 2×20.8, $20.7\left(\mathrm{OCOCH}_{3}\right)$. HRMS (ESI ${ }^{+}-\mathrm{MS}, \mathrm{m} / \mathrm{z}$): calculated for $\mathrm{C}_{233} \mathrm{H}_{306} \mathrm{~N}_{36} \mathrm{O}_{102} \mathrm{~S}_{2}[\mathrm{M}+4 \mathrm{H}]^{4+}$ 1326.9899; found 1326.9922.

Compound 8h:

Firstly, a well-stirred solution of $\mathrm{CuI}(3.7 \mathrm{mg}, 0.0194 \mathrm{mmol}, 2$ equiv.) and TBTA (5.2 mg , 0.0097 mmol , 1 equiv.) was prepared in dry DMSO (10 mL). Afterwards, 1 mL this solution was taken and added to a mixture of $\mathbf{6}(46 \mathrm{mg}, 0.0097 \mathrm{mmol}, 1$ equiv.) and $\mathbf{7 h}$ (10 $\mathrm{mg}, 0.031 \mathrm{mmol}, 3.2$ equiv.) under argon atmosphere. The reaction mixture was stirred overnight at room temperature. Then, distilled $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 15 \mathrm{~mL}$), washed with brine (40 mL), dried over MgSO_{4} and concentrated. The residue was purified by column chromatography on silica gel by
using EtOAc/Cy (2:1) as eluent to quickly remove excess 7h, followed DCM/MeOH (25:1) as eluent to afford the desired product $\mathbf{8 h}$ as a colorless solid ($45 \mathrm{mg}, 0.0084 \mathrm{mmol}, 86 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95-7.70(\mathrm{~m}, 12 \mathrm{H}, 8 \times \mathrm{H}-11,2 \times \mathrm{H}-20,2 \times \mathrm{H}-28)$, $7.33-$ 7.19 (m, 4H, $2 \times \mathrm{H}-27$), $7.03-6.73(\mathrm{~m}, 10 \mathrm{H}, 10 \times \mathrm{H}-15), 5.53-3.45(\mathrm{~m}, 158 \mathrm{H}, 8 \times \mathrm{H}-1,8 \times$ $\mathrm{H}-2,8 \times \mathrm{H}-3,8 \times \mathrm{H}-4,8 \times \mathrm{H}-5,8 \times \mathrm{H}-6,8 \times \mathrm{H}-7,8 \times \mathrm{H}-8,8 \times \mathrm{H}-9,8 \times \mathrm{H}-10,8 \times \mathrm{H}-13,5$ x H-17, $2 \times \mathrm{H}-18,2 \times \mathrm{H}-19,2 \times \mathrm{H}-25$), 3.01-2.98 (br, 4H, $2 \times \mathrm{H}-23$), 2.58 (br, 4H, $2 \times \mathrm{H}-$ 22), 2.12-1.96 (m, 96H, $24 \times \mathrm{OCOCH}_{3}$), 1.34-1.25 (m, 24H, $8 \times \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.2,170.8,170.7,170.2,170.0,169.8\left(\mathrm{Cq}, \mathrm{C}=\mathrm{O}_{\text {acetyl }}, \mathrm{C}-24\right), 149.8,149.5$ (Cq, C-14), 144.4, 143.9 (Cqtriazole, C-12), 142.0 (Cq, C-26), 135.1 (C-28), 134.6134 .5 (Cq ${ }_{\text {triazole }}$, $\mathrm{C}-21$), 129.2, $128.9,128.1(\mathrm{Cq}, \mathrm{C}-16), 127.0\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-27\right), 124.4,124.1\left(\mathrm{CH}_{\text {triazole }}\right.$, $\mathrm{C}-11), 122.6\left(\mathrm{CH}_{\text {triazole }}, \mathrm{C}-20\right), 115.6,115.3,115.2\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-15\right), 97.8(\mathrm{CH}, \mathrm{C}-1), 83.9(\mathrm{C}-$ 30), $70.0\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 69.6\left(\mathrm{CH}_{2}\right.$ and $\left.\mathrm{CH}, \mathrm{C}-3, \mathrm{C}-9\right), 69.2(\mathrm{CH}, \mathrm{C}-2), 68.6(\mathrm{CH}, \mathrm{C}-5), 67.3$ $\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 67.1\left(\mathrm{CH}_{2}, \mathrm{C}-18\right), 66.2(\mathrm{CH}, \mathrm{C}-4), 62.8\left(\mathrm{CH}_{2}, \mathrm{C}-13\right), 62.5\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 62.2$ $\left(\mathrm{CH}_{2}, \mathrm{C}-13\right), 61.9\left(\mathrm{CH}_{2}, \mathrm{C}-13\right), 50.2\left(\mathrm{CH}_{2}, \mathrm{C}-10\right), 46.9\left(\mathrm{CH}_{2}, \mathrm{C}-19\right), 43.4\left(\mathrm{CH}_{2}, \mathrm{C}-25\right), 35.7$ $\left(\mathrm{CH}_{2}, \mathrm{C}-23\right), 31.0\left(\mathrm{CH}_{2}, \mathrm{C}-22\right), 29.8,29.4\left(\mathrm{CH}_{2}, \mathrm{C}-17\right), 24.9\left(\mathrm{CH}_{3}\right), 21.0,20.8\left(\mathrm{OCOCH}_{3}\right)$. HRMS ($\mathrm{ESI}^{+}-\mathrm{MS}, \mathrm{m} / \mathrm{z}$): calculated for $\mathrm{C}_{243} \mathrm{H}_{319} \mathrm{~B}_{2} \mathrm{~N}_{32} \mathrm{O}_{104}[\mathrm{M}+3 \mathrm{H}]^{3+}$ 1790.3625; found 1790.3653.

S9. Synthesis of clickable compound 10

Scheme S10. Synthesis of 10

Compound 10

To a solution of $\mathbf{8 e}\left(82 \mathrm{mg}, 0.0147 \mathrm{mmol}, 1\right.$ equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added DBU ($5 \mu \mathrm{~L}, 0.0334 \mathrm{mmol}, 2.2$ equiv.) under argon atmosphere and the mixture was stirred at room temperature for 40 min . After concentrating the crude under vacuum, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL), EDCI ($8.4 \mathrm{mg}, 0.044 \mathrm{mmol}, 3$ equiv.) and $9(8 \mathrm{mg}, 0.044 \mathrm{mmol}, 3$ equiv.) were added and stirred overnight. Then, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was evaporated and the residue was purified by
column chromatography on silica gel using $\mathrm{DCM} / \mathrm{MeOH}(30: 1)$ as eluent to afford $\mathbf{1 0}$ as a pale-yellow solid ($48 \mathrm{mg}, 0.0088 \mathrm{mmol}, 60 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90-7.86$ (m, 6H, $6 \times \mathrm{H}-11$), 7.79-7.73 (m, 4H, $2 \times \mathrm{H}-11$, $2 \times \mathrm{H}-20$), $7.17-6.98$ ($\mathrm{m}, 12 \mathrm{H}, 2 \times \mathrm{H}-15,4 \times \mathrm{H}-27,4 \times \mathrm{H}-28,2 \times \mathrm{H}-29$), 6.9-6.71 (m, 8H, $8 \times \mathrm{H}-15), 5.31-5.22(\mathrm{~m}, 24 \mathrm{H}, 8 \times \mathrm{H}-2,8 \times \mathrm{H}-3,8 \times \mathrm{H}-4)$, $5.11-5.00$ (m, 4H, $2 \times \mathrm{H}-13$), 4.89-4.65 (m, 26H, $8 \times \mathrm{H}-1,6 \times \mathrm{H}-13,2 \times \mathrm{H}-19,2 \times \mathrm{H}-24$), 4.56-4.32 (m, 20H, $8 \times \mathrm{H}-10$, H-22, $2 \times \mathrm{H}-32$), 4.26-4.05 (m, 20H, $8 \times \mathrm{H}-6, \mathrm{H}-22, \mathrm{H}-18$), 3.98 (br, 10H, $8 \times \mathrm{H}-5, \mathrm{H}-18$), 3.93-3.86 (m, 20H, $8 \times \mathrm{H}-9,2 \times \mathrm{H}-31$), 3.77-3.73 (m, 16H, $5 \times \mathrm{H}-17,3 \times \mathrm{H}-7 \mathrm{a}$), 3.61-3.59 (br, 24H, $8 \times \mathrm{H}-7 \mathrm{~b}, 8 \times \mathrm{H}-8$), 3.48-3.43 (m, 2H, $2 \times \mathrm{H}-7 \mathrm{a}$), 3.02-3.01 (m, 4H, $2 \times \mathrm{H}-25$), 2.25-2.14 (m, 6H, $3 \times$ CH $_{2 \text { cyclooctyne }}$), 2.12-2.11 (m, 24H, $8 \times \mathrm{OCOCH}_{3}$), 2.06-2.05 (m, $\left.24 \mathrm{H}, 8 \times \mathrm{OCOCH}_{3}\right), 2.00-2.05\left(\mathrm{~m}, 26 \mathrm{H}, 8 \times \mathrm{OCOCH}_{3}, \mathrm{CH}_{2 \text { cyclooctyne }}\right), 1.95(\mathrm{~m}, 24 \mathrm{H}, 8 \mathrm{x}$ $\mathrm{OCOCH}_{3}, \mathrm{CH}_{2 \text { cyclooctyne }}$), $1.88-1.61\left(\mathrm{~m}, 10 \mathrm{H}, 5 \times \mathrm{CH}_{2 \text { cyclooctyne }}\right), 1.47-1.32(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2 \text { Cyclooctyne }) .}{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3 \times 170.6,2 \times 170.0,3 \times 169.9,2 \times 169.7$, 169.6, 169.5, 169.4, 169.3 (Cq, C=O acetyl CONH), 149.8, 149.7, $2 \times 149.6,2 \times 149.4(\mathrm{Cq}$, C-14), 144.5, 3×144.3, 144.2 (Cq $\left._{\text {triazole }}, ~ C-12, ~ C-21\right), ~ 136.5, ~ 2 \times 136.4(C q, ~ C-26), ~ 2 \times$ $129.3\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-28\right), 128.8,128.7(\mathrm{Cq}, \mathrm{C}-16), 128.6,128.4\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-27\right), 128.4,2 \times 128.2$ (Cq, C-16), $126.8\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-29\right), 2 \times 124.2,124.0,123.9,123.0\left(\mathrm{CH}_{\text {triazole }}, \mathrm{C}-11\right.$ or $\left.\mathrm{C}-20\right)$, 115.7, 115.6, 115.4, 115.3, 115.2 ($\left.\mathrm{CH}_{\text {Ar }}, \mathrm{C}-15\right), 101.8,101.6$ ($\left.\mathrm{Cq}_{\text {alkyne }}, \mathrm{C}-33\right)$, 97.7, 97.6 (CH, C-1), 91.4, 91.3 (Cqalkyne, C-34), 73.3, $73.0(\mathrm{CH}, \mathrm{C}-32), 2 \times 69.9\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 69.6$, $69.5\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 69.4(\mathrm{CH}, \mathrm{C}-3), 69.0(\mathrm{CH}, \mathrm{C}-2), 68.5(\mathrm{CH}, \mathrm{C}-5), 68.3,68.1\left(\mathrm{CH}_{2}, \mathrm{C}-18\right)$, $67.2\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 67.0,66.9(\mathrm{C}-31), 66.1(\mathrm{CH}, \mathrm{C}-4), 62.4\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 62.1,62.9,61.8\left(\mathrm{CH}_{2}\right.$, C-13), 53.6, $2 \times 53.6,53.5(\mathrm{CH}, \mathrm{C}-24), 50.1,50.0\left(\mathrm{CH}_{2}, \mathrm{C}-10\right.$ or $\left.\mathrm{C}-19\right), 42.1\left(\mathrm{CH}_{2 \text { cyclooctyne }}\right)$, 38.4, 38.3, 38.2, $38.1\left(\mathrm{CH}_{2}, \mathrm{C}-25\right), 35.1\left(\mathrm{CH}_{2}, \mathrm{C}-23\right), 34.2,34.1\left(\mathrm{CH}_{2 \text { cyclooctyne }}\right)$, 29.9, 29.8, $2 \times 29.6,29.5,29.3\left(\mathrm{CH}_{2}, \mathrm{C}-17, \mathrm{CH}_{2 \text { cyclooctyne }}\right), 26.2,26.1\left(\mathrm{CH}_{2 \text { Cyclooctyne }}\right), 20.8,2 \times 20.7,3$ x $20.6\left(\mathrm{OCOCH}_{3}, \mathrm{CH}_{2 \text { cyclooctyne }}\right)$. HRMS (ESI ${ }^{+}-\mathrm{MS}, \mathrm{m} / \mathrm{z}$): calculated for $\mathrm{C}_{251} \mathrm{H}_{324} \mathrm{~N}_{34} \mathrm{O}_{104}$ $[\mathrm{M}+4 \mathrm{H}]^{4+}$ 1369.5272; found 1369.5294.

S10. Synthesis of copillar[5]arene $S 5$ with an inverse azide:alkyne ration (8:2)

Scheme S11. Synthesis of copillar[5]arene S5

Compillar[5]arene S3:

The title compound was prepared following the synthetic procedure of compound $\mathbf{6 a}$ using copillar[5]arene $\mathbf{3}$ ($100 \mathrm{mg}, 0.065 \mathrm{mmol}$, 1equiv.), 5 ($90 \mathrm{mg}, 0.194 \mathrm{mmol}, 3$ equiv.), CuSO_{4} ($2.0 \mathrm{mg}, 0.013 \mathrm{mmol}, 0.2$ equiv.), NaAsc ($7.6 \mathrm{mg}, 0.043 \mathrm{mmol}, 0.66$ equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 $\mathrm{mL})$ and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$. The resulting crude was by purified using EtOAc/Cy (1:1) as eluent
to remove 5, then $\mathrm{DCM} / \mathrm{MeOH}(300: 1)$ as eluent to isolate as a white solid ($145 \mathrm{mg}, 0.059$ mmol, 90%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{H}-11), 7.04$ ($\left.\mathrm{s}, 2 \mathrm{H}, 2 \times \mathrm{H}-15\right), 6.93-6.83$ (m, 6H, $6 \times \mathrm{H}-15$), $6.80-6.78$ (m, 2H, $2 \times \mathrm{H}-15$), $5.35-5.24$ ($\mathrm{m}, 6 \mathrm{H}, 2 \times \mathrm{H}-2,2 \times \mathrm{H}-3,2 \times$ H-4), 5.16-5.03 (m, 4H, $2 \times \mathrm{H}-13$), 4.84 (s, 2H, $2 \times \mathrm{H}-1$), 4.51 (br, $4 \mathrm{H}, 2 \times \mathrm{H}-10$), 4.284.25 (m, 8H, $3 \times \mathrm{H}-18,2 \times \mathrm{H}-6 \mathrm{a}$), 4.14-4.08 (m, 10H, $4 \times \mathrm{H}-18,2 \times \mathrm{H}-6 \mathrm{~b}$), 3.97 (m, 4H, 2 x H-5, H-18), 3.84-3.57 (m, 38H, $2 \times \mathrm{H}-7,2 \times \mathrm{H}-8,2 \times \mathrm{H}-9,5 \times \mathrm{H}-17,8 \times \mathrm{H}-19), 2.14$ (s, $\left.6 \mathrm{H}, 2 \times \mathrm{OCOCH}_{3}\right), 2.08\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCOCH}_{3}\right), 2.04-2.03\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{OCOCH}_{3}\right), 1.97(\mathrm{~s}$, $\left.6 \mathrm{H}, 2 \times \mathrm{OCOCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2 \times 170.6,170.1,169.9,169.7(\mathrm{Cq}$, $\mathrm{C}=\mathrm{O}_{\text {aceetyl }}$), 149.9, $2 \times 149.8,2 \times 149.5$ (Cq, C-14), 144.2 ($\mathrm{Cq}_{\text {triazole }}, \mathrm{C}-12$), 129.3, 129.2, 129.1, 129.0, 128.9, 128.8 ($\mathrm{Cq}, \mathrm{C}-16$), $123.9\left(\mathrm{CH}_{\text {triazole }}, \mathrm{C}-11\right), 116.4,116.3,115.7\left(\mathrm{CH}_{\mathrm{Ar}}\right.$, C-15), 97.7 (CH, C-1), $70.0\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 69.6(\mathrm{C}-9, \mathrm{C}-2), 69.2,2 \times 69.1\left(\mathrm{CH}_{2}, \mathrm{C}-18\right), 69.0$ ($\mathrm{CH}, \mathrm{C}-3), 68.6(\mathrm{CH}, \mathrm{C}-5), 67.2\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 66.2(\mathrm{CH}, \mathrm{C}-4), 62.5\left(\mathrm{CH}_{2}, \mathrm{C}-13\right), 62.5\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-6), 50.2\left(\mathrm{CH}_{2}, \mathrm{C}-10\right), 31.3,2 \times 30.7\left(\mathrm{CH}_{2}, \mathrm{C}-19\right), 29.7,29.4,29.3\left(\mathrm{CH}_{2}, \mathrm{C}-17\right), 20.9$, 20.8, 2 x $20.7\left(\mathrm{OCOCH}_{3}\right)$. HRMS ($\mathrm{ESI}^{+}-\mathrm{MS}, \mathrm{m} / \mathrm{z}$): calculated for $\mathrm{C}_{93} \mathrm{H}_{113} \mathrm{Br}_{8} \mathrm{~N}_{6} \mathrm{O}_{32}$ $[\mathrm{M}+\mathrm{H}]^{+} 2465.0810$; found 2465.0781 .

Compillar[5]arene S4:

The title compound was prepared following the synthetic procedure of 7 using $\mathbf{S 3}(132 \mathrm{mg}$, $0.053 \mathrm{mmol}, 1$ equiv.), NaN_{3} ($56 \mathrm{mg}, 0.857 \mathrm{mmol}, 16$ equiv.) and dry DMF (1.5 mL) and isolated as a pale yellow solid ($106 \mathrm{mg}, 0.049 \mathrm{mmol}, 92 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75$ (br, 2H, $2 \times \mathrm{H}-11$), 6.99 (s, 2H, $2 \times \mathrm{H}-15$), 6.83-6.79 (m, 8H, $8 \times \mathrm{H}-15$), $5.36-5.25(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{H}-2,2 \times \mathrm{H}-3,2 \times \mathrm{H}-4), 5.13-4.94(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}-$
13), $4.86(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{H}-1), 4.54(\mathrm{br}, 4 \mathrm{H}, 2 \times \mathrm{H}-10), 4.27(\mathrm{dd}, J=12.2,5.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-$ 6a), 4.12-3.74 (m, 36H, $2 \times \mathrm{H}-5,2 \times \mathrm{H}-6 \mathrm{~b}, 8 \times \mathrm{H}-18,2 \times \mathrm{H}-7 \mathrm{a}, 2 \times \mathrm{H}-9,5 \times \mathrm{H}-17$), 3.69$3.54(\mathrm{~m}, 22 \mathrm{H}, 8 \times \mathrm{H}-19,2 \times \mathrm{H}-7 \mathrm{~b}, 2 \times \mathrm{H}-8), 2.15-1.98\left(\mathrm{~m}, 24 \mathrm{H}, 3 \times \mathrm{OCOCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,169.9,2 \times 169.8,169.5\left(\mathrm{Cq}, \mathrm{C}=\mathrm{O}_{\text {acetyl }}\right), 149.9,149.7,149.4$, 149.3 (Cq, C-14), 144.0 (Cqtriazole , C-12), 128.9, 2×128.7, 128.5, 128.4, 128.3 (Cq, C-16), $123.8\left(\mathrm{CH}_{\text {triazole }}, \mathrm{C}-11\right), 115.7,115.3,115.2,115.0\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-15\right), 97.5(\mathrm{CH}, \mathrm{C}-1), 69.7\left(\mathrm{CH}_{2}\right.$, C-8, C-9), $69.3(\mathrm{CH}, \mathrm{C}-2), 68.8(\mathrm{CH}, \mathrm{C}-3), 68.4(\mathrm{CH}, \mathrm{C}-5), 67.4,67.2,67.0,66.9\left(\mathrm{CH}_{2}, \mathrm{C}-\right.$ 7, C-18), $65.9(\mathrm{CH}, \mathrm{C}-4), 62.3\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 62.2\left(\mathrm{CH}_{2}, \mathrm{C}-13\right), 50.7\left(\mathrm{CH}_{2}, \mathrm{C}-19\right), 50.0\left(\mathrm{CH}_{2}\right.$, C-10), 29.8, $3 \times 29.4\left(\mathrm{CH}_{2}, \mathrm{C}-17\right), 20.6,2 \times 20.5,20.4\left(\mathrm{OCOCH}_{3}\right) . \mathrm{HRMS}\left(\mathrm{ESI}^{+}-\mathrm{MS}, \mathrm{m} / \mathrm{z}\right)$: calculated for $\mathrm{C}_{93} \mathrm{H}_{113} \mathrm{~N}_{30} \mathrm{O}_{32}[\mathrm{M}+2 \mathrm{H}]^{2+}$ 1081.9119; found: 1081.9116 .

Compillar[5]arene S5:

The title compound was prepared following general procedure B using $\mathbf{S 4}(54 \mathrm{mg}, 0.025$ mmol, 1 equiv.), $7 \mathbf{7 a}$ ($96 \mathrm{mg}, 0.250 \mathrm{mmol}$, 10 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL}), \mathrm{CuSO}_{4}$ (0.2 equiv.) and NaAsc (0.66 equiv.) [$\mathrm{n}=6$], purified using $\mathrm{EtOAc} / \mathrm{Cy}(2: 1)$ as eluent to remove excess 7a, then $\mathrm{DCM} / \mathrm{MeOH}$ (30:1) as eluent and isolated as a pale yellow solid ($118 \mathrm{mg}, 0.0225$ mmol, 90%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88-7.87(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}-11), 7.83-7.77$ ($\mathrm{m}, 8 \mathrm{H}, 8 \times \mathrm{H}-20$), 6.82-6.78 (m, 4H, $4 \times \mathrm{H}-15$), 6.62-6.55 (m, 4H, $4 \times \mathrm{H}-15$), 6.48-6.44 (m, 2H, $2 \times \mathrm{H}-15$), 5.29-4.57 (m, 80H, $2 \times \mathrm{H}-1,2 \times \mathrm{H}-2,2 \times \mathrm{H}-3,2 \times \mathrm{H}-4,2 \times \mathrm{H}-10,2 \times \mathrm{H}-13,8 \times \mathrm{H}-18,8 \times$ $\mathrm{H}-22,8 \times \mathrm{H}-23,8 \times \mathrm{H}-24,8 \times \mathrm{H}-25,8 \times \mathrm{H}-26$), 4.27-4.07 (m, 34Н, $2 \times \mathrm{H}-6 \mathrm{a}, 8 \times \mathrm{H}-19,8$ x H-28), 3.99-3.89 (m, 8H, $2 \times \mathrm{H}-5,2 \times \mathrm{H}-6 \mathrm{~b}, 2 \times \mathrm{H}-9$), 3.78-3.58 (m, 20H, $2 \times \mathrm{H}-7,2 \times$
$\mathrm{H}-8,2 \times \mathrm{H}-17,8 \times \mathrm{H}-27$), $3.35-3.27(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{H}-17), 2.12-2.10\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{OCOCH}_{3}\right)$, $2.05-1.93\left(\mathrm{~m}, 90 \mathrm{H}, 30 \times \mathrm{OCOCH}_{3}\right), 1.90-1.84\left(\mathrm{~m}, 24 \mathrm{H}, 8 \times \mathrm{OCOCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.6,170.1,170.0,169.7,2 \times 169.4\left(\mathrm{Cq}, \mathrm{C}=\mathrm{O}_{\text {acetyl }}\right), 149.8,149.5,149.4$, 149.2 (Cq, C-14), 144.2, 144.0 (Cq $_{\text {triazole }}, \mathrm{C}-12, \mathrm{C}-21$), 129.0, 128.9, 128.5, 128.2 (Cq, C16), 124.5, $123.7{\left.\text { (} \mathrm{CH}_{\text {triazole }}, \mathrm{C}-11, \mathrm{C}-20\right), 116.4,115.7,115.5,115.1\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-15\right), 99.9,2}$ x 99.7, 99.6 (CH, C-23), $97.7(\mathrm{CH}, \mathrm{C}-1), 72.8(\mathrm{CH}, \mathrm{C}-25), 71.9(\mathrm{CH}, \mathrm{C}-27), 71.2(\mathrm{CH}, \mathrm{C}-$ 24), $70.0\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 69.6\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 69.5(\mathrm{CH}, \mathrm{C}-2), 69.0(\mathrm{CH}, \mathrm{C}-3), 68.6(\mathrm{CH}, \mathrm{C}-5)$, $68.3(\mathrm{CH}, \mathrm{C}-26), 67.5,67.3,67.0\left(\mathrm{CH}_{2}, \mathrm{C}-7, \mathrm{C}-18\right), 66.1(\mathrm{CH}, \mathrm{C}-4), 62.8,62.5,62.0\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-6, \mathrm{C}-22, \mathrm{C}-28), 61.8\left(\mathrm{CH}_{2}, \mathrm{C}-28\right), 50.2\left(\mathrm{CH}_{2}, \mathrm{C}-10, \mathrm{C}-19\right), 29.3,29.1,28.9,20.9\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-17)$, $2 \times 20.7,20.6\left(\mathrm{OCOCH}_{3}\right)$. HRMS ($\mathrm{ESI}^{+}-\mathrm{MS}, \mathrm{m} / \mathrm{z}$): calculated for $\mathrm{C}_{229} \mathrm{H}_{289} \mathrm{~N}_{30} \mathrm{O}_{112}$ $[\mathrm{M}+\mathrm{H}]^{+} 5250.7835$; found $[\mathrm{M}+\mathrm{H}]^{+} 5250.7858$

S11. Synthesis of fluorescent rotaxane 16

Scheme S12. Synthesis of 16

Compound 12:

To a vigorously stirred solution of copillar[5]arene $\mathbf{3}$ ($583 \mathrm{mg}, 0.378 \mathrm{mmol}, 1$ equiv.) and 11 ($290 \mathrm{mg}, 0.908 \mathrm{mmol}$, 2.4 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (8 mL) under argon atmosphere, was added a freshly prepared solution of $\mathrm{CuSO}_{4}(0.075 \mathrm{mmol}, 12 \mathrm{mg}, 0.2$ equiv.) and $\mathrm{NaAsc}(49 \mathrm{mg}$, $0.249 \mathrm{mmol}, 0.66$ equiv.) in distilled $\mathrm{H}_{2} \mathrm{O}(8 \mathrm{~mL})$. After stirring for 12 h , distilled $\mathrm{H}_{2} \mathrm{O}$ (50 $\mathrm{mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ were added and the organic layer was separated and dried over MgSO_{4}, the solvent was concentrated and the residue was purified by column chromatography on silica gel using $\mathrm{DCM} / \mathrm{MeOH}$ (150:1) as eluent to yield $\mathbf{1 2}$ as a yellow solid ($774 \mathrm{mg}, 0.355 \mathrm{mmol}, 94 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.56(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-2), 8.23-8.21(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}-$ $8,2 \times \mathrm{H}-4$), 7.53 (dd, $J=16.1,8.4 \mathrm{~Hz}, 6 \mathrm{H}, 2 \times \mathrm{H}-3,2 \times \mathrm{H}-7,2 \times \mathrm{H}-13$), 7.17 (d, $J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}, 2 \times \mathrm{H}-6$), 6.98 ($\mathrm{s}, 2 \mathrm{H}, 2 \times \mathrm{H}-17$), 6.94 (s, 2H, $2 \times \mathrm{H}-17$), 6.87 ($\mathrm{s}, 4 \mathrm{H}, 4 \times \mathrm{H}-17$), 6.78 (s, 2H, $2 \times \mathrm{H}-17$), 6.01 (s, 2H, $2 \times \mathrm{NH}$), 5.16 (m, 4H, $2 \times \mathrm{H}-15$), $4.32-4.26$ (m, 8H, $2 \times \mathrm{H}-$ 12, $2 \times \mathrm{H}-20$), 4.14-4.08 (m, 8H, $4 \times \mathrm{H}-20$), 4.03-3.96 (m, 4H, $2 \times \mathrm{H}-20$), 3.86-3.82 (m, $10 \mathrm{H}, 5 \times \mathrm{H}-19) 3.60(\mathrm{t}, J=5.5 \mathrm{~Hz}, 8 \mathrm{H}, 4 \times \mathrm{H}-21), 3.54(\mathrm{t}, J=5.5 \mathrm{~Hz}, 8 \mathrm{H}, 4 \times \mathrm{H}-21), 3.39$ ($\mathrm{m}, 4 \mathrm{H}, 2 \times \mathrm{H}-11$), $2.88\left(\mathrm{~s}, 12 \mathrm{H}, 4 \times \mathrm{NCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.1$ (C-1), 149.8, 2×149.7 (Cq, C-16), 144.3 ($\mathrm{Cq}_{\text {triazole }}$, $\mathrm{C}-14$), 134.5 ($\mathrm{Cq}, \mathrm{C}-5$), $130.8\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-2\right.$), $130.0,129.5$ (Cq, C-18), $129.4\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-4\right), 129.3,3 \times 129.2(\mathrm{Cq}, \mathrm{C}-18, \mathrm{C}-9, \mathrm{C}-10), 128.7$ $\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-3\right), 124.1\left(\mathrm{CH}_{\text {triazole }}, \mathrm{C}-13\right), 123.28\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-7\right), 118.7\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-8\right), 116.7,116.4$, 116.3, 116.1, $116.0\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-17, \mathrm{C}-17\right), 115.5\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-6\right), 69.3\left(\mathrm{CH}_{2}, \mathrm{C}-20\right), 62.8\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-15), 50.3\left(\mathrm{CH}_{2}, \mathrm{C}-12\right), 45.5\left(\mathrm{NCH}_{3}\right), 42.9\left(\mathrm{CH}_{2}, \mathrm{C}-11\right), 31.2,31.0,30.9,30.7\left(\mathrm{CH}_{2} \mathrm{Br}\right.$, $\mathrm{C}-21), 2 \mathrm{x} 29.8,29.3\left(\mathrm{CH}_{2}, \mathrm{C}-19\right)$. HRMS (ESI $\left.{ }^{+}-\mathrm{MS}, \mathrm{m} / \mathrm{z}\right)$: calculated for $\mathrm{C}_{85} \mathrm{H}_{93} \mathrm{Br}_{8} \mathrm{~N}_{10} \mathrm{O}_{14} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 2172.9776$; found $[\mathrm{M}+\mathrm{H}]^{+} 2172.9758$.

Rotaxane 15:

A solution of $\mathbf{1 2}$ ($200 \mathrm{mg}, 0.092 \mathrm{mmol}, 4$ equiv.) and $\mathbf{1 4}(12.7 \mathrm{mg}, 0.023 \mathrm{mmol}, 1$ equiv.) in dry $\mathrm{CHCl}_{3}(0.3 \mathrm{~mL})$ was stirred at room temperature for 5 h . Afterwards, $\mathbf{1 3}(9.1 \mathrm{mg}$, $0.0276 \mathrm{mmol}, 1.2$ equiv.) was added and the solution was cooled to $-20^{\circ} \mathrm{C}$ using an iceacetone bath, then $\mathrm{CuBr} . \mathrm{SMe}_{2}(9.5 \mathrm{mg}, 0.046 \mathrm{mmol}, 2$ equiv.) was added. The mixture was stirred for 12 h while warming slowly to room temperature. Then, CHCl_{3} was evaporated and the residue was re-dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 2 \mathrm{~mL})$ and $\mathrm{NH}_{4} \mathrm{Cl}(2 \times 2 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 4 \mathrm{~mL})$ and the organic layer was dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using $\mathrm{DCM} / \mathrm{MeOH}$ (9.95/0.05 to 9.9/0.1 then 9.8/0.2) as eluent to furnish the desired product $\mathbf{1 5}$ as a yellow solid ($30 \mathrm{mg}, 0.011 \mathrm{mmol}, 48 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.66(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{H}-2), 8.36(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{H}-8), 8.29-8.27(\mathrm{~m}$, $2 \mathrm{H}, 2 \times \mathrm{H}-4), 7.70-7.55$ (m, 8H, $2 \times \mathrm{H}-3,2 \times \mathrm{H}-7,2 \times \mathrm{H}-13,2 \times \mathrm{H}-9$ '), 7.30 ($\mathrm{s}, 2 \mathrm{H}, 2 \times \mathrm{H}-$ 6), 7.09-7.00 (m, 8H, $8 \times \mathrm{H}-17$), 6.94-6.93 (m, 2H, $2 \times \mathrm{H}-17$), 6.83 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 5.39-5.16 (m, 8H, $\left.2 \times \mathrm{H}-1^{\prime}, 2 \times \mathrm{H}-2^{\prime}, 2 \times \mathrm{H}-3^{\prime}, 2 \times \mathrm{H}-4^{\prime}\right), 5.01-4.85$ (m, 6H, $2 \times \mathrm{H}-15, \mathrm{H}-7^{\prime}$), 4.704.64 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-7$ ') , 4.55-4.48 (m, 4H, $2 \times \mathrm{H}-12$), 4.36-4.23 (m, 10H, $4 \times \mathrm{H}-20,2 \times \mathrm{H}-5$ '), 4.19-4.10 (m, 6H, $3 \times \mathrm{H}-20$), 4.03-3.98 (m, 2H, H-20), 3.82 (br, 8H, $4 \times \mathrm{H}-19$), 3.76-3.59 ($\mathrm{m}, 22 \mathrm{H}, \mathrm{H}-19,8 \times \mathrm{H}-21,2 \times \mathrm{C}-10$ '), 3.47 ($\mathrm{s}, 4 \mathrm{H}$), 3.51-3.47 (m, 4H, $2 \times \mathrm{H}-11$), 2.99-2.95 $\left(\mathrm{m}, 12 \mathrm{H}, 4 \times \mathrm{NCH}_{3}\right), 2.17\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCOCH}_{3}\right), 2.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCOCH}_{3}\right), 2.05(\mathrm{~s}, 3 \mathrm{H}$, OCOCH_{3}), 1.97-1.92 (m, 6H, $2 \times \mathrm{OCOCH}_{3}$), 1.16-1.10 (m, 6H, $2 \times \mathrm{H}-6$ '), 0.75 (br, 4H, 2 x $\mathrm{CH}_{2 \text { axle }}$), 0.22 (br, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2 \text { axle }}$), $-0.14--0.2\left(\mathrm{~m}, 8 \mathrm{H}, 4 \times \mathrm{CH}_{2 \mathrm{axxl}}\right) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2 \times 170.8,170.6,170.4,170.3\left(\mathrm{Cq}, \mathrm{C}=\mathrm{O}_{\text {acetyl }}\right), 151.4(\mathrm{Cq}, \mathrm{C}-1), 150.0$,
149.9, 149.8, 2×149.6 (C-16), 143.8, 143.5 (Cq $_{\text {triazole }}, \mathrm{C}-14, \mathrm{C}-8$ '), 134.9 (Cq, C-5), 130.6 $\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-2\right), 129.7\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-4\right), 2 \times 129.5,129.3,129.1(\mathrm{Cq}, \mathrm{C}-9, \mathrm{C}-10, \mathrm{C}-18), 128.5\left(\mathrm{CH}_{\mathrm{Ar}}\right.$, $\mathrm{C}-3), 124.5\left(\mathrm{CH}_{\text {triazole }}, \mathrm{C}-13\right), 123.7\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-7\right), 123.0\left(\mathrm{CH}_{\text {triazole }}, \mathrm{C}-9\right.$ ' $), 119.5\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-\right.$ 8), 116.4, 116.1, 116.0, 115.8, 115.7, 115.2 ($\mathrm{CH}_{\mathrm{Ar}}$, C-6, C-17), 96.1, $96.0(\mathrm{CH}, \mathrm{C}-1$ '), 71.4, 71.3 (CH, C-2'), 69.6, 69.4, 69.3, $69.0\left(\mathrm{CH}_{2}, \mathrm{C}-20\right), 68.4,68.2\left(\mathrm{CH}, \mathrm{C}-4{ }^{\prime}\right), 68.0(\mathrm{CH}, \mathrm{C}-$ $\left.3^{\prime}\right), 2 \times 64.9\left(\mathrm{CH}, \mathrm{C}-5\right.$ '), $62.4\left(\mathrm{CH}_{2}, \mathrm{C}-15\right), 2 \times 61.4\left(\mathrm{CH}_{2}, \mathrm{C}-7{ }^{\prime}\right), 50.4\left(\mathrm{CH}_{2}, \mathrm{C}-12, \mathrm{C}-10^{\prime}\right)$, $45.7\left(\mathrm{NCH}_{3}\right), 43.0\left(\mathrm{CH}_{2}, \mathrm{C}-11\right), 32.0,31.9,31.2,31.2,31.0(\mathrm{C}-19, \mathrm{C}-21), 30.3\left(\mathrm{CH}_{2 a x l e}\right)$, $29.8\left(\mathrm{CH}_{2 \text { axle }}\right)$, $29.3\left(\mathrm{CH}_{2 \text { axle }}\right)$, 29.1, $26.13\left(\mathrm{CH}_{2 \text { axle }}\right), 2 \times 21.1,20.9,20.8\left(\mathrm{OCOCH}_{3}\right), 16.0$ $\left(\mathrm{CH}_{3}, \mathrm{C}-6\right.$ '). HRMS ($\mathrm{ESI}^{+}-\mathrm{MS}, \mathrm{m} / \mathrm{z}$): calculated for $\mathrm{C}_{125} \mathrm{H}_{154} \mathrm{Br}_{8} \mathrm{~N}_{16} \mathrm{O}_{30} \mathrm{~S}_{2}[\mathrm{M}+2 \mathrm{H}]^{+}$ 1532.1934; found 1532.1940.

Rotaxane 16:

The title compound was prepared following the synthetic procedure of $\mathbf{7}$ using rotaxane $\mathbf{1 5}$ ($25 \mathrm{mg}, 0.0081 \mathrm{mmol}, 1$ equiv.), $\mathrm{NaN}_{3}(9 \mathrm{mg}, 0.13 \mathrm{mmol}, 10$ equiv.) and dry DMF (1 mL), and isolated as a yellow solid ($22 \mathrm{mg}, 00786 \mathrm{mmol}, 97 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.66(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{H}-2), 8.33(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{H}-8), 8.21(\mathrm{~s}, 2 \mathrm{H}, 2$ x H-4), $7.71-7.63$ ($\mathrm{m}, 4 \mathrm{H}, 2 \times \mathrm{H}-13,2 \times \mathrm{H}-9$ '), $7.55-7.49$ ($\mathrm{m}, 4 \mathrm{H}, 2 \times \mathrm{H}-3,2 \times \mathrm{H}-7$), 7.24 (br, 2H, $2 \times \mathrm{H}-6$), 7.01 ($\mathrm{s}, 2 \mathrm{H}, 2 \times \mathrm{H}-17$), 6.94 ($\mathrm{s}, 4 \mathrm{H}, 4 \times \mathrm{H}-17$), 6.88 ($\mathrm{s}, 3 \mathrm{H}, 3 \times \mathrm{H}-17$), 6.85 (s, 1H, H-17), 5.37-5.31 (m, 2H, $2 \times \mathrm{H}-3$ '), $5.27-5.26$ (m, 1H, H-2'), 5.23-5.12 (m, $5 \mathrm{H}, 2 \times \mathrm{H}-1$ ', H-2', $2 \times \mathrm{H}-4$ '), 5.07 (d, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-15$), 4.99 (d, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}$, H-15), 4.92-4.81 (m, 4H, H-15, H-7'), 4.64 (dd, $J=22.6,11.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\prime} 7$ '), 4.48 (br, 4H, $2 \times \mathrm{H}-12$), 4.28-4.27 (m, 2H, $2 \times \mathrm{H}-5$ '), 4.18-4.14 (m, 2H, H-20), 3.99-3.95 (m, 12H, 6 x H-20), 3.78-3.49 (m, 32H, $5 \times \mathrm{H}-19, \mathrm{H}-20,8 \times \mathrm{H}-21,2 \times \mathrm{H}-10$ '), 3.43 (br, 4H, $2 \times \mathrm{H}-11$),
2.96-2.94 (m, $4 \times \mathrm{NCH}_{3}$), $2.15\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCOCH}_{3}\right), 2.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCOCH}_{3}\right), 2.02(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCOCH}_{3}\right), 1.95\left(\mathrm{~s}, 2 \times \mathrm{OCOCH}_{3}\right), 1.11\left(\mathrm{br}, 6 \mathrm{H}, 2 \times \mathrm{H}-6\right.$ '), $0.72-0.64\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2 \mathrm{axle}}\right)$, $0.31-0.24\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2 \mathrm{axle}}\right),-0.08--0.22\left(\mathrm{~m}, 8 \mathrm{H}, 4 \times \mathrm{CH}_{2 \mathrm{axle}}\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 2 \times 170.7,170.6,170.4,2 \times 170.2\left(\mathrm{Cq}, \mathrm{C}=\mathrm{O}_{\text {acetyl }}\right), 149.7,149.6,149.4(\mathrm{Cq}, \mathrm{C}-1$, C-16), 143.6, 143.5, 2×143.3 (Cq, Cqtriazole, C-14, C-8'), 134.8 (Cq, C-5), 130.1 ($\mathrm{CH}_{\mathrm{Ar}}$, C2), $129.4\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-4\right), 129.0,128.85,128.73,128.66(\mathrm{Cq}, \mathrm{C}-18, \mathrm{C}-9, \mathrm{C}-10), 128.2\left(\mathrm{CH}_{\mathrm{Ar}}\right.$, $\mathrm{C}-3), 124.5\left(\mathrm{CH}_{\text {triazole }}, \mathrm{C}-13\right), 123.7\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-7\right), 122.9\left(\mathrm{CH}_{\text {triazole }}, \mathrm{C}-9{ }^{\prime}\right), 116.03\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-\right.$ 6, C-8), 114.98, $114.83\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-17\right), 95.83,95.70(\mathrm{CH}, \mathrm{C}-1$ '), $2 \times 71.2(\mathrm{CH}, \mathrm{C}-2$ '), 68.2, $68.1\left(\mathrm{CH}, \mathrm{C}-4\right.$ '), $2 \times 67.9\left(\mathrm{CH}, \mathrm{C}-3\right.$ '), 67.3, 67.2, $67.0\left(\mathrm{CH}_{2}, \mathrm{C}-20\right), 2 \times 64.7\left(\mathrm{CH}, \mathrm{C}-5^{\prime}\right), 2$ x $62.0\left(\mathrm{CH}_{2}, \mathrm{C}-15\right), 2 \times 61.0\left(\mathrm{CH}_{2}, \mathrm{C}-7{ }^{\prime}\right), 51.4,51.3,51.2\left(\mathrm{CH}_{2}, \mathrm{C}-21\right), 50.1\left(\mathrm{CH}_{2}, \mathrm{C}-12\right.$, C-10'), $45.7\left(\mathrm{NCH}_{3}\right), 42.8\left(\mathrm{CH}_{2}, \mathrm{C}-11\right), 30.2\left(\mathrm{CH}_{2 \mathrm{axle}}\right), 29.5,29.4,2 \times 29.2$, 28.9, $28.8\left(\mathrm{CH}_{2}\right.$, $\left.\mathrm{C}-19, \mathrm{CH}_{2 \text { axle }}\right)$, $26.0\left(\mathrm{CH}_{2 \mathrm{axle}}\right)$, 20.8, $20.7\left(\mathrm{OCOCH}_{3}\right)$, $15.8\left(\mathrm{CH}_{3}, \mathrm{C}-6\right.$ '). HRMS (ESI ${ }^{+}$-MS, m / z): calculated for $\mathrm{C}_{125} \mathrm{H}_{154} \mathrm{~N}_{40} \mathrm{O}_{30} \mathrm{~S}_{2}[\mathrm{M}+2 \mathrm{H}]^{2+}$ 1379.5592; found 1379.5599.

Rotaxane 17:

The title compound was prepared following general procedure B using rotaxane $\mathbf{1 6}(30 \mathrm{mg}$, $0.011 \mathrm{mmol}, 1$ equiv.), $7 \mathbf{7 a}$ ($42 \mathrm{mg}, 0.108 \mathrm{mmol}, 10$ equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.6 mL), CuSO_{4} (0.2 equiv.) and NaAsc (0.66 equiv.) [$\mathrm{n}=6$], purified using EtOAc/Cy ($2: 1$) as eluent to remove excess 7a, then $\mathrm{DCM} / \mathrm{MeOH}$ (30:1) as eluent and isolated 17 as orange solid (50 mg , $0.0085 \mathrm{mmol}, 79 \%)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.53$ ($\mathrm{s}, 2 \mathrm{H}, 2 \times \mathrm{H}-2$), $8.24-8.19$ (m, 4H, $2 \times \mathrm{H}-4,2 \times \mathrm{H}-8$), 7.85-7.64 (m, 12H, $2 \times \mathrm{H}-13,8 \times \mathrm{H}-22$, $2 \times \mathrm{H}-9$ '), $7.54-7.44$ (m, 4H, $2 \times \mathrm{H}-3,2 \times \mathrm{H}-7$), 7.17 (s, 2H, $2 \times \mathrm{H}-6$), 6.99-6.58 (m, 12H, H-17, $2 \times \mathrm{NH}$), 5.23-5.22 (m, $2 \mathrm{H}, 2 \times \mathrm{H}-3$ '), 5.15-4.59 (m, 78H, $2 \times \mathrm{H}-15,8 \times \mathrm{H}-21,8 \times \mathrm{H}-24,8 \times \mathrm{H}-25,8 \times \mathrm{H}-26,8 \times \mathrm{H}-27,8 \times \mathrm{H}-28$, $\left.2 \times \mathrm{H}-1^{\prime}, 2 \times \mathrm{H}-2^{\prime}, 2 \times \mathrm{H}-4^{\prime}, 2 \times \mathrm{H}-7^{\prime}\right), 4.49$ (br, 4H, $2 \times \mathrm{H}-12$), 4.38-4.07(m,34H, $8 \times \mathrm{H}-$ 30, $2 \times \mathrm{H}-5$ ', $8 \times \mathrm{H}-20$), $3.64-3.51$ (m, 10H, H-19, $8 \times \mathrm{H}-29$), 3.38 (br, $8 \mathrm{H}, 2 \times \mathrm{H}-11,2 \times$ H-10'), 3.22-3.13 (m, 8H, $4 \times \mathrm{H}-19$), 2.93-2.85 (m, 12H, $4 \times \mathrm{NCH}_{3}$), 2.08 ($\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{x}$ $\left.\mathrm{OCOCH}_{3}\right), 1.99-1.79\left(\mathrm{~m}, 108 \mathrm{H}, 2 \times 36 \mathrm{OCOCH}_{3}\right), 1.04-1.00(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{H}-6$) $), 0.50(\mathrm{~s}$, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2 \text { axle }}$), $0.19\left(\mathrm{~s}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2 \text { axle }}\right), 0.01--0.49\left(\mathrm{~m}, 8 \mathrm{H}, 4 \times \mathrm{CH}_{2 \mathrm{axle}}\right) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.6,170.1,169.4,169.3\left(\mathrm{Cq}, \mathrm{C}=\mathrm{O}_{\text {acetyl }}\right.$), 149.6, 149.4, 149.3, 149.2, 149.0 (Cq, C-1, C-16), 144.3, 144.2 (Cq, Cqtriazole, C-23), 143.5, 143.3 (Cq, Cqtriazole, C-14, C-8'), $134.5(\mathrm{Cq}, \mathrm{C}-5), 130.5\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-2\right), 129.5\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-4\right), 128.8,128.7,128.57(\mathrm{Cq}$, $\mathrm{C}-18, \mathrm{C}-9, \mathrm{C}-10), 128.4\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-3\right), 127.9$ (Cq, C-18, C-9, C-10), 124.9 (C-13), 123.5, 123.3 (C-7, C-9', C-22), 115.7, 115.4, $115.0\left(\mathrm{CH}_{\mathrm{Ar}}, \mathrm{C}-6, \mathrm{C}-8, \mathrm{C}-17\right), 99.8,99.6$ (C-25), 95.9, 95.7 ($\mathrm{C}-1^{\prime}$), 72.7 (C-27), 71.7 (C-29), 71.1 (C-26, C-2'), 68.2 (C-28, C-4'), 68.1 (C$\left.4^{\prime}\right), 67.8,67.6$ (C-3'), $67.0(\mathrm{C}-20), 64.7,64.7$ (C-5'), 62.7 (C-24), 62.2, 62.1 (C-15), 61.7 (C-30), 60.9, $60.8\left(\mathrm{C}^{\prime} 7^{\prime}\right), 50.2,49.9\left(\mathrm{CH}_{2}, \mathrm{C}-12, \mathrm{C}-10^{\prime}, \mathrm{C}-21\right), 45.5\left(\mathrm{NCH}_{3}\right), 42.7\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-11), 30.0\left(\mathrm{CH}_{2 \text { axle }}\right)$, 29.3, $28.8\left(\mathrm{CH}_{2}, \mathrm{C}-19, \mathrm{CH}_{2 \text { axle }}\right), 25.9,25.8\left(\mathrm{CH}_{2 \text { axle }}\right), 20.7,20.6$ $\left(\mathrm{OCOCH}_{3}\right), 15.8\left(\mathrm{CH}_{3}, \mathrm{C}-6{ }^{\prime}\right)$. HRMS $\left(\mathrm{ESI}^{+}-\mathrm{MS}, \mathrm{m} / \mathrm{z}\right)$: calculated for $\mathrm{C}_{261} \mathrm{H}_{331} \mathrm{~N}_{40} \mathrm{O}_{110} \mathrm{~S}_{2}$ $[\mathrm{M}+3 \mathrm{H}]^{3+}$ 1949.6987; found 1949.7002.

S12. Synthesis of Compound S6

To a solution of $\mathbf{8 d}(55 \mathrm{mg}, 0.01 \mathrm{mmol})$ in dry $\mathrm{MeOH}(1.5 \mathrm{~mL})$ was added NaOMe (5.4 $\mathrm{mg}, 0.1 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. Then, the solution was stirred for 1.5 h at room temperature before evaporating to get the salt solid. The salt solid was dissolved in detailed water (3 ml) and added Dowex®50WX2 (H^{+}resin form) to neutralize the base. Afterwards, The resin was removed by filtration, the filtrate was purified by Sephadex G15 column and the yellow fraction was concentrated under reduced pressure to generate compound $\mathbf{S 6}$ as an orange solid ($35 \mathrm{mg}, 0.0086 \mathrm{mmol}, 86 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 7.95$ (br, $16 \mathrm{H}, 8 \times \mathrm{H}-11,2 \times \mathrm{H}-20,2 \times \mathrm{H}-24,2 \times \mathrm{H}-26,2 \times \mathrm{H}-$ 30), 7.20-6.71 (m, 16H, $2 \times \mathrm{H}-25,2 \times \mathrm{H}-29,2 \times \mathrm{H}-28,10 \times \mathrm{H}-15$), 4.70 (br, $8 \mathrm{H}, 4 \times \mathrm{H}-13$), 4.46 (br, 20H, $8 \times \mathrm{H}-10,2 \times \mathrm{H}-19$), 3.83-3.49 (m, 118H, $8 \times \mathrm{H}-1-\mathrm{H}-9,2 \times \mathrm{H}-22$), 2.25 (br, $\left.12 \mathrm{H}, 4 \times \mathrm{NCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 151.0,149.4(\mathrm{C}-14, \mathrm{C}-23)$, $143.6(\mathrm{C}-21, \mathrm{C}-$ 22), 134.60 (C-27), 128.6 (C-16, C-24, C-25, C-26, C-31, C-32), 124.9 (C-11, C-20, C-29), 118.0, 115.8 (C-15, C-28, C-30), 100.0, 99.7 (C-1), 72.8, 72.6, 70.7, 70.5, 70.1, 69.9 (C-2, C-3, C-5), 69.3, 68.8 (C-8, C-9, C-18), 66.5 (C-4), 66.1(C-7), 62.5, 62.2, 62.05, 61.7 (C13), 60.7 (C-6), 49.8 (C-10, C-19), $44.4\left(\mathrm{NCH}_{3}\right), 37.2$ (C-22), 29.4 (C-17). HRMS (ESI+MS, m/z): calculated for $\mathrm{C}_{173} \mathrm{H}_{236} \mathrm{~N}_{34} \mathrm{Na}_{3} \mathrm{O}_{70} \mathrm{~S}_{2}[\mathrm{M}+3 \mathrm{Na}]^{3+}$ 1347.5024; found 1347.4968.

S13. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ NMR Spectra of new compounds

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{7 g}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{7 g}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{7 h}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{7 h}$

${ }^{1}$ H NMR spectrum of copillar[5]arene S1

${ }^{13} \mathrm{C}$ NMR spectrum of copillar[5]arene S 1

${ }^{1} \mathrm{H}$ NMR spectrum of copillar[5]arene $\mathbf{S} \mathbf{2}$

${ }^{13} \mathrm{C}$ NMR spectrum of copillar[5]arene S 2

${ }^{1} \mathrm{H}$ NMR spectrum of copillar[5]arene 3

${ }^{13} \mathrm{C}$ NMR spectrum of copillar[5]arene $\mathbf{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of copillar[5]arene 4

${ }^{13} \mathrm{C}$ NMR spectrum of copillar[5]arene 4

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 a}$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 a}$

${ }^{1} \mathrm{H}$ NMR spectrum of compound 6

${ }^{13} \mathrm{C}$ NMR spectrum of compound 6

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{8 a}$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{8 a}$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{8 b}$

${ }^{13}$ C NMR spectrum of compound $\mathbf{8 b}$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{8 c}$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $8 \mathbf{8 c}$

${ }^{1}$ H NMR spectrum of compound $\mathbf{8 d}$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{8 d}$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{8 e}$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{8 e}$

${ }^{1}$ H NMR spectrum of compound $\mathbf{8 f}$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{8 f}$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{8 g}$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{8 g}$

${ }^{1}$ H NMR spectrum of compound $\mathbf{8 h}$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{8 h}$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 0}$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 0}$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{S 3}$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{S 3}$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{S 4}$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{S 4}$

${ }^{1}$ H NMR spectrum of compound $\mathbf{S 5}$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{S 5}$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 2}$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 2}$

${ }^{1} \mathrm{H}$ NMR spectrum of rotaxane $\mathbf{1 5}$

${ }^{13} \mathrm{C}$ NMR spectrum of rotaxane 15

${ }^{1} \mathrm{H}$ NMR spectrum of rotaxane 16

${ }^{13} \mathrm{C}$ NMR spectrum of rotaxane 16

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 7}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 7}$

${ }^{1}$ H NMR spectrum of S6

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{S 6}$

S14. Fluorescence spectra of compounds 12, 15,16 and S6

Figure S1: Fluorescence emission spectra of a) compounds 12, 15 and 16 dissolved in chloroform and b) compound $\mathbf{S 6}$ dissolved in water $(\lambda e x=380 \mathrm{~nm})$

S15.The ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectra of compounds $12,15,16$ and axle

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 12, rotaxane 15, rotaxane 16 and axle. As a result of the ring current effect of the pillar[5]arene aromatic subunits on the $-\left(\mathrm{CH}_{2}\right)_{10}$ - chain of the axle, the signals of protons $H(2-5)$ are dramatically shielded in rotaxane $\mathbf{1 5}$ and rotaxane $\mathbf{1 6}$ when compared to the corresponding signals in axle molecular.

S16. ${ }^{1} \mathrm{H}$ NMR and 1D NOESY spectra of compounds 15 and 16

Figure S3. The black arrow indicates the protons that were excited in 1D NOESY of $\mathbf{1 5}$.

Figure S4. The black arrow indicates the protons that were excited in 1D NOESY of $\mathbf{1 6}$

S17. Temperature dependent ${ }^{1} \mathrm{H}$ NMR spectra of compounds 15,16 and 8 c

Figure S5. Temperature dependent ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{8 c}$. The upper spectra of $\mathbf{8 c}$ were recorded at higher concentration $(0.030 \mathrm{M})$ and the lower spectra were recorded at a lower concentration $(0.004 \mathrm{M})$. The specific temperatures are indicated in each spectra.

Reference

[1] Y. Yao, M. Xue, X. Chi, Y. Ma, J. He, Z. Abliz and F. Huang, Chem. Commun., 2012, 48, 65056507.
[2] I. Nierengarten, S. Guerra, M. Holler, J. F. Nierengarten and R. Deschenaux, Chem. Commun., 2012, 48, 8072-8074.
[3] D. Pendin, R. Norante, A. De Nadai, G. Gherardi, N. Vajente, E. Basso, N. Kaludercic, C. Mammucari, C. Paradisi, T. Pozzan and A. Mattarei, Angew. Chem. Int. Ed., 2019, 58, 9917-9922.
[4] A. Anand, R. J. Naik, H. M. Revankar, M. V. Kulkarni, S. R. Dixit and S. D. Joshi, Eur. J. Med. Chem., 2015, 105, 194-207.
[5] T. R. Hoye and Z. J. J. o. t. A. C. S. Ye, J. Am. Chem. Soc., 1996, 118, 1801-1802.
[6] Q. Lin, P.-P. Mao, Y.-Q. Fan, L. Liu, J. Liu, Y.-M. Zhang, H. Yao and T.-B. Wei, Soft Matter, 2017, 13, 7085-7089.
[7] B. J. Timmer, M. A. Flos, L. M. Jorgensen, D. Proverbio, S. Altun, O. Ramstrom, T. Aastrup and S. P. Vincent, Chem. Commun., 2016, 52, 12326-12329.
[8] R. Yan, K. Sander, E. Galante, V. Rajkumar, A. Badar, M. Robson, E. El-Emir, M. F. Lythgoe, R. B. Pedley and E. Arstad, J. Am. Chem. Soc., 2013, 135, 703-709.
[9] C. D. Spicer and B. G. Davis, Chem. Commun., 2013, 49, 2747-2749.
[10] L. F. Tietze, H. J. Schuster, B. Krewer and I. Schuberth, J. Med. Chem., 2009, 52, 537-543.
[11] L. F. Tietze and U. Bothe, Chem. Eur. J., 1998, 4, 1179-1183.
[12] J. Rull-Barrull, M. d'Halluin, E. Le Grognec and F. X. Felpin, Angew. Chem. Int. Ed. Engl.,
2016, 55, 13549-13552.
[13] M. Rubinshtein, C. R. James, J. L. Young, Y. J. Ma, Y. Kobayashi, N. C. Gianneschi and J. Yang, Org. Lett., 2010, 12, 3560-3563.
[14] M. Patra and N. Metzler-Nolte, Chem. Commun., 2011, 47, 11444-11446.
[15] S. Nainar, M. Kubota, C. McNitt, C. Tran, V. V. Popik and R. C. Spitale, J. Am. Chem. Soc., 2017, 139, 8090-8093.
[16] X. Li, S. Qiao, L. Zhao, S. Liu, F. Li, F. Yang, Q. Luo, C. Hou, J. Xu and J. Liu, ACS Nano., 2019, 13, 1861-1869.
[17] H. L. Evans, R. L. Slade, L. Carroll, G. Smith, Q. D. Nguyen, L. Iddon, N. Kamaly, H. Stockmann, F. J. Leeper, E. O. Aboagye and A. C. Spivey, Chem. Commun., 2012, 48, 991-993.
[18] J. F. Nierengarten, J. Iehl, V. Oerthel, M. Holler, B. M. Illescas, A. Munoz, N. Martin, J. Rojo, M. Sanchez-Navarro, S. Cecioni, S. Vidal, K. Buffet, M. Durka and S. P. Vincent, Chem. Commun., 2010, 46, 3860-3862.
[19] S. P. Vincent, K. Buffet, I. Nierengarten, A. Imberty and J. F. Nierengarten, Chem. Eur. J., 2016, 22, 88-92.

