Electronic Supplementary Information

Pandora's DNA Origami Box for the Site-specific Facet Protection of Gold Nanoparticles: A Building Block for Molecular Plasmonics

Michael Erkelenz[†]^a, Richard Kosinski [†]^b, Oliver Sritharan ^a, Helene Giesler ^a, Barbara Saccà ^{*b} and Sebastian Schlücker ^{*a}

^a Department of Chemistry, Center for Nanointegration Duisburg-Essen (CENIDE) and Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany. Sebastian.Schlücker@uni-due.de

^b Department of Biology, Center for Nanointegration Duisburg-Essen (CENIDE) and Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstraße 2, 45117 Essen, Germany. Barbara.Sacca@uni-due.de

⁺ Contributed equally, ^{*} corresponding Authors

Preparation of AuNS/AuNC and coating with ssDNA

Tween20-stabilized AuNS and AuNC were synthesized according to a reported method.² The synthesized and CTAB-stabilized particles were centrifuged and the precipitate was subsequently resuspended two times in 1 % sodium dodecyl sulfate (SDS) followed by three washing steps with 1 % Tween20. After the last centrifugation step, the pellets were collected and the concentration of AuNP was determined by UV-Vis extinction spectroscopy according to a reported method.³ Coating of the synthesized AuNS and AuNC with ssDNA was carried out following a published protocol.⁴

Agarose gel electrophoresis (AGE)

Purification of AuNP/origami box conjugates was achieved by using AGE in a 1 % agarose gel (containing 0.2 % Tween20) with 0.5xTBEMg as running buffer with 0.2 % Tween20 for 2 h at 4°C at 80 V. Isolation of origami band containing AuNP/origami conjugates was achieved by using spin column extraction (Freeze `n Squeeze Quantum prep, BioRad) at 10°C for 10 min and 250 g.

TEM Analysis

For the TEM analysis 400 mesh carbon-coated copper grids (Quantifoil) were glow charged and samples were drop-casted onto the grid. After incubation (2 min) the origamis were stained with 1 % uranyl formate before drying. The TEM images were obtained using a JEOL JEM 1400 Plus and a ZEISS EM910.

References

- 1. Y. Ke, S. M. Douglas, M. Liu, J. Sharma, A. Cheng, A. Leung, Y. Liu, W. M. Shih and H. Yan, *J. Am. Chem. Soc.*, 2009, 15903–15908.
- 2. J. E. Park, Y. Lee and J. M. Nam, *Nano Lett.*, 2018, **18**, 6475-6482.
- 3. T. Hendel, M. Wuithschick, F. Kettemann, A. Birnbaum, K. Rademann and J. Polte, *Anal. Chem.*, 2014, **86**, 11115-11124.
- 4. S. Xu, H. Yuan, A. Xu, J. Wang and L. Wu, *Langmuir*, 2011, **27**, 13629-13634.

Binding via Hybridization of ssDNA coated AuNP (10 nm) "gold standard"					
No. of protruding strands inside Pandora	0	4	8	16	28
Binging efficiency	0.5%	2%	9%	14%	62%

Fig. S 1 Top: **Incorporation of AuNS by hybridization** and representative TEM images. Middle: Binding yields of incorporation by using different numbers of protruding arms inside the cavity. Hybridization was tested in 0.5xTEMg with 0.15 % Tween20 and a 2.5-fold excess of AuNS. Bottom: TEM images (uranyl formate stained) were statistically analyzed by counting of origami structures ($n \ge 130$).

16 nm AuNC 18 nm AuNC

Fig. S 2 Top: **Theoretical and experimentally determined maximum AuNC size.** Top: Hybridization scheme of ssDNA-coated AuNC with maximum dimensions of AuNC fitting in the cavity (dimensions derived by design structure). Bottom: Experimentally determined yield for the incorporation of AuNC with different edge lengths (10-18 nm) into DNA origami boxes by hybridization. The unsuccessful incorporation of the larger 16 nm and 18 nm AuNC is attributed to steric hindrance and electrostatic repulsion.

	Measured [nm]	Calculated [nm]	
Inner diameter:	25.4 ± 1.8	21.3	0
Height:	26.1 ± 2.5	25.4	and the second s
Outer diameter:	34.5 ± 2.9	31.7	

Fig. S 3 **DNA origami box dimensions.** Top: Theoretical values are derived by considering previously reported distance measurements.¹ Bottom: Measured values are derived from statistical analysis of DNA origami box TEM images (n=100).

Conjugation of 19 nm AuNC with Pandora containing 28 thiols

Fig. S 4 **Purification of DNA origami AuNC conjugates by agarose gel electrophoresis.** The analysis under fluorescence illumination allows to identify origami. Left: The origami structures stained with ethidium bromide (EtBr) appear dark in the fluorescence channel, while the AuNC (18 nm) appear bright due to their optical extinction. Right: The AuNC appear dark in the white-light image due to their pale reddish color. The electrophoretic mobility of the AuNC/DNA conjugates is higher than that of single or agglomerated AuNC which leads to a pale red conjugate band visible in the white-light channel indicated with an arrow.

Table S1 Staple sequences for the assembly of Pandora. Sequences include several modified staples, responsible for distinct features of the final construct. Staples are color-coded the same way as in the cadnano design.

Sequence	Length	Description
CACCAGTATCACCGTCTAAACAGTCCACGGAATAAG	36	
CAAATTTGCACCGGGCAACGTTTGCGTATTGGGCGTCGG	39	
TTCGACTTGTAGAACGTCAGAAATAAATATA	31	
GAGAGGCGAGCTGATTGCCCTTCACCGC	28	
AGCTCAATAGAGGTTTACCCATATTCCTGATTATCTGAG	39	
GATTTAAAACGACAACATTATTACAGGTATAA	32	
ATTTTAACCGTGTTTGAGGGGACGACGAGTGC	32	
AGTGAAAATACTTATACCAAGAGGCAAAAGAATACTTTC	39	
CTGAACGCTGGTAGGCGAAAATCCTGTTGATA	32	
TCCAGCCAGGGTGGTTGCCAGCATCTTTCTTT	33	
GAAGACTAAAACACTTTATTGGAAACATCTTT	32	·
TAGCCCGATGATGGTGGAGTCTGTAGGGTTAGAACC	36	Connections of
TGTGATTCCCAATTCTGCGGAAACAATACAT	31	side walls
AAAACGAAAGCGCGAAACAAAGTACAAC	28	
AACGATATTGACCATTAAAGGTGAATTAGCAC	32	
TGTCCGTTGTAGCAATACTTGATTGTTTTCC	31	
ACGTTTCGGAACCTATTATAGGTGGCATAAG	31	
AAGTTAGATGATGGCACCAGCTTGCCATTCATC	33	
TTTTAGCGAGTAACAACGGAAACTAACCCGTCG	33	
CAGATACAGAAAGATGAAGTTTCTTATTACGCAGT	35	
GCTTCTGCAGTATCGACATCCTCAACGTCAGATGA	35	
AGCTTTCAGGCGGATTGACCGTAATGGG	28	
ATTATCATAGCGCCAAAGACAAAAGGGC	28	
CCAACCTTTTAGAACAAACTCAACATTAAATGTGAACCA	39	
CCTGTTTATCA	11	
AGAGAATAAACAACTGAAAAAGGGATGGGAAGAAAAATCTA	40	
CCGACAAAAAC	11	
TTTTTGAAGCCTTAAATCATCCTAATTCAAGAACGAGCTA	40	
TTATGTGAATAAAAATAAGGCGTTAAATAAGA	32	
TTAGGCGAATTATTCATTTCGATAGCTTTTAACCTCTAAAT	41	
AGAGAAATCAATTCATCGTAGGAATCATTACC	32	
GATTTGTATCATCGCCTGATGAAAT	25	Core Staples bottom
CCGAAACGCAATAATAACGTAGACGGGATAGCAGCCTTGCG	41	plate
AAACCAGAGGGTATAGAAGGCTTATCCGGTAT	32	
TTTAATTTTATCCTGAATCTAAGTCCTTCATCGAGTAAAC	40	
TAACCCCTTAGAGAAAAAGCCTGTTTAGTATC	32	
TTTTAATGCTGATGCATTTCCAATCTGTA	29	
AAGAATTGAGTTATAAG	17	
GGTCACGTTGGTGTAGATGGCAACT	25	
TACAGTAACAGTAGTTACAATAAGAACTGGCTCATT	36	
AGGCTGATGATTTAGCACGGTGTACAGACTTTGCGCAT	38	

GTACAAATATATTTTAGTTCATGTAATAGTATAAACCAGA	40	
ACATTTAACAATTTCATTTCCTTGCTTCGCAAGACAGAAA	40	
GAGCGCTAATATAGCCCTTTAAGA	24	
CTGAACACCCTGAACAA	17	
GAGCGTCTTGGATTATTTTTTAAACCGGATATTCATTAC	40	
TTGAAAACATAGCAATTACCGTAG	24	
CGATTTAATCTTTCAGAATCATTGTGAATTTTCTTATG	38	
TTAGCAAACGTATACCAGAAACGAGGCGCAGACGGT	36	
GGTTGGGTGAAATTGCTGAGCAAAATTGGGCTTGAGATGG	40	
TTTAACAACGCCAAAATTTCATAATTACTAATCC	34	
GCCCTGAGAGAGTTGCAGCAACGTA	25	
GACGCTGAGAAGGAATA	17	
GAGAATATAAA	11	
AGGCATTTTCGAGCTTACCAACTTTTATTTATAT	34	
ATTCAACCGATTGAGGGAGGCAGAT	25	
AAAATAATATCCCAAGATTAGTAATCAGATAATT	34	
ATTTTGTCACAAAAGAAACAGCTGACCTTCATCAAG	36	
GTGAGTGAATAAGAATTACCACTT	24	
ATAGACAGTAA	11	
CGTCGCTATTAAAACAT	17	
CATATCAAAATTGAAAACAAGCCCTGACGAGAAACA	36	
ATGGTAGGTCTGAGAGTTTACCTTTAGAT	29	
CTACGCCAGTTACAAATTTAACAGTAACC	29	
GCCGGAGGAATTTGAGGCGACCTGCTCCATTTTACTTA	38	
AATCCAAAACATATAAATTAAGAAAGAACTGACCAACTTTG	40	
AGGCTTAATTTTTTACAAAGCTGCTCATTTTTTGAATA	38	
GGTTGTTTAACGTCAATTTTGAAAAGAAT	29	
AGGGAAGCGCATGAATACCCGCAT	24	
TGTAGAAACCAATCTGTGCGAATTTTAGATAAAC	34	
TCATTTGAAATACCGACCGAATGAGAATAATTAATTAAAG	40	
GAAATAGCTATCTTACCGACAGAGAGACCATATTATGCACC	41	
AGTGCCCTTTTAGAACTCA	19	
ACAGCGGATCATTTTGCAATGCC	23	

ACAGCGGATCATTTTGCAATGCC
GCAGGTCAGCAGCAACTTTTAAA
GAGGCCGTTTTGTCATTGC
CGGCCAGTTTTGCAAATGG
GAGGTGAACAGCAGCGAAAGACAGCATCTTTCCAAAATAGCGA
AACTCGTATTTGCGGAACAAAGAAACCATTTAGCCAGCAAAAT
CGGACGTCGAGAGGGTTTTTGGA
AGGCAGGTGTCCAGCATTTTATTAAAGGGATGCCA
TAGCGTCCAATATTTCAGCTTGCTTTC
GCATTGACAGGTTTTCTGATAGC
ATAGCTGTGCATAAAGTGTAAAGCCTGGTTTAAAACCGT
GAGAAAGGAAGGTTTCGGTCATACCGG
GACTTCAAATATTTTAGACAGCC
GCAGCAAACAACAGTTGAAAGGAATTGATTTAATCACCG
ACGGTGTTTTTCAAGAGAA
AGCAAGGTGGCATCAATTTTAAGTTAAACGACCTC

Connections of side walls

CTGATAAAAACAAGAGAATCGATGAACGTTTGGCCAGTG39TACCTTTTTTGCCCAATA19TCATCAGTTGAGTTTAGGCACCAACCT27CCCTCAGAACCGTTTCGCTGAGAGCCA27	
TACCTTTTTTGCCCAATA19TCATCAGTTGAGTTTAGGCACCAACCT27CCCTCAGAACCGTTTCGCTGAGAGCCA27	
TCATCAGTTGAGTTTAGGCACCAACCT27CCCTCAGAACCGTTTCGCTGAGAGCCA27	
CCCTCAGAACCGTTTCGCTGAGAGCCA 27	
ATACCATTGCAACAGGTTTTATACATGGCTTTAAC 35	
CAACTTTCAACATTTCTTTACCCTGAC 27	
TCCTCGTTTTTACACTGGT 19	
AGCGTTTGCCATTTTAAGGTTATCTAA 27	
ATCAATATGATATTTCGGAATTT 23	
GCCGTAAAGCACTTTGTAATCATGGTC 27	
GAATGACCATAATTTTTCAGCGGAGTG 27	
GTTCCGAAATCGTTTCCAACGCGCGGG 27	
CCTAATTAGTCTTTAATTTTAGGTTGAGGCAAATG 35	
AAGGGTATTTTATAGTAGT 19	
TGGGAAGGGCGATTTAACGTTAATATT 27	
AACGGCTAAAAATACGTAATGCCACTACTTTCATTCAACTAATG 44	
TCCCAGTCACGATTTAATCGTAAAACT 27	
AGCATGTCATAAGCAAATATTTAAATTGTTTTCGCTAT 39	
ACGACCAGCGGTGCCGTTTTCCGCCGCGCTTGCTT 35	
GCGGGCCGTTTTTTTGAGCGGGC 23	
GAGCTAACGCCAGCTGCATTAATGAATCTTTAAATCAAAAGAA 43	
AGAATAGAGCCTTTAATTGTATCGGTTTTTTTAAATATTCATT 43	
GTGTGCTCGTCATAAATTTTTAGAATCAGAGACAG 35	
GCCTCAGGAAGATTTCTTCCTGTAGCC 27	
ACGTACAGCGCCTTTCAACCGTTCTAG 27	
AAAAAAATTTTGTAATACT 19	
GGATATTAAGAGGCTGTTTTCTG 23	
GGAACTCATTTTCAGGTTTTAAT 23	
ACCGACTTGAGCTTTAGAAGGAGCGGA 27	
CTGATGGCCAACAGAGTTTTCAGTCTCTGAACAGT 35	
CCTCGTTTACCATTTAACGAGGGTAGC 27	
TGAGAACCCTCATATATTTTAACTTAAATTTCCGT 35	
TTTTTGCTTTTGTATAGCC 19	
TTTGACCAAAAACATTTTTTGCCGCACAGGCGATG 35	
AACCACCACACTTTTTGCATCAG 23	
AGCAGCACCGTATTTAAACAATTCGAC 27	
AAGCGTCTTTTTCATGGAA 19	
ACGTGGACTCCATTTTGCCTAATGAGT 27	
GAAAGCGTTTTCTTCTGAC 19	
GGGTTTCTCCCGGGTACCGAGCTCGAATTTTAAAGGGAG 39	
TTGTTAAATCAAAAATAATTCGCGTCTGTTTGCTTTCCGGCACC 44	
AACTACATCACTTGCCTTTTGTA 23	
CTGCAACAGTGCTTTACCACCCT 23	
CTGCAACAGTGCTTTACCACCCT 23 TCAATTGACCATTAGATTTTAGC 23	
CTGCAACAGTGCTTTACCACCCT23TCAATTGACCATTAGATTTTAGC23CTCACAACGCCTGTAGTTTTTCG23	
CTGCAACAGTGCTTTACCACCCT23TCAATTGACCATTAGATTTTAGC23CTCACAACGCCTGTAGTTTTCG23CCGAGTATTTTTGCCAACG19	

TGCTTTGACAGTCACATAGACCCACCATCAGCCGTCAATAAACG	44	
TAGCATGGGATTTTGCTAAA	20	
TGAGGGATGTGCTTAAGTTGGGTAACGCAGGT	32	
GTCGCCTGTCGTTCACATTAATTGCGTTAACA	32	
CCCCCGATTTAGGTCGAGGT	20	
ATTTATTTGAGGTAGGAGCACTAACAACTGGT	32	
CTATCAGGGCGAATTAAAGA	20	
CAGGCAATAAATAAGCTAAATCGGTTGTCGGG	32	
CAGTTGAGGATCGCCAGCACGCGTGCCTCTGTGGTGAGTGTCAC	44	
CCACTAGCGCGTATTTTCGGTCATAGCCCCAC	32	
CTGTGAACGCCAATTCGCATTAAATTTTAAAA	32	
TTATATCCAGAAATATCCTGAGAAG	25	
GGTCCTTCAAAGATCTATAAACAGTTCATCAGAAGCGCCCGAAA	44	
ATAATGAGTGTTGGAACAAGAGTCCACTTGGC	32	
TAATCGCCGGGCGCGGTTGCGGCAAACGTGCGCCATAAAGCCCGCTT	47	
TTAGAAGTTTTGTAATAGTAAAATGTTTCTCA	32	
CCACATTGCTAACGGGAGGCAGATTCACCGAG	32	
AATACCGAACGAACCAGCGCGTACCTGAA	29	
TTGCCTTTAGCGCCATCGAT	20	
GTAATGGCAAATTGAAAAATCTAAAGCATGAGGCGGCCATTAAA	44	
ATAGGAACCCGTGAGCCTCTTATCCGCCTGG	31	
TCGCAGCCGGAATTCCTGTGTGAAATTGCTCA	32	
TGTACAAAAGGAAAGGAACAACTAAAGGTTTTCTGTGTAACGAT	44	
TATTATAGGAAAACGACGTTTTAAAGAG	28	
CAAACTCCAAAGCCTCTCAGGGGGCCAGAGAAAAGCCCCATGTT	44	Core staples, walls
CGTCAACCAGGCTCGCCATTCAGGCTGCCGAA	32	
CATACCGCCACGACCTCACCGGAAACAACTTTCTCCACGCAGAA	44	
GATCATCACCGTCCTCAGAGCCACCACCCCCA	32	
GCTAGGGCGCTGAACGTGGC	20	
GTGTAGACAGTCAAATCACC	20	
CTAAAGTTTTGTCGTCTTGATATTATAAT	29	
GTGAGAGATAGATCGGCGAA	20	
TCAGTACCATTAGAACGTCACCAATGAAATCAG	33	
TTACTACGTGAAAATCAAGTTTTTTGGGAGCT	32	
TGCGCGCCTCTCACGGAGCAGTTGCGTGG	29	
AATAAAAAGGAATAGTAAGAGCAACACTTGCA	32	
GTGTGTCACCCTTTTCTTAAACAGCTTGAAAG	32	
CATTACCCACGTTTTTTGCCTCCCTCAGCAGAACCACGCCGCCA	44	
GAAGATAAAACAGAGGTCACCTTGTATAGACAGGCACGGT	40	
TACGCCAGCTGGGCAACTGT	20	
GCTCCCGTAACATCACCAGTACAAACTATAGT	32	
GAATCCCCAGACTGGATGCTCCTTGTCA	28	
CAGAGCCGCCACAGCCGCCA	20	
AGGGCCGTTAGTGGCCTGGTCACTGTTGTCGA	32	
CAAATAAACCCTCAGAAGTTCGGCTTTCATGCGCCGATTTTAAA	44	
CCACACTCAGGAGGTTTAGTGTACTGGTTTTCCGGACAAGGTCATGAG	48	
AATTGAAAATCTCCAAAAAATACCGATACCG	31	
GAGTGCCTTTATGGATAAAAATTTTTAGTAAT	32	
CAGTGAATACGTATATTTTTGAATGGCTAAAC	32	

CACGGGGATCAACAAATGAAAGCCGGCGGCAAGTGTCTGCGCGT	44	
AATGAGGATTAGTTCGAGCTTCAAAGCGAAGAGGAAAAAGCGGA	44	
GCGCCTGCGGCCAGAATGCG	20	
TACGACTCAATCGGGTAAAGGTTTCTTTTCAG	32	
CCAAGCTTTCAGCAGGGTTT	20	
GATTAAAACGGGTCAGAGGCTTTGAGGACGCGG	33	
AAAGCAAAAGAGTTGATAATTAAGCAATAACA	32	
CATCAAGATTGTAATCATATGTACCCCGCTGA	32	
GGAGAAAAAATCCTGCTCATTTGCCGCCAAAAAGAGGTGGTGAA	44	
TGTGTACACCCTGCGGTCAGGCGATGCAACAATTCCACACGCGC	44	
ATCGTCAGTATTAACACCGC	20	
GACGTTAGTAAATGAAAATTGCGACACTTTCGCTGAGAAA	40	
GGGATAGCTGTGCACTGTTCTTCGGGCCAGATGGCATGGT	40	
AGAACTGGAGCATTAATGCCGGAGAGGGAAGGCCGGAGGTAAAG	44	
CGGAAAAGCCAGGGTCAGACGATTGGCCTTTAGAGCCCACCCCA	44	
ATACTGACGCTCAATAAAAGGGACATTCAAGC	32	
TTGCATCAGGGTGAGATAGCTATTCGGCGCAATTCAAAAG	40	
CAGTAATCGTCTGAAATGGAACGCCAGATAAAGTTTGTTCCTTTTAA	47	
CATACATACAGGCAAGGCAAATAATGCTCAGAGGCATTACGCTCATT	47	
GACTAATCAGTATTGCTAAGTTTTA	25	
GAGGCTATCAGGTCATTGCGTTGATAAAGAG	31	
CCTACCCTCAATCAATATCTAATAGATCGAC	31	
ACTGCCTCGTTCTTTACCAGAACCGCCATCCT	32	
CAAATCGTTAACGCCGGGTTACCTGCAGTCCA	32	
AAATGTACATTTATTTTGCTCAACA	25	
TCACCGGACGCAATCCCTCCGTTTT	25	
TGACTATAACGTAATGCGCCGCTACAGGCCATCACGAGCGGGCA	44	
GAACCAGAGCCACCCTTATT	20	
GAGGCTTTATCATAACTGGCTTAGAAGT	28	
GCCTATTATCATTTAAATCCTTTGCCCGGATA	32	

ACGTCAATTTTTTTTTAGGGCGA
TCGCACTTTTTTTTTCCAGCCA
ATGTTTATTTTTTTCCAGTCC
ATCAAAATTTTTTTTTTATCAGGT
GCAAAATTTTTTTTTTCCCTTAT
CCACCCTTTTTTTTTCAGAGCC
CGTTGTATTTTTTTTTTTTTTAAACGAC
GACGACGTTTTTTTTTTTATAAAAA
GAAGAAATTTTTTTTGCGAAAG
TCGGTGCTTTTTTTTGGGCCTC
СТТТТСАТТТТТТТТТТТТТТТТААТСАА
CATTTGGTTTTTTTTGAATTAG
CTGCGGATTTTTTTTTTTTTTCGTCA
ATCAGTATTTTTTTTGCGACAG
TAAATCGTTTTTTTTGAACCCT
ATTTAGGTTTTTTTTTTAATACCA

ATTCAAAAAAAAGATTAACCAGACTTTGA-TAMRA

Fluorophore staple

GATTCAGGACGTTTCGCCTGATTGCTTTAGTCAATACAAAAGATTGCCACTTTCCAC	57	
ATAGTTAGCTATGGGGCGCGAGCTGAAATTAAGATTGCCACTTTCCAC	48	
CGGAGCTGGCAGTGCTGATTGCCGTTCCGGTAGATTGCCACTTTCCAC	48	
AACACCGGAATCATCTTCTGACCCGGCTTAGATTGCCACTTTCCAC	46	
ATACCAGTCTCCGTGGCATCGGGAAACGAGTAGATTTAGTTAACGATTGCCACTTTCCAC	60	
CATTGCGGGGTTCCAGGCGGATAAGTGCATAGGATTGCCACTTTCCAC	48	
AAGAACGCGAGGCGCCTCCCGACTTTACAGGATTGCCACTTTCCAC	46	
CATTGCCTTGAGTTGATGATACAGGAGTACCGGATTGCCACTTTCCAC	48	
TGCGTTATACCGTGCTACGCGAAAGAAACGATTGCCACTTTCCAC	45	
AGTAATCTTAACATATAAATTTCCTCTTTGATTAGTAATAATCGGATTGCCACTTTCCAC	60	
CGCCTGCAACTAAGCTTAATTGCTGAATAGAAGATTGCCACTTTCCAC	48	
TAACTGCTGGTACAATATTACCGCCAGCCTACGATTGCCACTTTCCAC	48	Protruding stanles
AAAGAGGAGAAGGTAACAAAGACATAATGCCCCCTGCCTAGGGGATTGCCACTTTCCAC	59	(These staples
TTCTGTGCCAACGCTCAACATTTGGGCTTCGCCGATTGCCACTTTCCAC	49	protrude into
GAAAGTGGTGCCACCAGCTTACGGCTGGGCTTGATTGCCACTTTCCAC	48	Pandora and can
CGTGTGTCAAATTTAAAAGACTCCATTCCATATAACAGTTTTTAGATTGCCACTTTCCAC	60	oligonucleotides)
ATGTTCGGTATTAAACCAAGTTTCGCACGAACAGATTGCCACTTTCCAC	49	
AATATGACAAGATGGAAACAGTACAATAAAGCCCATCCTAAGATTGCCACTTTCCAC	57	
CCAGAACGCAGTGAGAGTAAAACAGCGTGGTGCTGGTCTGCACCGATTGCCACTTTCCAC	60	
CAATCATACCCAGCGAATACATAATCTGAAACATGAAAGTTAGGATTGCCACTTTCCAC	59	
CAGAGGCGGCTGTCTTTCCTTTCATTCTACGAGATTGCCACTTTCCAC	49	
CCCAATAGCAAGCATGCTATTTTTTATCCCGATTGCCACTTTCCAC	46	
CGACAAAACAAGCAAGCAAATTTTTACCTTAGGGATTGCCACTTTCCAC	49	
TCACAGTAGTAAAGAAGATGATGAAACATTAATTTTTATATGATTGCCACTTTCCAC	57	
GGGTTCAGTGAGTTTAGACAGGAACGGTTTATGATTGCCACTTTCCAC	48	
CCAAATCAAGCGGTCCATAATGGACCATCACGCAAATTAATT	60	
TTTAATTTGCGCATCGTCAGGTTTATAACGGAACGTGCCGGTCTGATTGCCACTTTCCAC		
	60	
GACCAGGGAACCAGTAAGCAGATAGCCGAACAAAGTGATTTGATTGCCACTTTCCAC	60 57	

Thiol-GTGGAAAGTGGCAATC

Thiol-staple (binds the AuNC)

16

Fig. S 5 **Cadnano design of Pandora.** The structure consists of a bottom plate and four walls. Small single-stranded DNA segments are interspersed in between each face to release possible strain. Staples are color-coded (red: bottom plate core staples; green: Staples connecting bottom plate and walls; purple: wall core staples; cyan: Staples connecting walls; magenta: fluorophore-staple; dark blue: edge staples (prevent stacking); orange: protruding staples.