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1. Experimental Section
1.1 Materials

Iron(Ⅱ) chloride tetrahydrate (FeCl2·4H2O), Sodium molybdate dihydrate  

(Na2MoO4·2H2O), Iridium(IV) Oxide (IrO2),  and Nafion (5 wt%) were purchased from 

Shinopharm Chemical Reagent Co. Ltd. Milli-Q ultrapure water was used for all experiments. 

All chemicals were analytical grade and used as received without further purification.

1.2. Preparation of Ni@FeMoO4 electrode

  The nickel foam was treated by ultrasonication in diluted HCl solution for 30 min to 

remove the  surface impurity and cleaned with deionized and ethanol water, respectively. 

FeCl2·4H2O (1.8 mmol) and Na2MoO4·2H2O (1.8 mmol) were dissolved in 45 mL distilled 

water. After gentle stirring for 30 min, the clear solution was transferred to a 50 mL Teflon-

lined stainless steel autoclave. The washed Ni substrate (3*1 cm) was immersed into the 

reaction solution. The autoclave was maintained at 120 oC for 24 h. After the autoclave cooled 

down at room temperature, the Ni@FeMoO4 electrode was washed with water and ethanol 

several times, followed by drying at 80 oC for 10 h.

1.3. Preparation of IrO2 electrode

To prepare IrO2 loaded electrodes, 3.6 mg IrO2 and 20 µL 5 wt% Nafion solution were 

dispersed in 100 µL 3:7 water/ethanol solvent. The mixture was ultrasonicated for about 1 h 

to form a homogeneous ink. Then, the  catalyst ink was loaded on a preprocessed Ni foam 

(1*1 cm2).  The loading amount of the catalysts was 3.6 mg cm−2. A similar method was 

used to prepare Ni+FeMoO4 electrode.

1.4 Material characterizations 

The X-ray diffraction (XRD) patterns were recorded on a Bruker D8 Advance X-ray 

diffractometer with Cu-Kα radiation (λ = 1.5418 Å) with a scan rate of 6° min-1. The SEM 

measurements were performed on ascanning electron microscope (FESEM, JSM-7610F, 10 

kV). The TEM and HRTEM measurements were taken with a JEOL JEM-F200 microscope 

operated. The samples were prepared by dropping ethanol dispersion of samples onto carbon-

coated copper TEM grids using pipettes and dried under ambient condition. The X-ray 

photoelectron spectroscopy (XPS) measurements were conducted on a Kratos Axis Ultra 

DLD spectrometer. 

1.5  Electrochemical characterizations 

Electrochemical measurements are performed with a CHI 730C electrochemistry 

workstation (CH Instruments, Inc., Shanghai) in a standard three-electrode system. The three-

electrode electrochemical cell was consisted of a Ni@FeMoO4, a graphite carbon rod and a 
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mercury oxide electrode (Hg/HgO) served as working electrode, counter electrode, and 

reference electrode, respectively.  Potentials are reported versus the reversible hydrogen 

electrode (RHE). All potentials were calculated with respect to RHE via the following 

equation: ERHE = E Hg/HgO + 0.059pH + 0.098 V. Polarization curves measurements were 

conducted in 1.0 M KOH  solution with a scan rate of 10 mV s-1. The long-term durability 

test was performed using chronoamperometric measurements. Converted to a RHE according 

to test correction, the overpotential η was calculated according to formula η = ERHE – 1.23. 

The cyclic voltammogram (CV) 500 cycles durability test was conducted by potential cycling 

from 0.2 to 1.8 V vs. RHE.  The polarization curves were establish as overpotential vs log 

current (log j) to get Tafel plots for evaluating the OER reaction kinetics of obtained catalysts. 

By fitting the Tafel plots (the linear portion) to the Tafel equation (η = blog(j) + a), the Tafel 

slope can be obtained. To reflect the real catalytic currents, all corresponding polarization 

curves shown in this paper were calibrated after i*Rs correction. E corrected = E measured – 

i*Rs (where Ecorr is the i*Rs-compensated potential, Emea is the experimentally measured 

potential, and Rs is the solution resistance, respectively). The turnover frequency (TOF) is 

defined as the number of H2 or O2 molecules generated per site per second: TOF = j/(n*F*N), 

where j is the measured current density (A cm−2), n is the mole number of electrons per mole 

of O2, F is the Faraday constant (96,485 C mol−1), and N is the content of the catalyst (mol 

cm−2). Electrochemical impedance spectroscopy (EIS) is a common method for investigating 

the as-constructed electron transfer kinetics in the OER. The EIS measurements for the 

Ni@FeMoO4 were performed in 1.0 M KOH  using a graphite rod as the counter electrode 

with the frequency range from 100 KHz to 0.1 Hz. All measurements were conducted at room 

temperature.

1.6 DFT calculation
  All the calculations were performed with the Vienna Ab initio Simulation Package (VASP) 

based on the density-functional theory (DFT). The generalized gradient approximation (GGA) 

with PBE functional was used for the differential charge density, and a plane-wave expansion 

for the basis set with a cutoff energy of 450 eV was employed. FeMoO4 (110) and Ni (111) 

were used to construct dual interface. Geometry optimizations and differential charge density 

were performed with a convergence threshold of 10-7 eV in energy and 0.05 eV Å-1 for the 

force, respectively. A vacuum of 15 Å along the z-direction was used, which was large 

enough to minimize the interaction between periodic images (ref. Chem. Commun., 2020,56, 

6834; Angew. Chem. Int. Ed. 2018, 57, 2697.).

2. Supplementary Figures:



  

5

Figure S1. The XRD spectra of FeMoO4 sample.
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Figure S2. The SEM image of Ni@FeMoO4 sample.
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Figure S3. The  high-magnification SEM image of Ni@FeMoO4 sample.
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Figure S4. The EDS image of FeMoO4 sample.
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Figure S5. The elemental mapping image of FeMoO4 sample.
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Figure S6. The EIS of the Ni@FeMoO4 electrodes.
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Figure S7.  The multi-potential steps of the Ni@FeMoO4 electrodes.
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Figure S8. The high-resolution (a) Fe 2p, (b) O 1s, (c) Mo 3d XPS spectra of the FeMoO4 
electrode before and after OER.
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Figure S9. The TEM image of Ni@FeMoO4 electrodes after OER.
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Figure S10. The HR-TEM image of Ni@FeMoO4 electrodes after OER.
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Figure S11. The CV of Ni@FeMoO4 electrodes.
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Figure S12. The CV of Ni+FeMoO4 electrodes.
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Figure S13. The i-t stability measurement of Ni+FeMoO4 electrode.
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Figure S14.  High-resolution C 1s XPS spectra of Ni@FeMoO4 and FeMoO4 sample.
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Figure S15.  The model unit of a Ni@FeMoO4 catalyst.  
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3. Supplementary Tables
Table S1. Comparison of the OER performance of NF/FeOOH catalyst with other reported 
OER catalysts

Catalyst Loading ( 
mg cm-2)

Tafel slope

(mV dec-1)

j

(mA cm-
2)

Overpotentia
l

/ mV

Reference

10 177

50 276

100 293

Ni@FeMoO4 3.6 56

200 312

This  work

Fe2B 0.25 30 10 240 1.J. Mater. Chem. A, 2020,8, 
13638-13645 

Ni2P/FeP 0.27 43 10 211 2.J. Mater. Chem. A, 2020，

CoFe-LDH/MXene 0.0016 50 10 319 3..Materials Today Energy 
12 (2019) 453-462

CoFe LDH 0.2 83 10 300 4.ChemPlusChem 2017, 
82,483 –488

Fe0.2Ni0.8B/SSG ----- 31.4 30 263 5.Int J Hydrogen Energy，
2019，

DOI: 10.1016/j.ijhydene.202
0.07.171 

Co-Ni-P/MoS2 ----- 71 10 235 6.J. Mater. Chem. A, 2020，

CoFeCr 
hydroxides

40.1 10 260 7.Sustainable Energy Fuels, 
2020,4, 3647-3653 

Co2Mo3O8 0.14 87.5 10 241 8.Angew. Chem. Int. Ed. 
2020, DOI: 

10.1002/anie.202004533
Au-Ir 0.02 36.9 10 245 9.Nat. Commun. 2020，

DOI:10.1038/s41467-
020-15391-w

Fe-Co/carbon fiber 
papers

2 34 10 283 10.Nano Energy 2017, 38  
576-584

NiFe@NC 0.2 56 10 350 11.Nano Energy, 2016, 30, 
426-433

Porous monolayer 
NiFe LDH

0.35 47 10 230 12.Adv. Energy Mater. 2019, 
9: 1900881.

Ag/CoFe-AN --- 34 10 187 13.PNAS, 2020, DOI: 
10.1073/pnas.2009180117

Ultrafine 
monolayer NiFe 

LDH

0.35 32 10 254 14.Adv. Energy Mater. 2018, 
8: 1703585

Ni Se0.5S0.5 2.4 61 10 257 15.Adv. Mater., 2020,32,
2000231

CoP-MNA 6.2 65 10 290 16.Adv. Funct. Mater. 2015, 
25, 7337-7347.

H2O-plasma 
exfoliated 

CoFeLDHs

0.306 36 10 278 17.Adv. Mater. 2017, 29, 
1701546

Co3O3.87F0.13 0.072 56 10 430 18.Applied Catalysis B: 
Environmental 281 (2021) 

119535

https://www.x-mol.com/paperRedirect/1294382707943022592
https://www.x-mol.com/paperRedirect/1294382707943022592
https://www.sciencedirect.com/science/journal/22112855
https://www.sciencedirect.com/science/journal/22112855/38/supp/C
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cat.-51.9 ----- 47.8 30 293.2 19.Adv. Mater. 2020, 
32,2001136

NiCoP/CC 2 65 10 242 20. ACS Catal. 2017, 7, 6, 
4131–4137

NiFeCr/NF ---- 36 onset 240 21.Energy Environ. Sci., 
2020, DOI: 

10.1039/D0EE01609H.
CaMoO4 2.38 80 50 345 22

Chem. Commun., 2018,54, 
5066-5069 

3% Au-Ni 1.96 85.3 100 377 23.Chem. Commun., 
2020, DOI: 

10.1039/D0CC06337A 
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