Electronic Supplementary Information

Oxyphosphoranes as precursors to bridging phosphate-catecholate ligands

Xin Yang,^a Rui Wei,^c Yaping Shi,^a Liu Leo Liu,^c Yile Wu, * ^{ad} Yufen Zhao,^{ad} and Douglas W. Stephan^{*ba}

^a Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, China.

^b Department of Chemistry, University of Toronto, 80 St. George St, Toronto M5S3H6, ON, Canada.

- ^c Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- ^d Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang, China

E-mail: wuyile@nbu.edu.cn; dstephan@chem.utoronto.ca

Contents

General information	3
Table. S1 Crystal data and refinement details for compounds 2, 3, 4, and 5	4
Fig. S1 Thermal ellipsoid plot for 2 with the anisotropic displacement parameters depicted at the 30 probability level. Hydrogen atoms are omitted for clarity.)% 5
Fig. S2 Thermal ellipsoid plot for 3 with the anisotropic displacement parameters depicted at the 30 probability level. Hydrogen atoms are omitted for clarity.)% 5
Fig. S3 Thermal ellipsoid plot for 4 with the anisotropic displacement parameters depicted at the 30 probability level. Hydrogen atoms are omitted for clarity.)% 6
Fig. S4 Thermal ellipsoid plot for 5 with the anisotropic displacement parameters depicted at the 30 probability level. Hydrogen atoms are omitted for clarity.)% 6
Experimental Section	7
Synthesis of 2	7
Synthesis of 3 and 4	7
Synthesis of 5	8
Spectra	9
Fig. S5 ¹ H NMR spectrum of 2 in thf-d ₈	9
Fig. S6 ¹³ C NMR spectrum of 2 in thf-d ₈	9
Fig. S7 ³¹ P NMR spectrum of 2 in thf-d ₈	10
Fig. S8 FT-IR spectrum of 2 (KBr, cm ⁻¹)	10
Fig. S9 ESI-FTMS spectrum of 2	11
Fig. S10 Solid-state ¹ H NMR spectrum of 3	11

Fig. S11 Solid-state ¹³ C NMR spectrum of 3	12
Fig. S12 Powder XRD pattern of 3 (black: experimental; red: simulated).	12
Fig. S13 FT-IR spectrum of 3 (KBr, cm ⁻¹)	13
Fig. S14 Solid-state ¹ H NMR spectrum of 4	13
Fig. S15 Solid-state ¹³ C NMR spectrum of 4	14
Fig. S16. Powder XRD pattern of 4 (black: experimental; red: simulated).	14
Fig. S17 FT-IR spectrum of 4 (KBr, cm ⁻¹)	15
Fig. S18. Powder XRD pattern of 5 (black: experimental; red: simulated).	15
Fig. S19 FT-IR spectrum of 5 (KBr, cm ⁻¹)	15
Fig. S20. Solid-state UV-Vis-NIR spectra of complexes 3 (black), 4 (red) and 5 (blue) at room temp	perature
	16
Computational details	17
Table. S2 Energy of Intermediates and Transition States.	17
Fig. S21 3D-structures of optimized intermediates and transition states. Hydrogen atoms are omi	tted for
clarity	18
Cartesian coordinates:	18
References	35

General information

All manipulations were carried out on a Schlenk line or in an argon atmosphere glovebox. Solvents were dried using a MBraun solvent purification system, and stored over 3 Å sieves. Unless otherwise stated, commercial reagents were used without further purification. UV spectra were recorded on a Shimadzu UV2600 spectrometer. ¹H, ³¹P and ¹³C NMR spectra were recorded on a Bruker AV-500M (liguid-state) or a Bruker AV-800M (solid-state) spectrometer. Mass spectra were measured using ThermoScientific Q Exactive Plus mass spectrometer. IR spectra were recorded on a Nicolet 6700 spectrometer. Elemental analysis was recorded on an Elementar vario EL cube analyzer. Powder X-ray diffraction data were collected on a Rigaku SmartLab XE diffractometer (Cu X-ray source at room temperature). The single-crystal X-ray diffraction data were collected on a Bruker D8 QUEST diffractometer using Cu (60W, Diamond, $\mu K \alpha = 12.894$ mm⁻¹) micro-focus X-ray sources at 100 K. The structure was solved and refined using Full-matrix least-squares based on F^2 with program SHELXS and SHELXL^{S1} within OLEX2.^{S2}

	2	3·thf	4	5
CCDC	2041784	2023193	2041786	2023174
empirical formula	$C_{12}H_{13}Cl_6O_6PZr$	$C_{40}H_{58}Cl_{10}O_{16}P_2V_2$	$C_{2.82}H_{3.53}Cl_{1.18}O_{1.65}$	$C_{32}H_{42}C_{18}Ni_2O_{14}P_2$
			$P_{0.24}V_{0.24}$	
formula weight	588.11	1313.18	124.80	1113.61
temp, K	100.0	100.0	199.0	103.0
cryst syst	monoclinic	triclinic	triclinic	triclinic
space group	$P2_{1}/c$	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1
<i>a</i> , Å	9.6112(5)	14.4834(9)	12.0697(6)	8.9110(5)
<i>b</i> , Å	11.6372(6)	14.9881(9)	12.2097(6)	11.1675(6)
<i>c</i> , Å	18.1370(10)	15.5710(10)	16.6508(8)	11.8597(7)
α, deg	90	107.350(2)	72.3790(10)	108.4832(15)
β , deg	99.301(2)	117.247(2)	73.2710(10)	97.6582(16)
γ, deg	90	98.551(2)	60.5460(10)	100.3215(15)
<i>V</i> , Å ³	2001.91(18)	2701.5(3)	2007.62(17)	1078.12(11)
Ζ	4	2	17	1
D_{calcd} , g/cm ³	1.951	1.614	1.755	1.715
μ , mm ⁻¹	12.894	8.563	11.316	6.897
F(000)	1160	1344	1064	568
2θ range, deg	9.06 - 144.89	7.02 - 144.59	5.65 - 145.72	8.03 - 146.93
index range	$-11 \le h \le 11$,	$-17 \le h \le 17$,	$-14 \le h \le 14$,	$-11 \le h \le 10$,
	$-14 \le k \le 14$,	$-18 \le k \le 18$,	$-15 \le k \le 15$,	$-13 \le k \le 13$,
	$-22 \le l \le 22$	$-19 \le l \le 19$	$-20 \le l \le 20$	$-14 \le l \le 14$
reflns	49347 / 3948	82763 / 10538	62077 / 7917	32977 / 4260
collected/unique	[R(int) = 0.0704]	[R(int) = 0.0543]	[R(int) = 0.0491]	[R(int) = 0.0585]
data/restraints/param	3948/0/236	10538/0/633	7917/0/475	4260/0/263
GOF on F ²	1.073	1.044	1.051	1.060
final R indices	R1 = 0.0291,	R1 = 0.0424,	R1 = 0.0331,	R1 = 0.0325,
[I >2σ(I)]	wR2 = 0.0777	wR2 = 0.1157	wR2 = 0.0874	wR2 = 0.0853
R indices (all data)	R1 = 0.0306,	R1 = 0.0438,	R1 = 0.0334,	R1 = 0.0329,
	wR2 = 0.0787	wR2 = 0.1174	wR2 = 0.0876	wR2 = 0.0856
largest diff	1.33 / -0.40	0.89 / -0.76	0.76 / -0.69	0.75/-0.43
peak/hole, e/Å ³				

Table. S1 Crystal data and refinement details for compounds 2, 3, 4, and 5

Fig. S1 Thermal ellipsoid plot for **2** with the anisotropic displacement parameters depicted at the 30% probability level. Hydrogen atoms are omitted for clarity.

Fig. S2 Thermal ellipsoid plot for **3** with the anisotropic displacement parameters depicted at the 30% probability level. Hydrogen atoms are omitted for clarity.

Fig. S3 Thermal ellipsoid plot for **4** with the anisotropic displacement parameters depicted at the 30% probability level. Hydrogen atoms are omitted for clarity.

Fig. S4 Thermal ellipsoid plot for **5** with the anisotropic displacement parameters depicted at the 30% probability level. Hydrogen atoms are omitted for clarity.

Experimental Section

Synthesis of 2 A solution of **1** (0.41 g, 1 mmol) and ZrCl₄ (0.23 g, 1 mmol) in 5 mL THF was stirred for 1 hour at room temperature. The reaction solution was filtrated, and colorless crystals of **2** (60 % yield) were obtained after 3 days at room temperature. ¹H NMR (500 MHz, thf-d₈, ppm): δ 4.58-4.47 (m, 8H, thf-OCH₂), 3.38 (q, *J* = 6.9 Hz, 4H, POCH₂), 1.39 (t, *J* = 7.0 Hz, 8H, thf-OCH₂CH₂), 1.11 (t, *J* = 6.9 Hz, 6H, CH₃). ¹³C NMR (125 MHz, thf-d₈, ppm): δ 150.52 (*Ar*), 138.20 (d, *J*_{C-P} = 9.1 Hz, *Ar*), 131.03, 125.30 (*Ar*), 125.18 (d, *J*_{C-P} = 6.0 Hz, *Ar*), 123.77 (*Ar*), 70.08 (thf-OCH₂), 66.27 (POCH₂), 26.22 (thf-OCH₂CH₂), 15.94 (d, *J* = 6.3 Hz, CH₃). ³¹P NMR (202 MHz, thf-d₈, ppm): δ -10.12. IR (KBr, cm⁻¹): \tilde{v} 2984.8, 1550.5, 1444.2, 1388.7, 1172.2, 1078.6, 1000.3, 872.1, 798.1, 670.0, 590.0. ESI-MS: *m/z* = 1173.5 [M]⁺, 1174.5 [M + H]⁺. Anal. calcd for C₂₄H₂₆Cl₁₂O₁₂P₂Zr₂: C, 24.51; H, 2.23. Found: C, 24.31; H, 2.28.

Synthesis of 3 and 4 A mixture of **1** (0.41 g, 1 mmol) and VCl₃ (0.16 g, 1 mmol) in 10 mL solvent (**3**: THF; **4**: DME) was sealed and heated to 80 °C without stir. Crystals (**3**: green; **4**: yellow) were obtained after continuous heating for 48 hours. The crystals were filtrated, washed with toluene for 3 times, and dried under vacuum to afford pure product (**3**: 72 % yield; **4**: 32 % yield). **3**: Solid ¹H NMR (800 MHz, ppm) δ 4.04 (br), 2.14 (br), 1.97 (br). Solid ¹³C NMR (200 MHz, ppm) δ 216.79, 162.10, 155.75, 137.01, 133.33, 110.92 (*Ar*), 76.09 (OCH₂), 69.24 (OCH₂), 31.58 (CH₂CH₂, CH₂CH₃), 27.18 (CH₂CH₂, CH₂CH₃). IR (KBr, cm⁻¹): \tilde{v} 2980.8, 1424.8, 1384.6, 1239.7, 1088.9, 1056.0, 984.7, 859.6, 584.8. Anal. calcd for C₃₂H₄Cl₁₀O₁₄P₂V₂: C, 32.88; H, 3.62. Found: C, 32.74; H, 3.58. **4**: Solid ¹H NMR (800 MHz, ppm) δ 3.71 (br), 2.39 (br), 1.46 (br). Solid ¹³C NMR (200 MHz, ppm) δ 262.24, 225.70, 212.97, 159.36, 146.36, 117.75 (*Ar*), 76.09 (OCH₂), 69.24 (OCH₂), 31.58 (CH₂CH₂, CH₂CH₃). IR (KBr, cm⁻¹): \tilde{v} 2988.7, 2941.3, 1548.3, 1429.0, 1385.6, 1192.3, 1087.5, 1045.8, 982.5, 864.0, 762.9, 592.0. Anal. calcd for C₂₂H₂₅Cl₁₀O₁₃P₂V₂: C, 27.17; H, 2.85. Found: C, 27.23; H, 2.80.

Synthesis of 5 A mixture of **1** (0.21 g, 0.5 mmol) and NiCl₂ (0.16 g, 0.5 mmol) in 5 mL THF was sealed and heated to 70 °C without stir. Green crystals were obtained after continuous heating for 48 hours. The crystals were filtrated, washed with THF for 3 times, and dried under vacuum to afford pure **5** in 54 % yield. IR (KBr, cm⁻¹): \tilde{v} 2978.4, 1540.9, 1433.3, 1385.6, 1215.0, 1062.9, 982.2, 962.7, 850.6, 772.6, 538.8. Anal. calcd for C₃₂H₄₂Cl₈Ni₂O₁₄P₂: C, 34.51; H, 3.80. Found: C, 34.52; H, 3.88.

Fig. S7 31 P NMR spectrum of 2 in thf-d $_8$

Fig. S8 FT-IR spectrum of 2 (KBr, cm⁻¹)

Fig. S10 Solid-state ¹H NMR spectrum of 3

Fig. S11 Solid-state ¹³C NMR spectrum of 3

Fig. S12 Powder XRD pattern of 3 (black: experimental; red: simulated).

Fig. S13 FT-IR spectrum of 3 (KBr, cm⁻¹)

Fig. S14 Solid-state ¹H NMR spectrum of 4

Fig. S15 Solid-state ¹³C NMR spectrum of 4

Fig. S16. Powder XRD pattern of 4 (black: experimental; red: simulated).

Fig. S17 FT-IR spectrum of 4 (KBr, cm⁻¹)

Fig. S18. Powder XRD pattern of 5 (black: experimental; red: simulated).

Fig. S19 FT-IR spectrum of 5 (KBr, cm⁻¹)

Fig. S20. Solid-state UV-Vis-NIR spectra of complexes **3** (black), **4** (red) and **5** (blue) at room temperature

Computational details

Geometry optimizations were performed using the hybrid B3LYP density functional augmented with the D3BJ version of Grimme's empirical dispersion correction implemented in Gaussian 16.^{S3, S4} The Def2-SVP basis set was employed for all the atoms. Frequency calculations were carried out at the same level of theory to identify the number of imaginary frequencies (zero for local minimum and one for transition states) and provide the thermal corrections of Gibbs free energy.

The single-point energy calculations were performed at the B3LYP-D3BJ/Def2-TZVP level of theory for solution-phase. All the solution phase calculations were on the basis of the gas-phase geometry. The SMD method was used with the corresponding solvent (THF), and the Bondi radii were chosen as the atomic radii to define the molecular cavity.^{S5} The Gibbs free energy corrections from frequency calculations were added to the single-point energies to obtain the Gibbs free energy in solution. All the energies reported correspond to the reference state of 1 mol/L, 298K. Optimized structures are visualized by CYL-View program.^{S6}

Species	Thermal Corrections of	Solvation Energies	
	Gibbs Free Energies (Hartree)	(Hartree)	
1	0.208213	-3025.237886	
NiI ₂ (triplet)	-0.023813	-2104.088119	
THF	0.088298	-232.565429	
IN1	0.313058	-5361.970225	
TS1	0.307888	-5361.934839	

Table. S2 Energy of Intermediates and Transition States.

Fig. S21 3D-structures of optimized intermediates and transition states. Hydrogen atoms are omitted for clarity.

Cartesian coordinates:

INT1

03

Р	-0.03652400	2.18398000	-0.12404200
Cl	-4.53900400	1.41615700	-1.47325800
Cl	-5.72584400	-1.14234600	0.01437800
Cl	-0.92463100	-1.74546800	2.59781500
Cl	-3.91785300	-2.72646800	2.05824800
0	-0.25226300	0.68466300	0.86973800

0	0.12142900	3.40141600	-1.18665300
0	-1.64206100	1.95795700	-0.61016100
0	0.23859500	3.08678600	1.15848800
0	1.19700500	1.33151300	-0.78983500
С	-1.50873100	0.22116400	0.86086900
С	-2.31823600	0.93682900	-0.01437900
С	-1.99202400	-0.88762200	1.54415800
С	-3.61731900	0.54358500	-0.29858000
С	-4.12016700	-0.59894400	0.36386100
С	-3.31317600	-1.30453200	1.27923500
С	-0.68587600	4.58900600	-1.16294700
С	0.32155500	2.75549700	2.57431400
С	2.31239300	1.91889700	-1.55902600
С	1.41999300	3.59748100	3.17883800
С	-1.63561000	4.61556600	-2.34462900
С	2.05977500	1.79608000	-3.03982300
Н	-1.23129500	4.65560300	-0.20894200
Н	0.01772200	5.43561300	-1.19697700
Н	-0.66526800	2.98289400	3.00717800
Н	0.53733100	1.68788200	2.68922900
Н	2.42825600	2.95697800	-1.23098800
Н	3.17874500	1.32867100	-1.23455900
Н	2.38930600	3.32096600	2.73846700
Н	1.23937400	4.67171300	3.02181000
Н	1.47151800	3.40335000	4.26144400
Н	-1.07976600	4.52843200	-3.29091300
Н	-2.35866100	3.79018500	-2.28310400
Н	-2.18954100	5.56779100	-2.35847300
Н	1.97333600	0.73846000	-3.32734600
Н	1.15328600	2.34526200	-3.32959600

Н	2.91771000	2.22176500	-3.58395500
0	-0.18822000	-1.46667900	-0.90991100
С	-0.42757100	-2.89339000	-0.75252400
Н	-1.13767500	-3.01903100	0.07741100
Н	0.52710600	-3.37458700	-0.49785200
С	-1.00023100	-3.35390700	-2.08947300
Н	-1.71308700	-4.18211800	-1.97103000
Н	-0.18586200	-3.68519800	-2.75183400
С	-1.63856400	-2.07323600	-2.64198000
Н	-1.78423500	-2.09423500	-3.73142100
Н	-2.61399100	-1.87927400	-2.16578100
С	-0.62413300	-1.02530900	-2.21584300
Н	0.25167700	-1.00216000	-2.88406100
Н	-1.03537800	-0.01316400	-2.11670000
Ni	1.47652200	-0.59995800	0.01425100
Ι	3.05267300	-1.82325200	-1.67316300
Ι	2.96149600	-0.06291400	2.03413900
TS1			
03			
Р	1.89868700	2.66735700	-0.39862600
Cl	5.01874700	0.02918300	-0.30323800
Cl	4.77635900	-3.08949500	0.17959400
Cl	-0.51693500	-2.75603600	-1.10129400
Cl	1.98279900	-4.49007300	-0.28333500
0	-0.01450100	0.19628600	-0.76483500
0	2.96985200	3.75039300	-0.84166300
0	2.50999400	1.32525900	-1.03858800
0	0.59292300	3.10080100	-1.16208600
0	1.64773600	2.58081400	1.09359400
С	1.03194300	-0.56747200	-0.71435500

С	2.33770500	-0.00324100	-0.69813800
С	0.99650000	-1.99291900	-0.70694800
С	3.47625200	-0.76396900	-0.42535300
С	3.38198000	-2.15543200	-0.25260000
С	2.12889900	-2.76637000	-0.42951200
С	4.39908500	3.62359500	-0.63036800
С	0.18741300	2.72123700	-2.50809000
С	-0.27590900	2.51798800	1.57662800
С	-1.32094600	2.74761700	-2.56501200
С	4.77069400	3.56643000	0.83740700
С	-0.56261600	3.97356700	1.70423200
Н	4.74480700	2.72864800	-1.16794200
Н	4.81904300	4.51326300	-1.11879300
Н	0.64852900	3.44369300	-3.19944500
Н	0.57443500	1.71559900	-2.71426100
Н	-0.44557700	1.96618900	0.66528000
Н	-0.05654600	1.93659400	2.46842400
Н	-1.75197700	2.01333000	-1.87098500
Н	-1.71021400	3.74667200	-2.31768900
Н	-1.65459900	2.48515000	-3.58060300
Н	4.36622900	4.43380100	1.38009100
Н	4.39259200	2.64933500	1.31143600
Н	5.86759200	3.57186500	0.93491200
Н	0.32023200	4.47201900	2.13367300
Н	-0.80035200	4.42060300	0.73119400
Н	-1.40174700	4.13916000	2.39390600
0	-0.95826500	-1.36807200	1.49795800
С	-1.58088100	-2.52172400	2.08072200
Н	-2.13715900	-3.03286300	1.28540000
Н	-2.28686200	-2.18658900	2.86064700

С	-0.40339500	-3.31524100	2.65111300
Η	-0.02234500	-4.01524000	1.89502100
Η	-0.69445400	-3.89388300	3.53893500
С	0.66409200	-2.23098800	2.95970800
Η	0.87740600	-2.14377600	4.03452500
Η	1.60836300	-2.46358000	2.44877200
С	0.05047400	-0.93043900	2.41505700
Η	-0.43340100	-0.33638000	3.20983900
Η	0.75322600	-0.29303400	1.86639900
Ni	-1.80859700	-0.40371700	-0.11615000
Ι	-2.92007100	1.39378100	1.57223600
Ι	-3.76904100	-0.85542900	-1.65447200

INT2

03

Ni	1.32069900	-0.32124100	0.06142400
Р	-0.17154000	2.41392600	-0.03876400
Cl	-4.28890100	1.54123900	-0.35330500
Cl	-0.33139500	-3.00162200	1.36848500
Cl	-3.26713100	-3.76021900	0.43150500
Cl	-5.27712800	-1.46932100	-0.39292400
0	0.11089800	-0.08425500	1.56158200
0	0.56096900	1.32178200	-0.79312400
0	0.59588000	3.24625300	1.04311800
0	1.55507300	-1.32370800	-1.68306500
0	-1.55196000	1.88473300	0.64496300
0	-0.64014900	3.58567300	-0.99756100
С	-1.97095700	0.57229900	0.65103200
С	-1.38466100	3.28806500	-2.20277300
Н	-2.30811600	2.75616500	-1.92443600
Н	-0.77377300	2.62431700	-2.83525500

С	-1.07289700	-0.42103400	1.11802700
С	-3.67779700	-1.08128700	0.14932200
С	-2.78516600	-2.09828800	0.53601900
С	-3.24928000	0.25901400	0.18925300
С	2.81673400	-2.90383100	-2.90685200
Η	2.15050700	-3.24369400	-3.71631400
Н	3.61525400	-3.64969400	-2.78685800
С	-1.49989400	-1.76886800	0.98789000
С	-1.69141700	4.59682500	-2.89308500
Η	-0.76398200	5.12931000	-3.15191400
Η	-2.29605000	5.24545800	-2.24188700
Η	-2.25677500	4.40612200	-3.81833400
С	3.34546200	-1.49307500	-3.19754300
Η	4.20646700	-1.26582000	-2.55000700
Η	3.64218100	-1.34581500	-4.24591200
С	2.03330900	-2.69607900	-1.61556800
Η	1.15898900	-3.35080300	-1.49636400
Η	2.67874400	-2.78300400	-0.72705100
С	2.16505100	-0.62024300	-2.79905300
Η	2.43935000	0.38427300	-2.45290400
Η	1.41119700	-0.53706800	-3.59927900
С	1.26517300	2.75630300	2.24594700
Η	1.77572300	1.81385100	2.01287700
Η	2.02483200	3.52349200	2.44613100
С	0.29155100	2.60773200	3.39182500
Н	-0.42119100	1.79771500	3.19116900
Η	0.85184400	2.34772700	4.30368200
Н	-0.25477000	3.54601200	3.57229200
Ι	3.77270900	-0.11156600	0.77045400

TS2

Δ	2
υ	J

Ni	1.64615500	-0.09313100	-0.37500600
Р	-0.17661500	2.30801300	0.62908800
Cl	-3.93396400	2.63928500	-0.22692400
Cl	-1.62355000	-3.17930600	-0.42662200
Cl	-4.73183400	-2.75212100	-0.04705500
Cl	-5.91246600	0.17395100	0.03492700
0	-0.14255500	-0.69388600	-0.82553600
0	1.22371200	1.74226400	0.31483800
0	-0.81925900	1.88393500	1.93323600
0	3.62421200	0.61909600	-0.43824500
0	2.32912100	-1.15504400	-2.08698200
0	-1.13643700	1.89441300	-0.65543000
0	-0.13592000	3.90195600	0.52079300
С	-1.97435700	0.80973900	-0.54608900
С	0.16378800	4.56707400	-0.71965600
Н	0.68728800	3.87360600	-1.39872600
Н	0.86540600	5.37744400	-0.46694500
С	-1.40833400	-0.49085800	-0.61579300
С	-4.21229700	-0.08234800	-0.19973700
С	-3.68065000	-1.38398100	-0.24252100
С	-3.33959900	1.01091900	-0.33286900
С	3.08785600	-2.35745900	-1.86833300
Н	3.60271800	-2.25959700	-0.90525300
Н	3.83830200	-2.45033600	-2.67479100
С	4.16932800	2.87411000	-0.85126200
Н	3.25683700	3.38088400	-0.50348600
Н	4.72460800	3.54824700	-1.51925000
С	-2.30636700	-1.57877500	-0.43649700
С	-1.10238600	5.10799100	-1.35378800

Η	-1.61375600	5.79479200	-0.66248200
Η	-1.79078900	4.28710000	-1.59727900
Η	-0.85845500	5.65860600	-2.27660500
С	4.98723500	2.38381300	0.34903700
Η	6.00826600	2.11038000	0.03609500
Η	5.06603300	3.12725400	1.15506800
С	1.40170500	-1.45276000	-3.15455800
Н	1.91558200	-1.24234700	-4.10813400
Η	0.54524800	-0.78219700	-3.03131800
С	1.04849000	-2.94411800	-3.00601600
Η	1.17323700	-3.47000500	-3.96422300
Η	0.01254400	-3.07206200	-2.66987800
С	2.03546700	-3.45847700	-1.93197200
Η	1.52910800	-3.52898200	-0.95862400
Η	2.46890400	-4.43949100	-2.17385500
С	3.79357500	1.56100500	-1.52248000
Η	2.85638400	1.60791200	-2.09472300
Η	4.58878100	1.18501200	-2.18813000
С	4.20226200	1.15051600	0.78363400
Η	4.80884800	0.35861000	1.24228000
Н	3.37737700	1.41539100	1.45924700
С	0.07363600	-0.01612700	2.46856900
Η	-0.21486600	-0.30499700	1.46946700
Н	0.92788500	0.63142300	2.60299000
С	-0.72911600	-0.48847400	3.61346900
Н	-1.18889400	-1.46530400	3.41009300
Η	-0.15546500	-0.51827200	4.54948400
Η	-1.54324700	0.24991900	3.73018100
Ι	2.08104600	-1.79035600	1.75884700

INT3

Δ	2
υ	J

Ni	1.77908000	-0.71708900	0.36454500	
Р	0.98533300	1.65684900	-0.12334900	
Cl	-2.95107900	2.75226900	-0.68390900	
Cl	-1.91417400	-3.25055200	0.78163000	
Cl	-4.83892200	-2.06799500	1.03398900	
Cl	-5.36770700	0.95974300	0.30610100	
0	0.04792300	-1.34100300	-0.15523600	
0	2.11792200	0.97637300	-0.91575100	
0	0.91881200	1.09931100	1.29548700	
0	3.49659700	-0.63116200	1.55790000	
0	2.63236800	-2.21772900	-0.87371600	
0	-0.42490000	1.34836200	-0.90896400	
0	1.07405500	3.24629200	-0.13365500	
С	-1.41676600	0.54430700	-0.39931700	
С	0.63957600	4.07844100	-1.23061900	
Н	-0.06379300	3.51368500	-1.85933400	
Н	1.52895800	4.33008500	-1.83081700	
С	-1.13809900	-0.80421200	-0.04772900	
С	-3.77464800	0.28573100	0.16748600	
С	-3.53283000	-1.05956700	0.49577300	
С	-2.70114700	1.07977300	-0.27021500	
С	1.93373400	-3.48880500	-0.83519600	
Н	1.38028500	-3.53189300	0.11069200	
Н	2.69270500	-4.28784600	-0.85771500	
С	4.98308600	0.94247900	0.64908600	
Н	4.49830500	1.26346500	-0.28198500	
Н	6.05374400	1.18711500	0.59955200	
С	-2.23859200	-1.58573700	0.38729500	
С	-0.02386500	5.31259300	-0.66025400	

Н	0.66472300	5.85816000	0.00271000
Н	-0.91658300	5.02749800	-0.08450200
Н	-0.33185700	5.98562900	-1.47597800
С	4.26690800	1.59159100	1.86283100
Н	4.96869300	2.08333300	2.55183100
Н	3.53863900	2.34262200	1.52921100
С	2.70600400	-1.81620400	-2.26335500
Н	3.54386900	-2.36315900	-2.73202300
Н	2.89749200	-0.73661300	-2.28218700
С	1.35525800	-2.22170500	-2.83806800
Н	1.39486800	-2.36520400	-3.92733400
Н	0.62290900	-1.43749600	-2.60661200
С	1.01120600	-3.51648100	-2.06851800
Н	-0.04072400	-3.52476300	-1.75836800
Н	1.20651800	-4.41314500	-2.67561700
С	4.75457300	-0.55585800	0.85517300
Н	4.65761300	-1.15141500	-0.05922800
Н	5.52897700	-1.00875200	1.49914800
С	3.55099100	0.42105000	2.55386800
Н	4.12579500	0.03044100	3.41002600
Н	2.52208700	0.64718100	2.85073800
5			
05			
Ni	-0.27347500	-0.04076900	1.49170500
Р	-1.00674400	-2.45517100	-0.30241000
Cl	-5.45011600	-2.66224000	-0.49221700
Cl	-2.65166500	2.91871200	-0.01166400
Cl	-5.79538600	2.74969400	0.08855900
Cl	-7.21500800	-0.05829400	-0.13687000
0	-1.33536000	0.28918600	-0.24946000 _{\$27}

0	-0.74885300	-2.02312000	1.13999400
0	-0.18854400	-1.95812800	-1.48088100
0	0.85592100	-0.44961300	3.17876400
0	-1.97604800	0.27732600	2.60838000
0	-2.62058500	-2.16785900	-0.62930700
0	-1.03097600	-4.05409000	-0.40031200
С	-3.30780000	-1.01625800	-0.43543800
С	-1.78027200	-4.82509500	0.55096600
Н	-2.85021500	-4.57982300	0.44184100
Н	-1.46733600	-4.54210700	1.56962900
С	-2.64301700	0.23042000	-0.29298700
С	-5.48769300	0.06230200	-0.23829400
С	-4.85079500	1.30838400	-0.12886300
С	-4.70524000	-1.09593100	-0.38756800
С	-2.27332400	1.49527300	3.30110500
Н	-1.84088300	2.31287700	2.71474100
Н	-1.79014900	1.46392500	4.29554800
С	2.76706100	-0.20364100	4.54001100
Н	2.41273100	-0.40098000	5.56506300
Н	3.71685000	0.34598900	4.60814700
С	-3.45025400	1.38392600	-0.16077700
С	-1.52023300	-6.29085900	0.27940500
Н	-0.44895500	-6.52085700	0.38494400
Н	-1.83077300	-6.55695700	-0.74237600
Н	-2.08460700	-6.91479500	0.99007000
С	2.87836800	-1.51429500	3.75106600
Н	3.50651800	-1.37505500	2.85869800
Н	3.29971400	-2.34314400	4.33787200
С	-2.86624200	-0.72752900	3.09934500
Н	-2.47246900	-1.11653200	4.05659600

Н	-2.87659800	-1.54210600	2.36693000
С	-4.20245200	0.00566100	3.28678500
Η	-4.73768000	-0.36513400	4.17270800
Η	-4.85533100	-0.14866600	2.41750200
С	-3.80342500	1.50129100	3.41334200
Н	-4.24652300	2.09184800	2.60054300
Н	-4.13154500	1.94590400	4.36386700
С	1.71679900	0.56655800	3.74568100
Н	1.09697800	1.24202500	4.35240200
Н	2.15490600	1.15223900	2.92677000
С	1.43241500	-1.76792300	3.34327900
Η	1.30916000	-2.31119200	2.39992400
Η	0.86729800	-2.29166600	4.13353700
Ni	0.27345400	0.04087900	-1.49257100
Р	1.00678800	2.45526400	0.30162600
Cl	5.45027100	2.66192300	0.49365500
Cl	2.65143100	-2.91867500	0.01117000
Cl	5.79522400	-2.75003500	-0.08715200
Cl	7.21507300	0.05774900	0.13952200
0	1.33528800	-0.28903400	0.24857700
0	0.74897100	2.02323900	-1.14079600
0	0.18852700	1.95820500	1.48004700
0	-0.85611400	0.44979800	-3.17945200
0	1.97590900	-0.27712600	-2.60945200
0	2.62060100	2.16793100	0.62860800
0	1.03105700	4.05417100	0.39956700
С	3.30778100	1.01623200	0.43531300
С	1.78046900	4.82519600	-0.55160900
Η	2.85040000	4.57994400	-0.44232400
Η	1.46768100	4.54219800	-1.57031500

С	2.64293300	-0.23039300	0.29258700
С	5.48767100	-0.06262300	0.23965100
С	4.85068800	-1.30861500	0.12973600
С	4.70526300	1.09571500	0.38841600
С	2.27383200	-1.49527900	-3.30153300
Н	1.84115200	-2.31273700	-2.71514000
Н	1.79127500	-1.46437500	-4.29628700
С	-2.76759900	0.20398700	-4.54024600
Н	-2.41348800	0.40140300	-5.56536200
Н	-3.71742200	-0.34560200	-4.60822400
С	3.45011000	-1.38397900	0.16077200
С	1.52035800	6.29095200	-0.28008400
Н	0.44909200	6.52092800	-0.38578100
Н	1.83074200	6.55705400	0.74174400
Н	2.08482500	6.91490300	-0.99066200
С	-2.87865100	1.51458400	-3.75117200
Н	-3.50650300	1.37526800	-2.85860200
Н	-3.30018700	2.34349100	-4.33776100
С	2.86646900	0.72763500	-3.09992100
Н	2.47357300	1.11626600	-4.05768900
Н	2.87602600	1.54245900	-2.36776800
С	4.20288800	-0.00552100	-3.28585200
Н	4.73914400	0.36527800	-4.17115100
Н	4.85474300	0.14882400	-2.41580700
С	3.80402700	-1.50115600	-3.41283900
Н	4.24672000	-2.09181400	-2.59989400
Н	4.13271900	-1.94559200	-4.36325100
С	-1.71719000	-0.56631000	-3.74621400
Н	-1.09754300	-1.24179600	-4.35308900
Н	-2.15514300	-1.15198000	-2.92721300

С	-1.43256200	1.76813700	-3.34385100
Н	-1.30895300	2.31144100	-2.40056200
Н	-0.86768400	2.29179600	-4.13434000
5 sing	let		
01			
Ni	0.69277800	-0.60808700	1.16665600
Р	1.18705100	2.21004300	0.51128900
Cl	5.45247800	2.90603200	-0.17995200
Cl	3.16757800	-2.87301500	-0.97369300
Cl	6.30313000	-2.41848600	-1.02098600
Cl	7.45419200	0.49000400	-0.60538700
0	1.64128200	-0.42689200	-0.43042300
0	1.20708400	1.16841900	1.64234300
0	0.07563600	2.24634700	-0.52497900
0	-0.36288700	-0.68486900	2.79454000
0	2.31028700	-1.71964500	2.73026800
0	2.65148900	2.15011400	-0.25510000
0	1.25618200	3.67253700	1.14238700
С	3.47551600	1.06852400	-0.35003600
С	2.26507400	4.00587600	2.11402100
Н	3.25734400	3.77693900	1.69267200
Н	2.11616200	3.37866600	3.00830700
С	2.93570800	-0.23826400	-0.46408400
С	5.74337100	0.21344400	-0.58822700
С	5.22667400	-1.08088400	-0.76544300
С	4.85569100	1.28656900	-0.38212200
С	3.08663800	-2.90905100	2.60881600
Н	2.76499700	-3.41949300	1.69251900
Н	2.88403700	-3.57039700	3.47293500
С	-1.69817700	-1.49246100	4.54258300

Н	-1.05357100	-1.39828500	5.43188800
Н	-2.50069700	-2.20701200	4.77579500
С	3.84139300	-1.29567600	-0.71259300
С	2.13367300	5.47709700	2.43932700
Н	1.13499000	5.69931700	2.84490600
Н	2.28424400	6.08759400	1.53627800
Н	2.88836900	5.76644100	3.18715800
С	-2.21405500	-0.11448000	4.10943700
Н	-3.05802200	-0.22311900	3.40946000
Н	-2.54457100	0.51599300	4.94740000
С	3.08626000	-0.77747400	3.45762200
Н	3.05177000	-1.01147200	4.54170600
Н	2.65028200	0.21545600	3.28899500
С	4.50106000	-0.94969600	2.90167900
Н	5.27915900	-0.61847900	3.60490600
Н	4.60824700	-0.36115200	1.98011200
С	4.56839100	-2.46285300	2.59139000
Н	5.04283100	-2.65805400	1.62093900
Н	5.14701900	-3.00556000	3.35394700
С	-0.88378100	-1.92288900	3.32868700
Н	-0.02607700	-2.57015100	3.55062800
Н	-1.50804500	-2.39830700	2.56017900
С	-1.00837900	0.46937000	3.38579600
Н	-1.25794100	1.16915900	2.58320800
Н	-0.29204700	0.94281700	4.07631000
Ni	-0.69271500	0.60815900	-1.16600300
Р	-1.18691300	-2.21001300	-0.51071800
Cl	-5.45244300	-2.90613600	0.17927200
Cl	-3.16795600	2.87300700	0.97352200
Cl	-6.30351200	2.41840300	1.01975300

Cl	-7.45435700	-0.49013400	0.60387300
0	-1.64140100	0.42685700	0.43095000
0	-1.20687100	-1.16838800	-1.64176800
0	-0.07565500	-2.24624700	0.52572200
0	0.36313200	0.68510300	-2.79376600
0	-2.31024000	1.71938500	-2.72963200
0	-2.65145900	-2.15014800	0.25548400
0	-1.25584900	-3.67251300	-1.14182200
С	-3.47557500	-1.06858400	0.35004700
С	-2.26452300	-4.00590400	-2.11366600
Н	-3.25688400	-3.77684200	-1.69260400
Н	-2.11533400	-3.37882100	-3.00799600
С	-2.93584400	0.23822000	0.46420700
С	-5.74353500	-0.21354000	0.58733500
С	-5.22693200	1.08081400	0.76466100
С	-4.85575900	-1.28665600	0.38161400
С	-3.08647800	2.90893500	-2.60894000
Н	-2.76514300	3.41967900	-1.69270500
Н	-2.88345100	3.56992800	-3.47322800
С	1.69792100	1.49279800	-4.54212300
Н	1.05300900	1.39880700	-5.43122700
Н	2.50043700	2.20729800	-4.77550600
С	-3.84164000	1.29564100	0.71229500
С	-2.13314900	-5.47717700	-2.43874500
Н	-1.13437300	-5.69952600	-2.84402300
Н	-2.28401200	-6.08754400	-1.53565600
Н	-2.88766400	-5.76656100	-3.18674200
С	2.21379900	0.11469900	-4.10934400
Н	3.05802200	0.22314200	-3.40964300
Н	2.54395800	-0.51568500	-4.94751500

С	-3.08593100	0.77719800	-3.45725700
Н	-3.05077600	1.01099700	-4.54136200
Н	-2.65019400	-0.21576300	-3.28820800
С	-4.50104100	0.94972000	-2.90217000
Н	-5.27876500	0.61865900	-3.60588700
Н	-4.60894700	0.36119700	-1.98067500
С	-4.56828100	2.46290200	-2.59193200
Н	-5.04294900	2.65815900	-1.62159900
Н	-5.14664800	3.00567400	-3.35463900
С	0.88396400	1.92314000	-3.32790200
Н	0.02626300	2.57052400	-3.54948200
Н	1.50853200	2.39839500	-2.55953300
С	1.00830600	-0.46912700	-3.38537600
Η	1.25805200	-1.16903400	-2.58294800
Н	0.29170100	-0.94243500	-4.07569700

References

- S1. Sheldrick, G. M. Acta Crystallographica Section A 2008, 64, 112-122.
- S2. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339-341.
- S3. Gaussian 16, Revision A.03: Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; and Fox, D. J. Gaussian, Inc., Wallingford, CT, 2016.
- S4. (a) Lee, C.; Yang, W.; Parr, R. G. *Phys. Rev. B* 1988, *37*, 785. (b) Stephens, P. J.; Devlin,
 F. J.; Chabalowski, C. F.; Frisch, M. J. *J. Phys. Chem.* 1994, *98*, 11623. (c) Grimme, S.;
 Antony, J.; Ehrlich, S.; Krieg, H. The *J. Chem. Phys.* 2010, *132*, 154104. (d) Grimme, S. J.
 Comput. Chem. 2006, 27, 1787. (e) Grimme, S. *J. Comput. Chem.* 2004, *25*, 1463.
- S5. Bondi, A. J. Phys. Chem. 1964, 68, 441.
- S6. Legault, C. Y. CYLview, 1.0b; Université de Sherbrooke: Sherbrooke, Quebec, Canada, 2009; www.cylview.org.