Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

Enantioselective H-bond-directed vinylogous iminium ion strategy for the functionalization of vinyl-substituted heteroaryl aldehydes

Anna Skrzyńska,^a Sebastian Frankowski,^a Aleksandra Topolska,^a Mateusz Dyguda,^a Xin-Yue Gao,^b Chang-Jiang Xu,^b Ying-Chun Chen^b and Łukasz Albrecht^{*a}

^a Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology Zeromskiego 116, 90-924 Łódź, Poland

e-mail: lukasz.albrecht@p.lodz.pl

http://www.a-teamlab.p.lodz.pl

^b Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China

Contents

1.	General methods	page S2
2.	Organocatalytic synthesis of 6 – general procedure	page S3
3.	Enantioselective synthesis of (3 <i>R</i> ,4 <i>R</i>)-4-(2-(hydroxymethyl)furan-3-yl)-3-	
	phenyltetrahydrothiophen-3-ol 6a on a 1 g scale	page S11
4.	Synthesis of tricyclic furan derivatives 4 – general procedure	page S12
5.	Crystal and X-ray data	page S14
6.	NMR data	page S17
7.	UPC ² traces	page S35

1. General methods

NMR spectra were acquired on a Bruker Ultra Shield 700 instrument, running at 700 MHz for ¹H and 176 MHz for ¹³C, respectively. Chemical shifts (δ) are reported in ppm relative to residual solvent signals (CDCl₃: 7.26 ppm for ¹H NMR, 77.16 ppm for ¹³C NMR). Mass spectra were recorded on a Bruker Maxis Impact spectrometer using electrospray (ES+) ionization referenced to the mass of the charged species. Optical rotations were measured on a Perkin-Elmer 241 polarimeter and $[\alpha]_D$ values are given in deg•cm•g⁻¹•dm⁻¹; concentration c is listed in g•(100 mL)⁻¹. Analytical thin layer chromatography (TLC) was performed using pre-coated aluminum-backed plates (Merck Kieselgel 60 F254) and visualized by ultraviolet irradiation or Hanessian's stain. The enantiomeric ratio (er) of the products was determined by chiral stationary phase UPC² or HPLC (Daicel Chiralpak IA and IG column). The racemic samples of products 6 for chiral UPC² separation studies were prepared using equimolar mixture of (S) and (R)-diphenyl-2-pyrrolidinemethanol trimethylsilyl ether as catalyst. Unless otherwise noted, analytical grade solvents and commercially available reagents were used without further purification. For flash chromatography (FC) silica gel (60, 35-70 µm, Merck KGaA). Vinylsubstituted heteroaromatic aldehydes 1 and α -mercaptocarbonyl compounds 2 were obtained using literature procedures.^{1,2}

A. Przydacz, R. Kowalczyk and Ł. Albrecht, *Org. Biomol. Chem.*, 2017, **15**, 9566–9569.
X.-Y. Gao, R.-J. Yan, B.-X. Xiao, Ł. Albrecht and Y.-C. Chen, *Org. Lett.*, 2019, **21**, 9628–9632.

2. Organocatalytic synthesis of 6 – general procedure

In an ordinary 4 mL glass vial, equipped with a Teflon-coated magnetic stirring bar and a screw cap, aldehyde **1** (1.0 equiv., 0.1 mmol), catalyst **5g** (0.2 equiv., 0.02 mmol, 4.6 mg) and corresponding α -mercaptocarbonyl compound **2** (1.2 equiv., 0.12 mmol) were dissolved in CDCl₃ (0.2 mL). The reaction mixture was stirred at ambient temperature for 20 h. After full conversion of the starting material **1** (as confirmed by ¹H NMR of a crude reaction mixture), MeOH (0.1 mL) and NaBH₄ (4 equiv., 0.4 mmol, 15.2 mg) were added. After 30 min. the reaction mixture was directly subjected to flash chromatography on silica gel (eluent: hexanes/ethyl acetate 85:15 to 70:30) to obtain pure product **6**.

(3R,4R)-4-(2-(Hydroxymethyl)furan-3-yl)-3-phenyltetrahydrothiophen-3-ol (6a)

Following the general procedure product **6a** (>20:1 dr in a crude reaction mixture) was isolated in 75% yield as light-yellow oil. Catalyst **5g** (*S* configuration) was used in the reaction. ¹H NMR (700MHz, CDCl₃) δ 7.42 – 7.40 (m, 2H), 7.36 – 7.33 (m, 2H), 7.28 – 7.26 (m, 2H), 6.45 (d, *J* = 1.9 Hz, 1H), 4.18 (d, *J* = 13.5 Hz,

1H), 4.10 (d, J = 13.5 Hz, 1H), 3.66 (d, J = 12.0 Hz, 1H), 3.55 (dd, J = 11.0, 7.4 Hz, 1H), 3.34 (t, J = 10.9 Hz, 1H), 3.20 (dd, J = 10.8, 7.4 Hz, 1H), 3.13 (d, J = 12.0 Hz, 1H), 2.58 (bs, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 151.1, 142.3, 141.9, 128.6 (2C), 127.7, 125.2 (2C), 117.9, 111.5, 84.5, 55.4, 51.3, 45.4, 34.3. The er was determined by UPC² using a chiral Chiralpack IA column gradient from 100% CO₂ up to 40%; *i*-PrOH, 2.5 mL/min; $\tau_{major} = 3.92$ min, $\tau_{minor} = 4.00$ min, (99:1 er). [α]_D²¹ = 14.8 (c = 1.0, CHCl₃). HRMS calculated for [C₁₅₆H₁₈O₃S+Na]: 299.0718; found: 299.0717.

(3*S*,4*S*)-4-(2-(Hydroxymethyl)furan-3-yl)-3-(2-methoxyphenyl)tetrahydrothiophen-3-ol (6b)

Following the general procedure product **6b** (>20:1 dr in a crude reaction mixture) was isolated in 79% yield as light-yellow oil. Catalyst *ent*-**5g** (*R* configuration) was used in the reaction. ¹H NMR (700MHz, CDCl₃) δ 7.44 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.27-7.25 (m, 2H), 6.95 – 6.90 (m, 2H), 6.49 (d, *J* =

1.9 Hz, 1H), 4.28 (d, J = 13.4 Hz, 1H), 4.18 (d, J = 13.4 Hz, 1H), 4.09 (dd, J = 10.8, 7.2 Hz, 1H), 3.91 (s, 3H), 3.87 (d, J = 11.5 Hz, 1H), 3.33 (t, J = 10.6 Hz, 2H), 3.33 (bs, 1H), 3.09 (dd, J = 10.4, 7.2 Hz, 1H), 3.01 (d, J = 11.5 Hz, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 156.1, 151.2, 141.9, 129.6, 129.3, 127.9, 121.3, 118.9, 111.6, 111.3, 84.5, 55.5 (2C), 46.7, 42.4, 34.3. The er was determined by UPC² using a chiral Chiralpack IA column gradient from 100% CO₂ up to 40%; *i*-PrOH, 2.5 mL/min; $\tau_{major} = 4.29$ min, $\tau_{minor} = 4.40$ min, (98:2 er); $[\alpha]_D^{21} = -57.3$ (c = 1.0, CHCl₃). HRMS calculated for [C₁₆H₁₈O₄S+Na]: 329.0822; found: 313.0823.

(3*S*,4*S*)-4-(2-(Hydroxymethyl)furan-3-yl)-3-(3-methoxyphenyl)tetrahydrothiophen-3-ol (6c)

Following the general procedure product **6c** (>20:1 dr in a crude reaction mixture) was isolated in 64% yield as light-yellow oil. Catalyst *ent-***5g** (*R* configuration) was used in the reaction. ¹H NMR (700MHz, CDCl₃) δ 7.28

-7.22 (m, 2H), 7.00 - 6.95 (m, 2H), 6.77 (dd, J = 8.3, 2.4 Hz, 1H), 6.43 (d,

J = 1.9 Hz, 1H), 4.21 (d, J = 13.5 Hz, 1H), 4.15 (d, J = 13.5 Hz, 1H), 3.75 (s, 3H), 3.60 (d, J = 12 Hz, 1H), 3.55 (dd, J = 11.1, 7.4 Hz, 1H), 3.32 (t, J = 10.9 Hz, 1H), 3.10 (d, J = 12.0 Hz, 1H), 2.75 (bs, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 159.9, 151.1, 144.1, 142.0, 129.5 (2C), 117.9, 117.1, 112.6, 111.9, 111.5, 84.5, 55.5, 55.4, 51.1, 45.5, 34.3. The er was determined by UPC² using a chiral Chiralpack IG column gradient from 100% CO₂ up to 40%; *i*-PrOH, 2.5 mL/min; $\tau_{major} = 4.47$ min, $\tau_{minor} = 4.22$ min, (99:1 er); $[\alpha]_D^{21} = -23.1$ (c = 1.0, CHCl₃). HRMS calculated for [C₁₆H₁₈O₄S+Na]: 329.0823; found: 313.0822.

(3*S*,4*S*)-4-(2-(Hydroxymethyl)furan-3-yl)-3-(4-methoxyphenyl)tetrahydrothiophen-3-ol (6d)

Following the general procedure product **6d** (>20:1 dr in a crude reaction mixture) was isolated in 64% yield as light-yellow oil. Catalyst *ent-5g* (*R* configuration) was used in the reaction. ¹H NMR (700 MHz, CDCl₃) δ 7.33 – 7.30 (m, 2H), 7.28 (d, *J* = 1.9 Hz, 1H), 6.87 – 6.83 (m, 2H), 6.44

(d, J = 1.9 Hz, 1H), 4.23 – 4.15 (m, 2H), 3.77 (s, 3H), 3.59 (d, J = 12.0 Hz, 1H), 3.51 (dd, J = 10.9, 7.4 Hz, 1H), 3.31 (t, J = 10.8 Hz, 1H), 3.18 (dd, J = 10.7, 7.4 Hz, 1H), 3.08 (d, J = 12.0 Hz, 1H), 2.60 (s, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 159.0, 151.2, 142.0, 134.1, 126.4 (2C), 118.1, 113.9 (2C), 111.6, 84.4, 55.6, 55.4, 50.9, 45.4, 34.2. The er was determined by UPC² using a chiral Chiralpack IG column gradient from 100% CO₂ up to 40%; *i*-PrOH, 2.5 mL/min; $\tau_{major} = 4.49 \text{ min}, \tau_{minor} = 4.33 \text{ min}, (98:2 \text{ er}); [\alpha]_D^{21} = -48.0$ (c = 1.0, CHCl₃). HRMS calculated for [C₁₆H₁₈O₄S+Na]: 329.0823; found: 313.0822.

(3S,4S)-4-(2-(Hydroxymethyl)furan-3-yl)-3-(p-tolyl)tetrahydrothiophen-3-ol (6e)

Following the general procedure product **6e** (>20:1 dr in a crude reaction mixture) was isolated in 68% yield as light-yellow oil. Catalyst *ent*-**5g** (*R* configuration) was used in the reaction. ¹H NMR (700 MHz, CDCl₃) δ 7.29 (d, *J* = 1.9 Hz, 1H), 7.29 – 7.27 (m, 2H), 7.16 – 7.13 (m, 2H), 6.44 (d, *J* =

1.9 Hz, 1H), 4.18 (d, J = 13.5 Hz, 1H), 4.11 (d, J = 13.5 Hz, 1H), 3.62 (d, J = 12.0 Hz, 1H), 3.52 (dd, J = 11.0, 7.4 Hz, 1H), 3.33 (t, J = 10.9 Hz, 1H), 3.17 (dd, J = 10.7, 7.4 Hz, 1H), 3.09 (d, J = 12.0 Hz, 1H), 2.62 (s, 1H), 2.30 (s, 3H). ¹³C NMR (176 MHz, CDCl₃) δ 151.1, 142.0, 139.3, 137.5, 129.3 (2C), 125.1 (2C), 118.0, 111.5, 84.6, 55.4, 51.2, 45.5, 34.3, 21.0. The er was determined by UPC² using a chiral Chiralpack IG column gradient from 100% CO₂ up to 40%; *i*-PrOH, 2.5 mL/min; flow rate 1.0 mL/min; $\tau_{major} = 4.45$ min, $\tau_{minor} = 4.18$ min, (98:2 er); $[\alpha]_D^{21} = -18.5$ (c = 1.0, CHCl₃). HRMS calculated for $[C_{16}H_{18}O_3S+Na]$: 313.0874; found: 313.0877.

(3S,4S)-3-(2-Fluorophenyl)-4-(2-(hydroxymethyl)furan-3-yl)tetrahydrothiophen-3-ol (6f)

Following the general procedure product **6f** (>20:1 dr in a crude reaction mixture) was isolated in 61% yield as light-yellow oil. Catalyst *ent*-**5g** (*R* configuration) was used in the reaction. ¹H NMR (700MHz, CDCl₃) δ 7.50 (td, *J* = 8.2, 1.9 Hz, 1H), 7.29 – 7.21 (m, 2H), 7.11 – 7.05 (m, 2H), 6.41 (d, *J*

= 1.9 Hz, 1H), 4.33 (d, *J* = 13.4 Hz, 1H), 4.23 (d, *J* = 13.4 Hz, 1H), 3.96 (dd, *J* = 11.0, 7.5 Hz, 1H), 3.82 (d, *J* = 11.7 Hz, 1H), 3.33 (td, *J* = 10.8, 1.0 Hz, 1H), 3.17 (dd, *J* = 10.6, 7.4 Hz, 1H), 2.99 (dd, *J* = 11.8, 1.6 Hz, 1H), 2.88 (s, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 159.2 (d, *J* = 245.2 Hz), 151.2, 142.0, 129.8 (d, *J* = 8.5 Hz), 128.9 (d, *J* = 3.8 Hz), 124.6 (d, *J* = 3.4 Hz), 118.0, 116.2, 116.1, 111.6, 83.2 (d, *J* = 5.3 Hz), 55.4, 47.7 (d, *J* = 5.2 Hz), 43.2 (d, *J* = 5.2 Hz), 33.9. The er was determined by UPC² using a chiral Chiralpack IA column gradient from 100% CO₂ up to 40%; *i*-PrOH, 2.5 mL/min; $\tau_{major} = 3.73 \text{ min}$, $\tau_{minor} = 3.64 \text{ min}$, (96:4 er); [α]_D²¹ = -27.5 (c = 1.0, CHCl₃). HRMS calculated for [C₁₅H₁₅O₃SF+Na]: 317.0624; found: 317.0622.

(3*R*,4*R*)-3-(3-Fluorophenyl)-4-(2-(hydroxymethyl)furan-3-yl)tetrahydrothiophen-3-ol (6g)

Following the general procedure product **6g** (>20:1 dr in a crude reaction mixture) was isolated in 61% yield as light-yellow oil. Catalyst **5g** (*S* configuration) was used in the reaction. ¹H NMR (700MHz, CDCl₃) δ 7.30 (td, *J* = 8.0, 5.9 Hz, 1H), 7.26 (d, *J* = 2.0 Hz, 1H), 7.19 – 7.12 (m, 2H), 6.94

(tdd, *J* = 8.0, 2.6, 1.0 Hz, 1H), 6.42 (d, *J* = 2.0 Hz, 1H), 4.26 (d, *J* = 13.4 Hz, 1H), 4.22 (d, *J* = 13.4 Hz, 1H), 3.56 (d, *J* = 12.0 Hz, 1H), 3.56 (dd, *J* = 10.7, 7.5 Hz, 1H), 3.30 (dd, *J* = 10.8, 10.7 Hz, 1H), 3.20 (dd, *J* = 10.7, 7.5 Hz, 1H), 3.10 (d, *J* = 12.0 Hz, 1H), 2.78 (bs, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 163.5 (d, *J* = 246.7 Hz), 151.1, 145.1 (d, *J* = 6.9 Hz), 142.1, 130.0 (d, *J* = 8.2 Hz), 120.6 (d, *J* = 3.0 Hz), 117.7, 114.6 (d, *J* = 21.0 Hz), 113.0 (d, *J* = 22.9 Hz), 111.6, 84.1, 55.6, 50.9, 45.6, 34.2. The er was determined by UPC² using a chiral Chiralpack IA column gradient from 100% CO₂ up to 40%; *i*-PrOH, 2.5 mL/min; $\tau_{major} = 3.72 \text{ min}$, $\tau_{minor} = 3.89 \text{ min}$, (95:5 er); [α]_D²¹ = +30.5 (c = 1.0, CHCl₃). HRMS calculated for [C₁₅H₁₅O₃SF+Na]: 317.0624; found: 317.0624.

(3*S*,4*S*)-3-(4-Fluorophenyl)-4-(2-(hydroxymethyl)furan-3-yl)tetrahydrothiophen-3-ol (6h)

Following the general procedure product **6h** (>20:1 dr in a crude reaction mixture) was isolated in 60% yield as light-yellow oil. Catalyst *ent*-**5g** (*R* configuration) was used in the reaction. ¹H NMR (700MHz, CDCl₃) δ 7.41 – 7.36 (m, 2H), 7.27 – 7.24 (m, 1H), 7.07 – 6.97 (m, 2H), 6.41 (d, *J* = 1.9

Hz, 1H), 4.24 (d, *J* = 13.5 Hz, 1H), 4.21 (d, *J* = 13.5 Hz, 1H), 3.56 (d, *J* = 12.0 Hz, 1H), 3.53 (dd, J = 10.8, 7.5 Hz, 1H), 3.29 (t, *J* = 10.7 Hz, 1H), 3.19 (dd, *J* = 10.8, 7.5 Hz, 1H), 3.07 (d, *J*

= 12.0 Hz, 1H), 2.85 (bs, 1H).¹³C NMR (176 MHz, CDCl₃) δ 162.0 (d, *J* = 247.1 Hz), 151.0, 141.8, 137.7 (d, *J* = 3.1 Hz), 126.9 (d, *J* = 7.9 Hz, 2C), 117.8, 115.3 (d, *J* = 21.2 Hz), 111.6, 84.0, 55.5, 50.6, 45.4, 34.0. The er was determined by UPC² using a chiral Chiralpack IG column gradient from 100% CO₂ up to 40%; *i*-PrOH, 2.5 mL/min; $\tau_{major} = 3.95 \text{ min}$, $\tau_{minor} = 3.71 \text{ min}$, (96:4 er); $[\alpha]_D^{21} = -16.1$ (c = 1.0, CHCl₃). HRMS calculated for [C₁₅H₁₅O₃SF+Na]: 317.0624; found: 317.0624.

(3*S*,4*S*)-3-(4-Chlorophenyl)-4-(2-(hydroxymethyl)furan-3-yl)tetrahydrothiophen-3-ol (6i)

Following the general procedure product **6i** (>20:1 dr in a crude reaction mixture) was isolated in 60% yield as light-yellow oil. Catalyst *ent*-**5g** (*R* configuration) was used in the reaction. ¹H NMR (700MHz, CDCl₃) δ 7.37 – 7.33 (m, 2H), 7.30 – 7.27 (m, 2H), 7.25 (dd, *J* = 1.9, 0.5 Hz, 1H), 6.41

(d, J = 1.9 Hz, 1H), 4.26 (d, J = 13.4 Hz, 1H), 4.22 (d, J = 13.4 Hz, 1H), 3.54 (d, J = 11.0 Hz, 1H), 3.53 (dd, J = 11.0, 7.7 Hz, 1H), 3.28 (dd, J = 11.0, 10.7 Hz, 1H), 3.19 (dd, J = 10.7, 7.7 Hz, 1H), 3.07 (d, J = 11.0 Hz, 1H), 2.88 (bs, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 151.1, 142.0, 140.7, 133.6, 128.7 (2C), 126.8 (2C), 117.8, 111.7, 84.1, 55.7, 50.7, 45.5, 34.1. The er was determined by UPC² using a chiral Chiralpack IG column gradient from 100% CO₂ up to 40%; *i*-PrOH, 2.5 mL/min; $\tau_{major} = 4.37$ min, $\tau_{minor} = 4.04$ min, (96:4 er); $[\alpha]_D^{21} = -43.5$ (c = 1.0, CHCl₃). HRMS calculated for [C₁₅H₁₅O₃SCl+Na]: 333.0328; found: 333.0325.

(*3R*,4*R*)-4-(2-(Hydroxymethyl)furan-3-yl)-3-(4-(trifluoromethyl)phenyl) tetrahydrothiophen-3-ol (6j)

Following the general procedure product **6j** (>20:1 dr in a crude reaction mixture) was isolated in 50% yield as light-yellow oil. Catalyst **5g** (*S* configuration) was used in the reaction. ¹H NMR (700 MHz, CDCl₃) δ 7.59 – 7.55 (m, 4H), 7.25 (d, *J* = 1.9 Hz, 1H), 6.42 (d, *J* = 1.9 Hz, 1H),

4.28 - 4.21 (m, 2H), 3.62 (dd, J = 10.8, 7.5 Hz, 1H), 3.57 (d, J = 12.0 Hz, 1H), 3.30 (t, J = 10.8 Hz, 1H), 3.23 (dd, J = 10.8, 7.6 Hz, 1H), 3.10 (d, J = 12.0 Hz, 1H), 2.87 (bs, 1H). 13 C NMR (176 MHz, CDCl₃) δ 151.1, 146.2, 142.0, 129.9 (q, J = 32.6 Hz), 125.8 (2C), 125.5 (q, J = 3.8 Hz, 2C), 124.1 (q, J = 272.7 Hz), 117.7, 111.7, 84.2, 55.7, 50.7, 45.7, 34.2. The er was determined by UPC² using a chiral Chiralpack IG column gradient from 100% CO₂ up to 40%;

i-PrOH, 2.5 mL/min; $\tau_{major} = 3.13 \text{ min}$, $\tau_{minor} = 3.45 \text{ min}$, (97:3 er); $[\alpha]_D^{21} = -29.1$ (c = 1.0, CHCl₃). HRMS calculated for [C₁₆H₁₅O₃SF₃+Na]: 367.0592; found: 367.0593.

(3*R*,4*R*)-4-(2-(Hydroxymethyl)furan-3-yl)-3-(naphthalen-2-yl)tetrahydrothiophen-3-ol (6k)

Following the general procedure product **6k** (>20:1 dr in a crude reaction mixture) was isolated in 55% yield as light-yellow oil. Catalyst **5g** (*S* configuration) was used in the reaction. ¹H NMR (700 MHz, CDCl₃) δ 7.91 (d, *J* = 1.9 Hz, 1H), 7.83 (d, *J* = 8.6 Hz, 1H), 7.81 – 7.77 (m, 2H),

7.51 (dd, J = 8.6, 1.9 Hz, 1H), 7.49 – 7.45 (m, 2H), 7.23 (d, J = 1.9 Hz, 1H), 6.46 (d, J = 1.9 Hz, 1H), 4.20 (d, J = 13.4 Hz, 1H), 4.12 (d, J = 13.4 Hz, 1H), 3.74 (dd, J = 10.8, 7.4 Hz, 1H), 3.69 (d, J = 12.0 Hz, 1H), 3.38 (t, J = 10.8 Hz, 1H), 3.23 (dd, J = 10.8, 7.4 Hz, 1H), 3.16 (d, J = 12.0 Hz, 1H), 2.87 (bs, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 151.1, 142.0, 139.4, 133.1, 132.5, 128.3 (2C), 127.6, 126.7, 126.5, 124.6, 122.9, 117.9, 111.6, 84.7, 55.5, 50.7, 45.8, 34.4. The er was determined by UPC² using a chiral Chiralpack IB. column gradient from 100% CO₂ up to 40%; *i*-PrOH, 2.5 mL/min; $\tau_{major} = 4.63$ min, $\tau_{minor} = 4.84$ min, (96:4 er); $[\alpha]_D^{21} = -44.1$ (c = 1.0, CHCl₃). HRMS calculated for $[C_{19}H_{18}O_3S+Na]$: 349.0874; found: 349.0877.

(3*S*,4*S*)-3-(3,4-Dichlorophenyl)-4-(2-(hydroxymethyl)furan-3-yl)tetrahydrothiophen-3-ol (6l)

Following the general procedure product **6l** (>20:1 dr in a crude reaction mixture) was isolated in 58% yield as light-yellow oil. Catalyst *ent*-**5g** (*R* configuration) was used in the reaction. ¹H NMR (700MHz, CDCl₃) δ 7.58 (d, *J* = 2.2 Hz, 1H), 7.40 (d, *J* = 8.4 Hz, 1H), 7.29 – 7.27 (m, 2H), 6.43 (d,

J = 1.9 Hz, 1H), 4.35 (d, J = 0.8 Hz, 2H), 3.60 (dd, J = 10.7, 7.5 Hz, 1H), 3.49 (d, J = 11.9 Hz, 1H), 3.29 (t, J = 10.7 Hz, 1H), 3.22 (dd, J = 10.8, 7.6 Hz, 1H), 3.08 (d, J = 12.0 Hz, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 151.1, 142.5, 142.0, 132.8, 131.7, 130.4, 127.8, 124.7, 117.7, 111.7, 83.6, 55.8, 50.3, 45.7, 34.0. The er was determined by UPC² using a chiral Chiralpack IG column gradient from 100% CO₂ up to 40%; *i*-PrOH, 2.5 mL/min; $\tau_{major} = 4.30$ min, $\tau_{minor} = 3.95$ min, (96:4 er); $[\alpha]_D^{21} = -35.8$ (c = 1.0, CHCl₃). HRMS calculated for [C₁₄H₁₅O₃SCl₂+Na]: 366.9938; found: 366.9931.

(3R,4R)-4-(2-(Hydroxymethyl)furan-3-yl)-3-(thiophen-3-yl)tetrahydrothiophen-3-ol (6m)

Following the general procedure product **6m** (>20:1 dr in a crude reaction mixture) was isolated in 52% yield as light-yellow oil. Catalyst **5g** (*S* configuration) was used in the reaction. ¹H NMR (700 MHz, CDCl₃) δ 7.34 – 7.30 (m, 2H), 7.17 (dd, *J* = 3.1, 1.4 Hz, 1H), 7.01 (dd, *J* = 5.0, 1.4 Hz, 1H),

6.46 (d, J = 1.9 Hz, 1H), 4.29 – 4.17 (m, 2H), 3.57 (d, J = 11.8 Hz, 1H), 3.47 (dd, J = 10.8, 7.4 Hz, 1H), 3.30 (t, J = 10.7 Hz, 1H), 3.16 (dd, J = 10.7, 7.4 Hz, 1H), 3.12 (d, J = 11.9 Hz, 1H), 2.68 (bs, 1H), 1.26 (s, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 151.2, 144.3, 142.0, 126.6, 125.1, 121.7, 118.0, 111.5, 83.5, 55.5, 50.6, 44.8, 34.0. The er was determined by UPC² using a chiral Chiralpack IA column gradient from 100% CO₂ up to 40%; MeOH, 2.5 mL/min; $\tau_{major} = 3.88$ min, $\tau_{minor} = 4.10$ min, (98:2 er); $[\alpha]_D^{21} = +14.1$ (c = 1.0, CHCl₃). HRMS calculated for [C₁₃H₁₄O₃S+Na]: 349.0874; found: 349.0877.

(3S,4S)-4-(2-(Hydroxymethyl)thiophen-3-yl)-3-phenyltetrahydrothiophen-3-ol (6n)

Following the general procedure product **6n** (>20:1 dr in a crude reaction mixture) was isolated in 46% yield as light-yellow solid. The reaction was carried out at 40 °C. Catalyst *ent*-**5g** (*R* configuration) was used in the reaction. ¹H NMR (700 MHz, CDCl₃) δ 7.42 – 7.39 (m, 2H), 7.31 (m, 2H), 7.29 (d, *J* = 5.3 Hz, 1H), 7.27

-7.23 (m, 1H), 7.20 (d, *J* = 5.3 Hz, 1H), 4.33 (d, *J* = 13.2 Hz, 1H), 4.23 (d, *J* = 13.2 Hz, 1H), 3.78 – 3.71 (m, 2H), 3.36 (t, *J* = 10.7 Hz, 1H), 3.21 (dd, *J* = 10.7, 7.4 Hz, 1H), 3.13 (d, *J* = 11.9 Hz, 1H), 2.66 (bs, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 142.3, 140.3, 134.4, 128.6 (2C), 128.5, 127.8, 125.2 (2C), 124.4, 84.52, 57.4, 53.5, 45.0, 34.8. The er was determined by UPC² using a chiral Chiralpack IG column gradient from 100% CO₂ up to 40%; *i*-PrOH, 2.5 mL/min; $\tau_{major} = 4.47 \text{ min}, \tau_{minor} = 4.66 \text{ min}, (98:2 er); [α]_D^{23} = +12.9$ (c = 1.0, CHCl₃). HRMS calculated for [C₁₅H₁₆O₃S₂+Na]: 315.0489; found: 315.0491.

(3R,4R)-4-(2-(hydroxymethyl)benzofuran-3-yl)-3-phenyltetrahydrothiophen-3-ol (60)

Following the general procedure product **60** (>20:1 dr in a crude reaction mixture) was isolated in 55% yield as light-yellow solid/oil. Catalyst **5g** (*S* configuration) was used in the reaction. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.41–7.34 (m, 3H), 7.31–7.15 (m, 5H), 4.42 (d, *J* = 13.6 Hz, 1H), 4.30 (d, *J* = 13.6 Hz, 1H), 3.88–3.75 (m, 3H), 3.31–3.21 (m, 1H), 3.19 (d, *J* = 12.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 154.2, 153.6, 141.9, 128.5, 128.4, 127.7, 125.1, 124.6, 122.48, 121.8, 112.5, 111.4, 85.3, 56.3, 52.2, 45.6, 32.8. The er was determined by HPLC analysis using a chiral Daicel Chiralpack IC column gradient from 100% CO₂ up to 40%; *i*-PrOH, 1.0 mL/min; $\tau_{major} = 6.71 \text{ min}, \tau_{minor} = 7.53 \text{ min}, (95:5 \text{ er}); [\alpha]_D^{25} = -44 \text{ (c} = 0.5, \text{CHCl}_3).$ HRMS calculated for [C₁₅H₁₆O₃S₂+Na]: 349.0869; found: 349.0868.

3. Enantioselective synthesis of (3*R*,4*R*)-4-(2-(hydroxymethyl)furan-3-yl)-3-phenyltetrahydrothiophen-3-ol 6a on a 1 g scale

In an ordinary 4 mL glass vial, equipped with a Teflon-coated magnetic stirring bar and a screw cap, aldehyde **1a** (1.0 equiv., 8.19 mmol), catalyst **5g** (0.2 equiv., 1.64 mmol) and α -mercaptoacetophenone **2a** (1.2 equiv., 9.83 mmol) were dissolved in CDCl₃ (16.4 mL). The reaction mixture was stirred at ambient temperature for 20 h. After full conversion of the starting material **1a** (as confirmed by ¹H NMR of a crude reaction mixture), MeOH (8.2 mL) and NaBH₄ (4 equiv., 32.76 mmol) were added. After 30 min. the reaction mixture was directly subjected to flash chromatography on silica gel (eluent: hexane/ethyl acetate 85:15 to 70:30) to obtain pure product **6a** in 69% yield as light-yellow oil.

4. Synthesis of tricyclic furan derivatives 4 – general procedure

In an ordinary 4 mL glass vial, equipped with a Teflon-coated magnetic stirring bar and a screw cap, aldehyde **1** (1.0 equiv., 0.1 mmol), catalyst **5g** (0.2 equiv., 0.02 mmol, 4.6 mg) and corresponding α -mercaptocarbonyl compound **2** (1.2 equiv., 0.12 mmol) were dissolved in CDCl₃ (0.2 mL). The reaction mixture was stirred at ambient temperature for 20 h. After full conversion of the starting material **1** (as confirmed by ¹H NMR of a crude reaction mixture), the crude product was diluted with CH₂Cl₂ (1 mL), then Et₃SiH (3.0 equiv, 0.3 mmol) and BF₃·Et₂O (3.3 equiv., 0.33 mmol) were added in that order at 0 °C. The mixture was stirred for 3 h and directly subjected to flash chromatography on silica gel (eluent: hexane/diethyl ether 80:20) to obtain pure product **4**.

(3aR,8bR)-3a-Phenyl-3,3a,5,8b-tetrahydro-1H-furo[3,2-d]thieno[3,4-b]pyran (4a)

Following the general procedure product **4a** (>20:1 dr in a crude reaction mixture) was isolated in 73% yield as light yellow oil. ¹H NMR (700 MHz, CDCl₃) δ 7.39 – 7.37 (m, 2H), 7.32 – 7.29 (m, 2H), 7.28 – 7.26 (m, 1H), 7.26 – 7.24 (m, 1H), 6.37 (d, *J* = 1.9 Hz, 1H), 4.64 (d, *J* = 15.0 Hz, 1H), 4.19 (ddd, *J* = 15.0, 1.2 Hz, 1H), 3.81 (ddd, *J* = 10.5, 7.2, 1.2 Hz, 1H), 3.43 (d, *J* = 12.3 Hz, 1H), 3.30 (dd, *J* = 10.5, 7.2 Hz, 1H), 3.14 (d, *J* = 12.3 Hz, 1H), 3.08 (t, *J* = 10.5 Hz, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 146.6, 141.8, 139.4, 128.6 (2C), 128.1, 126.5 (2C), 116.8, 109.4, 87.7, 60.4, 43.7, 43.6, 36.7. HRMS calculated for [C₁₅H₁₄O₂S+Na]: 258.0715; found: 257.0634.

(3a*R*,8b*R*)-3a-(4-Fluorophenyl)-3,3a,5,8b-tetrahydro-1*H*-furo[3,2-*d*]thieno[3,4-*b*]pyran (4b)

Following the general procedure product **4b** (>20:1 dr in a crude reaction mixture) was isolated in 51% yield as yellow oil. ¹H NMR (700 MHz, CDCl₃) δ 7.38 – 7.32 (m, 2H), 7.27 – 7.24 (m, 1H), 7.02 – 6.96 (m, 2H),

6.37 (d, J = 1.9 Hz, 1H), 4.64 (d, J = 15.0 Hz, 1H), 4.15 (dt, J = 15.1, 1.3 Hz, 1H), 3.75 (ddd, J = 10.2, 7.2, 1.6 Hz, 1H), 3.41 (d, J = 12.3 Hz, 1H), 3.29 (dd, J = 10.6, 7.2 Hz, 1H), 3.11 (d, J = 12.3 Hz, 1H), 3.07 (t, J = 10.4 Hz, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 162.4 (d, J = 247.3 Hz), 146.5, 142.0, 135.2 (d, J = 3.1 Hz), 128.4 (d, J = 8.0 Hz), 116.7, 115.6 (d, J = 21.2 Hz), 109.4, 87.2, 60.3, 43.8, 43.6, 36.7. HRMS calculated for [C₁₅H₁₃O₂S_F+Na]: 276.0620; found: 275.9634.

(3a*R*,8b*R*)-3a-(Thiophen-3-yl)-3,3a,5,8b-tetrahydro-1*H*-furo[3,2-*d*]thieno[3,4-*b*]pyran (6c)

Following the general procedure product **4**c (>20:1 dr in a crude reaction mixture) was isolated in 43% yield as yellow oil. ¹H NMR (700 MHz, CDCl₃) δ 7.29 – 7.25 (m, 2H), 7.11 (dd, *J* = 5.0, 1.4 Hz, 1H), 7.07 (dd, *J* = 2.9, 1.4 Hz, 1H), 6.36 (d, *J* = 1.9 Hz, 1H), 4.63 (d, *J* = 14.7 Hz, 1H), 4.20 (ddd, *J* = 14.9, 1.7, 1.0 Hz, 1H), 3.65 (ddd, *J* = 10.0, 7.2, 1.6 Hz, 1H), 3.44 (d, *J* = 12.2 Hz, 1H), 3.27 (dd, *J* = 10.7, 7.3 Hz, 1H), 3.20 (d, *J* = 12.2 Hz, 1H), 3.02 (dd, *J* = 10.7, 10.1 Hz, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 146.7, 141.9, 141.1, 126. 7, 126.1, 122.5, 116.8, 109.4, 85.6, 60.4, 45.3, 43.2, 36.8. HRMS calculated for [C₁₄H₁₂O₂S₂+Na]: 264.0279; found: 264.0283.

5. Crystal and X-ray data

The compound **6n** ($C_{15}H_{16}O_2S_2$) crystallizes in the non-centrosymmetric triclinic space group *P*1 (Z = 2) and the crystal structure consists of two crystallographically independent formula units in the unit cell.

A view of one of the two unique molecules present in the asymmetric unit of **6n**, with the atom-numbering scheme. Displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are drawn with an arbitrary radius

Single-crystal X-ray diffraction data were collected at temperature of 100 K. The compound **4a** ($C_{15}H_{14}O_2S$) crystallizes in the non-centrosymmetric monoclinic space group $P2_1$ (Z = 2) and the crystal structure consists of one crystallographically independent formula unit in the unit cell.

A view of the molecule of **4a** with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are drawn with an arbitrary radius

Single crystal X-ray diffraction data were collected at 100 K by the ω -scan technique using a RIGAKU XtaLAB Synergy, Dualflex, Pilatus 300K diffractometer³ with PhotonJet microfocus X-ray Source Cu-K α ($\lambda = 1.54184$ Å). Data collection, cell refinement, data reduction and absorption correction were performed using CrysAlis PRO software.³ The crystal structure was solved by using direct methods with the SHELXT 2018/2 program.⁴ Atomic scattering factors were taken from the International Tables for X-ray Crystallography. Positional parameters of non-H-atoms were refined by a full-matrix least-squares method on F² with anisotropic thermal parameters by using the SHELXL 2018/3 program.⁵ All hydrogen atoms were placed in calculated positions (O–H = 0.84 Å, C–H = 0.95–1.00 Å) and included as riding contributions with isotropic displacement parameters set to 1.2-1.5 times the U_{eq} of the parent atom.

6n: Formula C₁₅H₁₆O₂S₂, monoclinic, space group *P*1, *Z* = 2, unit cell constants *a* = 8.0197(1), *b* = 9.6836(1), *c* = 10.1550(2) Å, a = 63.873(2), b = 83.678(1), g = 84.070(1)°, *V* = 702.42(2) Å³. The integration of the data yielded a total of 15510 reflections with θ angles in the range of 4.86 to 69.99 of which 4979 reflections were unique (R_{int} = 1.40%), and 4973 were greater than $2\sigma(F^2)$. The final anisotropic full-matrix least-squares refinement on F² with 346 parameters converged to R₁ = 2.93% and wR₂ = 7.38% for all data. The goodness-of-fit was 1.047. The largest peak in the final difference electron density synthesis was 0.40 e Å⁻³ and the largest hole was -0.46 e Å⁻³. The absolute configuration was determined from anomalous scattering, by calculating the x Flack parameter⁶ of 0.001(6) using 2325 quotients.

4a: Formula C₁₅H₁₄O₂S, monoclinic, space group $P2_1$, Z = 2, unit cell constants a = 7.3707(1), b = 10.3546(1), c = 8.6086(1) Å, $b = 108.874(1)^\circ$, V = 621.688(13) Å³. The integration of the data yielded a total of 21876 reflections with θ angles in the range of 6.35 to 66.58 of which 2177 were independent (R_{int} = 2.05%), and all were greater than $2\sigma(F^2)$. The final anisotropic full-matrix least-squares refinement on F² with 163 parameters converged to R₁ = 1.94% and wR₂ = 5.11% for all data. The goodness-of-fit was 1.054. The largest peak in the final difference electron density synthesis was 0.19 e Å⁻³ and the largest hole was -0.15 e Å⁻³. The absolute configuration was determined from anomalous scattering, by calculating the x Flack parameter⁶ of 0.003(7) using 1020 quotients.

CCDC 2024877 (**6n**) and 2024876 (**4a**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.

3. Rigaku OD. CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England, 2019.

- 4. G. M. Sheldrick, Acta Cryst. 2015, A71, 3-8.
- 5. G. M. Sheldrick, Acta Cryst. 2015, C71, 3-8.
- 6. S. Parsons, H. D. Flack, T. Wagner, Acta Cryst. 2013, B69, 249-259.

6. NMR data

(3*R*,4*R*)-4-(2-(Hydroxymethyl)furan-3-yl)-3-phenyltetrahydrothiophen-3-ol (6a) ¹H NMB

(3*S*,4*S*)-4-(2-(Hydroxymethyl)furan-3-yl)-3-(2-methoxyphenyl)tetrahydrothiophen-3-ol (6b) ¹H NMR

S19

(35,45)-4-(2-(Hydroxymethyl)furan-3-yl)-3-(p-tolyl)tetrahydrothiophen-3-ol (6e) $^{1}\mathrm{H}$ NMR

(3S,4S)-3-(2-Fluorophenyl)-4-(2-(hydroxymethyl)furan-3-yl)tetrahydrothiophen-3-ol (6f) ¹H NMR

(3R,4R)-3-(3-Fluorophenyl)-4-(2-(hydroxymethyl)furan-3-yl)tetrahydrothiophen-3-ol (6g)

(3S,4S)-3-(4-Fluorophenyl)-4-(2-(hydroxymethyl)furan-3-yl)tetrahydrothiophen-3-ol (6h) ¹H NMR

(3*S*,4*S*)-3-(4-Chlorophenyl)-4-(2-(hydroxymethyl)furan-3-yl)tetrahydrothiophen-3-ol (6i)

(3R,4R)-4-(2-(Hydroxymethyl)furan-3-yl)-3-(4-(trifluoromethyl)phenyl) tetrahydrothiophen-3-ol (6j) ¹H NMR

S28

$(3R,4R)-4-(2-(Hydroxymethyl)furan-3-yl)-3-(thiophen-3-yl)tetrahydrothiophen-3-ol~(6m) \\ {}^{1}H~NMR$

150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

(3*R*,4*R*)-4-(2-(Hydroxymethyl)benzofuran-3-yl)-3-phenyltetrahydrothiophen-3-ol (60) ¹H NMR

(3a*R*,8b*R*)-3a-Phenyl-3,3a,5,8b-tetrahydro-1*H*-furo[3,2-*d*]thieno[3,4-*b*]pyran (4a) ¹H NMR

(3aR,8bR) - 3a - (4-Fluorophenyl) - 3,3a,5,8b - tetrahydro - 1H - furo [3,2-d] thieno [3,4-b] pyran - 100

(**4b**)

(3aR,8bR)-3a-(Thiophen-3-yl)-3,3a,5,8b-tetrahydro-1H-furo[3,2-d]thieno[3,4-b]pyran (4c)

¹H NMR

150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

7. UPC² traces

(3R,4R)-4-(2-(Hydroxymethyl)furan-3-yl)-3-phenyltetrahydrothiophen-3-ol (6a)

Racemic sample

(3*S*,4*S*)-4-(2-(Hydroxymethyl)furan-3-yl)-3-(2-methoxyphenyl)tetrahydrothiophen-3-ol (6b)

7.00

8.00

9.00

6.00

0.00-

0.00

1.00

Peak Results RT

4.210

1 2 4.433 % Area

1.20

98.80

2.00

3.00

4.00

5.00

Minutes

(3S, 4S) - 4 - (2 - (Hydroxymethyl) furan - 3 - yl) - 3 - (3 - methoxyphenyl) tetrahydrothiophen - 3 - ol (3S, 4S) - 4 - (2 - (Hydroxymethyl) furan - 3 - yl) - 3 - (3 - methoxyphenyl) tetrahydrothiophen - 3 - ol (3S, 4S) - 4 - (2 - (Hydroxymethyl) furan - 3 - yl) - 3 - (3 - methoxyphenyl) tetrahydrothiophen - 3 - ol (3S, 4S) - 4 - (2 - (Hydroxymethyl) furan - 3 - yl) - 3 - (3 - methoxyphenyl) tetrahydrothiophen - 3 - ol (3S, 4S) - 4 - (2 - (Hydroxymethyl) furan - 3 - yl) - 3 - (3 - methoxyphenyl) tetrahydrothiophen - 3 - ol (3S, 4S) - 4 - (2 - (Hydroxymethyl) furan - 3 - yl) - 3 - (3 - methoxyphenyl) tetrahydrothiophen - 3 - ol (3S, 4S) - 4 - (3 - methoxyphenyl) tetrahydrothiophen - 3 - ol (3S, 4S) - 4 - (3 - methoxyphenyl) tetrahydrothiophen - 3 - ol (3S, 4S) - (3 - methoxyphenyl) tetrahydroth(**6c**)

10.00

(35,45)-4-(2-(Hydroxymethyl)furan-3-yl)-3-(4-methoxyphenyl)tetrahydrothiophen-3-ol (6d)

Enantiomerically enriched sample

(3S,4S)-4-(2-(Hydroxymethyl)furan-3-yl)-3-(p-tolyl)tetrahydrothiophen-3-ol (6e)

(3S,4S)-3-(2-Fluorophenyl)-4-(2-(hydroxymethyl)furan-3-yl)tetrahydrothiophen-3-ol (6f)

Enantiomerically enriched sample

(3R,4R)-3-(3-Fluorophenyl)-4-(2-(hydroksymetyl)furan-3-yl)tetrahydro-tiofen-3-ol (6g)

 $(3S, 4S) \hbox{-} 3-(4-Fluorophenyl) \hbox{-} 4-(2-(hydroxymethyl) \hbox{furan-} 3-yl) tetrahydrothiophen-} 3-ol (6h)$

(3S,4S)-3-(4-Chlorophenyl)-4-(2-(hydroxymethyl)furan-3-yl)tetrahydrothiophen-3-ol (6i)

Enantiomerically enriched sample 12.00-10.00 4.346 8.00-4.027 6.00 AU Δ^{\dagger} 4.346 Δ 4.00 .60 3.80 4.00 4.20 4.60 4.80 4.40 Minutes 4.027 2.00-0.00 \mathbb{A} 2.00 1.00 3.00 4.00 5.**00** 6.00 7.00 8.00 9.00 0.00 10.00 Minutes **Peak Results** RT % Area 3.60 1 4.027 2 4.346 96.40

(3*R*,4*R*)-4-(2-(Hydroxymethyl)furan-3-yl)-3-(4-(trifluoromethyl)phenyl) tetrahydrothiophen-3-ol (6j)

Racemic sample

(3*R*,4*R*)-4-(2-(Hydroxymethyl)furan-3-yl)-3-(naphthalen-2-yl)tetrahydrothiophen-3-ol (6k)

Enantiomerically enriched sample

 $(3S, 4S) \hbox{-} 3-(3, 4-\text{Dichlorophenyl}) \hbox{-} 4-(2-(hydroxymethyl) \hbox{furan-} 3-yl) tetrahydrothiophen-} 3-ol (6l)$

Enantiomerically enriched sample

(3R,4R)-4-(2-(Hydroxymethyl)furan-3-yl)-3-(thiophen-3-yl)tetrahydrothiophen-3-ol (6m)

(35,45)-4-(2-(Hydroxymethyl)thiophen-3-yl)-3-phenyltetrahydrothiophen-3-ol (6n)

(3R,4R)-4-(2-(Hydroxymethyl)benzofuran-3-yl)-3-phenyltetrahydrothiophen-3-ol (60)

Racemic sample

