Supporting Information for:

Synthesis and Crystal Packing of Perylene-derivatives with extreme sterically demanding Pentaphenylbenzene *bay*-Substituents

- S1. Synthetic details
- S2. Experimental Data
- S3. NMR- and mass-spectra
- S4. UV/Vis and fluorescence spectra
- S5. Crystal structure analysis
- S6. References

Scheme 1 Detailed synthesis of PDI-PPBs **7**; a) tetrakis-(*tert*-butyl)tetracyclone **9**, toluene, 220 °C, 24 h, yields: 62% (**6a**), 72% (**6b**); e) p-toluenesulfonic-acid, toluene:dodecane (1:5), 95 °C, 24 h, yields: 91% (**8a**), 89% (**8b**); f) 6-undecylamine, imidazole, 140 °C, 1 h, yields: 74% (**7a**), 74% (**7b**).

S2. Experimental Data

Materials and Methods

Chemicals were purchased from Sigma-Aldrich and used without any further purification. Solvents were distilled prior to usage. Thin layer chromatography (TLC) was performed on Merck silica gel 60 F524, detected by UV-light (254 nm, 366 nm). Plug chromatography and column chromatography were performed on Macherey-Nagel silica gel 60 M (deactivated, 230-400 mesh, 0.04-0.063 mm). NMR spectra were recorded on a Bruker Avance 400 (¹H: 400 MHz, ¹³C: 101 MHz), a Bruker Avance 500 (¹H: 500 MHz, ¹³C: 126 MHz), or a Bruker Avance Neo Cryo-Probe DCH (¹H: 600 MHz, ¹³C: 150 MHz). Deuterated solvents were purchased from Sigma-Aldrich and used as received. Chemical shifts are given in ppm at room temperature and are referenced to residual protic impurities in the solvents (¹H: CHCl₃: 7.24 ppm, CH₂Cl₂: 5.34 ppm, $C_2H_2CI_4$: 5.91 ppm) or the deuterated solvent itself ($^{13}C{^1H}$): CDCI₃: 77.16 ppm, CD₂CI₂: 53.4 ppm, C₂D₂Cl₄: 74.2 ppm). The resonance multiplicities are indicated as "s" (singlet), "brs" (broad singlet), "d" (doublet), "t" (triplet), "q" (quartet) and "m" (multiplet). Mass spectrometry was carried out with a Shimadzu AXIMA Confidence (MALDI-TOF, matrix: 2,5-dihydroxybenzoic acid DHB, trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenyliden]-malononitrile, (DCTB) or without matrix (OM). High resolution mass spectrometry (HRMS) was recorded on a LDI/MALDI-ToF Bruker Ultraflex Extreme machine or on a APPI-ToF mass spectrometer Bruker maXis 4G UHR MS/MS spectrometer. UV/vis spectroscopy was carried out on a Varian Cary 5000 UV-vis-NIR spectrometer. The spectra were recorded at rt in DCM in quartz cuvettes (edge length = 1 cm) under ambient conditions. Fluorescence spectra were obtained from a Shimadzu RF-5301 PC and a NanoLog spectrofluorometer (Horiba Scientific). HPLC separation was carried out using Shimadzu analytical and preparative HPLC with system controller CBM-20A, solvent delivery unit LC-20A, auto-sampler SIL-20A, column oven CTO-20A, photodiode array detector SPD-M20A, on-line degassing unit DGU-20A and low pressure gradient unit. All chromatograms were processed with Shimadzu LabSolution(c) software and exported as ASCII files.

PDI-tolane (2)

Under argon atmosphere bis(triphenylphosphine)palladium chloride (18.0 mg, 0.0256 mmol) and copper(I) iodide (4.88 mg, 0.0256 mmol) were added to a solution of **1** (100 mg, 0.129 mmol) in THF (3.2 mL). The mixture was degassed before and after the addition of a solution of 4-*tert*-butylphenyl-acetylene^[1] (30.9 mg, 0.194 mmol) in triethylamine (2.8 mL) by introducing argon for 10 min. After heating up to 50 °C, the mixture was stirred for 27 h in a sealed high-pressure vessel. The solvent was evaporated under reduced pressure and the resulting crude product was purified by filtration over silica gel (DCM:hexane). Subsequent column chromatography (SiO2, DCM:hexane) afforded **2** as a pink solid (66.1 mg, 0.773 mmol, 60%).

¹H-NMR (CDCl₃, 400 MHz, rt): δ [ppm] = 10.21 (*d*, *J* = 8.4 Hz, 1H), 8.75 (s, 1H), 8.68– 8.46 (*m*, 5H), 7.64 (d, *J* = 8.4 Hz, 2H), 7.53 (d, *J* = 8.4 Hz, 2H), 5.25–5.13 (*m*, 2H), 2.34–2.19 (*m*, 4H), 1.96–1.83 (*m*, 4H), 1.41 (s, 9H), 1.39–1.19 (*m*, 24H), 0.84 (*t*, *J* = 6.8 Hz, 12H).

¹³C-NMR (CDCl₃, 101 MHz, rt): δ [ppm] = 164.7, 163.7, 153.5, 138.5, 138.1, 134.4, 134.2, 133.8, 131.8, 131.3, 130.6, 129.2, 128.4, 127.2, 126.8, 126.7, 126.1, 124.1, 123.4, 122.8, 120.5, 119.3, 100.6, 90.8, 54.9, 54.8, 35.2, 32.5, 32.4, 31.9, 31.8, 31.3, 26.8, 26.7, 22.7, 14.2.

HRMS (MALDI-TOF, dctb): m/z for C₅₈H₆₆N₂O₄ calc 854.5023, found 854.5017.

UV-Vis: λ [nm] = 279 (ε = 53580 Lmol⁻¹cm⁻¹), 332 (ε = 26560 Lmol⁻¹cm⁻¹), 349 (ε = 26364 Lmol⁻¹cm⁻¹), 362 (ε = 24538 L mol⁻¹cm⁻¹), 394 (ε = 11329 L mol⁻¹cm⁻¹), 464 (ε = 22614 L mol⁻¹cm⁻¹), 510 (ε = 47532 L mol⁻¹cm⁻¹), 549 (ε = 72962 L mol⁻¹cm⁻¹). Fluorescence: λ [nm, (λ_{ex} = 549 nm)] = 579.

PDI-PPB (3)

A 1 mL MW-vial was charged with PDI-tolane **2** (50.0 mg, 0.058 mmol, 1 equiv.), tetracyclone ^[2,3] (36.0 mg, 0.058 mmol, 1 equiv.) and toluene (0.5 mL) and sealed with a septum. The reaction mixture was degassed with N₂ for 5 minutes and heated to 220°C for 24 h. The solvent was removed under reduced pressure and the crude was purified by column chromatography (SiO₂, DCM:Hexane 1:1) to provide the pure product **3** as a pink solid (63.0 mg, 0.044 mmol, 76%).

¹H NMR ($C_2D_2Cl_4$, 400 MHz, 110°C) δ [ppm] = 8.64 (d, J = 8.3 Hz, 1H), 8.56 – 8.46 (m, 2H), 8.44 (d, J = 8.0 Hz, 1H), 8.35 – 8.27 (m, 3H), 6.87 – 6.82 (m, 2H), 6.81 – 6.74 (m, 6H), 6.74 – 6.69 (m, 4H), 6.56 – 6.37 (m, 8H), 5.21 – 5.08 (m, 1H), 5.08 – 4.98 (m, 1H), 2.30 – 2.07 (m, 4H), 1.94 – 1.75 (m, 4H), 1.36 – 1.21 (m, 24H), 1.11 (s, 9H), 1.06 (s, 18H), 0.80 (s, 30H).

¹³C NMR ($C_2D_2Cl_4$, 101 MHz, 90°C) δ [ppm] = 164.3, 163.7, 148.5, 148.09, 148.06, 143.03, 142.97, 141.6, 140.2, 138.8, 138.6, 137.3, 137.2, 136.9, 136.4, 134.4, 134.1, 133.4, 131.2, 131.1, 130.6, 130.3, 129.9, 129.0, 127.7, 127.5, 127.1, 127.0, 123.14, 123.11, 123.0, 122.4, 122.0, 121.0, 120.4, 99.7, 54.7, 54.6, 34.01, 33.95, 33.8, 32.5, 32.4, 31.63, 31.61, 31.2, 31.1, 30.9, 26.6, 26.47, 22.46, 22.4, 13.9, 13.83.

HRMS (MALDI-TOF, dctb): m/z for C₁₀₂H₁₁₈N₂O₄ calc 1434.9086, found 1434.9172. UV-Vis: λ [nm] = 471 (ϵ = 12840 Lmol⁻¹cm⁻¹), 506 (ϵ = 24260 Lmol⁻¹cm⁻¹), 541 (ϵ = 35930 Lmol⁻¹cm⁻¹).

Fluorescence: λ [nm, (λ_{ex} = 541 nm)] = 588.

PTE-(Br)₂ (4)

Perylenetetradecyl ester^[4] (300 mg, 0.300 mml) and K_2CO_3 (101 mg, 0.730 mmol) were dissolved in CH_2Cl_2 (3 mL) before bromine (625 mg, 3.91 mmol) was added. The mixture was stirred at rt for 24 h and excess bromine was removed by washing with aqueous $Na_2S_2O_3$ - solution. The crude product was purified by filtration over a silica plug (THF/hexane 1:7) to yield **4** as a mixture of 1.6-and 1.7-isomers in 76% (262 mg, 0.228 mmol).

¹H NMR [400 MHz, CD_2Cl_2 , rt] δ [ppm] = 9.00, 8.84 (2d, J = 7.9 Hz, 2H), 8.34, 8.28 (2s, 2H), 8.10, 8.04 (2d, J = 7.9 Hz, 2H), 4.34 (t, J = 6.6 Hz, 8H), 1.87 – 1.79 (m, 8H), 1.51 – 1.29 (m, 56H), 0.90 (t, J = 6.7 Hz, 12H).

¹³C DEPT*q* NMR [101 MHz, CD₂Cl₂, rt] δ [ppm] = 168.0 (C=O), 167.7 (C=O), 166.9 (C=O), 166.6 (C=O), 136.7 (C_q), 136.5 (C_q), 132.7 (CH), 131.9 (CH), 131.7 (CH), 131.6 (CH), 130.9 (CH), 130.8 (CH), 130.7 (CH), 130.5 (CH), 130.4 (CH), 130.1 (CH), 128.9 (C_q), 128.78 (C_q), 127.6 (C_q), 127.1 (C_q), 126.3 (CH), 119.64 (CH), 118.63 (CH), 66.13 (CH₂), 66.06 (CH₂), 65.9 (CH₂), 65.78 (CH₂), 31.9 (CH₂), 29.58 (CH₂), 29.56 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 28.6 (CH₂), 28.5 (CH₂), 26.03 (CH₂), 25.98 (CH₂), 22.7 (CH₂), 13.9 (CH₃).

HRMS (APPI): m/z for C₆₄H₉₀Br₂O₈ calcd 1144.4997, found 1144.4974.

UV-Vis: λ [nm] = 277 (ϵ = 33989 M⁻¹cm⁻¹), 443 (ϵ = 24220 M⁻¹cm⁻¹), 468 (ϵ = 27358 M⁻¹cm⁻¹).

Fluorescence: λ [nm (λ_{ex} = 468 nm)] = 500.

PTE-tolane (5)

In a pressure vial bis(triphenylphosphine)palladium chloride (18.3 mg, 0.0262 mmol) and copper(I) iodide (4.98 mg, 0.0262 mmol) were added to a solution of **4** (150 mg, 0.131 mmol) in THF (4.5 mL). After degassing, a solution of 4-*tert*-butylphenyl-acetylene^[1] (30.9 mg, 0.194 mmol) in triethylamine (4.0 mL) was added to the mixture. The mixture was stirred at 50°C for 17 h, the solvent was evaporated under reduced pressure and the resulting crude product was purified by filtration over silica gel (DCM:hexane). The regioisomers **5a** and **5b** were then separated *via* preparative HPLC to yield 16% (27 mg, 0.0208 mmol) of **5a** and 72% (123 mg, 0.0946 mmol) of **5b**.

1.6-PTE-tolane 5a:

¹H-NMR (CD₂Cl₂, 400 MHz, rt): δ [ppm] = 9.61 (d, *J* = 8.0 Hz, 2H), 8.32 (s, 2H), 8.18 (d, *J* = 8.0 Hz, 2H), 7.60 (d, *J* = 8.6 Hz, 4H), 7.50 (d, *J* = 8.6 Hz, 4H), 4.34 (t, *J* = 6.9 Hz, 8H), 1.87 - 1.78 (m, 8H), 1.51 - 1.44 (m, 8H), 1.44 - 1.24 (m, 66H), 0.95 - 0.84 (m, 12H).

¹³C-NMR (CD₂Cl₂, 101 MHz, rt): δ [ppm] = 168.2, 167.5, 152.8, 136.1, 133.6, 131.9, 131.5, 130.9, 130.7, 130.2, 129.4, 129.2, 127.6, 126.5, 126.3, 125.7, 119.6, 119.1, 95.5, 90.3, 65.9, 65.7, 34.8, 31.9, 30.9, 29.6, 29.4, 29.33, 29.30, 28.58, 28.55, 26.0, 22.7, 13.9.

HRMS (MALDI-TOF, dctb): m/z for $C_{88}H_{116}O_8$ calc 1300.8665, found 1300.8678. UV-Vis: λ [nm] = 252 (ϵ = 65467 Lmol⁻¹cm⁻¹), 288 (ϵ = 43987 Lmol⁻¹cm⁻¹) 380 (ϵ = 55637 Lmol⁻¹cm⁻¹), 474 (ϵ = 23104 Lmol⁻¹cm⁻¹), 508 (ϵ = 25306 Lmol⁻¹cm⁻¹). Fluorescence: λ [nm, (λ_{ex} = 380 nm)] = 540

1.7-PTE-tolane 5b:

¹H-NMR (CD₂Cl₂, 500 MHz, rt): δ [ppm] = 9.61 (d, *J* = 8.1 Hz, 2H), 8.31 (s, 2H), 8.17 (d, *J* = 8.0 Hz, 2H), 7.60 (d, *J* = 8.7 Hz, 2H), 7.50 (d, *J* = 8.6 Hz, 2H), 4.34 (q, *J* = 7.0 Hz, 8H), 1.82 (m, *J* = 7.5, 2.8 Hz, 8H), 1.52 - 1.45 (m, 8H), 1.43 - 1.26 (m, 66H), 0.91 - 0.85 (m, 12H).

¹³C-NMR (CD₂Cl₂, 126 MHz, rt): δ [ppm] = 168.1, 167.7, 152.8, 135.8, 133.2, 132.4, 131.5, 130.6, 130.4, 129.7, 129.6, 127.0, 126.8, 125.7, 119.6, 118.3, 95.8, 90.2, 65.8, 65.7, 34.8, 31.9, 30.9, 29.57, 29.56, 29.4, 29.34, 29.32, 28.58, 28.56, 26.0, 22.68, 22.67, 13.86.

HRMS (MALDI-TOF, dctb): m/z for $C_{88}H_{116}O_8$ calc 1300.8665, found 1300.8670. UV-Vis: λ [nm] = 247 (ϵ = 62166 Lmol⁻¹cm⁻¹), 316 (ϵ = 53188 Lmol⁻¹cm⁻¹), 487 (ϵ = 23644 Lmol⁻¹cm⁻¹), 517 (ϵ = 28952 Lmol⁻¹cm⁻¹). Fluorescence: λ [nm, (λ_{ex} = 316 nm)] = 549.

PTE-(PPB)₂ (6)

A 1 mL MW-vial was charged with PTE-tolane (5), tetracyclone $^{[2,3]}$ and toluene (1 mL) and sealed with a septum. The reaction mixture was degassed with N₂ for 5 minutes and heated to 220°C for 24 h. The solvent was removed under reduced pressure and the crude was purified by plug chromatography (SiO₂, DCM:Hexane 2:3) to provide the pure products **6a** and **6b** as a pink solid.

1,6-PTE-(PPB)₂ **6a: 5a** (50.0 mg, 0.038 mmol, 1 equiv.), tetracyclone (58.0 mg, 0.096 mmol, 2.5 equiv.); yield 62% (58.0 mg, 0.024 mmol).

¹H-NMR (C₂D₂Cl₄, 500 MHz, 130°C): δ [ppm] = 7.83 (d, *J* = 7.9 Hz, 2H), 7.71 (d, *J* = 7.9 Hz, 2H), 7.57 (s, 2H), 6.78 (d, *J* = 8.6 Hz, 4H), 6.71 (d, *J* = 8.4 Hz, 8H), 6.67 (d, *J* = 7.8 Hz, 4H), 6.55 (d, *J* = 8.1 Hz, 8H), 6.49 – 6.01 (m, 16H), 4.28 (t, *J* = 6.9 Hz, 4H), 3.98 (t,

J = 7.1 Hz, 4H), 1.78 – 1.68 (m, 4H), 1.65 – 1.57 (m, 4H), 1.41 – 1.24 (m, 56H), 1.09 (s, 18H), 1.05 (s, 36H), 0.97 (s, 36H), 0.92 – 0.84 (m, 12H).

¹³C-NMR ($C_2D_2Cl_4$, 126 MHz, 130°C): δ [ppm] = 168.6, 167.9, 148.1, 148.0, 147.9, 142.7, 142.3, 140.1, 139.7, 138.0, 137.6, 137.2, 136.3, 134.3, 132.4, 131.5, 131.45, 131.35, 130.8, 130.0, 128.9, 128.7, 128.5, 127.6, 125.6, 124.8, 123.1, 123.0, 122.9, 120.6, 100.0, 65.1, 65.0, 34.14, 34.09, 34.00, 32.0, 31.5, 31.4, 31.3, 29.74, 29.71, 29.6, 29.5, 29.42, 29.39, 29.38, 28.9, 28.8, 26.3, 26.2, 22.74, 22.72, 14.1.

HRMS (MALDI-TOF, dctb): m/z for C₁₇₆H₂₂₀O₈ calc 2461.6803, found 2461.6882. UV-Vis: λ [nm] = 340 (ϵ = 14100 Lmol⁻¹cm⁻¹), 428 (ϵ = 9675 Lmol⁻¹cm⁻¹), 467(ϵ = 15250 Lmol⁻¹cm⁻¹), 493 (ϵ =17420 L mol⁻¹cm⁻¹).

Fluorescence: λ [nm, (λ_{ex} = 493 nm)] = 533.

1,7-PTE-(PPB)₂ **6b: 5b** (170 mg, 0.131 mmol, 1 equiv.), tetracyclone (200 mg, 0.328 mmol, 2.5 equiv.); yield 72% (232 mg, 0.094 mmol).

¹H-NMR (CD₂Cl₂, 400 MHz, rt): δ [ppm] = 8.35 (d, J = 8.2 Hz, 2H), 7.78 (s, 2H), 7.72 (d, J = 8.2 Hz, 2H), 6.95 – 6.26 (m, 40H), 4.24 (t, J = 7.0 Hz, 4H), 4.15 (t, J = 6.9 Hz, 4H), 1.78 (q, J = 7.2 Hz, 4H), 1.73 – 1.63 (m, 4H), 1.51 – 1.22 (m, 56H), 1.12 (s, 18H), 1.08 (s, 36H), 0.93 – 0.87 (m, 12H), 0.86 (s, 36H). ¹³C-NMR (CD₂Cl₂, 101 MHz, rt): δ [ppm] = 169.1, 168.2, 148.6, 148.5, 148.4, 143.3,

¹³C-NMR (CD₂Cl₂, 101 MHz, rt): δ [ppm] = 169.1, 168.2, 148.6, 148.5, 148.4, 143.3, 142.2, 141.5, 139.3, 138.5, 138.3, 137.4, 137.2, 137.0, 134.5, 133.2, 131.7, 131.6, 131.3, 131.1, 130.7, 129.9, 129.7, 128.9, 127.8, 127.1, 126.5, 123.8, 123.7, 65.8, 65.6, 34.6, 34.5, 34.4, 32.5, 31.50, 31.47, 31.4, 30.3, 30.23, 30.22, 30.04, 29.97, 29.96, 29.3, 26.67, 26.64, 23.3, 14.5.

HRMS (MALDI-TOF, dctb): m/z for C₁₇₆H₂₂₀O₈ calc 2461.6803, found 2461.6809. UV-Vis: λ [nm] = 387 (ϵ = 8000 Lmol⁻¹cm⁻¹), 475 (ϵ = 18730 Lmol⁻¹cm⁻¹), 497 (ϵ = 20830 Lmol⁻¹cm⁻¹).

Fluorescence: λ [nm, (λ_{ex} = 497 nm)] = 550.

PDA-(PPB)₂ (8)

PTE-(PPB)₂ (6) was dissolved in toluene:dodecane 1:5 and heated to 95° C. p-Toluenesulfonic-acid was added and the reaction mixture was stirred at 95 °C for 24 h. The reaction mixture was cooled to rt, dissolved in DCM and washed with H₂O. The crude product was distilled in vacuo to remove remaining decanol and was subjected to plug chromatography (SiO₂, DCM:Hexane 1:1) to provide the title compounds **8a** and **8b** as red solids.

1,6-PDA-(PPB)₂ **8a: 6a** (40.0 mg, 0.016 mmol, 1 equiv.), p-toluenesulfonic-acid (10.0 mg, 0.049 mmol, 3 equiv.), toluene:dodecane 1:5 (2 mL); yield 91% (27.0 mg, 0.015 mmol).

¹H-NMR (CDCl₃, 500 MHz, rt): δ [ppm] = 8.37 (d, *J* = 8.0 Hz, 2H), 8.26 (d, *J* = 8.1 Hz, 2H), 8.14 (s, 2H), 6.94 – 5.96 (m, 40H), 1.09 (s, 18H), 1.05 (s, 36H), 0.93 (s, 36H). ¹³C-NMR (CDCl₃, 126 MHz, rt): δ [ppm] = 160.4, 159.7, 148.2, 148.1, 143.3, 143.2, 141.8, 139.1, 138.9, 137.1, 137.0, 136.9, 136.7, 133.9, 131.7, 131.4, 131.1, 131.0, 130.9, 130.8, 130.6, 129.9, 129.5, 129.3, 129.2, 128.6, 128.0, 127.5, 126.9, 126.7, 123.5, 123.4, 122.9, 117.1, 117.2, 34.3, 34.22, 34.18, 31.31, 31.27, 31.2. HRMS (MALDI-TOF, dctb): *m*/*z* for C₁₃₆H₁₃₆O₆ calc 1865.0331, found 1865.0313. UV-Vis: λ [nm] = 525 (ε = 17630 Lmol⁻¹cm⁻¹), 564 (ε = 19940 Lmol⁻¹cm⁻¹). Fluorescence: λ [nm, (λ_{ex} = 564 nm)] = 612.

1,7-PDA-(PPB)₂ **8b: 6b** (210 mg, 0.085 mmol, 1 equiv.), p-toluenesulfonic-acid (48.0 mg, 0.255 mmol, 3 equiv.), toluene:dodecane 1:5 (4 mL); yield 89% (141 mg, 0.076 mmol).

¹H-NMR (CDCl₃, 400 MHz, rt): δ [ppm] = 8.55 (d, *J* = 8.4 Hz, 2H), 8.38 – 8.26 (m, 4H), 6.70 (d, *J* = 43.9 Hz, 40H), 1.08 (s, 18H), 1.03 (s, 36H), 0.89 (s, 36H).

¹³C-NMR (CDCl₃, 126 MHz, rt): δ [ppm] = 160.5, 159.9, 148.8, 148.2, 148.1, 143.7, 143.1, 141.5, 140.2, 139.0, 138.3, 137.2, 137.1, 136.9, 136.4, 134.9, 131.0, 130.9, 130.6, 129.5, 128.8, 128.2, 127.9, 123.9, 123.5, 123.4, 123.1, 118.2, 116.8, 34.25, 34.19, 34.18, 31.29, 31.25, 31.20.

HRMS (MALDI-TOF, dctb): m/z for C₁₃₆H₁₃₆O₆ calc 1865.0331, found 1865.0363. UV-Vis: λ [nm] = 436 (ϵ = 12800 Lmol⁻¹cm⁻¹), 505 (ϵ = 16680 Lmol⁻¹cm⁻¹), 540 (ϵ = 23300 Lmol⁻¹cm⁻¹).

Fluorescence: λ [nm, (λ_{ex} = 540 nm)] = 639.

PDI-(PPB)₂ (6)

PDA-(PPB)₂ (8), 6-undecylamine and imidazole were stirred at 140 °C for 1 h. The reaction mixture was cooled to rt, dissolved in DCM and washed with H₂O. The crude product was subjected to plug chromatography (SiO₂, DCM:hexanes 1:1) to provide the title compounds **6a** and **6b** as pink solids.

1,6-PDI-(PPB)₂ **6a: 8a** (10.0 mg, 0.005 mmol, 1 equiv.), 6-undecylamine (2.75 mg, 0.016 mmol, 3 equiv.), imidazole (1g); yield 74% (8.00 mg, 3.68 µmol).

¹H-NMR ($C_2D_2CI_4$, 400 MHz, 100°C): δ [ppm] = 8.29 (d, J = 8.1 Hz, 2H), 8.21 (d, J = 8.1 Hz, 2H), 8.06 (s, 2H), 6.92 – 6.55 (m, 28H), 6.50 – 6.11 (m, 12H), 5.21 – 5.09 (m, 1H), 4.91 – 4.79 (m, 1H), 2.34 – 2.20 (m, 2H), 1.99 – 1.89 (m, 2H), 1.87 – 1.75 (m, 2H), 1.77 – 1.68 (m, 2H), 1.31 – 1.20 (m, 24H), 1.09 (s, 18H), 1.03 (s, 36H), 0.88 (s, 36H), 0.85 – 0.74 (m, 12H).

¹³C-NMR (C₂D₂Cl₄, 101 MHz, 100°C): δ [ppm] = 148.2, 148.0, 147.9, 142.72, 142.70, 140.1, 138.9, 137.5, 137.4, 137.3, 136.9, 135.6, 132.9, 131.3, 131.2, 131.1, 129.6, 129.5, 128.5, 128.3, 127.8, 126.9, 126.4, 124.8, 123.0, 122.9, 122.8, 122.6, 54.3, 54.2, 33.98, 33.91, 33.7, 32.4, 32.3, 31.20, 31.19, 31.1, 31.0, 29.6, 27.9, 26.4, 26.3, 22.4, 22.3, 13.9, 13.8, 13.7.

HRMS (MALDI-TOF, dctb): m/z for $C_{158}H_{182}N_2O_4$ calc 2171.4094, found 2171.4075. UV-Vis: λ [nm] = 284 (ϵ = 55900 Lmol⁻¹cm⁻¹), 484 (ϵ = 9800 L mol⁻¹cm⁻¹), 521 (ϵ = 15250 L mol⁻¹cm⁻¹), 559 (ϵ = 21200 L mol⁻¹cm⁻¹). Fluorescence: λ [nm, (λ_{ex} = 559 nm)] = 592.

1,7-PDI-(PPB)₂ **6b: 8b** (20.0 mg, 0.01 mmol, 1 equiv.), 6-undecylamine (5,50 mg, 0.032 mmol, 3 equiv.), imidazole (2g); yield 74% (16.0 mg, 0.007 mmol).

¹H-NMR ($C_2D_2Cl_4$, 500 MHz, 120°C): δ [ppm] = 8.55 (d, J = 8.3 Hz, 2H), 8.34 – 8.26 (m, 4H), 6.85 – 6.79 (m, 4H), 6.78 – 6.72 (m, 12H), 6.67 – 6.64 (m, 8H), 6.59 – 6.41 (m, 16H), 5.12 – 5.02 (m, 2H), 2.22 – 2.11 (m, 4H), 1.93 – 1.77 (m, 4H), 1.35 – 1.21 (m, 24H), 1.10 (s, 18H), 1.04 (s, 36H), 0.87 – 0.82 (m, 48H).

¹³C-NMR ($\dot{C}_2D_2Cl_4$, 126 MHz, 110°C): δ [ppm] = 164.5, 157.6, 148.6, 148.0, 147.9, 143.2, 142.6, 140.5, 140.1, 138.4, 137.4, 137.3, 136.8, 136.1, 133.9, 131.2, 131.0, 130.0, 129.0, 127.8, 127.6, 127.5, 123.1, 123.0, 122.9, 120.4, 54.5, 34.0, 33.9, 33.8, 32.5, 31.9, 31.6, 31.2, 31.1, 31.0, 29.6, 26.5, 22.6, 22.4, 13.9, 13.8.

HRMS (MALDI-TOF, dctb): m/z for C₁₅₈H₁₈₂N₂O₄ calc 2171.4094, found 2171.4125. UV-Vis: λ [nm] = 423 (ϵ = 6020 Lmol⁻¹cm⁻¹), 509 (ϵ = 13870 Lmol⁻¹cm⁻¹), 543 (ϵ = 20720 Lmol⁻¹cm⁻¹).

Fluorescence: λ [nm, (λ_{ex} = 543 nm)] = 597.

S3. NMR- and mass-spectra

¹³C NMR (101 MHz, CDCl₃, rt)

PDI-PPB (3)

HRMS (MALDI-TOF, dctb)

PTE-(Br)₂ (4)

¹³C DEPTq NMR (101 MHz, CD₂Cl₂, rt)

Formula	Mass	Error	mSigma	DblEq	N rule	Electron Configuration
C 64 H 90 Br 2 O 8	1,144.4997	1.9993	78.8865	19.00	ok	odd
C 64 H 84 Br 2 N 5 O 4	1,144.4885	7.8204	81.9492	24.50	ok	even

1.6-PTE-tolane (5a)

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 [ppm]

DEPTq135 NMR (101 MHz, CD₂Cl₂, rt)

SmartFormula

Formula	Mass	Error	mSigma	DblEq	N rule	Electron Configuration	
C 88 H 116 O 8	1,300.8665	0.3797	60.6217	31.00	ok	odd	

HRMS (MALDI-TOF, dctb)

1.7-PTE-tolane (5b)

DEPTq135 NMR (101 MHz, CD₂Cl₂, rt)

1,6-PTE-(PPB)₂ (6a)

 13 C NMR (126 MHz, C₂D₂Cl₄, 130°C)

HRMS (MALDI-TOF, dctb)

¹³C NMR (126 MHz, CDCl₃, rt)

						Configuration
C 136 H 136 O 6	1,865.0331	0.9917	42.6932	69.00	ok	odd

1,7-PDA-(PPB)₂ (8b)

Formula	Mass	Error	mSigma	DblEq	N rule	Electron Configuration
C 136 H 136 O 6	1,865.0331	1.6825	36.5644	69.00	ok	odd

1,6-PDI-(PPB)₂ (7a)

DEPTq135 NMR (101 MHz, $C_2D_2CI_4$, 100°C)

Formula	Mass	Error	mSigma	DblEq	N rule	Electron Configuration
C 158 H 182 N 2 O 4	2,171.4094	0.8733	197.7220	69.00	ok	odd

1,7-PDI-(PPB)₂ (7b)

¹H NMR (500 MHz, C₂D₂Cl₄, 120°C)

0 -2180 m/z 2178 2179 2177 2170 2171 2172 2173 2174 2175 2176 Date of Acquisition 2020-01-21T16:11:22.193+01:00 Acquisition method D:\Methods\flexControlMethods\Don-70-2100.par Processing method File Name D:\Data\2020/2020-Hirsch\Dusold-CD184-dcb-hrr printed: 1/21/2020 4:14:45 PM Per'ormed by Viewed by Bruker Daltonics D:\Data\2020\2020-Hirsch\Dusold-CD184-dctb-hrms\0_M8\1 Date / Sign Date / Sign

SmartFormula

Formula	Mass	Error	mSigma	DblEq	N rule	Electron Configuration
C 158 H 182 N 2 O 4	2,171.4094	1.4022	63.5998	69.00	ok	odd

PDI-tolane (2)

PDI-PPB (3)

PTE-tolane (5a)

1,6-PTE-(PPB)₂ (6a)

1,6-PDA-(PPB)₂ (8a)

1,6-PDI-(PPB)₂ (7a)

S5. Crystal structure analysis

1.7-PTE-tolane 5b

Crystal structure of 1.7-PTE-tolane **5b** depicted as ORTEP model with thermal ellipsoids drawn at a 50 % probability level:

Unit cell with 2 molecules

Crystal packing

1.6-PTE-(PPB)2 6a

Crystal structure of 1.6-PTE-(PPB)₂ **6a** depicted as ORTEP model with thermal ellipsoids drawn at a 50 % probability level:

Crystal packing of 1.6-PTE-(PPB)₂6a:

Unit cell with 2 molecules

θ = 25.7, θ * = 28.5π-π interaction, 3.9 Å

PPB-units facing each other

Crystal packing

Compound	20Hir_CW02_2
Formula	$C_{88}H_{116}O_8$
$D_{calc.}$ / g cm ⁻³	1.118
μ/mm^{-1}	0.539
Formula Weight	1301.80
Colour	clear yellowish
	orange
Shape	needle
Size/mm ³	0.33×0.10×0.08
T/K	113(14)
Crystal System	triclinic
Space Group	<i>P</i> -1
a/Å	16.5010(4)
b/Å	16.5277(4)
c/Å	16.5470(3)
$\alpha/^{\circ}$	84.401(2)
$\beta/^{\circ}$	66.537(2)
γ/°	69.279(2)
V/Å ³	3866.92(17)
Ζ	2
Ζ'	1
Wavelength/Å	1.54184
Radiation type	Cu K $_{\alpha}$
$\Theta_{min}/^{\circ}$	2.862
$\Theta_{max}/^{\circ}$	69.660
Measured Refl's.	69673
Indep't Refl's	14290
Refl's I≥2 σ(I)	11376
R _{int}	0.0505
Parameters	700
Restraints	162
Largest Peak	2.964
Deepest Hole	-1.582
GooF	2.789
<i>wR</i> 2 (all data)	0.5795
wR_2	0.5463
<i>R</i> 1 (all data)	0.2198
R_1	0.1977

Experimental. Single clear yellowish orange needle crystals of **20Hir_CW02_2** recrystallised from a mixture of toluene and methanol by solvent layering. A suitable crystal with dimensions $0.33 \times 0.10 \times 0.08 \text{ mm}^3$ was selected and mounted on a mylar loop on a SuperNova, Dual, Cu at home/near, Atlas diffractometer. The crystal was kept at a steady *T* = 113(14) K during data collection. The structure was solved with the ShelXT 2018/2 (Sheldrick, 2018) solution program using dual methods and by using Olex2 (Dolomanov et al., 2009) as the graphical interface. The model was refined with ShelXL 2018/3 (Sheldrick, 2015) using full matrix least squares minimisation on *F*².

Crystal Data. $C_{88}H_{116}O_8$, $M_r = 1301.80$, triclinic, *P*-1 (No. 2), a = 16.5010(4) Å, b = 16.5277(4) Å, c = 16.5470(3) Å, $a = 84.401(2)^{\circ}$, $b = 66.537(2)^{\circ}$, $g = 69.279(2)^{\circ}$, V = 3866.92(17) Å³, T = 113(14) K, Z = 2, Z' = 1, m(Cu K_a) = 0.539, 69673 reflections measured, 14290 unique (R_{int} = 0.0505) which were used in all calculations. The final
wR_2 was 0.5795 (all data) and R_1 was 0.1977 (I≥2 s(I)).

A clear yellowish orange needle-shaped crystal with dimensions $0.33 \times 0.10 \times 0.08 \text{ mm}^3$ was mounted on a mylar loop. Data were collected using a SuperNova, Dual, Cu at home/near, Atlas diffractometer equipped with a Cryojet - Oxford Instruments low-temperature device operating at T = 113(14) K.

Data were measured using *w* scans using Cu K_a radiation. The diffraction pattern was indexed and the total number of runs and images was based on the strategy calculation from the program CrysAlisPro (Rigaku, V1.171.40.67a, 2019). The maximum resolution that was achieved was $Q = 69.660^{\circ}$ (0.82 Å).

The diffraction pattern was indexed and the total number of runs and images was based on the strategy calculation from the program CrysAlisPro (Rigaku, V1.171.40.67a, 2019). The unit cell was refined using CrysAlisPro (Rigaku, V1.171.40.67a, 2019) on 25917 reflections, 37% of the observed reflections.

Data reduction, scaling and absorption corrections were performed using CrysAlisPro (Rigaku, V1.171.40.67a, 2019). The final completeness is 99.80 % out to 69.660° in Q. A gaussian absorption correction was performed using CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.. The absorption coefficient *m* of this material is 0.539 mm⁻¹ at this wavelength (I = 1.54184Å) and the minimum and maximum transmissions are 0.698 and 1.000.

The structure was solved and the space group *P*-1 (# 2) determined by the ShelXT 2018/2 (Sheldrick, 2018) structure solution program using using dual methods and refined by full matrix least squares minimisation on F^2 using version 2018/3 of ShelXL 2018/3 (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. Hydrogen atom positions were calculated geometrically and refined using the riding model.

_refine_special_details: The measured crystal was unfortunately no single crystal. The Ewald space pattern showed cleary a mulitiple twin. All attempts to index the single twin parts were unsuccessful because of too much overlap of the individual reflections. Nevertheless, the structure solution and refinement, the geometry, space group and resulting packing arrangements etc. are correct. Data were collected at 113 K, but strong disorder especially in the aliphatic chains is still existent and could only get partially resolved: C66-C69:C66a-C69a = 63:37%; C102:C10a = 79:21%, C104:C10b = 79:21%, C107:C10c = 46:54%; C87:C87a=37:63%; C90:C90a = 53:47% occupation. Further disorder along the alipahtic chains couldn't get resolved and resulted finally in a stronger and unassigned rest electron density.

_*exptl_absorpt_process_details*: CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019)Numerical absorption correction based on gaussian integration over a multifaceted crystal modelEmpirical absorption correction using spherical harmonicsas implemented in SCALE3 ABSPACK.

There is a single molecule in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 2 and Z' is 1.

Atom	х	У	Z	U_{eq}
057	8506(3)	5220(3)	475(2)	41.0(9)
058	8603(2)	5702(3)	1643(2)	38.3(9)
071	7686(3)	6200(3)	-872(2)	43.8(10)
072	7498(3)	6944(3)	297(3)	47.5(10)
084	993(2)	5375(3)	4228(2)	38.6(9)
085	1550(2)	4147(2)	3398(2)	34.2(8)
097	1545(3)	5238(3)	5967(2)	43.1(10)
098	2189(3)	4108(3)	4978(2)	39.8(9)
C11	6896(4)	5563(4)	2680(3)	38.8(12)
C12	7127(3)	5688(4)	1786(3)	32.6(11)
C13	6431(3)	5837(3)	1414(3)	29.4(10)
C14	5567(3)	5727(3)	1967(3)	28.2(10)
C15	5321(3)	5658(3)	2898(3)	29.8(10)
C16	5989(4)	5571(4)	3236(3)	37.6(12)
C17	6552(3)	6085(3)	534(3)	30.4(10)
C18	5871(3)	6153(3)	231(3)	31.7(10)
C19	5053(3)	5946(3)	751(3)	28.4(10)
C21	4922(3)	5689(3)	1612(3)	28.4(10)
C22	4170(3)	5359(3)	2146(3)	27.5(10)
C23	3753(3)	4988(3)	1771(3)	30.8(10)
C24	2964(3)	4763(3)	2298(3)	30.4(10)
C25	2586(3)	4894(3)	3203(3)	29.6(10)
C26	3042(3)	5188(3)	3622(3)	30.2(10)
C27	3853(3)	5395(3)	3087(3)	27.1(10)
C28	4377(3)	5657(3)	3462(3)	30.1(10)
C29	3958(3)	5879(3)	4374(3)	31.3(10)
C30	3151(3)	5663(3)	4906(3)	31.5(10)
C31	2739(3)	5279(3)	4559(3)	33.2(11)
C32	4401(3)	6080(3)	346(3)	32.4(11)
C33	3911(4)	6230(3)	-60(3)	33.5(11)
C34	3307(4)	6442(3)	-549(3)	33.0(11)
C35	2440(4)	6349(4)	-212(3)	41.3(12)
C36	1871(4)	6579(4)	-687(4)	44.7(13)
C37	2158(4)	6911(4)	-1516(4)	39.2(12)
C38	3034(4)	6999(6)	-1853(4)	61(2)
C39	3598(4)	6762(5)	-1374(4)	56.8(19)
C40	1491(4)	7224(4)	-2003(4)	45.2(13)
C41	2072(7)	7189(11)	-3016(5)	120(5)
C42	928(7)	6628(6)	-1901(8)	83(3)
C43	882(7)	8147(6)	-1749(7)	81(3)
C44	4275(4)	6324(4)	4815(3)	36.4(12)
C45	4423(4)	6734(4)	5262(3)	35.3(11)
C46	4651(3)	7176(3)	5807(3)	33.7(11)
C47	4241(4)	8070(4)	5994(4)	46.8(14)
C48	4471(5)	8458(4)	6536(5)	53.4(15)
C49	5106(4)	7981(4)	6920(4)	42.9(13)
C50	5516(4)	7097(4)	6702(4)	42.8(13)
C51	5299(4)	6700(4)	6165(4)	39.9(12)
C52	5365(5)	8423(5)	7500(4)	56.1(17)
C53	5933(9)	8976(8)	6927(6)	97(4)
C54	4461(7)	9012(5)	8211(5)	71(2)
C55	5937(6)	7770(6)	7960(5)	69(2)

Table 1: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **20Hir_CW02_2**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Atom	X	v	Z	Uea
C56	8136(4)	5527(4)	1218(3)	37.0(12)
C59	9636(5)	5389(6)	1157(5)	64 6(8)
C61	10078(6)	5519(5)	1746(5)	64.6(8)
C62	9980(6)	6440(5)	1882(5)	64.6(8)
C63	10537(6)	6560(5)	2370(5)	64.6(8)
C64	10493(6)	7486(5)	2383(5)	64.6(8)
C65	10908(5)	7737(5)	2922(5)	64.6(8)
C66	11974(7)	7258(8)	2520(8)	64.6(8)
C67	12550(9)	7639(9)	2788(7)	64.6(8)
C68	12289(9)	7726(9)	3766(7)	64.6(8)
C69	12906(9)	8068(9)	3994(9)	64.6(8)
C70	7325(4)	6380(4)	-91(3)	35.7(11)
C73	8275(10)	7227(10)	-272(9)	112.5(13)
C74	8502(10)	7697(9)	397(9)	112.5(13)
C75	7766(10)	8578(9)	503(9)	112.5(13)
C76	8054(10)	9193(10)	972(9)	112.5(13)
C77	7947(10)	9036(9)	1844(9)	112.5(13)
C78	8166(10)	9757(10)	2286(9)	112.5(13)
C79	8071(10)	9565(10)	3227(9)	112.5(13)
C80	8560(10)	9919(10)	3566(9)	112.5(13)
C81	8492(10)	9704(9)	4454(9)	112.5(13)
C82	7446(9)	9948(9)	5186(9)	112.5(13)
C83	1634(3)	4827(3)	3672(3)	31.5(10)
686	611(8)	4091(6)	3734(7)	85.6(10)
(87	652(17)	3198(9)	3863(13)	85.6(10)
C88	1194(7)	2526(6)	3200(7)	85.6(10)
C89	1184(8)	1/61(6)	2960(7)	85.6(10)
C90	1023(17)	009(0) 106(6)	3028(14)	85.0(10)
C91 C92	1021(0) 1548(10)	205(16)	$\frac{2427(7)}{1741(15)}$	85.6(10)
C92	1536(8)	-429(7)	1741(13) 1269(7)	85 6(10)
C94	1902(8)	-1093(7)	546(7)	85 6(10)
C95	1272(8)	-1124(7)	169(7)	85 6(10)
C96	2072(4)	4892(4)	5242(3)	36.9(12)
C99	1601(9)	3658(7)	5602(7)	97.0(11)
C100	2094(8)	2776(7)	5501(7)	97.0(11)
C101	3010(8)	2282(7)	5440(7)	97.0(11)
C102	3027(9)	2563(9)	6232(8)	97.0(11)
C103	3871(8)	1942(7)	6377(6)	97.0(11)
C104	3992(10)	2077(9)	7188(8)	97.0(11)
C105	4759(8)	1575(7)	7443(6)	97.0(11)
C106	4938(9)	1744(7)	8204(6)	97.0(11)
C107	5010(30)	1001(14)	8740(15)	97.0(11)
C108	4940(9)	1289(7)	9620(7)	97.0(11)
C66A	11098(14)	7348(14)	3682(12)	64.6(8)
C67A	11763(13)	7679(15)	3838(11)	64.6(8)
C68A	11265(14)	7818(15)	4811(10)	64.6(8)
C69A	11576(15)	8187(14)	5364(13)	64.6(8)
C00A	659(12)	3409(7)	3214(12)	85.6(10)
C024	1/28(12)	1096(8) 470(12)	2253(10)	85.6(10)
C92A	2660(20)	-4/U[13] 1624(17)	1313(10) 5720(20)	107 (0J 07 0(11)
CIOR	3000(30)	1024(17) 2000(20)	5750(30J 6780(20)	97.0(11) 07.0(11)
C10D	5480(40)	2090(30) 1137(1 <i>1</i>)	8580(13)	97.0(11)
0100	5400(10)	1137(14)	0000[10]	J7.0(11)

Table 2: Anisotropic Displacement Parameters (×10⁴) for **20Hir_CW02_2**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$

Atom	<i>U</i> ₁₁	U 22	U 33	U 23	U ₁₃	U ₁₂	
057	36.2(19)	61(2)	24.4(18)	-9.4(16)	-4.8(14)	-20.9(17)	

Atom	U ₁₁	U 22	U 33	U 23	U ₁₃	U ₁₂
058	31.6(17)	57(2)	29.7(18)	-7.5(16)	-9.9(14)	-18.2(16)
071	43(2)	73(3)	22.6(17)	8.3(17)	-8.7(15)	-34.1(19)
072	51(2)	56(2)	41(2)	-1.5(18)	-9.7(17)	-34(2)
084	33.8(18)	48(2)	30.5(18)	-5.4(16)	-3.3(15)	-19.3(16)
085	32.9(17)	46(2)	27.2(17)	-1.5(15)	-9.6(14)	-19.5(15)
097	45(2)	69(3)	16.1(16)	-3.3(16)	-2.0(15)	-31.2(19)
098	41(2)	50(2)	26.0(17)	6.2(15)	-7.0(15)	-21.3(17)
C11	37(3)	59(3)	24(2)	-1(2)	-15(2)	-18(2)
C12	31(2)	47(3)	22(2)	-4(2)	-6.4(18)	-18(2)
C13	36(2)	36(2)	18(2)	-6.1(18)	-8.8(18)	-14.5(19)
C14	32(2)	33(2)	21(2)	-3.2(18)	-8.4(18)	-13.2(19)
C15	31(2)	37(3) E7(2)	23(2)	-2.0(19)	-9.0(18)	-15.1(19)
C10 C17	33(2)	36(3)	25(2)	-3(2)	-9(2)	-17(2)
C18	31(2) 36(2)	39(3)	23(2) 21(2)	-0.9(19)	-7.9(10)	-17(2)
C19	32(2)	37(2)	18(2)	-1.7(18)	-8.6(17)	-15.2(19)
C21	32(2)	33(2)	21(2)	-4.2(18)	-7.8(18)	-13.9(19)
C22	29(2)	33(2)	19(2)	-1.2(17)	-7.9(17)	-10.6(18)
C23	37(2)	40(3)	18(2)	-1.7(18)	-8.9(18)	-17(2)
C24	37(2)	39(3)	19(2)	-4.0(18)	-9.6(18)	-18(2)
C25	35(2)	36(2)	21(2)	2.0(18)	-9.4(18)	-18.5(19)
C26	33(2)	35(2)	21(2)	-1.5(18)	-8.8(18)	-12.2(19)
C27	31(2)	30(2)	22(2)	-0.3(17)	-10.3(18)	-12.8(18)
C28	33(2)	41(3)	19(2)	1.9(18)	-9.3(18)	-16(2)
C29	36(2)	41(3)	16(2)	1.0(18)	-6.4(18)	-17(2)
C30	34(2)	44(3)	1/(2)	0.1(19)	-0.2(18)	-18(2)
C32	34(2)	44(3)	23(2) 19(2)	-4(2)	-7.9(19)	-10(2)
C32	38(3)	46(3)	24(2)	3(2)	-13(2)	-21(2)
C34	37(2)	44(3)	27(2)	0(2)	-16(2)	-19(2)
C35	41(3)	60(3)	28(2)	2(2)	-11(2)	-25(3)
C36	37(3)	65(4)	37(3)	2(3)	-10(2)	-28(3)
C37	39(3)	45(3)	35(3)	-6(2)	-12(2)	-16(2)
C38	43(3)	120(6)	33(3)	22(3)	-21(3)	-40(4)
C39	43(3)	110(6)	35(3)	28(3)	-21(3)	-47(4)
C40	42(3)	57(3)	46(3)	-7(3)	-23(2)	-20(3)
C41	66(5)	244(16)	45(4)	-20(6)	-31(4)	-30(7)
C42	73(5)	86(6)	124(8)	11(5)	-68(5)	-34(4)
C43	92(6) 37(3)	67(5) 50(3)	111(7) 22(2)	-2(5)	-/5(0)	-13(4) 18(2)
C44 C45	37(3) 42(3)	30(3) A8(3)	22(2) 21(2)	4(2) 1(2)	-9.2(19)	-10(2)
C46	$\frac{42}{34}$	43(3)	28(2)	0(2)	-100(19)	-20(2)
C47	53(3)	40(3)	50(3)	-2(3)	-26(3)	-11(2)
C48	58(4)	38(3)	66(4)	-7(3)	-26(3)	-14(3)
C49	53(3)	49(3)	33(3)	-4(2)	-13(2)	-26(3)
C50	55(3)	45(3)	40(3)	2(2)	-27(3)	-21(3)
C51	51(3)	37(3)	40(3)	-2(2)	-24(2)	-16(2)
C52	73(4)	64(4)	45(3)	-14(3)	-16(3)	-43(4)
C53	136(9)	137(9)	60(5)	-13(5)	-24(5)	-107(8)
C54	99(6)	67(5)	53(4)	-26(4)	-29(4)	-28(4)
	65(4) 25(2)	92(6) 51(2)	68(4) 20(2)	-24(4)	-34(4)	-30(4)
C50 C59	55(5) 63 7(16)	51(5) 726(19)	29(3) 66 2(17)	-1(2) 0 /(12)	-12(2) _20 /(12)	-20(2) -29 1(12)
C61	63 7(16)	73.6(10)	66 2(17)	0.4(13)	-29.4(13)	-29.1(13)
C62	63.7(16)	73.6(18)	66.2(17)	0.4(13)	-29.4(13)	-29.1(13)
C63	63.7(16)	73.6(18)	66.2(17)	0.4(13)	-29.4(13)	-29.1(13)
C64	63.7(16)	73.6(18)	66.2(17)	0.4(13)	-29.4(13)	-29.1(13)
C65	63.7(16)	73.6(18)	66.2(17)	0.4(13)	-29.4(13)	-29.1(13)
C66	63.7(16)	73.6(18)	66.2(17)	0.4(13)	-29.4(13)	-29.1(13)
C67	63.7(16)	73.6(18)	66.2(17)	0.4(13)	-29.4(13)	-29.1(13)
C68	63.7(16)	73.6(18)	66.2(17)	0.4(13)	-29.4(13)	-29.1(13)

Atom	<i>U</i> ₁₁	U 22	U 33	U 23	<i>U</i> ₁₃	U ₁₂
C69	63.7(16)	73.6(18)	66.2(17)	0.4(13)	-29.4(13)	-29.1(13)
C70	36(3)	41(3)	31(3)	2(2)	-11(2)	-18(2)
C73	114(3)	122(3)	110(3)	10(2)	-31(2)	-66(3)
C74	114(3)	122(3)	110(3)	10(2)	-31(2)	-66(3)
C75	114(3)	122(3)	110(3)	10(2)	-31(2)	-66(3)
C76	114(3)	122(3)	110(3)	10(2)	-31(2)	-66(3)
C77	114(3)	122(3)	110(3)	10(2)	-31(2)	-66(3)
C78	114(3)	122(3)	110(3)	10(2)	-31(2)	-66(3)
C79	114(3)	122(3)	110(3)	10(2)	-31(2)	-66(3)
C80	114(3)	122(3)	110(3)	10(2)	-31(2)	-66(3)
C81	114(3)	122(3)	110(3)	10(2)	-31(2)	-66(3)
C82	114(3)	122(3)	110(3)	10(2)	-31(2)	-66(3)
C83	34(2)	40(3)	19(2)	-0.3(19)	-7.4(19)	-14(2)
C86	95(2)	80(2)	91(2)	-4.8(17)	-38.3(19)	-36.5(18)
C87	95(2)	80(2)	91(2)	-4.8(17)	-38.3(19)	-36.5(18)
C88	95(2)	80(2)	91(2)	-4.8(17)	-38.3(19)	-36.5(18)
C89	95(2)	80(2)	91(2)	-4.8(17)	-38.3(19)	-36.5(18)
C90	95(2)	80(2)	91(2)	-4.8(17)	-38.3(19)	-36.5(18)
C91	95(2)	80(2)	91(2)	-4.8(17)	-38.3(19)	-36.5(18)
C92	95(2)	80(2)	91(2)	-4.8(17)	-38.3(19)	-36.5(18)
C93	95(2)	80(2)	91(2)	-4.8(17)	-38.3(19)	-36.5(18)
C94	95(2)	80(2)	91(2)	-4.8(17)	-38.3(19)	-36.5(18)
C95	95(2)	80(2)	91(2)	-4.8(17)	-38.3(19)	-36.5(18)
C96	34(2)	54(3)	24(2)	0(2)	-8(2)	-19(2)
C99	108(3)	91(2)	75(2)	7.8(18)	-16.7(19)	-38(2)
C100	108(3)	91(2)	75(2)	7.8(18)	-16.7(19)	-38(2)
C101	108(3)	91(2)	75(2)	7.8(18)	-16.7(19)	-38(2)
C102	108(3)	91(2)	75(2)	7.8(18)	-16.7(19)	-38(2)
C103	108(3)	91(2)	75(2)	7.8(18)	-16.7(19)	-38(2)
C104	108(3)	91(2)	75(2)	7.8(18)	-16.7(19)	-38(2)
C105	108(3)	91(2)	75(2)	7.8(18)	-16.7(19)	-38(2)
C106	108(3)	91(2)	75(Z)	7.8(18)	-16./(19)	-38(2)
C107	108(3)	91(2)	75(2)	7.8(18)	-16.7(19)	-38(2)
	108(3)	91(2)	75(2)	7.8(18)	-16.7(19)	-38(2)
C67A	63.7(10)	73.0(18)	66.2(17)	0.4(13)	-29.4(13)	-29.1(13)
C60A	63.7(10)	73.0(18)	66.2(17)	0.4(13)	-29.4(13)	-29.1(13)
C60A	63.7(10)	73.0(10)	00.2(17)	0.4(13)	-29.4(13)	-29.1(13) 201(12)
C09A	05.7(10)	73.0(10) 90(2)	00.2(17)	0.4(13)	-29.4(13)	-29.1(13) 26 $E(19)$
	95(2)	80(2)	91(2)	-4.0(17)	-30.3(19)	-30.3(10) 265(18)
C90A	93(4) 101(14)	00(2) 73(11)	91(4) 132(17)	-4.0(17) -20(11)	-30.3(17)	-30.3(10)
C10A	102(14)	91(2)	75(2)	7 8(18)	-167(10)	-13(7)
CIOR	108(3)	91(2)	75(2)	7.0(10)	-167(19)	-38(2)
C10C	108(3)	91(2)	75(2)	7.0(10)	-167(19)	-38(2)
0100	100(3)	11(4)	/3(4)	1.0(10)	-10.7(19)	-30(2)

Table 3: Bond Lengths in Å for 20Hir_CW02_2.

<u> </u>		
Atom	Atom	Length/A
057	C56	1.203(6)
058	C56	1.343(6)
058	C59	1.478(9)
071	C70	1.205(6)
072	C70	1.347(7)
072	C73	1.458(12)
084	C83	1.223(6)
085	C83	1.322(6)
085	C86	1.458(11)
097	C96	1.214(6)
098	C96	1.331(7)
098	C99	1.457(11)

Atom	Atom	Length/Å
C11	C12	1.388(7)
C11	C16	1.406(7)
C12	C13	1.445(7)
C12	C56	1.488(7)
C13	C14	1.419(7)
C13	C17	1.428(6)
C14	C15	1.433(6)
C14	C21	1.427(6)
C15	C16	1.383(7)
C15	C28	1.463(7)
C17	C18	1.367(7)
C17	C70	1.492(7)

		9
Atom	Atom	Length/A
C18	C19	1.424(7)
C19	C21	1.399(6)
C19	C32	1.425(7)
C21	C22	1.460(6)
C22	C23	1.396(7)
C22	C27	1 431(6)
C23	C24	1403(7)
C24	C25	1 379(6)
C25	C26	1.375(0) 1 421(7)
C25	C83	1.121(7) 1.488(7)
C26	C03	1.400(7) 1 $10(7)$
C26	C21	1.419(7) 1 422(7)
C20	C31	1.432(7)
C27	C28	1.43/(/)
C28	629	1.410(6)
C29	C30	1.421(7)
C29	C44	1.425(7)
C30	C31	1.372(7)
C31	C96	1.505(7)
C32	C33	1.194(7)
C33	C34	1.452(6)
C34	C35	1.373(7)
C34	C39	1.375(7)
C35	C36	1.385(8)
C36	C37	1.387(8)
C37	C38	1.384(8)
C37	C40	1.534(7)
C38	C39	1.384(8)
C40	C41	1.560(11)
C40	C42	1.532(10)
C40	C43	1 489(11)
C44	C45	1 193(8)
C45	C46	1 443(7)
C46	C47	1 398(8)
C46	C51	1 389(8)
C40	C18	1 2 2 2 (0)
C47	C40	1.302(9)
C40	CF0	1.400(9)
C49	C50	1.309(9)
C49	C52	1.524(8)
C50	C51	1.3/3(8)
U52	L53	1.531(11)
C52	L54	1.535(11)
C52	C55	1.524(12)
C59	C61	1.499(9)
C61	C62	1.503(9)
C62	C63	1.514(8)
C63	C64	1.508(9)
C64	C65	1.482(8)
C65	C66	1.532(11)

Atom	Atom	Length/Å
C65	C66A	1.452(13)
C66	C67	1.518(11)
C67	C68	1.508(11)
C68	C69	1.502(11)
C73	C74	1.636(19)
C74	C75	1.50(2)
C75	C76	1.630(18)
C76	C77	1.392(18)
C77	C78	1.665(17)
C78	C79	1.515(18)
C79	C80	1.437(17)
C80	C81	1.446(18)
C81	C82	1.596(18)
C86	C87	1.451(14)
C86	C87A	1.446(12)
C87	C88	1.411(14)
C88	C89	1.369(13)
C88	C87A	1.410(13)
C89	C90	1.411(14)
C89	C90A	1.449(13)
C90	C91	1.426(14)
C91	C92	1.38(2)
C91	C90A	1.453(13)
C91	C92A	1.70(2)
C92	C93	1.38(2)
C93	C94	1.487(14)
C93	C92A	1.413(19)
C94	C95	1.426(14)
C99	C100	1.384(15)
C100	C101	1.409(11)
C101	C102	1.446(12)
C101	C10A	1.433(15)
C102	C103	1.502(12)
C103	C104	1.481(12)
C103	C10A	1.440(15)
C103	C10B	1.445(15)
C104	C105	1.442(12)
C105	C106	1.474(11)
C105	C10B	1.471(15)
C106	C107	1.442(14)
C106	C10C	1.37(2)
C107	C108	1.53(3)
C108	C10C	1.59(2)
C66A	C67A	1.500(14)
C67A	C68A	1.485(14)
C68A	C69A	1.476(13)

Table 4: Bond Angles in ° for 20Hir_CW02_2.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/
C56	058	C59	113.9(4)	C14	C13	C12	117.4(4)
C70	072	C73	115.0(6)	C14	C13	C17	117.9(4)
C83	085	C86	117.1(5)	C17	C13	C12	124.7(4
C96	098	C99	116.6(6)	C13	C14	C15	120.5(4
C12	C11	C16	120.8(4)	C13	C14	C21	121.0(4
C11	C12	C13	120.2(4)	C21	C14	C15	118.5(4
C11	C12	C56	117.4(4)	C14	C15	C28	119.0(4
C13	C12	C56	121.7(4)	C16	C15	C14	119.1(4

Atom	Atom	Atom	Angle /°	•	Atom	Atom	Atom	Angle /°
Atom	Atom	Atom	Angle/		Atom	Atom	Atom	Angle/
C16	C15	C28	121.9(4)		C48	C49	C52	121.3(6)
C15	C16	C11	120.8(4)		C50	C49	C48	116.1(5)
C13	C17	C70	125.8(4)		C50	C49	C52	122.4(6)
C18	C17	C13	119.8(4)		C51	C50	C49	122.5(5)
C18	C17	C70	114.1(4)		C50	C51	C46	120.7(5)
C17	C18	C19	122.3(4)		C49	C52	C53	108.8(5)
C18	C19	C32	115.0(4)		C49	C52	C54	109.3(6)
C21	C19	C18	119.1(4)		C53	C52	C54	109.0(7)
C21	C19	C32	125.7(4)		C55	C52	C49	111.9(6)
C14	C21	C22	119.1(4)		C55	C52	C53	109.6(8)
C19	C21	C14	118.5(4)		C55	C52	C54	108.2(6)
C19	C21	C22	122.4(4)		057	C56	058	123.5(5)
C23	C22	C21	122.3(4)		057	C56	C12	123.4(5)
C23	C22	C27	118.0(4)		058	C56	C12	112.9(4)
C27	C22	C21	119.7(4)		058	C59	C61	108.5(6)
C22	C23	C24	120.9(4)		C59	C61	C62	115.3(7)
C25	C24	C23	120.9(4)		C61	C62	C63	115.3(7)
C24	C25	C26	120.1(4)		C64	C63	C62	111.9(6)
C24	C25	C83	115.8(4)		C65	C64	C63	118.8(7)
C26	C25	C83	123.5(4)		C64	C65	C66	107.9(7)
C25	C26	C31	123.9(4)		C66A	C65	C64	130.9(9)
C27	C26	C25	118.6(4)		C67	C66	C65	115.1(9)
C27	C26	C31	117.5(4)		C68	C67	C66	115.6(10)
C22	C27	C28	117.6(4)		C69	C68	C67	113.6(10)
C26	C27	C22	120.6(4)		071	C70	072	123.8(5)
C26	C27	C28	121.8(4)		071	C70	C17	123.2(5)
C27	C28	C15	1194(4)		072	C70	C17	112.6(4)
C29	C28	C15	122.9(4)		072	C73	C74	1050(9)
C29	C28	C27	117.6(4)		C75	C74	C73	991(12)
C28	C29	C30	1189(4)		C74	C75	C76	1049(11)
C28	C29	C44	1248(4)		C77	C76	C75	1164(10)
C30	C29	C44	1163(4)		C76	C77	C78	1124(10)
C31	C30	C29	1224(4)		C79	C78	C77	112.1(10) 111.7(10)
C26	C31	C96	1263(5)		C80	C79	C78	1165(10)
C30	C31	C26	120.5(3) 1199(4)		C79	C80	C81	116.0(10)
C30	C31	C20	113.7(4) 113.4(4)		C80	C81	C82	115.0(11) 115.2(12)
C33	C32	C10	173.7(7)		084	C83	085	124.4(4)
(32	C32	C34	1782(6)		084	C83	C25	127.7(7) 122.7(5)
C2E	C24	C22	170.2(0) 122.4(4)		004	C03	C25	122.2(3) 112.4(4)
C2E	C24	C20	122.4(4) 1101(E)		005	C05	0.25	113.4(4) 111.0(12)
C20	C24	C22	110.1(3) 110E(4)			C86	085	111.0(12) 106.0(10)
C34	C2F	C35	119.5(4)		COO		005	100.9(10)
C34	C35	C30	120.8(5)					124.3(15) 120.0(12)
C35		C37	121.2(5)		600			139.8(13)
C30	C37	C40	120.5(5)		C09	C88	C87A	135.3(11)
C38	C37	C36	117.6(5)			C89	C90	137.4(12)
C38	L37	C40	121.8(5)		688	689	C90A	139.0(11)
C37	C38	639	120.6(5)		(89	C90	C91	125.5(15)
C34	639	C38	121.6(5)		C92	C91	C90	131.4(15)
C37	C40	C41	109.8(5)		C90A	C91	C92A	115.0(12)
C42	C40	C37	112.5(6)		C93	C92	C91	133.8(19)
C42	C40	C41	104.2(8)		C92	C93	C94	157.0(14)
C43	C40	C37	110.9(5)		C92A	C93	C94	108.9(11)
C43	C40	C41	106.0(8)		C95	C94	C93	117.7(9)
C43	C40	C42	112.9(7)		097	C96	098	125.1(5)
C45	C44	C29	171.5(5)		097	C96	C31	122.8(5)
C44	C45	C46	176.1(6)		098	C96	C31	111.8(4)
C47	C46	C45	122.5(5)		C100	C99	098	109.5(9)
C51	C46	C45	119.2(5)		C99	C100	C101	132.4(12)
C51	C46	C47	118.3(5)		C100	C101	C102	102.8(10)
C48	C47	C46	120.0(5)		C100	C101	C10A	153(2)
C47	C48	C49	122.2(6)		C101	C102	C103	108.9(10)

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	An
C104	C103	C102	117.9(10)	C68A	C67A	C66A	97.2
C10A	C103	C10B	158(3)	C69A	C68A	C67A	123
C105	C104	C103	127.0(11)	C88	C87A	C86	124
C104	C105	C106	127.9(11)	C89	C90A	C91	120.
C10B	C105	C106	136.5(19)	C93	C92A	C91	108
C107	C106	C105	110.1(15)	C101	C10A	C103	113
C10C	C106	C105	125.3(13)	C103	C10B	C105	128
C106	C107	C108	107.4(17)	C106	C10C	C108	107
C65	C66A	C67A	110.4(14)				

Table 5: Torsion Angles in ° for 20Hir_CW02_2.

Atom	Atom	Atom	Atom	Angle/°
058	C59	C61	C62	-74.0(8)
072	C73	C74	C75	-83.0(12)
085	C86	C87	C88	-55(2)
085	C86	C87A	C88	64.9(18)
098	C99	C100	C101	47.8(17)
C11	C12	C13	C14	-8.7(8)
C11	C12	C13	C17	171.4(5)
C11	C12	C56	057	144.1(6)
C11	C12	C56	058	-31.4(7)
C12	C11	C16	C15	3.5(9)
C12	C13	C14	C15	13.1(7)
C12	C13	C14	C21	-167.4(5)
C12	C13	C17	C18	175.7(5)
C12	C13	C17	C70	-11.4(8)
C13	C12	C56	057	-26.4(9)
C13	C12	C56	058	158.1(5)
C13	C14	C15	C16	-9.5(7)
C13	C14	C15	C28	172.3(4)
C13	C14	C21	C19	-13.5(7)
C13	C14	C21	C22	164.4(4)
C13	C17	C18	C19	-3.1(8)
C13	C17	C70	071	143.4(6)
C13	C17	C70	072	-43.7(7)
C14	C13	C17	C18	-4.2(7)
C14	C13	C17	C70	168.6(5)
C14	C15	C16	C11	1.0(8)
C14	C15	C28	C27	23.6(7)
C14	C15	C28	C29	-158.3(5)
C14	C21	C22	C23	-154.5(5)
C14	C21	C22	C27	24.2(7)
C15	C14	C21	C19	166.0(4)
C15	C14	C21	C22	-16.1(7)
C15	C28	C29	C30	-164.9(5)
C15	C28	C29	C44	16.1(8)
C16	C11	C12	C13	0.5(9)
C16	C11	C12	C56	-170.2(5)
C16	C15	C28	C27	-154.6(5)
C16	C15	C28	C29	23.5(8)
C17	C13	C14	C15	-166.9(4)
C17	C13	C14	C21	12.6(7)
C17	C18	C19	C21	2.2(7)
C17	C18	C19	C32	178.1(5)

Atom	Atom	Atom	Atom	Angle/°
C18	C17	C70	071	-43.4(7)
C18	C17	C70	072	129.5(5)
C18	C19	C21	C14	6.0(7)
C18	C19	C21	C22	-171.8(5)
C19	C21	C22	C23	23.3(7)
C19	C21	C22	C27	-157.9(5)
C21	C14	C15	C16	171.0(5)
C21	C14	C15	C28	-7.2(7)
C21	C22	C23	C24	-172.9(5)
C21	C22	C27	C26	171.4(4)
C21	C22	C27	C28	-7.9(7)
C22	C23	C24	C25	-0.7(8)
C22	C27	C28	C15	-15.6(7)
C22	C27	C28	C29	166.2(4)
C23	C22	C27	C26	-9.8(7)
C23	C22	C27	C28	170.9(5)
C23	C24	C25	C26	-5.7(8)
C23	C24	C25	C83	166.3(5)
C24	C25	C26	C27	4.1(7)
C24	C25	C26	C31	-175.2(5)
C24	C25	C83	084	-131.6(5)
C24	C25	C83	085	45.4(6)
C25	C26	C27	C22	3.7(7)
C25	C26	C27	C28	-177.1(4)
C25	C26	C31	C30	-172.2(5)
C25	C26	C31	C96	16.0(8)
C26	C25	683	084	40.1(7)
C26	C25	C83	085	-142.9(5)
C26	C27	C28	C15	105.1(5) 121(7)
C26	C21	C26	007	-13.1(7) 149 E(E)
C26	C21	C96	097	-140.5(5)
C27	C22	C22	098 C24	30.3(7) 8 2(7)
C27	C26	C23	C24 C30	85(7)
C27	C26	C31	C96	-1633(5)
C27	C28	C29	C30	132(7)
C27	C28	C29	C44	-165.8(5)
C28	C15	C16	C11	1791(5)
C28	C29	C30	C31	-2 8(8)
C29	C30	C31	C26	-84(8)
C29	C30	C31	C96	164.4(5)
C30	C31	C96	097	39.2(7)
C30	C31	C96	098	-135.7(5)
C31	C26	C27	C22	-177.0(4)
C31	C26	C27	C28	2.2(7)
C32	C19	C21	C14	-169.4(5)
C32	C19	C21	C22	12.8(8)
C33	C34	C35	C36	178.2(6)
C33	C34	C39	C38	-177.9(7)
C34	C35	C36	C37	0.0(10)
C35	C34	C39	C38	1.0(11)
C35	C36	C37	C38	0.4(10)
C35	C36	C37	C40	-175.6(6)
C36	C37	C38	C39	-0.1(11)
C36	C37	C40	C41	-156.0(8)
C36	C37	C40	C42	-40.4(9)
C36	C37	C40	C43	87.2(8)
C37	C38	C39	C34	-0.6(13)
C38	C37	C40	C41	28.2(10)
C38	C37	C40	C42	143.8(8)
C38	C37	C40	C43	-88.6(9)

Atom	Atom	Atom	Atom	Angle/°
C39	C34	C35	C36	-0.7(9)
C40	C37	C38	C39	175.8(7)
C44	C29	C30	C31	1762(5)
C45	C46	C47	C48	1786(6)
C45	C46	C51	C50	-1785(5)
C46	C47	C48	C49	-0.5(10)
C40	C46	C51	C50	11(8)
C47	C40	C49	C50	2.0(9)
C47	C48	C49	C52	178.8(6)
C48	C40	C50	C51	-1 9(9)
C48	C49	C52	C53	-1.7(7)
C40	C49	C52	C54	-07.9(9) 51.0(9)
C40	C49	C52	C55	170.9(6)
C40	C50	C51	C16	0.4(0)
CF0	C40	C51	CF2	1097(0)
C50	C49	C52	C53	100.7(9) 122.4(7)
C50	C49	C52	C54	-132.4(7)
C50	C49	C52	C35	-12.6(9)
C51	C40			-1.1(9)
C52	050	C50	C51	-1/8.0(6)
C56	058	C12	C61	-1/2./(5)
C56	C12	C13	C14	161.6(5)
C56	C12		C17	-18.3(8)
C59	058	C56	057	-6.8(8)
C59	058	C56	C12	168.6(5)
C59	C61	C62	C63	-1/1.9(/)
C61	C62	C63	C64	1/3.1(/)
C62	63	C64	L65	173.0(7)
63	C64	C65	C66	65.8(10)
C63	C64	C65	C66A	-23.1(17)
C64	C65		C67	161.1(9)
C64	C65	C66A	C6/A	164.0(12)
C65	L66	C67	C68	56.2(15)
C65	C66A	C67A	C68A	136.6(17)
C66	072	C08	C69	1//.4(11)
C70	072	C/3	C/4	-166.4(8)
C70	072	C18	071	-1/6./(5)
C73	072	C70	0/1	-9.7(10)
C73	072	C70	C1/	1/7.5(8)
C73	C74	C75	C76	-167.3(9)
C74	C75	C76	C70	-69.3(15)
C/5	C/6	L//	C/8	-1/4./(11)
C/6	C70	C78	C79	-1/8.5(13)
C70	C78	C79	C80	157.8(13)
C70	C79	C80	C81	-1/7.8(13)
C/9	C80	C81	C82	-55.7(18)
683	085	C86	C87	-144./(10)
	085		C87A	168.4(8)
	C25	C26	C27	-167.2(4)
	C25	C26	C31	13.5(8)
	085	C83	084	5.0(8)
	085		C25	-1/2.0(6)
			C00 A	-150.5(10)
C00	C00	C00	090A C01	170[2] 151 1(10)
C00	C07	C00 A	U71 C01	-151.1(10)
C00	007 COO	C97A	C96	140.4(14)
609 600		το/Α C01	100 202	100.3(13)
609 600	690 601	C02	692 602	-10(4)
C01	C02	692 602	C04	-103(2)
C02	692 C02	C04	694 605	-71(4) 120(2)
C04	693 602	U74 C024	695 601	-138(3)
L94	693	692A	691	-1/2.6(11)

Atom	Atom	Atom	Atom	Angle/°
C96	098	C99	C100	-146.9(8)
C99	098	C96	097	3.1(9)
C99	098	C96	C31	177.9(7)
C99	C100	C101	C102	55.1(16)
C99	C100	C101	C10A	122(3)
C100	C101	C102	C103	166.1(10)
C100	C101	C10A	C103	-90(4)
C101	C102	C103	C104	-176.2(11)
C102	C103	C104	C105	-178.1(13)
C103	C104	C105	C106	174.0(12)
C104	C105	C106	C10C	158.4(18)
C105	C106	C107	C108	-165.7(17)
C105	C106	C10C	C108	-137.2(13)
C106	C105	C10B	C103	-146(3)
C66A	C67A	C68A	C69A	-177(2)
C87A	C88	C89	C90	-171(2)
C90A	C91	C92A	C93	-85.5(18)
C92A	C91	C90A	C89	167.7(13)
C92A	C93	C94	C95	-176.6(14)
C10A	C103	C10B	C105	-93(7)
C10B	C103	C10A	C101	-128(4)
C10B	C105	C106	C107	165(3)

Table 6: Hydrogen Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **20Hir_CW02_2**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Atom	х	У	Z	U_{eq}	
H11	7346.45	5471.61	2914.47	47	_
H16	5836.69	5517.76	3839.04	45	
H18	5945.91	6342.24	-333.4	38	
H23	4001.13	4888.39	1162.06	37	
H24	2692.75	4522.94	2034.37	36	
H30	2891.82	5786.9	5511.01	38	
H35	2231.86	6127.34	342.1	50	
H36	1286.92	6510.31	-446.15	54	
H38	3247.11	7218.38	-2407.13	74	
H39	4187.25	6820.46	-1615.5	68	
H41A	2453.45	7544.76	-3136.8	180	
H41B	1651.19	7397.46	-3317.14	180	
H41C	2469.76	6601.59	-3218.58	180	
H42A	1343.25	6035.99	-2002.09	124	
H42B	638.22	6765.38	-2321.04	124	
H42C	450.38	6710.18	-1314.51	124	
H43A	535.04	8212.1	-1122.05	122	
H43B	451.52	8320.18	-2040.63	122	
H43C	1268.03	8503.25	-1921.37	122	
H47	3813.89	8404.93	5754	56	
H48	4195.38	9054.65	6649.34	64	
H50	5955.12	6761.21	6929.58	51	
H51	5587.74	6105.49	6039.77	48	
H53A	6538.93	8605.13	6536.63	145	
H53B	6012.49	9329.1	7297.1	145	
H53C	5603.68	9340.79	6586.15	145	
H54A	4068.9	9400.93	7936.17	107	
H54B	4619.66	9340.52	8536.4	107	
H54C	4129.04	8664.59	8605.78	107	
H55A	5649.26	7340.98	8207.18	104	
H55B	5954.43	8063.61	8422.12	104	
H55C	6566.09	7494.02	7540.14	104	
H59A	9803.62	5707.52	627.74	78	

Atom	v	17	77	11
	<u>X</u>	<u>y</u>	002.7	<i>Ueq</i>
H59B	9861.42	4//9.29	983./	/8 70
	10/42.//	51/4.07	1499.22	/8 70
HOID	9799.09	5299.37	2317.01	/8
HOZA	9319.65	6/66.95	2205.44	/8
H62B	101/4.94	6685.62	1309.26	/8
H63A	10290.98	6387.93	2971.82	78
H63B	11188.78	6186.84	2089.45	78
H64A	10799.81	7623.6	1778.76	78
H64B	9835.91	7852.79	2584.15	78
H65A	10643.61	7579.8	3526.67	78
H65B	10773.02	8357.65	2920.31	78
H65C	11510.21	7756.28	2499.76	78
H65D	10517.98	8333.92	3118.28	78
H66A	12100.34	6661.43	2689.69	78
H66B	12186.82	7252.05	1882.96	78
H67A	13207.54	7277.71	2515.38	78
H67B	12488.32	8207.54	2550.1	78
H68A	11641.28	8110.88	4038.84	78
H68B	12325.7	7162.86	4012.25	78
H69A	13545.61	7680.9	3742.81	97
H69B	12700.73	8112.45	4623.58	97
H69C	12865 2	8630.01	3761 63	97
H73A	8094.85	7630 53	-688 57	135
H73R	8820.05	6735 75	-597 78	135
1173D 1174A	8412.67	7/16/6	052.10	125
П/4А Ц7/Д	0412.07	7410.40	122.60	133
	9133.30	7720.5	132.00	100
H/5A	/144.6	8561.05	8/0.18	135
H/5B	//68.0/	8/8/.41	-66.34	135
H76A	8707.45	9129.93	626.05	135
H76B	7677.93	9790.97	947.86	135
H77A	8371.35	8460.96	1869.11	135
H77B	7308.66	9051.97	2189.05	135
H78A	8798.76	9752.57	1934.03	135
H78B	7730.35	10331.59	2276.93	135
H79A	7407.3	9780.34	3607.68	135
H79B	8294.22	8941.03	3268.82	135
H80A	8318.87	10544.67	3547.4	135
H80B	9219.89	9721.45	3174.13	135
H81A	8822.52	9998.58	4617.67	135
H81B	8812.33	9086.17	4455.16	135
H82A	7037.34	10444.67	5016.5	169
H82B	7440.43	10078.62	5741.7	169
H82C	7231.86	9468.16	5241.33	169
H86A	418.71	3956.76	4351.58	103
H86R	159 46	4637.06	3678 77	103
H86C	229 04	4425 03	4290 72	103
H86D	216 45	4227 10	3320.72	102
HQ7A	910.45 851 1	2012 17	1320.71 1217 Q1	103
1107A 1107A	0.54.1	JU14.17 2211 40	407202	103
	0.01 1025 10	3211.40 2502.24	40/2.82 2052 72	103
поор	1035.10	2503.21	2053./3	103
поос	1153.05	2445.29	3001.45	103
наяг	1253.25	2842.23	2005.40	103
H88D	1809.52	2352.85	3225.77	103
H89A	1329.45	1809	2332.96	103
H89B	520.35	1833.68	3225.81	103
H89C	554.78	1925.05	2969.56	103
H89D	1167.19	1429.12	3479.95	103
H90A	1244.75	725.89	3604.52	103
H90B	2221.1	807.57	3049.72	103
H91A	2503.14	-46.77	2162.32	103
H91B	1620.63	-243.86	2802.19	103

<u></u>				
Atom	X	У	Z	Ueq
H91C	1205.22	169.67	2797.98	103
H91D	2220.02	-21.91	2757.42	103
H92A	902.8	603.43	1957.11	103
H92B	1907.36	506.99	1290.96	103
H93A	944.65	-105.87	1211.96	103
H93B	1362.64	-794.17	1756.8	103
H93C	1287.45	143.25	1071.51	103
H93D	1031.14	-535.32	1772.36	103
H94A	2440.97	-1001.08	76.59	103
H94B	2127.88	-1656.57	769.64	103
H95A	1308 75	-17131	129.82	128
H95R	1442 21	-903.07	-410.1	128
H95C	640.36	-778.69	533.00	120
наал	1421 8	3862	6100 / 3	116
HOOR	1021.0	2778 15	5407.05	110
11770	2067.07	2507.26	4072 47	110
	2007.07 1600.6F	237/.30	47/4.4/	110
П10С П10В	1090.05	2536.27	3784.85	110
HIUC	3481.46	2407	4915.61	116
HIUD	3115.37	1667	5431.//	116
H10E	3230.37	2755.57	5435.41	116
H10F	3284.74	2085.8	4824.61	116
H10G	2456.63	2579.01	6733.67	116
H10H	3061	3141.53	6171.43	116
H10J	3849.02	1363.2	6375.74	116
H10I	4428.99	1956.31	5875.4	116
H10L	3489.97	1706.75	6885.27	116
H10K	3473.05	2541.02	6400.43	116
H10M	3971.39	2670.81	7186.66	116
H10N	3425.6	2056.05	7674.14	116
H10P	5327.11	1543.27	6930.6	116
H100	4736.37	993.19	7504.57	116
H10R	5350 35	1145 1	7083.23	116
H100	4323.69	1261.97	769423	116
H10U	5518 77	1868.2	7996.85	116
	1120 62	2245.25	05500	116
	4429.02 E206.02	2243.33	0000 54	110
П105 1110Т	5200.02	2201.35	0030.34	110
	4324.0	1991.84	80/4./3	110
	5005.35	540.79	0451.02	110
HIUX	4504.3	/86.44	8831.82	116
Н	42/2.37	1526.89	97/4.35	145
H10Y	5092.57	745.99	9890.54	145
HA	5133.57	1684.29	9825.64	145
HB	5401.17	1557.69	9508.24	145
HC	5061.57	793.69	9965.54	145
HD	4323.47	1696.49	9937.44	145
H66C	11370.71	6722.8	3583.87	78
H66D	10513.25	7484.48	4199.75	78
H67C	12392.03	7252.33	3663.36	78
H67D	11790.41	8213.48	3547.24	78
H68C	10620.67	8184.68	4924.07	78
H68D	11242.94	7259.5	5039.12	78
H69D	12248.66	8023.87	5106.3	97
H69E	11383.94	7970.44	5944.8	97
H69F	11295 82	8806 98	5402.48	97
H87C	15 55	3436.45	3381 04	103
H87D	868 34	2575 79	2606 52	102
НОЛС	2258 75	1171	1006.33	103
1170C 1100D	200070 1160 21	1950 79	1800.11	103
1170D 11000	1400.34 27// C	1237.13	1007./ð 1026 72	100
11726 11025	2/44.0	-207.40	1030./3	120
пу2Д	25/9.32	-1060.23	1040.16	128
HI	4242.51	1369.56	5224.49	116

Atom	х	У	Z	Ueq
HG	3402.64	1170.39	5980.18	116
H10	4097.19	2677.96	7049.85	116
HF	5003.04	2117.33	6299.37	116
H10Z	6090.32	1199.25	8395.44	116
HE	5574.06	558.55	8400.17	116

Table 7: Atomic Occupancies for all atoms that are not fully occupied in **20Hir_CW02_2**.

Atom	Occupancy	Atom	Occupancy	Atom	Occupancy	Atom	Occupancy
H65A	0.628(7)	H88D	0.405(16)	H10I	0.788(13)	H67C	0.372(7)
H65B	0.628(7)	H89A	0.420(13)	H10L	0.212(13)	H67D	0.372(7)
H65C	0.372(7)	H89B	0.420(13)	H10K	0.212(13)	C68A	0.372(7)
H65D	0.372(7)	H89C	0.580(13)	C104	0.788(13)	H68C	0.372(7)
C66	0.628(7)	H89D	0.580(13)	H10M	0.788(13)	H68D	0.372(7)
H66A	0.628(7)	C90	0.420(13)	H10N	0.788(13)	C69A	0.372(7)
H66B	0.628(7)	H90A	0.420(13)	H10P	0.788(13)	H69D	0.372(7)
C67	0.628(7)	H90B	0.420(13)	H100	0.788(13)	H69E	0.372(7)
H67A	0.628(7)	H91A	0.420(13)	H10R	0.212(13)	H69F	0.372(7)
H67B	0.628(7)	H91B	0.420(13)	H10Q	0.212(13)	C87A	0.595(16)
C68	0.628(7)	H91C	0.580(13)	H10U	0.43(2)	H87C	0.595(16)
H68A	0.628(7)	H91D	0.580(13)	H10V	0.43(2)	H87D	0.595(16)
H68B	0.628(7)	C92	0.420(13)	H10S	0.57(2)	C90A	0.580(13)
C69	0.628(7)	H92A	0.420(13)	H10T	0.57(2)	H90C	0.580(13)
H69A	0.628(7)	H92B	0.420(13)	C107	0.43(2)	H90D	0.580(13)
H69B	0.628(7)	H93A	0.420(13)	H10W	0.43(2)	C92A	0.580(13)
H69C	0.628(7)	H93B	0.420(13)	H10X	0.43(2)	H92C	0.580(13)
H86A	0.595(16)	H93C	0.580(13)	Н	0.57(2)	H92D	0.580(13)
H86B	0.595(16)	H93D	0.580(13)	H10Y	0.57(2)	C10A	0.212(13)
H86C	0.405(16)	H10C	0.788(13)	HA	0.57(2)	H1	0.212(13)
H86D	0.405(16)	H10D	0.788(13)	HB	0.43(2)	HG	0.212(13)
C87	0.405(16)	H10E	0.212(13)	HC	0.43(2)	C10B	0.212(13)
H87A	0.405(16)	H10F	0.212(13)	HD	0.43(2)	H10	0.212(13)
H87B	0.405(16)	C102	0.788(13)	C66A	0.372(7)	HF	0.212(13)
H88A	0.595(16)	H10G	0.788(13)	H66C	0.372(7)	C10C	0.57(2)
H88B	0.595(16)	H10H	0.788(13)	H66D	0.372(7)	H10Z	0.57(2)
H88C	0.405(16)	H10J	0.788(13)	C67A	0.372(7)	HE	0.57(2)

Citations

CrysAlisPro (ROD), Rigaku Oxford Diffraction, Poland (?).

CrysAlisPro Software System, Rigaku Oxford Diffraction, (2019).

O.V. Dolomanov and L.J. Bourhis and R.J. Gildea and J.A.K. Howard and H. Puschmann, Olex2: A complete structure solution, refinement and analysis program, *J. Appl. Cryst.*, (2009), **42**, 339-341.

Sheldrick, G.M., Crystal structure refinement with ShelXL, *Acta Cryst.*, (2015), **C71**, 3-8.

Sheldrick, G.M., ShelXT-Integrated space-group and crystal-structure determination, *Acta Cryst.*, (2015), **A71**, 3-8.

Crystal data and structure refinement for 20Hir_CD02_2 (1.6-PTE-(PPB)₂)

Compound	20Hir_CD02_2
Formula	$C_{176}H_{220}O_8$
$D_{calc.}$ / g cm ⁻³	1.058
μ/mm^{-1}	0.476
Formula Weight	2463.51
Colour	clear light yellow
Shape	block
Size/mm ³	0.63×0.29×0.21
T/K	123.00(10)
Crystal System	triclinic
Space Group	P-1
a/Å	15.3455(4)
b/Å	18.7629(5)
c/Å	28.3210(5)
$\alpha/^{\circ}$	105.764(2)
β/°	95.876(2)
γI°	95.998(2)
V/Å ³	7731.5(3)
Ź	2
Ζ'	1
Wavelength/Å	1.54184
Radiation type	Cu K _{α}
$\Theta_{min}/^{\circ}$	2.923
$\Theta_{max}/^{\circ}$	72.412
Measured Refl's.	48409
Indep't Refl's	29169
Refl's I≥2 σ(I)	21002
R _{int}	0.0483
Parameters	1605
Restraints	28
Largest Peak	2.029
Deepest Hole	-0.926
GooF	1.537
<i>wR</i> ₂ (all data)	0.3996
wR_2	0.3528
R1 (all data)	0.1572
R_1	0.1307

Experimental. Single clear light yellow block crystals of **20Hir_CD02_2** recrystallised from a mixture of DCM and MeOH by solvent layering. A suitable crystal with dimensions $0.63 \times 0.29 \times 0.21$ mm³ was selected and mounted on a mylar loop in perfluoroether oil on a SuperNova, Dual, Cu at home/near, Atlas diffractometer. The crystal was kept at a steady *T* = 123.00(10) K during data collection. The structure was solved with the ShelXT (Sheldrick, 2015) solution program using dual methods and by using Olex2 (Dolomanov et al., 2009) as the graphical interface. The model was refined with ShelXL 2018/3 (Sheldrick, 2015) using full matrix least squares minimisation on *F*².

Crystal Data. $C_{176}H_{220}O_8$, $M_r = 2463.51$, triclinic, *P*-1 (No. 2), a = 15.3455(4) Å, b = 18.7629(5) Å, c = 28.3210(5) Å, $\alpha = 105.764(2)^\circ$, $\beta = 95.876(2)^\circ$, $\gamma = 95.998(2)^\circ$, V = 7731.5(3) Å³, T = 123.00(10) K, Z = 2, Z' = 1, θ (Cu K_{α}) = 0.476, 48409 reflections measured, 29169 unique (R_{int} = 0.0483) which were used in all calculations. The final *wR*₂ was 0.3996 (all data) and *R*₁ was 0.1307 (I≥2 θ (I)).

A clear light yellow block-shaped crystal with dimensions $0.63 \times 0.29 \times 0.21$ mm³ was mounted on a mylar loop in perfluoroether oil. Data were collected using a SuperNova, Dual, Cu at home/near, Atlas diffractometer equipped with a Cryojet - Oxford Instruments low-temperature device operating at *T* = 123.00(10) K.

Data were measured using ω scans using Cu K_{α} radiation. The diffraction pattern was indexed and the total number of runs and images was based on the strategy calculation from the program CrysAlisPro (Rigaku, V1.171.40.53, 2019). The maximum resolution that was achieved was Θ = 72.412° (0.81 Å).

The diffraction pattern was indexed and the total number of runs and images was based on the strategy calculation from the program CrysAlisPro (Rigaku, V1.171.40.53, 2019). The unit cell was refined using CrysAlisPro (Rigaku, V1.171.40.53, 2019) on 14768 reflections, 31% of the observed reflections.

Data reduction, scaling and absorption corrections were performed using CrysAlisPro (Rigaku, V1.171.40.53, 2019). The final completeness is 98.70 % out to 72.412° in Θ . A gaussian absorption correction was performed using CrysAlisPro 1.171.40.53 (Rigaku Oxford Diffraction, 2019) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.. The absorption coefficient μ of this material is 0.476 mm⁻¹ at this wavelength (λ = 1.54184Å) and the minimum and maximum transmissions are 0.316 and 1.000.

The structure was solved and the space group *P*-1 (# 2) determined by the ShelXT (Sheldrick, 2015) structure solution program using using dual methods and refined by full matrix least squares minimisation on F^2 using version 2018/3 of ShelXL 2018/3 (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. Hydrogen atom positions were calculated geometrically and refined using model.

_refine_special_details: The followind disorders have been resolved during refinement: C95-C102 : C95a - C10c = 52:48% occupation; C143 - C145 : C1f - C1d =55:45% occupation; the aliphatic chain C176 - C185 showed still a huge movement and disorder, which couldn't get modelled completely. Therefore, constraints of the ADP's and restraints of the bond length were necessary to model it. As a result, the chain is stable during the refinement, but unfortunately the GOF values got increased.. The rest electron density of 2.0 e/A-3 is an unavoidable artifact very close to the aliphatic chain. Also the alert regarding too close distances of modeled hydrogen atom positions is a result of the displacement of the carbon atoms in the chain.

_exptl_absorpt_process_details: CrysAlisPro 1.171.40.53 (Rigaku Oxford Diffraction, 2019)Numerical absorption correction based on gaussian integration over a multifaceted crystal modelEmpirical absorption correction using spherical harmonicsas implemented in SCALE3 ABSPACK.

There is a single molecule in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 2 and Z' is 1.

Table 8: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **20Hir_CD02_2**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Atom	x	У	Z	U_{eq}
0134	4997.0(19)	6157.5(17)	3020.2(12)	60.8(7)

Atom	1 7	*7	7	11
0125	X 5640(2)	<u>y</u> 6806(2)	2707 6(12)	U_{eq}
0135	5048(2) 4220 2(10)	0808(3) 75505(16)	3/9/.0(12) 21525(0)	51.9(12)
0140	4000.0(10) 3581.1(16)	73373(10) 6914 2(14)	27222(2) 2713 2(0)	32.1(0) 46.0(6)
0149	3304.1(10) 11206 2(10)	0714.3(14) 8004 7(10)	2713.2(7) 1608 1(11)	40.0(0) 59.0(7)
0101	11200.2(10) 101170(10)	0004.7(19) 7060.2(17)	1090.4(11) 1070.1(10)	59.9(7)
0102	10117.9(19) 0116.6(19)	7500.3(17)	1070.1(10) 077.9(11)	57.1(7)
0174	9440.0(10) 10246(2)	9475.0(17)	977.0(11) 1602 E(12)	55.9(7)
0175	10240(2) 0122(2)	9442.4(10) 7515 2(10)	1003.3(13) 2492.1(12)	04.0(0) 277(7)
C2	9123(2)	7628(2)	2403.1(12) 2212 $4(12)$	37.7(7)
C2	9000(2) 9714(2)	8020(2)	2212.4(13) 1972 5(12)	41.0(7)
C3 C4	9714(2) 8001(2)	0039(2) 9222 4(17)	1073.3(13) 17026(11)	41.3(7) 24.1(6)
C4 C5	8771(2)	8821 8(10)	1/92.0(11) 1/92.0(12)	34.1(0) 38 1(7)
C5 C6	7946(2)	90070(19)	13070(12)	36.8(6)
C7	7940(2)	9007.0(10) 8709.4(17)	1597.0(12) 1566.2(11)	335(6)
C8	7210(2)	82416(16)	1300.2(11) 1869.6(10)	29 4 (6)
C9	8174 9(19)	8107 8(16)	2020 6(10)	30.8(6)
C10	8302(2)	7753 7(16)	2402 2(11)	32 8(6)
C11	7584(2)	7656 2(16)	2703.3(11) 2691 6(11)	32.0(0)
C12	6698(2)	7621 3(16)	2470 2(10)	31 9(6)
C13	6541 8(19)	7864 9(16)	2029 2(10)	30.7(6)
C14	5679(2)	7727 3(16)	1779 6(10)	31.8(6)
C15	4980(2)	7453 1(18)	1995 0(11)	34.7(6)
C16	5098(2)	7320 0(17)	2446 0(11)	34 6(6)
C17	5973(2)	7320.0(17) 7365 7(17)	26871(11)	35 5(6)
C18	6166(2)	7153 8(19)	2007.1(11) 3130.0(12)	40 3(7)
C10	7010(2)	73272(19)	33768(12)	399(7)
C20	7731(2)	75780(17)	3370.0(12) 31720(11)	34.2(6)
C20	5402(2)	7862 1(17)	12871(11)	337(6)
C22	4810(2)	8376 5(17)	1267.1(11) 1264.6(11)	333(6)
C22	4475(2)	8454 9(17)	801 7(11)	33 2(6)
C23	4750(2)	80171(17)	3673(10)	33.2(0)
C25	5332(2)	75000(17)	307.5(10) 390.5(11)	343(6)
C26	5663(2)	7300.0(17) 7415 4(17)	8544(11)	334(6)
C27	4539(2)	8818 1(17)	17366(11)	33.9(6)
C28	5170(2)	9309(2)	21042(12)	41 9(7)
C29	4980(3)	9591(2)	25783(13)	538(9)
C30	4178(3)	9395(2)	27131(15)	56.9(10)
C31	3524(3)	8949(2)	2342 4(16)	54.7(9)
C32	3695(2)	8675(2)	1856 3(13)	43 5(7)
C33	4069(4)	9653(3)	3268 5(17)	72.8(13)
C34	3221(3)	9240(3)	3364.6(17)	69.1(12)
C35	4849(4)	9478(4)	3588 5(17)	81.2(15)
C36	4064(4)	10477(3)	3426.1(18)	80,9(15)
C37	3832(2)	8985.6(18)	760.5(11)	34.6(6)
C38	4066(2)	9752.2(19)	966.8(12)	40.9(7)
C39	3517(2)	10252.0(19)	869.7(14)	44.2(7)
C40	2711(2)	10014.4(19)	565.0(12)	37,8(7)
C41	2455(2)	9245.0(19)	385.6(12)	39.3(7)
C42	3004(2)	8740.0(19)	481.9(12)	38.8(7)
C43	2166(2)	10568(2)	401.5(14)	44.3(7)
C44	2277(3)	11319(2)	795.4(17)	58.9(10)
C45	1171(3)	10268(3)	268(2)	68.9(13)
C46	2502(3)	10678(3)	-71.1(16)	56.3(9)
C47	4403(2)	8119.0(18)	-120.4(11)	36.6(6)
C48	4621(2)	8794.6(19)	-226.7(12)	39.2(7)
C49	4280(3)	8895(2)	-669.7(12)	45,3(8)
C50	3698(3)	8342(2)	-1023.8(13)	47.3(8)
C51	3496(3)	7668(2)	-916.7(13)	50.2(8)
C52	3838(2)	7558(2)	-474.9(13)	44.1(7)
C53	3368(4)	8469(2)	-1516.9(14)	61.4(11)
C54	3070(4)	9237(3)	-1435.7(18)	76.4(15)
			()	(>)

Atom				
Atom	X	<u>y</u>	Z	
C55	2598(4)	7878(3)	-1804.6(17)	77.4(15)
C56	4124(4)	8427(3)	-1832.2(15)	74.2(14)
C57	5564(2)	7007.1(18)	-77.7(11)	35.5(6)
C58	6004(3)	7303.2(19)	-401.4(13)	45.7(8)
C59	6140(3)	6858(2)	-858.3(13)	45.4(8)
C60	5839(2)	6092.4(18)	-1013.1(12)	39.4(7)
C61	5426(2)	5791.4(19)	-681.2(12)	41.7(7)
C62	5293(2)	6242.1(18)	-223.1(11)	38.2(7)
C63	5916(3)	5626(2)	-1540.0(13)	47.4(8)
C64	5769(3)	4787(2)	-1604.6(15)	59.2(10)
C65	5211(4)	5810(3)	-1894.4(16)	69.9(12)
C66	6844(3)	5818(3)	-1676.7(16)	62.3(11)
C67	6272(2)	6862.3(18)	887.7(11)	35.6(6)
C68	7135(2)	6948(2)	780.3(12)	41.6(7)
C69	7713(2)	6456(2)	852.7(12)	46.2(8)
C70	7452(3)	5854(2)	1024.1(12)	44.4(8)
C71	6571(3)	5755(2)	1115.3(13)	46.3(8)
C72	5995(2)	6247.2(19)	1048.8(13)	42.2(7)
C73	8067(3)	5304(3)	1120.2(15)	59.5(11)
C74	9010(4)	5536(4)	1035(2)	90.2(19)
C75	7746(6)	4536(4)	775(3)	117(3)
C76	8112(4)	5319(4)	1664.4(19)	76.2(15)
C77	8613(2)	7745.1(18)	3481.4(11)	35.0(6)
C78	9074(2)	8478.9(18)	3614.6(11)	35.9(6)
C79	9925(2)	8639.5(18)	3887.7(11)	35.9(6)
C80	10322(2)	8067(2)	4020.5(11)	39.8(7)
C81	9834(2)	7348.2(19)	3918.6(11)	37.8(7)
C82	8979(2)	7185.9(18)	3650.0(11)	36.9(6)
C83	8467(2)	6423.2(19)	3540.9(12)	39.5(7)
C84	8213(3)	5968(2)	3062.6(13)	54.0(9)
C85	7732(5)	5263(3)	2966.2(16)	78.1(16)
C86	7472(5)	4991(3)	3350.1(18)	89(2)
C87	7734(4)	5453(3)	3831.3(16)	74.2(15)
C88	8222(3)	6143(2)	3922.9(13)	49.4(8)
C89	6895(8)	4228(4)	3257(3)	134(4)
C90	5828(7)	4432(6)	3376(5)	172(6)
C91	6646(5)	3828(3)	2752(3)	99(2)
C92	7147(8)	3831(4)	3617(3)	151(5)
C93	10244(2)	6767(2)	4101.9(13)	44.3(7)
C94	10421(3)	6116(3)	3780.8(18)	60.9(10)
C95	10991(7)	5665(6)	3884(3)	64.5(15)
C96	11322(7)	5787(6)	4380(4)	69.1(18)
C97	11053(8)	6346(6)	4717(4)	64.5(15)
C98	10496(3)	6886(3)	4602.9(15)	59.0(10)
C99	12023(9)	5320(7)	4540(4)	100(3)
C100	12619(15)	5768(12)	4975(7)	167(5)
C101	12382(16)	4864(13)	4115(6)	167(5)
C102	11621(15)	4813(15)	4795(10)	167(5)
C103	11260(2)	8197(2)	4250.7(12)	41.9(7)
C104	11565(3)	8687(2)	4720.7(13)	49.5(8)
C105	12440(3)	8777(3)	4917.9(14)	57.6(10)
C106	13057(3)	8399(3)	4662.5(16)	61.5(11)
C107	12759(3)	7921(3)	4189.3(16)	60.0(11)
C108	11875(2)	7828(2)	3988.6(13)	49.1(8)
C109	14634(4)	8253(8)	4534(3)	171(6)
C110	14354(6)	9318(8)	5120(7)	245(10)
C111	14076(7)	8134(14)	5291(7)	289(13)
C112	14017(4)	8467(5)	4895(2)	97(2)
C113	10401(2)	9421.9(19)	4050.8(11)	36.9(6)
C114	11190(2)	9611(2)	3880.6(13)	46.2(8)
C115	11660(2)	10319(2)	4063.5(13)	47.6(8)

Atomxyz U_{eq} C11611377(2)10876(2)4426.6(12)42.4(7)C11710568(2)10694(2)4579.3(12)42.6(7)C11810087(2)9981(2)4393.6(11)39.2(7)C11911914(3)11656(2)4663.2(15)55.5(10)C12011370(4)12254(3)4577(2)83.2(15)C12112774(4)11737(3)4442(2)78.6(15)C1221237(5)11780(3)5217.3(18)90.4(19)C1238683(2)9103.6(18)3478.8(12)38.5(7)C1249085(3)9473(2)312.8(16)60.8(11)C1268127(3)10438(2)3344.1(17)61.2(11)C1277693(3)10043(2)3622.9(16)54.5(9)C1287961(2)9385(2)3666.9(13)44.2(7)C1306948(6)11171(4)3162(4)39(4)C1318383(8)11468(4)2924(3)137(4)C1328256(6)11767(3)3809(3)119(3)C1335519(3)6661(3)329.0(16)58.2(10)C13410824(8)5699(6)4548(4)69.1(18)C13510723(16)4343(11)4489(8)167(5)C1365214(5)628(4)4010(2)89.7(18)C1371150(9)5086(9)4791(5)100(3)C1385683(4)6411(4)4536(2)81.8(14)C1395385(6)5833(4)4783(3)106(2)C144 <t< th=""><th></th><th></th><th></th><th></th><th></th></t<>					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Atom	х	у	Z	Ueq
C117 10568(2) 10694(2) 4579.3(12) 42.6(7) C118 10087(2) 9981(2) 4393.6(11) 39.2(7) C119 11370(4) 11254(3) 4577(2) 83.2(15) C121 12774(4) 11737(3) 4442(2) 78.6(15) C122 2137(5) 11780(3) 5217.3(18) 90.4(19) C123 8683(2) 9103.6(18) 3478.8(12) 385.7(7) C124 9085(3) 9473(2) 3175.6(13) 44.3(7) C125 8811(3) 10125(2) 3112.8(16) 60.8(11) C126 8127(3) 1043(2) 3622.9(16) 54.5(9) C128 7961(2) 9385(2) 3686.9(13) 44.2(7) C130 6948(6) 11171(4) 3162(4) 139(4) C131 8383(8) 11468(4) 2924(3) 137(4) C132 8256(6) 11767(3) 3809(3) 1162(2) C134 10824(8) 5691(4) 4901(2) 89.7(18) C135<	C116	11377(2)	10876(2)	4426.6(12)	42.4(7)
C118 10087(2) 9981(2) 4393.6(11) 39.2(7) C119 11914(3) 11656(2) 4663.2(15) 55.5(10) C121 12774(4) 11737(3) 4442(2) 78.6(15) C122 12137(5) 11780(3) 5217.3(18) 90.4(19) C123 8683(2) 9103.6(18) 3478.8(12) 38.5(7) C124 9085(3) 9473(2) 3128.6(1) 60.8(11) C125 8811(3) 10125(2) 3112.8(1) 60.8(11) C128 7961(2) 9385(2) 3666.9(13) 44.2(7) C129 7896(4) 11210(3) 3282(2) 81.6(17) C131 33818 11468(4) 2924(3) 137(4) C132 8256(6) 11767(3) 3090(3) 119(3) C133 5519(3) 6661(3) 3299.0(16) 58.2(10) C134 10824(8) 5699(6) 4584(4) 69.1(18) C135 10723(16) 4343(11) 4489(8) 167(5) C134 </td <td>C117</td> <td>10568(2)</td> <td>10694(2)</td> <td>4579.3(12)</td> <td>42.6(7)</td>	C117	10568(2)	10694(2)	4579.3(12)	42.6(7)
C119 11914(3) 11656(2) 4663.2(15) 55.5(10) C120 11370(4) 12254(3) 4577(2) 83.2(15) C121 2177(4) 11737(3) 4442(2) 78.6(15) C122 21317(5) 11780(3) 5217.3(18) 90.4(19) C124 9085(3) 9473(2) 3175.6(13) 47.3(8) C125 8811(3) 10125(2) 3112.8(16) 60.8(11) C126 8127(3) 10438(2) 3344.1(7) 61.2(17) C128 7961(2) 9385(2) 3666.9(13) 442(7) C130 6948(6) 11171(4) 3162(4) 139(4) C131 8383(8) 11468(4) 2924(3) 137(4) C132 8256(6) 11767(3) 3809(3) 119(3) C133 5519(3) 6661(3) 3299.0(16) 58.2(10) C134 10824(8) 5649(4) 4010(2) 89.7(18) C135 10723(16) 4343(11) 4489(8) 16(2) C134	C118	10087(2)	9981(2)	4393.6(11)	39.2(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C119	11914(3)	11656(2)	4663.2(15)	55.5(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C120	11370(4)	12254(3)	4577(2)	83.2(15)
$\begin{array}{cccccc} 1222 & 12137(5) & 11780(3) & 5217.3(18) & 90.4(19) \\ 12126(22) & 31637(18) & 3478.8(12) & 38.5(7) \\ 12124 & 9085(3) & 9473(2) & 3175.6(13) & 47.3(8) \\ 12125 & 8811(3) & 10125(2) & 3112.8(16) & 60.8(11) \\ 12127 & 7693(3) & 10043(2) & 3622.9(16) & 54.5(9) \\ 1218 & 7961(2) & 9385(2) & 3666.9(13) & 44.2(7) \\ 1219 & 7896(4) & 11210(3) & 3328(2) & 81.6(17) \\ 1210 & 6948(6) & 11171(4) & 3162(4) & 139(4) \\ 1211 & 8383(8) & 11468(4) & 2924(3) & 137(4) \\ 1212 & 8256(6) & 11767(3) & 3809(3) & 119(3) \\ 1232 & 8256(6) & 11767(3) & 3809(3) & 119(3) \\ 1233 & 5519(3) & 6661(3) & 3299.0(16) & 58.2(10) \\ 1234 & 10824(8) & 5699(6) & 4548(4) & 69.1(18) \\ 1235 & 10723(16) & 4343(11) & 4498(8) & 167(5) \\ 1236 & 5214(5) & 6286(4) & 4010(2) & 89.7(18) \\ 1237 & 11150(9) & 5086(9) & 4791(5) & 100(3) \\ 1238 & 5683(4) & 6411(4) & 4536(2) & 81.8(14) \\ 1239 & 5385(6) & 5833(4) & 4783(3) & 106(2) \\ 1240 & 5788(6) & 6034(6) & 5293(3) & 113(2) \\ 1241 & 5456(4) & 6644(4) & 5647(2) & 86.4(16) \\ 1242 & 5899(7) & 6834(6) & 6176(2) & 132(2) \\ 1243 & 5560(20) & 7461(13) & 6488(5) & 132(2) \\ 1244 & 5981(16) & 7978(12) & 7058(5) & 132(2) \\ 1244 & 5981(16) & 7978(12) & 7058(5) & 132(2) \\ 1245 & 568(3) & 7540(10) & 7425(5) & 110(4) \\ 1246 & 6393(7) & 7949(6) & 7933(3) & 127(3) \\ 1247 & 4317(2) & 7270.6(19) & 2715.6(12) & 40.0(7) \\ 1248 & 6011(11) & 8034(8) & 7448(4) & 110(4) \\ 1249 & 10742(9) & 6384(6) & 4834(4) & 64.5(15) \\ 155 & 200(3) & 4147(3) & 1823(2) & 77.2(14) \\ 155 & 200(3) & 4147(3) & 1823(2) & 77.2(14) \\ 155 & 200(3) & 4147(3) & 1823(2) & 77.2(14) \\ 155 & 200(3) & 4147(3) & 1823(2) & 77.2(14) \\ 155 & 200(3) & 4147(3) & 1823(2) & 77.2(14) \\ 155 & 200(3) & 4147(3) & 1823(2) & 77.2(14) \\ 155 & 200(3) & 4147(3) & 1823(2) & 77.2(14) \\ 155 & 200(3) & 4147(3) & 1823(2) & 77.2(14) \\ 155 & 1209(3) & 6565(7) & 4045(4) & 64.5(15) \\ 161 & 1068(8) & 5565(7) & 4045(4) & 64.5(15) \\ 162 & 10928(18) & 5565(7) & 4045(4) & 64.5(15) \\ 164 & 10322(3) & 8007(3) & 266.6(19) & 67.7(12) \\ 165 & 9480(3) & 7454(3) & 266.6(19) & 67.7(12) \\ 166 & 9332(3) & 50$	C121	12774(4)	11737(3)	4442(2)	78.6(15)
$\begin{array}{cccccc} 124 & 9085(2) & 9103.6(18) & 3478.8(12) & 36.3(7) \\ 125 & 8811(3) & 10125(2) & 3175.6(13) & 47.3(8) \\ 125 & 811(3) & 10125(2) & 3128.6(16) & 60.8(11) \\ 126 & 8127(3) & 10043(2) & 3344.1(17) & 61.2(11) \\ 127 & 7693(3) & 10043(2) & 3328(2) & 81.6(17) \\ 128 & 7961(2) & 9385(2) & 3666.9(13) & 44.2(7) \\ 129 & 7996(4) & 11210(3) & 3328(2) & 81.6(17) \\ 131 & 8383(8) & 11468(4) & 2924(3) & 137(4) \\ 131 & 8383(8) & 11468(4) & 2924(3) & 137(4) \\ 132 & 8256(6) & 11767(3) & 309(3) & 119(3) \\ 133 & 5519(3) & 6661(3) & 3299.0(16) & 58.2(10) \\ 134 & 10824(8) & 5699(6) & 4548(4) & 69.1(18) \\ 135 & 10723(16) & 4343(11) & 449(8) & 167(5) \\ 136 & 5214(5) & 6286(4) & 4010(2) & 89.7(18) \\ 137 & 11150(9) & 5086(9) & 4791(5) & 100(3) \\ 138 & 5683(4) & 6411(4) & 4536(2) & 81.8(14) \\ 139 & 5385(6) & 6034(6) & 5293(3) & 113(2) \\ 141 & 5456(4) & 6644(4) & 5647(2) & 86.4(16) \\ 142 & 5899(7) & 6834(6) & 6176(2) & 132(2) \\ 143 & 5560(20) & 7461(13) & 6488(5) & 132(2) \\ 144 & 5891(16) & 7978(12) & 7058(5) & 132(2) \\ 144 & 5891(16) & 7978(12) & 7058(5) & 132(2) \\ 144 & 5891(16) & 7978(12) & 7058(5) & 132(2) \\ 144 & 5891(16) & 7978(12) & 7058(5) & 132(2) \\ 144 & 5891(16) & 7978(12) & 7058(5) & 132(2) \\ 144 & 5891(16) & 7978(12) & 7058(5) & 132(2) \\ 144 & 5891(16) & 7978(13) & 266.3(17) & 61.5(11) \\ 1014 \\ 119 & 10742(9) & 6384(6) & 4834(4) & 64.5(15) \\ 150 & 2008(3) & 6874(3) & 266.3(17) & 61.5(11) \\ 1025 & 1299(3) & 6162(2) & 2565.4(16) & 55.6(9) \\ 153 & 603(3) & 5544(3) & 2262(2) & 688(12) \\ 155 & 200(3) & 4147(3) & 1823(2) & 77.2(14) \\ 156 & 463(4) & 3364(3) & 1680(3) & 88.1(16) \\ 1057 & 208(3) & 6574(3) & 266.6(19) & 67.7(12) \\ 157 & 208(3) & 5505(7) & 4045(4) & 64.5(15) \\ 166 & 9342(3) & 805(3) & 1550.5(16) & 54.4(9) \\ 1616 & 10638(8) & 5565(7) & 4045(4) & 64.5(15) \\ 162 & 10928(18) & 5214(15) & 5002(7) & 67.5 \\ 163 & 1072(3) & 7903(3) & 738.6(16) & 60.5(10) \\ 166 & 8932(3) & 5303(3) & -500.2(18) & 63.5(11) \\ 166 & 8932(3) & 5303(3) & -500.2(18) & 63.5(11) \\ 167 & 7878(3) & 6113(3) & -379.8(18) & 61.4(10) \\ 166 & 8932(3) & 530$	C122	12137(5)	11780(3)	5217.3(18)	90.4(19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C123	8683(2)	9103.6(18)	34/8.8(12)	38.5(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C124	9005(3)	9473(2) 10125(2)	31/3.0(13) 2112.0(16)	47.3(0) 60.9(11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C125	8127(3)	10123(2) 10438(2)	3112.0(10) 3344.1(17)	612(11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C120	7693(3)	10430(2) 10043(2)	36229(16)	54 5(9)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C128	7961(2)	9385(2)	3686.9(13)	44.2(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C129	7896(4)	11210(3)	3328(2)	81.6(17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C130	6948(6)	11171(4)	3162(4)	139(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C131	8383(8)	11468(4)	2924(3)	137(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C132	8256(6)	11767(3)	3809(3)	119(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C133	5519(3)	6661(3)	3299.0(16)	58.2(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C134	10824(8)	5699(6)	4548(4)	69.1(18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C135	10723(16)	4343(11)	4489(8)	167(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C136	5214(5)	6286(4)	4010(2)	89.7(18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C137	11150(9)	5086(9)	4791(5)	100(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C138	5683(4)	6411(4)	4536(2)	81.8(14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C139	5385(6)	5833(4)	4/83(3)	106(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C140	5700(0)	6644(0) 6644(4)	5293(3)	113(2) 86 4(16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C141 C142	5899(7)	6834(6)	5047(2)	132(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C142	5560(20)	7461(13)	6488(5)	132(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C144	5891(16)	7978(12)	7058(5)	132(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C145	5868(13)	7540(10)	7425(5)	110(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C146	6393(7)	7949(6)	7933(3)	127(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C147	4317(2)	7270.6(19)	2715.6(12)	40.0(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C148	6011(11)	8034(8)	7448(4)	110(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C149	10742(9)	6384(6)	4834(4)	64.5(15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C150	2808(3)	6874(3)	2666.3(17)	61.5(11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C151	2117(3)	6298(3)	2325.7(17)	61.5(11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C152	1299(3)	6162(2)	2565.4(16)	55.6(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C153	603(3) 976(4)	5544(3)	2262(2)	68.8(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C154 C155	070(4) 200(2)	4770(3)	2102(3) 1922(2)	02.0(10) 77.2(14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C155	200(3) 463(4)	3364(3)	1680(3)	88 1(16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C157	-208(5)	2754(3)	1418(3)	954(19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C158	15(6)	1974(3)	1302(3)	104(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C159	-621(7)	1359(4)	1005(5)	145(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C160	10432(3)	8005(3)	1550.5(16)	54.4(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C161	10688(8)	5565(7)	4045(4)	64.5(15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C162	10928(18)	5214(15)	5302(7)	167(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C163	10772(3)	7903(3)	738.6(16)	60.5(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C164	10322(3)	8007(3)	266.6(19)	67.7(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C165	9480(3)	7454(3)	26.5(17)	64.7(11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C166	9614(3)	6655(3)	-106.4(19)	66.4(11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C167	8/83(3)	6113(3)	-3/9.8(18)	61.4(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C160	8932(3)	5303(3)	-500.2(18)	63.5(11)
C17061200(3)5742(3)-013.0(10)03.2(11)C1717426(3)3394(3)-1020.5(17)61.8(10)C1726759(4)3434(3)-660.0(18)73.8(14)C1739504(3)9264(3)1339.2(19)61.0(11)C1745622(16)7397(12)6555(4)132(2)C17512108(13)5113(19)4831(12)167(5)C17611000(11)9867(10)1562(6)209(2)	C109 C170	8260(3)	4747(3) 3942(3)	-/32.0(1/) -813.8(18)	62 2(11)
C1726759(4)3434(3)-660.0(18)73.8(14)C1739504(3)9264(3)1339.2(19)61.0(11)C1745622(16)7397(12)6555(4)132(2)C17512108(13)5113(19)4831(12)167(5)C17611000(11)9867(10)1562(6)209(2)	C171	7426(3)	3394(3)	-1020 5(17)	61 8(10)
C1739504(3)9264(3)1339.2(19)61.0(11)C1745622(16)7397(12)6555(4)132(2)C17512108(13)5113(19)4831(12)167(5)C17611000(11)9867(10)1562(6)209(2)	C172	6759(4)	3434(3)	-660.0(18)	73.8(14)
C1745622(16)7397(12)6555(4)132(2)C17512108(13)5113(19)4831(12)167(5)C17611000(11)9867(10)1562(6)209(2)	C173	9504(3)	9264(3)	1339.2(19)	61.0(11)
C17512108(13)5113(19)4831(12)167(5)C17611000(11)9867(10)1562(6)209(2)	C174	5622(16)	7397(12)	6555(4)	132(2)
C17611000(11)9867(10)1562(6)209(2)	C175	12108(13)	5113(19)	4831(12)	167(5)
	C176	11000(11)	9867(10)	1562(6)	209(2)

Atom	X	У	Z	U_{eq}
C177	11732(11)	9949(10)	1937(6)	209(2)
C178	11500(11)	10394(10)	2503(6)	209(2)
C179	11302(11)	11134(10)	2498(6)	209(2)
C180	11334(11)	11666(10)	3022(6)	209(2)
C181	10961(11)	12502(10)	3140(6)	209(2)
C182	11821(11)	12969(10)	2977(6)	209(2)
C183	12092(11)	13757(10)	3195(6)	209(2)
C184	12528(11)	14310(10)	3068(6)	209(2)
C185	13196(11)	14858(10)	3183(6)	209(2)
C186	6154(13)	7356(9)	7059(4)	132(2)

Table 9: Anisotropic Displacement Parameters (×10⁴) for **20Hir_CD02_2**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$

Atom	<i>U</i> ₁₁	U 22	U 33	U 23	U 13	U ₁₂
0134	52.5(15)	56.2(16)	76.9(18)	33.4(15)	2.1(13)	-10.7(13)
0135	66.3(19)	124(3)	60.0(17)	54(2)	-0.4(15)	-29.8(19)
0148	51.0(14)	61.9(16)	42.1(13)	11.9(11)	14.7(10)	1.6(12)
0149	37.0(12)	48.3(14)	48.9(13)	7.9(11)	10.1(10)	0.7(10)
0161	40.6(14)	88(2)	68.8(17)	43.9(16)	17.0(12)	21.1(13)
0162	56.4(16)	64.0(17)	55.2(15)	21.4(13)	15.6(12)	8.3(13)
0174	48.4(14)	66.0(17)	71.3(17)	48.1(15)	12.9(12)	8.0(12)
0175	54.2(16)	55.6(17)	84(2)	24.7(15)	7.9(15)	-2.1(13)
C1	41.0(16)	40.4(17)	38.7(15)	20.5(13)	4.8(12)	13.1(13)
C2	37.3(16)	48.0(19)	49.1(17)	24.0(15)	7.8(13)	16.6(13)
C3	37.8(16)	50.1(19)	45.5(17)	25.2(15)	7.6(13)	12.9(14)
C4	36.1(15)	33.9(15)	34.5(14)	13.7(12)	3.2(11)	6.4(11)
C5	38.3(16)	40.1(17)	41.9(15)	20.9(13)	7.4(12)	5.8(12)
C6	40.0(16)	35.7(16)	41.6(15)	20.8(13)	5.8(12)	9.1(12)
C7	34.9(14)	34.0(15)	34.9(14)	14.3(12)	2.9(11)	9.0(11)
C8	34.4(14)	26.6(13)	30.0(12)	11.3(11)	5.3(11)	7.5(10)
С9	34.3(14)	28.9(14)	32.0(13)	11.5(11)	4.8(11)	8.6(11)
C10	38.9(15)	28.8(14)	32.4(13)	11.0(11)	4.2(11)	6.8(11)
C11	39.3(15)	27.7(14)	31.7(13)	11.8(11)	2.1(11)	5.5(11)
C12	37.2(15)	29.1(14)	30.4(13)	10.1(11)	4.3(11)	6.0(11)
C13	32.9(14)	29.4(14)	30.7(13)	8.9(11)	4.2(11)	8.0(11)
C14	35.5(14)	30.3(14)	30.4(13)	9.0(11)	4.9(11)	7.0(11)
C15	32.8(14)	36.8(16)	34.7(14)	9.3(12)	4.4(11)	7.8(12)
C16	36.0(15)	32.0(15)	35.1(14)	8.3(12)	6.3(12)	3.7(11)
C17	40.2(16)	33.6(15)	31.6(14)	8.6(12)	3.7(12)	3.1(12)
C18	42.8(17)	42.8(17)	39.1(15)	19.6(14)	6.4(13)	1.0(13)
C19	45.3(17)	43.0(17)	33.8(14)	18.5(13)	2.0(13)	0.3(13)
C20	39.1(15)	32.4(15)	33.6(14)	13.6(12)	3.5(12)	6.6(12)
C21	34.4(14)	34.5(15)	32.6(14)	11.5(12)	2.0(11)	3.6(11)
C22	35.0(14)	31.9(15)	33.0(14)	9.3(11)	4.9(11)	4.9(11)
C23	35.1(14)	30.3(14)	33.5(14)	8.9(11)	4.1(11)	2.2(11)
C24	39.0(15)	30.0(14)	30.4(13)	9.8(11)	3.7(11)	3.0(11)
C25	41.5(16)	30.4(15)	31.1(14)	8.4(11)	6.5(12)	4.9(12)
C26	34.4(14)	32.6(15)	35.4(14)	12.6(12)	5.9(11)	6.4(11)
C27	36.0(15)	33.9(15)	33.7(14)	10.5(12)	5.1(11)	11.8(11)
C28	41.9(17)	43.8(18)	37.3(15)	7.2(13)	6.0(13)	6.2(13)
C29	63(2)	52(2)	37.3(17)	-1.1(15)	8.8(16)	1.7(17)
C30	70(3)	51(2)	47.0(19)	3.1(16)	24.2(18)	9.3(18)
C31	53(2)	50(2)	62(2)	9.6(17)	25.8(18)	9.9(16)
C32	40.6(17)	39.3(17)	48.6(18)	7.6(14)	9.5(14)	6.8(13)
C33	78(3)	81(3)	53(2)	3(2)	27(2)	11(2)
C34	73(3)	86(3)	56(2)	20(2)	33(2)	19(2)
C35	92(4)	100(4)	46(2)	11(2)	12(2)	13(3)
C36	85(3)	85(4)	55(2)	-11(2)	21(2)	7(3)
C37	35.1(15)	35.2(16)	35.1(14)	12.3(12)	4.7(11)	6.6(12)

Atom	U ₁₁	U 22	<i>U</i> 33	U 23	U 13	U ₁₂
C38	37.8(16)	36.8(17)	43.4(16)	6.2(13)	-2.5(13)	6.4(13)
C39	42.9(17)	32.2(16)	54.7(19)	8.2(14)	2.0(14)	8.2(13)
C40	36.2(15)	39.9(17)	41.8(15)	18.4(13)	4.6(12)	8.2(12)
C41	31.6(14)	42.0(17)	45.6(16)	17.3(14)	0.2(12)	3.5(12)
C42	39.0(16)	34.2(16)	42.7(16)	13.0(13)	0.5(13)	2.4(12)
C43	40.0(17)	43.5(18)	56.1(19)	25.5(15)	2.8(14)	9.6(14)
C44	67(3)	50(2)	68(2)	24.7(19)	9(2)	27.7(19)
C45	39.2(19)	71(3)	112(4)	53(3)	-1(2)	16.9(18)
C46	65(2)	57(2)	58(2)	30.4(19)	9.8(18)	16.5(18)
C47	46.5(17)	34.9(16)	30.6(14)	11.2(12)	6.1(12)	10.2(13)
C48	45.7(17)	36.3(16)	36.3(15)	11.5(13)	4.8(13)	7.0(13)
C49	62(2)	40.5(18)	37.1(16)	16.7(14)	8.1(15)	6.8(15)
C50	63(2)	42.3(19)	36.9(16)	12.4(14)	2.5(15)	9.5(16)
C51	65(2)	41.2(19)	38.3(16)	7.3(14)	-6.3(15)	3.5(16)
C52	54(2)	35.7(17)	40.8(16)	12.0(13)	0.2(14)	3.3(14)
C53	92(3)	52(2)	38.9(18)	15.0(16)	-5.3(19)	13(2)
C54 CFF	110(4)	59(3) 72(2)	54(2)	21(2)	-15(3)	23(3)
C55	102(4) 111(4)	73(3) 76(2)	51(2) 202(10)	19(2) 22(2)	-22(2)	11(3)
C57	111(4) 118(16)	354(16)	39.3(19) 30.6(13)	22(2) 9 9(12)	73(12)	73(12)
C58	63(2)	31.4(10)	435(17)	9.7(12) 8 5(13)	190(15)	7.5(12) 3 5(14)
C59	62(2)	31.0(10) 38.4(17)	398(16)	118(14)	210(15)	80(15)
C60	50.2(18)	34.4(16)	36.5(15)	10.9(13)	10.4(13)	11.9(13)
C61	56.5(19)	31.4(16)	37.8(15)	8.1(13)	11.1(14)	8.4(13)
C62	49.8(18)	33.9(16)	34.0(14)	12.6(12)	10.1(13)	8.1(13)
C63	61(2)	44.2(19)	39.0(16)	10.4(14)	14.0(15)	14.3(16)
C64	83(3)	44(2)	49(2)	3.9(16)	23.3(19)	11.4(19)
C65	83(3)	82(3)	44(2)	15(2)	4(2)	23(3)
C66	78(3)	55(2)	57(2)	9.1(18)	33(2)	17(2)
C67	39.7(16)	34.9(16)	31.6(13)	6.0(12)	6.9(12)	9.3(12)
C68	47.0(18)	41.1(17)	39.6(15)	11.8(13)	11.4(13)	12.3(14)
C69	45.3(18)	54(2)	39.6(16)	8.4(15)	10.1(14)	19.9(15)
C70	53.9(19)	47.1(19)	34.8(15)	9.4(14)	5.6(14)	24.5(15)
C72	5/(2)	39.0(18)	46.1(17)	15.7(14)	8.2(15)	11.4(15)
C72	45./(1/)	37.4(17) 66(2)	40.1(17)	14.3(14)	0.1(14) E E(19)	9.0(13)
C74	83(4)	127(5)	90(4)	52(4)	35(3)	68(4)
C75	149(7)	68(4)	112(5)	-8(3)	-32(5)	64(4)
C76	85(3)	97(4)	67(3)	42(3)	18(2)	50(3)
C77	40.3(16)	36.5(16)	30.7(13)	14.9(12)	2.5(12)	4.4(12)
C78	40.6(16)	38.4(16)	32.4(13)	16.3(12)	4.9(12)	4.9(12)
C79	36.9(15)	39.8(17)	32.9(14)	12.5(12)	5.2(12)	7.8(12)
C80	43.4(17)	45.4(18)	31.8(14)	11.8(13)	2.9(12)	10.7(13)
C81	44.0(17)	40.5(17)	31.7(14)	13.0(12)	4.2(12)	11.5(13)
C82	44.1(16)	38.0(16)	31.3(13)	13.6(12)	5.1(12)	7.7(13)
C83	48.8(18)	35.8(16)	36.8(15)	15.5(13)	2.5(13)	8.0(13)
C84	83(3)	40.8(19)	39.0(17)	16.3(15)	2.1(17)	5.6(18)
C85	137(5)	47(2)	39.4(19)	10.4(17)	-9(2)	-9(3)
	154(6)	47(3)	55(2)	19(2)	-/(3)	-29(3)
	120(4) 60(2)	40(2) 41 4(10)	40(2) 285(16)	24.4(10) 172(14)	1(2)	-14(2)
C89	232(11)	41.4(19) 66(4)	81(4)	25(3)	-15(5)	-63(5)
C90	130(8)	120(7)	223(12)	-25(7)	80(8)	-36(6)
C91	112(5)	61(3)	107(4)	18(3)	-5(4)	-24(3)
C92	237(11)	63(4)	140(7)	60(4)	-42(7)	-54(5)
C93	44.6(18)	49(2)	45.8(17)	22.1(15)	5.3(14)	14.3(15)
C94	63(2)	54(2)	67(2)	16.0(19)	2(2)	23.2(19)
C95	86(5)	74(3)	47(3)	27(2)	12(2)	45(3)
С96	73(5)	74(4)	80(5)	45(4)	13(3)	35(4)
C97	86(5)	74(3)	47(3)	27(2)	12(2)	45(3)
C98	64(2)	71(3)	49(2)	29.5(19)	-1.2(18)	17(2)

Atom	U ₁₁	U22			U ₁₃	
699 6100	123(7)	109(7)	96(6) 140(6)	51(5)	12(5)	/5(6) 124(10)
C100	206(11)	189(11)	149(6)	8/(/)	13(7)	134(10) 124(10)
C101 C102	200(11) 206(11)	109(11)	149(0)	0/(/)	13(7)	134(10) 124(10)
C102	200(11)	109(11)	149(0) 27.2(15)	0/(/)	13(7)	134(10) 110(14)
C103	41.8(17)	40.8(19)	37.3(15)	12.4(14)	-0.1(13)	11.0(14)
	51(2)	5/(2)	38.3(10)	7.7(15)	1./(14)	10.1(10) 12.4(10)
C105	55(2)	6/(3)	42.2(18)	3.8(17)	-6.5(16)	13.4(18)
C100	49(2)	74(3)	50(2)	9(2)	-4.0(18)	18.4(19)
C107	43(2)	79(3)	54(2)	/(2)	2.3(10)	22.0(19)
C108	45.2(19)	58(2)	41.5(17)	/./(16)	3.6(14)	15.7(16)
C109	49(3) 70(5)	308(16)	11/(6)	-12(7)	-/(3)	57(6)
	70(5)	219(14)	318(19)	-101(13)	-76(8)	18(6)
	90(7) F0(2)	580(40)	320(20)	340(30)	-16(9)	03(13)
C112	59(3) 26 2(1E)	138(6)	74(3)	2(3) 124(12)	-1/(3)	34(3)
C113	30.2(15)	40.0(17)	34.8(14)	12.4(12)	2.4(12) 15 0(14)	4.2(12)
	45.7(10)	40.9(19)	43.3(17)	5.5(14) 7.2(15)	13.9(14)	3.9(14) 0.1(15)
C115	44.1(18)	50(2)	44.8(17)	/.3(15)	13.0(14)	0.1(15)
C117	47.0(18)	40.2(17) 41 E(10)	30.3(15) 20.0(15)	9.7(13) 10.0(12)	7.0(13) 12 1(11)	1.0(14) 0.7(14)
G110	47.2(10) 10 1(1()	41.3(18) 15 1(19)	30.7(13) 25 1(14)	10.0(13)	13.4(14)	0./(14) 7.1(12)
UII0 C110	40.1(16) 62(2)	43.4(18) 49(2)	33.1(14) 40.1(10)	14.5[13]	9.1(12) 16.0(17)	/.1(13) 6 0(17)
C120	02(2)	40(2)	49.1(19) 102(4)	4.2(10) 21(2)	20(2)	-0.8(1/) 4(2)
C120	102(4)	47(3)	102(4)	21(3)	29(3)	4(Z) 21(2)
0121 C122	/0(3) 122(5)	03(3) 74(2)	/ð[ð] 51(2)	-4(Z)	2/(2) 1(2)	-21(2) 21(2)
C122	123(5)	74(3)	51(2) 20.7(1F)	I(2)	-1(3)	-31(3)
C123	42.2(10)	30.1(10) F2(2)	38.7(15)	1/.4(13)	-2.4(12)	1.1(12) 2.4(15)
C124	49.7(19)	52(2)	43.1(17) F0(2)	24.4(15)	-0.5(14) 12(2)	-3.4(15)
C125	71(3)	54(2)	59(2)	30.1(19)	-13(2)	-12(2)
C120	72(3)	41(2)	69(2)	20.4(19)	-20(2) E 1(10)	1.5(10)
C120	37(2) 46 E(19)	43(2)	03(2) 49 E(17)	21.7(10) 21.2(1E)	-5.1(10)	13.3(10) 9.6(14)
C120	40.3(10)	42.0(10)	40.3(17)	21.3(13) 24(2)	22(2)	2(2)
C129	157(9)	40(2)	100(0)	34(2)	-33(3)	3(2)
C121	247(11)	68(4)	100(0) 110(5)	49(3)	-/1(/)	23(4)
C132	183(8)	41(3)	110(3) 114(5)	18(3)	-57(5)	22(3)
C122	50(2)	75(2)	58(2)	10(3)	-37(3) 1 2(17)	20(3) 5 4(10)
C133	73(5)	73(3)	30(2)	41(2)	1.2(17) 13(3)	-5.4(19)
C134 C135	206(11)	180(11)	149(6)	43(4) 87(7)	13(3)	134(10)
C135	200(11) 101(4)	109(11) 100(4)	77(3)	51(3)	10(3)	-18(3)
C127	101(7)	100(7)	96(6)	51(5)	10(5)	-10(3)
C138	77(3)	88(4)	90(0) 81(3)	26(3)	6(3)	14(3)
C139	139(6)	101(5)	104(5)	57(4)	51(4)	28(4)
C140	109(5)	140(7)	107(5)	48(5)	26(4)	20(4) 47(5)
C141	91(4)	102(4)	71(3)	36(3)	8(3)	
C142	173(5)	152(5)	65(2)	47(3)	7(3)	-39(4)
C143	173(5)	153(5)	65(2)	47(3)	7(3)	-39(4)
C144	173(5)	153(5)	65(2)	47(3)	7(3)	-39(4)
C145	146(9)	95(8)	85(5)	24(7)	32(6)	-12(8)
C146	147(7)	146(8)	82(4)	39(5)	10(4)	-11(6)
C147	40 5(17)	41 5(17)	40.3(16)	15 8(13)	7 4(13)	36(13)
C148	146(9)	95(8)	85(5)	24(7)	32(6)	-12(8)
C149	86(5)	74(3)	47(3)	27(2)	12(2)	45(3)
C150	48(2)	64(3)	67(2)	8(2)	22.2(18)	-2.0(18)
C151	50(2)	69(3)	59(2)	12(2)	9 0(18)	-78(19)
C152	46(2)	57(2)	65(2)	20.1(19)	11.5(17)	1.9(16)
C153	49(2)	66(3)	86(3)	16(2)	9(2)	-2.1(19)
C154	60(3)	60(3)	121(5)	19(3)	1(3)	3(2)
C155	57(3)	60(3)	109(4)	21(3)	-3(3)	6(2)
C156	81(4)	63(3)	120(5)	29(3)	10(3)	10(3)
C157	93(4)	59(3)	126(5)	11(3)	15(4)	13(3)
C158	125(4)	= 7 (3)	101(5)	$= \frac{1}{2} \left(\frac{3}{2} \right)$		17(2)
0100	122101	5/[3]	121(5)	10[3]	32[5]	1/(3)

Atom	U ₁₁	U 22	U 33	<i>U</i> ₂₃	U ₁₃	U ₁₂
C160	50(2)	61(2)	64(2)	33.8(19)	10.3(17)	14.0(17)
C161	86(5)	74(3)	47(3)	27(2)	12(2)	45(3)
C162	206(11)	189(11)	149(6)	87(7)	13(7)	134(10)
C163	55(2)	67(3)	61(2)	19(2)	20.0(18)	1.5(19)
C164	70(3)	65(3)	73(3)	27(2)	21(2)	-1(2)
C165	67(3)	69(3)	60(2)	25(2)	9(2)	4(2)
C166	61(3)	73(3)	74(3)	34(2)	17(2)	7(2)
C167	63(2)	57(2)	66(2)	21(2)	14(2)	2.7(19)
C168	62(2)	61(3)	65(2)	15(2)	11(2)	2(2)
C169	61(2)	58(2)	62(2)	19.0(19)	4.3(19)	0.6(19)
C170	58(2)	62(3)	65(2)	10(2)	6.6(19)	7.7(19)
C171	64(2)	54(2)	62(2)	11.5(19)	0.9(19)	4.2(19)
C172	82(3)	71(3)	58(2)	15(2)	6(2)	-23(2)
C173	50(2)	67(3)	86(3)	47(2)	21(2)	18.8(19)
C174	173(5)	153(5)	65(2)	47(3)	7(3)	-39(4)
C175	206(11)	189(11)	149(6)	87(7)	13(7)	134(10)
C176	195(4)	221(5)	207(4)	114(4)	-37(4)	-64(4)
C177	195(4)	221(5)	207(4)	114(4)	-37(4)	-64(4)
C178	195(4)	221(5)	207(4)	114(4)	-37(4)	-64(4)
C179	195(4)	221(5)	207(4)	114(4)	-37(4)	-64(4)
C180	195(4)	221(5)	207(4)	114(4)	-37(4)	-64(4)
C181	195(4)	221(5)	207(4)	114(4)	-37(4)	-64(4)
C182	195(4)	221(5)	207(4)	114(4)	-37(4)	-64(4)
C183	195(4)	221(5)	207(4)	114(4)	-37(4)	-64(4)
C184	195(4)	221(5)	207(4)	114(4)	-37(4)	-64(4)
C185	195(4)	221(5)	207(4)	114(4)	-37(4)	-64(4)
C186	173(5)	153(5)	65(2)	47(3)	7(3)	-39(4)

Table 10: Bond Lengths in Å for 20Hir_CD02_2.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
0134	C133	1.210(5)	C12	C13	1.448(4)
0135	C133	1.352(5)	C12	C17	1.426(4)
0135	C136	1.425(6)	C13	C14	1.399(4)
0148	C147	1.208(4)	C14	C15	1.405(4)
0149	C147	1.334(4)	C14	C21	1.511(4)
0149	C150	1.457(4)	C15	C16	1.365(4)
0161	C160	1.219(5)	C16	C17	1.425(5)
0162	C160	1.352(5)	C16	C147	1.494(4)
0162	C163	1.451(5)	C17	C18	1.428(4)
0174	C173	1.192(5)	C18	C19	1.369(5)
0175	C173	1.369(6)	C18	C133	1.488(5)
0175	C176	1.459(14)	C19	C20	1.398(4)
C1	C2	1.389(5)	C20	C77	1.489(4)
C1	C10	1.394(4)	C21	C22	1.402(4)
C2	C3	1.376(5)	C21	C26	1.406(4)
C3	C4	1.437(4)	C22	C23	1.410(4)
C3	C160	1.498(5)	C22	C27	1.493(4)
C4	C5	1.425(4)	C23	C24	1.413(4)
C4	C9	1.426(4)	C23	C37	1.491(4)
C5	C6	1.367(5)	C24	C25	1.395(4)
C5	C173	1.499(5)	C24	C47	1.498(4)
C6	C7	1.394(4)	C25	C26	1.415(4)
C7	C8	1.392(4)	C25	C57	1.496(4)
C8	C9	1.440(4)	C26	C67	1.483(4)
C8	C13	1.468(4)	C27	C28	1.398(5)
С9	C10	1.425(4)	C27	C32	1.391(5)
C10	C11	1.466(4)	C28	C29	1.376(5)
C11	C12	1.425(4)	C29	C30	1.368(6)
C11	C20	1.406(4)	C30	C31	1.394(6)

Atom	Atom	Length/Å	Atom
C30	C33	1.547(6)	C86
C31	C32	1.395(5)	C87
C33	C34	1.532(7)	C89
C33	C35	1.544(8)	C89
C33	C36	1.488(8)	C89
C37	C38	1.390(5)	C93
C37	C42	1.387(5)	C93
C38	C39	1.386(5)	C94
C39	C40	1.390(5)	C94
C40	C41	1.392(5)	C95
C40	C43	1.535(4)	C96
C41	C42	1.394(5)	C96
C43	C44	1.522(6)	C97
C43	C45	1.542(6)	C98
C43	C46	1.539(5)	C99
C47	C48	1.396(5)	C99
C47	C52	1.387(5)	C99
C48	C49	1.378(5)	C103
C49	C50	1.392(5)	C103
C50	C51	1.390(6)	C104
C50	C53	1.525(5)	C105
C51	C52	1.383(5)	C106
C53	C54	1.521(7)	C106
C53	C55	1.527(7)	C107
C53	C56	1.530(8)	C109
C57	C58	1.389(5)	C110
C57	C62	1.386(5)	C111
C58	C59	1.386(5)	C113
C59	C60	1.396(5)	C113
C60	C61	1.392(5)	C114
C60	C63	1.535(4)	C115
C61	C62	1.391(5)	C116
C63	C64	1.524(6)	C116
L63	C65	1.530(6)	C117
C67		1.546(6)	C119 C110
C67	C00	1.391(3)	C119 C110
C68	C72 C69	1.394(3)	C119 C123
C60	C70	1.305(5)	C123
C70	C70	1.303(0)	C123
C70	C73	1 528(5)	C124
C71	C72	1 378(5)	C125
C73	C74	1 529(8)	C126
C73	C75	1 504(8)	C127
C73	C76	1.528(6)	C129
C77	C78	1.413(5)	C129
C77	C82	1.409(4)	C129
C78	C79	1.406(5)	C134
C78	C123	1.492(4)	C134
C79	C80	1.406(5)	C134
C79	C113	1.497(5)	C135
C80	C81	1.412(5)	C136
C80	C103	1.485(5)	C137
C81	C82	1.407(5)	C137
C81	C93	1.496(5)	C138
C82	C83	1.495(5)	C139
C83	C84	1.382(5)	C140
C83	C88	1.392(5)	C141
C84	C85	1.388(6)	C142
C85	C86	1.397(7)	C142
C86	C87	1.394(7)	C143

Atom	Atom	Length / Å
C00	C88	1.343(0)
	C00	1.371(0) 1.765(16)
C09	C90	1.705(10) 1.414(10)
C00	C91 C02	1.414(10) 1.4(1(11))
602	C92	1.401(11)
C93	C94	1.382(6)
C93	C98	1.382(5)
C94	C95	1.342(10)
C94	C161	1.49/(10)
C95	C96	1.393(14)
C90	C97	1.344(15) 1.5(2(12))
C07	C99	1.302(12) 1.471(10)
C00	C140	1.4/1(10) 1.249(10)
C00	C149	1.340(10) 1.452(16)
C00	C100	1.432(10) 1.471(1E)
C00	C101	1.4/1(10)
C102	C102	1.400(10) 1.200(Γ)
C103	C104	1.390(5)
C103		1.300(5)
C104 C105	C105	1.373(0)
C105	C100	1.300(0)
C106	C107	1.393(0) 1.527(7)
C100	C102	1.527(7)
C107	C100 C112	1.390(0)
C109 C110	C112	1.409(10) 1 EEQ(16)
C110 C111	C112	1.330(10)
C112	C112 C114	1.424(14) 1.206(E)
C112	C114 C119	1.390(5)
C113 C114	C115	1.307(3)
C114 C115	C115 C116	1.379(3)
C115 C116	C117	1.373(3) 1.206(5)
C116	C110	1.570(5) 1.540(5)
C117	C119	1 393(5)
C110	C120	1.575(5)
C119 C110	C120 C121	1.525(6)
C110	C121	1.520(0)
C123	C122	1.317(7) 1 393(5)
C123	C124	1 393(5)
C123	C125	1 383(6)
C125	C126	1 391(8)
C125	C127	1.391(0) 1 394(7)
C126	C129	1.538(6)
C127	C128	1 391(5)
C129	C130	1.471(11)
C129	C131	1.582(12)
C129	C132	1.485(8)
C134	C137	1.592(14)
C134	C149	1.345(13)
C134	C161	1.367(15)
C135	C137	1.466(16)
C136	C138	1.532(8)
C137	C162	1.482(16)
C137	C175	1.458(16)
C138	C139	1.500(9)
C139	C140	1.444(11)
C140	C141	1.476(11)
C141	C142	1.511(8)
C142	C143	1.449(19)
C142	C174	1.422(18)
C143	C144	1.637(17)

Atom	Atom	Length/Å
C144	C145	1.491(14)
C145	C146	1.530(13)
C146	C148	1.494(12)
C148	C186	1.493(14)
C150	C151	1.486(6)
C151	C152	1.517(6)
C152	C153	1.496(6)
C153	C154	1.502(8)
C154	C155	1.473(7)
C155	C156	1.523(8)
C156	C157	1.434(9)
C157	C158	1.495(9)
C158	C159	1.436(12)
C163	C164	1.511(7)
C164	C165	1.538(7)
C165	C166	1.486(7)

Atom	Atom	Length/Å
C166	C167	1.535(7)
C167	C168	1.512(7)
C168	C169	1.505(6)
C169	C170	1.512(7)
C170	C171	1.511(6)
C171	C172	1.511(7)
C174	C186	1.595(16)
C176	C177	1.428(18)
C177	C178	1.69(2)
C178	C179	1.45(2)
C179	C180	1.54(2)
C180	C181	1.69(3)
C181	C182	1.681(19)
C182	C183	1.44(2)
C183	C184	1.327(17)
C184	C185	1.320(17)

Table 11: Bond Angles in ° for 20Hir_CD02_2.

Atom	Atom	Atom	Angle/°
C133	0135	C136	117.9(4)
C147	0149	C150	113.5(3)
C160	0162	C163	115.5(3)
C173	0175	C176	115.5(6)
C2	C1	C10	121.6(3)
C3	C2	C1	121.6(3)
C2	C3	C4	119.3(3)
C2	C3	C160	114.8(3)
C4	C3	C160	124.8(3)
C5	C4	C3	124.2(3)
C5	C4	C9	118.1(3)
С9	C4	C3	117.7(3)
C4	C5	C173	124.4(3)
C6	C5	C4	119.6(3)
C6	C5	C173	115.1(3)
C5	C6	C7	122.3(3)
C8	C7	C6	120.8(3)
C7	C8	С9	117.7(3)
C7	C8	C13	123.5(3)
С9	C8	C13	118.8(2)
C4	C9	C8	120.3(3)
C10	C9	C4	120.8(3)
C10	C9	C8	118.9(3)
C1	C10	C9	117.5(3)
C1	C10	C11	123.2(3)
C9	C10	C11	119.3(3)
C12	C11	C10	118.5(3)
C20	C11	C10	122.6(3)
C20	C11	C12	118.9(3)
C11	C12	C13	119.3(3)
C11	C12	C17	120.4(3)
C17	C12	C13	120.4(3)
C12	C13	C8	118.2(3)
C14	C13	C8	123.8(3)
C14	C13	C12	1180(3)
C13	C14	C15	1196(3)
C13	C14	C21	125 8(3)
C15	C14	C21	114 6(3)
C16	C15	C14	123 0(3)
C15	C16	C17	1194(3)
C12	C10	U1/	117.4(3)

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle
C34	C33	C30	110.6(4)	C71	C70	C73	119.1(4
C34	C33	C35	107.2(5)	C72	C71	C70	121.5(3
C35	C33	C30	110.7(4)	C71	C72	C67	120.7(3
C36	C33	C30	109.5(4)	C70	C73	C74	111.3(4
C36	C33	C34	111.0(4)	C70	C73	C76	108.4(3
C36	C33	C35	1078(5)	C75	C73	C70	110 0(4
C38	C37	C23	107.0(3)	C75	C73	C74	108.0(5
C42	C27	C23	121.2(3) 121.2(2)	C75	C72	C74	1124(5
C42	C37	623	121.3(3)	C75	C73	C70	112.4(3
C42	L37	C38	117.3(3)	C76	C73	C74	106.7(4
639	C38	637	121.2(3)	C78	C77	C20	119.2(3
C38	C39	C40	122.0(3)	C82	C77	C20	120.7(3
C39	C40	C41	116.5(3)	C82	C77	C78	120.1(3
C39	C40	C43	121.7(3)	C77	C78	C123	122.1(3
C41	C40	C43	121.6(3)	C79	C78	C77	120.0(3
C40	C41	C42	121.6(3)	C79	C78	C123	118.0(3
C37	C42	C41	121.1(3)	C78	C79	C113	120.4(3
C40	C43	C45	112.7(3)	C80	C79	C78	119.9(3
C40	C43	C46	106.7(3)	C80	C79	C113	119.7(3
C44	C43	C40	112.0(3)	C79	C80	C81	119 8(3
C44	C43	C45	108 4(4)	C79	C80	C103	121 0(3
C44	C12	C16	100.7(7)	C01	C00	C103	110 202
C44 C44	C43	C40	107.4(3)		C01	C103	11070
C40	L43	L45 C24	107.4(4)			693	110./(3
C48	C47	C24	120.6(3)	682	(81	C80	120.4(3
C52	C47	C24	121.5(3)	C82	C81	C93	120.9(3
C52	C47	C48	117.8(3)	C77	C82	C83	120.4(3
C49	C48	C47	120.6(3)	C81	C82	C77	119.5(3
C48	C49	C50	122.1(3)	C81	C82	C83	120.1(3
C49	C50	C53	120.1(3)	C84	C83	C82	122.1(3
C51	C50	C49	116.7(3)	C84	C83	C88	117.1(3
C51	C50	C53	123.0(3)	C88	C83	C82	120.8(3
C52	C51	C50	121.7(3)	C83	C84	C85	121 6(4
C51	C52	C47	121 0(3)	C84	C85	C86	121 1/4
C50	C53	C55	111 8(4)	ראב גר	C86	C80	122.11
C50	C23	C56	108 0(4)	C03	C00 C96		116 0(4
CE4	C55	C50	110.7(4)			000	120.7[4
C54	L53	C20	110./(3)	L8/		689	120.4(5
L54	653	L55	108.6(4)	C88	687	L86	121.5(4
C54	C53	C56	108.6(4)	C87	C88	C83	121.8(4
C55	C53	C56	108.2(4)	C86	C89	C90	105.9(8
C58	C57	C25	121.3(3)	C91	C89	C86	114.7(6
C62	C57	C25	121.3(3)	C91	C89	C90	96.1(8)
C62	C57	C58	117.2(3)	C91	C89	C92	119.9(7
C59	C58	C57	121.5(3)	C92	C89	C86	113.2(6
C58	C59	C60	121.3(3)	C92	C89	C90	103.4(9
C59	C60	C63	120.3(3)	<u>C94</u>	C93	C81	121 8(3
C61	C60	C59	117 1(3)	C98	093	C81	1203(3
C61	C60	C63	122 5(2)	CDQ	C03	C01	117 Q(4
C62	C61	CC3 C60	122.J[J] 121 2(2)	670 602	C93	C74 C161	112.0[4
CE7	001		121.2(3)	L93 COF	C94	C101	112.3(5
L5/	L62	C61	121.6(3)	C95	C94	693	126.4(6
C60	C63	C66	110.6(3)	C94	C95	C96	117.0(8
C64	C63	C60	112.9(3)	C95	C96	C99	121.3(9
C64	C63	C65	108.5(4)	C97	C96	C95	117.8(8
C64	C63	C66	107.4(3)	C97	C96	C99	120.8(9
C65	C63	C60	107.7(3)	C96	C97	C98	125.4(8
C65	C63	C66	109.8(4)	C93	C98	C97	113.7(5
C68	C67	C26	122.1(3)	C149	C98	C93	127.5(6
C68	C67	C72	118 0(3)	C100	C99	C96	110 8(1
C72	C67	C26	110.0(3)	C100	COO	C101	110.0(1
C60	C68	C67	121 0(2)	C100	C00	C102	01 2(17
C70			121.U(3)		C00		74.5L1/ 112.200
	670	<u>υ</u> οδ	121.5(3)		699	C90	112.3(9
69	C70	C71	117.3(3)	C102	099	0.96	110.1(1
C69	C70	C73	123.6(4)	C102	C99	C101	107.7(1

Atom	Atom	Atom	Angle/°
104	C103	CRO	123 2(3)
104	C103	C80	123.2(3)
100	C103	C104	117.2(3) 117.6(3)
105	C103	C104	120.6(3)
2103	C105	C106	120.0(3) 122.2(4)
C105	C106	C107	1173(4)
C105	C106	C112	117.3(4) 1219(4)
C105	C106	C112	121.7(1) 1207(4)
C108	C107	C106	120.7(1) 120.7(4)
C103	C108	C107	120.7(1)
C105	C100	C110	121.0(3) 107.0(6)
C100	C112 C112	C106	107.0(0) 114.1(5)
C100	C112	C100	1010(10)
C109	C112	C106	101.0(10) 111.1(7)
C111	C112	C100	111.1(7) 11E2(10)
C111 C111	C112	C109	113.3(10) 107.2(12)
	C112	C110 C70	107.3(13)
U114		C79	121./(3)
		C/9	120.8(3)
U118	C113	C114	117.5(3)
C115	C114	C113	121.2(3)
C114	C115	C116	122.0(3)
C115	C116	C117	116.6(3)
C115	C116	C119	123.4(3)
C117	C116	C119	120.0(3)
C118	C117	C116	121.6(3)
C113	C118	C117	121.0(3)
C120	C119	C116	109.7(4)
C120	C119	C121	108.5(4)
C121	C119	C116	111.4(3)
C122	C119	C116	109.5(4)
C122	C119	C120	108.8(5)
C122	C119	C121	108.8(5)
C124	C123	C78	120.6(3)
C124	C123	C128	117.6(3)
C128	C123	C78	121.5(3)
C125	C124	C123	120.8(4)
C124	C125	C126	122.2(4)
C125	C126	C127	116.8(4)
C125	C126	C129	1223(5)
C127	C126	C129	120.8(5)
C128	C120	C126	120.0(3) 1214(4)
C120	C127	C123	121.4(4) 121.0(4)
C127	C120	C123	121.0(4) 100 E(6)
C120	C129	C131	109.5(0)
C130	C129	C120	110.9(5)
C130	C129	C131	105.0(6)
C130	C129	C132	116.3(7)
C132	C129	C126	108.8(4)
C132	C129	C131	106.0(6)
0134	C133	0135	125.0(4)
0134	C133	C18	123.7(4)
0135	C133	C18	111.1(3)
C149	C134	C137	120.5(10)
C149	C134	C161	118.4(9)
C161	C134	C137	120.9(10)
0135	C136	C138	108.5(5)
C135	C137	C134	109.1(11)

Table 12: Torsion Angles in ° for 20Hir_CD02_2.

Atom	Atom	Atom	Atom	Angle/°

Atom	Atom	Atom	Atom	Angle/°
0135	C136	C138	C139	-171.7(6)
0149	C150	C151	C152	175.4(4)
0162	C163	C164	C165	-57.0(5)
0175	C176	C177	C178	-59.1(18)
C1	C2	C3	C4	-0.7(6)
C1	C2	C3	C160	-169.6(4)
C1	C10	C11	C12	-154.3(3)
C1	C10	C11	C20	24.1(5)
C2	C1	C10	С9	2.1(5)
C2	C1	C10	C11	-178.0(3)
C2	C3	C4	C5	172.9(3)
C2	C3	C4	C9	-8.2(5)
C2	C3	C160	0161	-37.9(6)
C2	C3	C160	0162	140.8(4)
C3	C4	C5	C6	173.1(3)
C3	C4	C5	C173	-17.9(6)
C3	C4	C9	C8	-1661(3)
C3	C4	C9	C10	14 4(4)
C4	C3	C160	0161	153 9(4)
C4	63	C160	0162	-274(6)
C4	C5	C6	C7	-2 6(5)
C4	C5	C173	0174	1543(4)
C4	C5	C173	0175	-29.6(6)
C4	C9	C10	C1	-113(4)
C4	C9	C10	C11	168 7(3)
C5	C4	C9	C8	12.8(4)
C5	C4	C9	C10	-1667(3)
C5	C6	C7	C8	4 1(5)
C6	C5	C173	0174	-363(6)
C6	C5	C173	0175	139 8(4)
C6	C7	C8	C9	3.0(4)
C6	C7	C8	C13	-175.2(3)
C7	C8	C9	C4	-11.4(4)
C7	C8	C9	C10	168.1(3)
C7	C8	C13	C12	-158.1(3)
C7	C8	C13	C14	21.9(4)
C8	C9	C10	C1	169.2(3)
C8	C9	C10	C11	-10.8(4)
C8	C13	C14	C15	-171.7(3)
C8	C13	C14	C21	7.0(5)
C9	C4	C5	C6	-5.8(5)
C9	C4	C5	C173	163.2(4)
C9	C8	C13	C12	23.7(4)
C9	C8	C13	C14	-156.3(3)
C9	C10	C11	C12	25.7(4)
C9	C10	C11	C20	-155.9(3)
C10	C1	C2	C3	3.9(6)
C10	C11	C12	C13	-15.3(4)
C10	C11	C12	C17	166.2(3)
C10	C11	C20	C19	-166.2(3)
C10	C11	C20	C77	13.7(5)
C11	C12	C13	C8	-8.9(4)
C11	C12	C13	C14	171.1(3)
C11	C12	C17	C16	-178.3(3)
C11	C12	C17	C18	0.4(4)
C11	C20	C77	C78	61.0(4)
C11	C20	C77	C82	-120.4(3)
C12	C11	C20	C19	12.2(4)
C12	C11	C20	C77	-167.9(3)
C12	C13	C14	C15	8.4(4)
C12	C13	C14	C21	-173.0(3)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Atom	Atom	Atom	Atom	Angle/°
C12C17C18C133 $-159.8(4)$ C13C8C9C4 $166.8(3)$ C13C12C17C16 $3.2(4)$ C13C12C17C18 $-178.1(3)$ C13C14C21C22 $-118.3(3)$ C13C14C21C26 $68.6(4)$ C14C15C16C17 $-8.3(5)$ C14C15C16C17 $-8.3(5)$ C14C21C22C23 $-173.6(3)$ C14C21C22C27 $5.3(4)$ C14C21C26C25 $174.2(3)$ C14C21C26C26 $-112.7(3)$ C14C21C26C26 $-112.7(3)$ C15C14C21C26 $-112.7(3)$ C15C16C17C18 $-172.6(3)$ C15C16C147O148 $-136.6(4)$ C15C16C147O148 $-136.6(4)$ C15C16C147O148 $-32.0(5)$ C16C17C18C133 $18.8(5)$ C17C12C13C14 $-10.3(4)$ C17C16C147O149 $-32.3(3)$ C17C16C147O149 $-32.3(3)$ C17C16C147O149 $-32.3(3)$ C17C16C147O149 $-32.3(3)$ C17C16C147O149 $-32.3(3)$ C17C18C133O135 $-51.5(4)$ C18C19C20 <t< td=""><td>C12</td><td>C17</td><td>C18</td><td>C19</td><td>11.7(5)</td></t<>	C12	C17	C18	C19	11.7(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12	C17	C18	C133	-159.8(4)
C13C8C9C10 $-13.7(4)$ C13C12C17C16 $3.2(4)$ C13C12C17C18 $-178.1(3)$ C13C14C21C22 $-118.3(3)$ C13C14C21C26 $68.6(4)$ C14C15C16C17 $-8.3(5)$ C14C21C22C23 $-173.6(3)$ C14C21C22C23 $-173.6(3)$ C14C21C26C67 $-5.6(4)$ C14C21C26C67 $-5.6(4)$ C15C14C21C26 $-112.7(3)$ C14C21C26C67 $-5.6(4)$ C15C14C21C26 $-112.7(3)$ C15C16C17C18 $-172.6(3)$ C15C16C147O148 $-136.6(4)$ C15C16C147O148 $-136.6(4)$ C15C16C147O149 $-92.2(4)$ C16C17C18C133 $18.8(5)$ C17C12C13C14 $-10.3(4)$ C17C16C147O149 $-92.3(3)$ C17C16C147O149 $-92.3(3)$ C17C16C147O148 $32.0(5)$ C17C16C147O148 $32.0(5)$ C17C18C133O135 $-15.15.(4)$ C18C19C20C77 $-179.9(3)$ C17C18C133O135 $-35.(4)$ C18C19C20 <td< td=""><td>C13</td><td>C8</td><td>C9</td><td>C4</td><td>166.8(3)</td></td<>	C13	C8	C9	C4	166.8(3)
C13C12C17C16 $3.2(4)$ C13C14C15C160.9(5)C13C14C21C22-118.3(3)C13C14C21C2668.6(4)C14C15C16C17 $-8.3(5)$ C14C15C16C17 $-8.3(5)$ C14C21C22C23-173.6(3)C14C21C22C27 $5.3(4)$ C14C21C26C25174.2(3)C14C21C26C26-112.7(3)C15C14C21C26-112.7(3)C15C16C17C18-172.6(3)C15C16C147O148-136.6(4)C15C16C147O148-136.6(4)C15C16C147O14939.2(4)C16C17C18C19-169.7(3)C17C12C13C8169.7(3)C17C12C13C14-10.3(4)C17C16C147O149-152.3(3)C17C12C13C14-0.3(4)C17C18C133O134-3.9(7)C17C18C133O134-3.9(7)C17C18C133O134-137.6(4)C19C20C77C78-119.1(3)C19C20C77C78-119.1(3)C19C20C77C78C123C20C77C78C123-3.5(4)C20C77	C13	C8	C9	C10	-13.7(4)
C13C12C17C18 $-178.1(3)$ C13C14C15C160.9(5)C13C14C21C22 $-118.3(3)$ C14C15C16C17 $-8.3(5)$ C14C15C16C147160.5(3)C14C21C22C23 $-173.6(3)$ C14C21C22C23 $-173.6(3)$ C14C21C26C25174.2(3)C14C21C26C67 $-5.6(4)$ C15C14C21C26-112.7(3)C15C16C17C18 $-172.6(3)$ C15C16C17C18-172.6(3)C15C16C17C18-169.7(3)C15C16C147O14939.2(4)C16C17C18C19-169.7(3)C17C12C13C8169.7(3)C17C16C147O14832.0(5)C17C16C147O14832.0(5)C17C16C147O14832.0(5)C17C18C133O13433.9(7)C17C18C133O13433.9(7)C17C18C133O13433.9(7)C17C18C133O134-137.6(4)C19C20C77C78-119.1(3)C19C20C77C78-119.1(3)C19C20C77C78C123C20C77C78C123C5(4)C20 <td>C13</td> <td>C12</td> <td>C17</td> <td>C16</td> <td>3.2(4)</td>	C13	C12	C17	C16	3.2(4)
C13C14C15C160.9(5)C13C14C21C22-118.3(3)C13C14C21C2668.6(4)C14C15C16C17-8.3(5)C14C15C16C147160.5(3)C14C21C22C23-173.6(3)C14C21C22C25174.2(3)C14C21C26C67-5.6(4)C15C14C21C26C67C15C14C21C26-112.7(3)C15C16C17C18-172.6(3)C15C16C17C18-172.6(3)C15C16C147O148-32.0(4)C15C16C147O149-92.2(4)C16C17C18C13318.8(5)C17C12C13C8169.7(3)C16C147O14832.0(5)C17C16C147O14832.0(5)C17C16C147O14832.0(5)C17C18C19C20-12.2(5)C17C18C133O134-33.9(7)C17C18C133O135-15.15(4)C18C19C20C77C78C19C20C77C78-119.1(3)C19C20C77C78-119.1(3)C19C20C77C78-119.1(3)C19C20C77C78-119.1(3)C20C77C78C	C13	C12	C17	C18	-178.1(3)
C13C14C21C22 $-118.3(3)$ C13C14C21C26 $68.6(4)$ C14C15C16C147160.5(3)C14C21C22C23 $-173.6(3)$ C14C21C22C27 $5.3(4)$ C14C21C26C67 $-5.6(4)$ C15C14C21C26C67C15C14C21C26C17C15C14C21C26C17C15C16C17C18 $-172.6(3)$ C15C16C17C18 $-172.6(3)$ C15C16C17C18 $-172.6(3)$ C15C16C147O148 $-32.6(4)$ C15C16C147O148 $-136.6(4)$ C15C16C147O148 $-136.6(4)$ C15C16C147O148 $-136.6(4)$ C15C16C147O148 $-136.6(4)$ C15C16C147O148 $-132.6(3)$ C17C12C13C13188(5)C17C18C133O134 $33.9(7)$ C17C16C147O14832.0(5)C17C18C133O134 $33.9(7)$ C17C18C133O134 $33.9(7)$ C17C18C133O134 $-33.9(7)$ C17C18C133O134 $-33.9(7)$ C17C18C133O134 $-33.9(7)$ C17C18C133O134 -3	C13	C14	C15	C16	0.9(5)
C13C14C21C26 $68.6(4)$ C14C15C16C17 $-8.3(5)$ C14C21C22C23 $-173.6(3)$ C14C21C22C27 $5.3(4)$ C14C21C26C25 $174.2(3)$ C14C21C26C67 $-5.6(4)$ C15C14C21C26-112.7(3)C15C16C17C18 $-172.6(3)$ C15C16C17C18 $-172.6(3)$ C15C16C147O14939.2(4)C16C17C18C19 $-169.7(3)$ C16C17C18C1318.8(5)C17C12C13C8169.7(3)C17C12C13C8169.7(3)C17C16C147O14832.0(5)C17C16C147O14832.0(5)C17C16C147O14832.0(5)C17C18C133O135 $-15.15(4)$ C18C19C20C77 $-179.9(3)$ C19C18C133O135 $-36.9(6)$ C19C20C77C78 $-119.1(3)$ C19C20C77C78 $-119.1(3)$ C19C20C77C78 $-119.1(3)$ C20C77C78C123 $3.5(4)$ C20C77C78C123 $3.5(4)$ C20C77C78C123 $3.5(4)$ C20C77C78C123 $3.5(4)$	C13	C14	C21	C22	-118.3(3)
C14C15C16C17 $-8.3(5)$ C14C15C16C147160.5(3)C14C21C22C23 $-173.6(3)$ C14C21C22C27 $5.3(4)$ C14C21C26C67 $-5.6(4)$ C15C14C21C26-112.7(3)C15C16C17C18 $-172.6(3)$ C15C16C17C18 $-172.6(3)$ C15C16C17C18 $-172.6(3)$ C15C16C147O14939.2(4)C15C16C147O14939.2(4)C16C17C18C13318.8(5)C17C12C13C8169.7(3)C16C17C18C13318.8(5)C17C12C13C14 $-10.3(4)$ C17C16C147O14832.0(5)C17C16C147O14832.0(5)C17C16C147O14832.0(5)C17C18C133O135-15.15(4)C18C19C20C77-179.9(3)C19C18C133O13536.9(6)C19C20C77C78-119.1(3)C19C20C77C78C123C20C77C78C1233.5(4)C20C77C78C1233.5(4)C20C77C78C1233.5(4)C20C77C78C1233.5(4)C20 <td< td=""><td>C13</td><td>C14</td><td>C21</td><td>C26</td><td>68.6(4)</td></td<>	C13	C14	C21	C26	68.6(4)
C14C15C16C147160.5(3)C14C21C22C23 $-173.6(3)$ C14C21C26C27 $5.3(4)$ C14C21C26C27 $5.3(4)$ C14C21C26C67 $-5.6(4)$ C15C14C21C26 $-112.7(3)$ C15C16C17C18 $-172.6(3)$ C15C16C17C18 $-172.6(3)$ C15C16C17C18 $-172.6(3)$ C15C16C1470148 $-136.6(4)$ C15C16C1470148 $-169.7(3)$ C16C17C18C133188(5)C17C12C13C14 $-10.3(4)$ C17C16C147014832.0(5)C17C16C147014832.0(5)C17C18C133013433.9(7)C17C18C133013433.9(7)C17C18C1330135 $-15.5(4)$ C18C19C20C77 $-179.9(3)$ C19C10C77C78 $-119.1(3)$ C19C10C77C78 $-119.1(3)$ C19C20C77C78 $-119.1(3)$ C19C20C77C78 $-177.1(3)$ C20C77C78C123 $3.5(4)$ C20C77C78C123 $3.5(4)$ C20C77C78C123 $3.5(4)$ C21C22C23C24 -0	C14	C15	C16	C17	-8.3(5)
C14C21C22C23 $-173.6(3)$ C14C21C26C27 $5.3(4)$ C14C21C26C67 $-5.6(4)$ C15C14C21C22 $60.4(4)$ C15C14C21C26 $-112.7(3)$ C15C16C17C12 $60.(4)$ C15C16C17C18 $-172.6(3)$ C15C16C147O148 $-136.6(4)$ C15C16C147O148 $-136.6(4)$ C16C17C18C19 $-169.7(3)$ C16C17C18C1318.8(5)C17C12C13C14 $-10.3(4)$ C17C16C147O14832.0(5)C17C16C147O14832.0(5)C17C16C147O14832.0(5)C17C16C147O14832.0(5)C17C16C147O14832.0(5)C17C18C133O13433.9(7)C17C18C133O135 $-15.15(4)$ C18C19C20C77 $-179.9(3)$ C19C18C133O135 $-36.9(6)$ C19C20C77C78 $-119.1(3)$ C19C11C12C13 $166.2(3)$ C20C77C78C123 $3.5(4)$ C20C77C78C123 $3.5(4)$ C20C77C78C123 $3.5(4)$ C20C77C82C83 $-2.9($	C14	C15	C16	C147	160.5(3)
C14C21C22C27 $5.3(4)$ C14C21C26C25 $174.2(3)$ C14C21C26C67 $-5.6(4)$ C15C14C21C22 $60.4(4)$ C15C16C17C12 $6.0(4)$ C15C16C17C18 $-172.6(3)$ C15C16C147O148 $-136.6(4)$ C15C16C147O149 $39.2(4)$ C16C17C18C19 $-169.7(3)$ C16C17C18C13318.8(5)C17C12C13C14 $-10.3(4)$ C17C16C147O14832.0(5)C17C16C147O14832.0(5)C17C16C147O14833.9(7)C17C18C133O134 $-33.9(7)$ C17C18C133O134 $-33.6(6)$ C17C18C133O134 $-137.6(4)$ C19C18C133O135 $-59.5(4)$ C20C77C78C19.3 $3.5(4)$ C20C77C78C123 $3.5(4)$ C20C77C82C83 $-2.9(4)$ C21C22C27C28C23C21C22C27C28C33C20C77C78C123 $3.5(4)$ C20C77C78C123 $3.5(4)$ C20C77C82C83 $-2.9(4)$ C21C22C27C28C23 $17.8(3)$	C14	C21	C22	C23	-173.6(3)
C14C21C26C25 $174.2(3)$ C14C21C26C67 $-5.6(4)$ C15C14C21C22 $60.4(4)$ C15C16C17C12 $6.0(4)$ C15C16C17C18 $-172.6(3)$ C15C16C147O148 $-136.6(4)$ C15C16C147O149 $39.2(4)$ C16C17C18C133 $18.8(5)$ C17C12C13C8 $169.7(3)$ C16C17C18C133 $18.8(5)$ C17C12C13C14 $-10.3(4)$ C17C16C147O148 $32.0(5)$ C17C16C147O148 $32.0(5)$ C17C16C147O149 $-152.3(3)$ C17C18C133O134 $33.9(7)$ C17C18C133O135 $-151.5(4)$ C18C19C20C77 $-179.9(3)$ C19C18C133O135 $36.9(6)$ C19C20C77C78 $-19.1(3)$ C19C20C77C78 $-19.1(3)$ C20C77C78C79 $-177.1(3)$ C20C77C78C79 $-177.9(3)$ C20C77C78C79 $-177.9(3)$ C20C77C78C79 $-177.9(3)$ C20C77C78C79 $-177.9(3)$ C21C22C23C24 $-0.7(4)$ C21C22C23C2	C14	C21	C22	C27	5.3(4)
C14C21C26C67 $-5.6(4)$ C15C14C21C22 $60.4(4)$ C15C16C17C12 $6.0(4)$ C15C16C17C18 $-172.6(3)$ C15C16C1470148 $-136.6(4)$ C15C16C1470149 $39.2(4)$ C16C17C18C13318.8(5)C17C12C13C8169.7(3)C16C17C18C13318.8(5)C17C12C13C14 $-10.3(4)$ C17C12C13C14 $-10.3(4)$ C17C16C147014832.0(5)C17C16C1470149 $-152.3(3)$ C17C18C19C20 $-12.2(5)$ C17C18C133013433.9(7)C17C18C1330135 $-151.5(4)$ C18C19C20C77 $-179.9(3)$ C19C18C1330135 $-36.9(6)$ C19C20C77C78 $-119.1(3)$ C19C20C77C78 $-19.1(3)$ C19C20C77C78 $-19.7(4)$ C20C77C78C123 $3.5(4)$ C20C77C78C123 $3.5(4)$ C20C77C78C123 $3.5(4)$ C20C77C78C123 $3.5(4)$ C21C22C23C24 $-0.7(4)$ C21C26C67C68 $-117.7($	C14	C21	C26	C25	174.2(3)
C15C14C21C22 $60.4(4)$ C15C14C21C26 $-112.7(3)$ C15C16C17C18 $-172.6(3)$ C15C16C147O148 $-136.6(4)$ C15C16C147O148 $-169.7(3)$ C16C17C18C19 $-169.7(3)$ C16C17C18C19 $-169.7(3)$ C16C17C18C1318.8(5)C17C12C13C14 $-10.3(4)$ C17C16C147O14832.0(5)C17C16C147O14833.9(7)C17C16C147O14833.9(7)C17C18C133O13433.9(7)C17C18C133O135 $-151.5(4)$ C18C19C20C77 $-179.9(3)$ C19C18C133O135 $36.9(6)$ C19C20C77C78 $-119.1(3)$ C19C11C12C13 $166.2(3)$ C20C77C78C79 $-177.1(3)$ C20C77C78C123 $3.5(4)$ C20C77C82C83 $-2.9(4)$ C21C22C23C24 $-0.7(4)$ C21C22C23C24 $-177.9(3)$ C21C22C23C27C28C20C77C78C123 $3.5(4)$ C20C77C78C123 $3.5(4)$ C21C22C23C24 $-0.7(4$	C14	C21	C26	C67	-5.6(4)
C15C14C21C26 $-112.7(3)$ C15C16C17C126.0(4)C15C16C1470148 $-136.6(4)$ C15C16C1470148 $-136.6(4)$ C15C16C147014939.2(4)C16C17C18C13318.8(5)C17C12C13C8169.7(3)C16C17C18C13318.8(5)C17C12C13C14 $-10.3(4)$ C17C16C147014832.0(5)C17C16C1470149 $-152.3(3)$ C17C18C133013433.9(7)C17C18C133013433.9(7)C17C18C1330135 $-151.5(4)$ C18C19C20C77 $-179.9(3)$ C19C18C1330134 $-137.6(4)$ C19C20C77C78 $-119.1(3)$ C19C20C77C78 $-119.1(3)$ C19C20C77C82S9.5(4)C20C77C78C123 $3.5(4)$ C20C77C78C123 $3.5(4)$ C20C77C78C123 $3.5(4)$ C20C77C82C83 $-2.9(4)$ C21C22C23C24 $-0.7(4)$ C21C22C27C32 $-107.8(4)$ C21C22C27C32 $-177.8(3)$ C21C22C27C32 -178.5	C15	C14	C21	C22	60.4(4)
C15C16C17C12 $6.0(4)$ C15C16C17C18 $-172.6(3)$ C15C16C1470148 $-136.6(4)$ C15C16C1470149 $39.2(4)$ C16C17C18C19 $-169.7(3)$ C16C17C18C19 $-169.7(3)$ C17C12C13C14 $-10.3(4)$ C17C16C1470148 $32.0(5)$ C17C16C1470148 $32.0(5)$ C17C16C1470149 $-152.3(3)$ C17C18C1330134 $33.9(7)$ C17C18C1330134 $33.9(7)$ C17C18C1330135 $-151.5(4)$ C18C19C20C110.0(5)C18C19C20C110.0(5)C18C19C20C77 $-179.9(3)$ C19C18C1330134 $-137.6(4)$ C19C20C77C78 $-119.1(3)$ C19C20C77C78 $-119.1(3)$ C19C20C77C78 $C123$ C20C11C12C13 $166.2(3)$ C20C77C78C123 $3.5(4)$ C20C77C78C123 $3.5(4)$ C20C77C78C123 $3.5(4)$ C20C77C82C81 $176.5(3)$ C20C77C78C123 $3.5(4)$ C21C22C23C24	C15	C14	C21	C26	-112.7(3)
C15C16C17C18 $-172.6(3)$ C15C16C1470148 $-136.6(4)$ C15C16C147014939.2(4)C16C17C18C19 $-169.7(3)$ C16C17C18C13318.8(5)C17C12C13C8169.7(3)C17C12C13C14 $-10.3(4)$ C17C16C147014832.0(5)C17C16C1470149 $-152.3(3)$ C17C18C133013433.9(7)C17C18C1330135 $-151.5(4)$ C18C19C20C110.0(5)C18C19C20C110.0(5)C18C19C20C77 $-179.9(3)$ C19C18C133013536.9(6)C19C20C77C78 $-119.1(3)$ C19C20C77C78C123C20C11C12C13166.2(3)C20C77C78C1233.5(4)C20C77C78C1233.5(4)C20C77C82C81176.5(3)C20C77C82C83 $-2.9(4)$ C21C14C15C16 $-177.9(3)$ C21C22C23C24C24 $-0.7(4)$ C21C22C23C24C251.4(4)C21C22C27C32C14C17.9(3)C21C22C27C32	C15	C16	C17	C12	6.0(4)
C15C16C1470148 $-136.6(4)$ C15C16C147014939.2(4)C16C17C18C13318.8(5)C17C12C13C8169.7(3)C16C17C18C13318.8(5)C17C12C13C8169.7(3)C17C12C13C14 $-10.3(4)$ C17C16C147014832.0(5)C17C16C1470149 $-152.3(3)$ C17C18C19C20 $-12.2(5)$ C17C18C133013433.9(7)C17C18C1330135 $-151.5(4)$ C18C19C20C77 $-179.9(3)$ C19C18C1330134 $-137.6(4)$ C19C18C133013536.9(6)C19C20C77C78 $-119.1(3)$ C19C20C77C78C79C11C12C17 $-12.3(4)$ C20C77C78C79C11C12C17 $-12.3(4)$ C20C77C78C79C11C12C17 $-12.3(4)$ C20C77C78C79C11C12C17C12C23C24 $-0.7(4)$ C20C77C78C123C20C77C78C123C20C77C78C123C21C22C23C37C21C22C23C37 <td>C15</td> <td>C16</td> <td>C17</td> <td>C18</td> <td>-172.6(3)</td>	C15	C16	C17	C18	-172.6(3)
C15C16C147O149 $39.2(4)$ C16C17C18C19 $-169.7(3)$ C16C17C18C133 $18.8(5)$ C17C12C13C8 $169.7(3)$ C17C12C13C14 $-10.3(4)$ C17C16C147O148 $32.0(5)$ C17C16C147O149 $-152.3(3)$ C17C18C19C20 $-12.2(5)$ C17C18C133O134 $33.9(7)$ C17C18C133O135 $-151.5(4)$ C18C19C20C77 $-179.9(3)$ C19C18C133O134 $-137.6(4)$ C19C20C77C78 $-119.1(3)$ C19C20C77C78 $-119.1(3)$ C19C20C77C78 $-119.1(3)$ C19C20C77C78 $-119.1(3)$ C20C77C78C123 $3.5(4)$ C20C77C78C123 $3.5(4)$ C20C77C78C123 $3.5(4)$ C20C77C82C81 $176.5(3)$ C20C77C82C83 $-2.9(4)$ C21C22C23C24 $-0.7(4)$ C21C22C23C37 $178.9(3)$ C21C22C23C37 $178.9(3)$ C21C22C23C24 $-177.8(3)$ C22C23C24C25 $1.4(4)$ C22C23C24C47 <td>C15</td> <td>C16</td> <td>C147</td> <td>0148</td> <td>-136.6(4)</td>	C15	C16	C147	0148	-136.6(4)
C16C17C18C19 $-169.7(3)$ C16C17C12C13C8 $169.7(3)$ C17C12C13C14 $-10.3(4)$ C17C16C147O148 $32.0(5)$ C17C16C147O148 $32.0(5)$ C17C16C147O149 $-152.3(3)$ C17C18C19C20 $-12.2(5)$ C17C18C133O134 $33.9(7)$ C17C18C133O135 $-151.5(4)$ C18C19C20C77 $-179.9(3)$ C19C18C133O134 $-137.6(4)$ C19C18C133O135 $36.9(6)$ C19C20C77C78 $-119.1(3)$ C19C20C77C78 $-119.1(3)$ C20C11C12C13 $166.2(3)$ C20C11C12C17 $-12.3(4)$ C20C77C78C79 $-177.1(3)$ C20C77C78C123 $3.5(4)$ C20C77C82C81 $176.5(3)$ C20C77C82C83 $-2.9(4)$ C21C22C23C24 $-0.7(4)$ C21C22C23C37 $178.9(3)$ C21C22C23C24C25 $1.4(4)$ C21C22C23C37C78C21C22C23C24C25 $1.4(4)$ C21C22C23C24C25 $1.4(4)$ C22<	C15	C16	C147	0149	39.2(4)
C16C17C12C13C8169.7(3)C17C12C13C4 $-10.3(4)$ C17C16C147O14832.0(5)C17C16C147O149 $-152.3(3)$ C17C16C147O149 $-152.3(3)$ C17C18C133O13433.9(7)C17C18C133O135 $-151.5(4)$ C18C19C20C110.0(5)C18C19C20C77 $-179.9(3)$ C19C18C133O13536.9(6)C19C10C20C77C78C19C11C12C13166.2(3)C20C11C12C13166.2(3)C20C11C12C17 $-12.3(4)$ C20C77C78C79 $-177.1(3)$ C20C77C78C1233.5(4)C20C77C78C1233.5(4)C20C77C82C83 $-2.9(4)$ C21C22C23C24 $-0.7(4)$ C21C22C27C32 $-107.8(4)$ C21C22C27C32 $-107.8(4)$ C22C23C24C47 $-178.7(3)$ C22C23C24C47 $-178.7(3)$ C22C23C24C25 $-14.(4)$ C22C23C24C25 $-14.(4)$ C22C23C24C25C26C23C24C25C26 $-0.7(5)$ <td>C16</td> <td>C17</td> <td>C18</td> <td>C19</td> <td>-169.7(3)</td>	C16	C17	C18	C19	-169.7(3)
C17C12C13C8 $169.7(3)$ C17C12C13C14 $-10.3(4)$ C17C16C147O148 $32.0(5)$ C17C16C147O149 $-152.3(3)$ C17C18C133O134 $33.9(7)$ C17C18C133O134 $33.9(7)$ C17C18C133O134 $33.9(7)$ C17C18C133O134 $33.9(7)$ C17C18C133O134 $-137.6(4)$ C18C19C20C77 $-179.9(3)$ C19C18C133O134 $-137.6(4)$ C19C18C133O135 $36.9(6)$ C19C20C77C78 $-119.1(3)$ C19C20C77C78 $-119.1(3)$ C19C20C77C78 $-12.3(4)$ C20C11C12C13 $166.2(3)$ C20C77C78C79 $-177.1(3)$ C20C77C78C123 $3.5(4)$ C20C77C82C83 $-2.9(4)$ C21C22C23C24 $-0.7(4)$ C21C22C23C24 $-0.7(4)$ C21C22C27C32 $-107.8(4)$ C21C26C67C72 $66.3(4)$ C21C26C67C72 $66.3(4)$ C21C26C67C78 $-178.5(3)$ C22C23C24C25 $1.4(4)$ C22C23C24C25 </td <td>C16</td> <td>C17</td> <td>C18</td> <td>C133</td> <td>18.8(5)</td>	C16	C17	C18	C133	18.8(5)
C17C12C13C14 $-10.3(4)$ C17C16C147014832.0(5)C17C16C1470149 $-152.3(3)$ C17C18C133013433.9(7)C17C18C1330135 $-151.5(4)$ C18C19C20C110.0(5)C18C19C20C77 $-179.9(3)$ C19C18C133013536.9(6)C19C18C133013536.9(6)C19C20C77C78 $-119.1(3)$ C19C20C77C78 $-119.1(3)$ C19C20C77C78 $-119.1(3)$ C19C20C77C78 $-119.1(3)$ C20C11C12C13 $166.2(3)$ C20C11C12C13 $166.2(3)$ C20C17C78C79 $-177.1(3)$ C20C77C78C123 $3.5(4)$ C20C77C82C81 $176.5(3)$ C20C77C82C83 $-2.9(4)$ C21C22C23C24 $-0.7(4)$ C21C22C23C24 $-0.7(4)$ C21C22C27C2862.3(4)C21C26C67C7266.3(4)C22C23C24C251.4(4)C22C23C24C251.4(4)C22C23C37C3863.9(4)C22C23C24C251.18.9(3) <tr< td=""><td>C17</td><td>C12</td><td>C13</td><td>C8</td><td>169.7(3)</td></tr<>	C17	C12	C13	C8	169.7(3)
C17C16C147O148 $32.0(5)$ C17C16C147O149 $-152.3(3)$ C17C18C19C20 $-12.2(5)$ C17C18C133O134 $33.9(7)$ C17C18C133O135 $-151.5(4)$ C18C19C20C110.0(5)C18C19C20C77 $-179.9(3)$ C19C18C133O134 $-137.6(4)$ C19C18C133O135 $36.9(6)$ C19C20C77C78 $-119.1(3)$ C19C20C77C82 $59.5(4)$ C20C11C12C13 $166.2(3)$ C20C11C12C13 $166.2(3)$ C20C11C12C13 $166.2(3)$ C20C77C78C123 $3.5(4)$ C20C77C78C123 $3.5(4)$ C20C77C82C83 $-2.9(4)$ C21C22C23C24 $-0.7(4)$ C21C22C27C28 $62.3(4)$ C21C22C27C32 $-107.8(4)$ C21C26C67C72 $66.3(4)$ C22C23C24C25 $1.4(4)$ C22C23C24C25 $1.3(5)$ C22C23C24C25 $1.4(4)$ C22C23C24C25 $1.4(4)$ C22C23C24C25 $1.63.4(3)$ C22C23C24C25 $1.63.4($	C17	C12	C13	C14	-10.3(4)
C17C16C147O149 $-152.3(3)$ C17C18C19C20 $-12.2(5)$ C17C18C133O13433.9(7)C17C18C133O135 $-151.5(4)$ C18C19C20C110.0(5)C18C19C20C77 $-179.9(3)$ C19C18C133O134 $-137.6(4)$ C19C18C133O13536.9(6)C19C20C77C78 $-119.1(3)$ C19C20C77C78 $-119.1(3)$ C19C20C77C8259.5(4)C20C11C12C17 $-12.3(4)$ C20C11C12C17 $-12.3(4)$ C20C77C78C123 $3.5(4)$ C20C77C78C123 $3.5(4)$ C20C77C82C83 $-2.9(4)$ C21C14C15C16 $-177.9(3)$ C21C22C23C37 $178.9(3)$ C21C22C27C2862.3(4)C21C26C67C7266.3(4)C22C21C26C67 $-178.5(3)$ C22C23C24C25 $1.4(4)$ C22C23C24C25 $-118.9(3)$ C22C23C24C25 $-118.9(3)$ C21C26C67C7266.3(4)C22C23C24C25 $-14.4(4)$ C22C23C24C25 $-118.9(3)$ <	C17	C16	C147	0148	32.0(5)
C17C18C19C20 $-12.2(5)$ C17C18C133O13433.9(7)C17C18C133O135 $-151.5(4)$ C18C19C20C110.0(5)C18C19C20C77 $-179.9(3)$ C19C18C133O134 $-137.6(4)$ C19C18C133O13536.9(6)C19C20C77C78 $-119.1(3)$ C19C20C77C78 $-119.1(3)$ C19C20C77C8259.5(4)C20C11C12C13166.2(3)C20C11C12C17 $-12.3(4)$ C20C77C78C79 $-177.1(3)$ C20C77C78C1233.5(4)C20C77C78C1233.5(4)C20C77C78C1233.5(4)C20C77C78C1233.5(4)C20C77C78C1233.5(4)C20C77C82C83 $-2.9(4)$ C21C14C15C16 $-177.9(3)$ C21C22C23C24 $-0.7(4)$ C21C22C27C2862.3(4)C21C26C67C77C32C24C251.3(5)C22C23C24C251.4(4)C21C26C67C78C21C26C67C78C22C23C24C25C23C24 </td <td>C17</td> <td>C16</td> <td>C147</td> <td>0149</td> <td>-152.3(3)</td>	C17	C16	C147	0149	-152.3(3)
C17C18C133O134 $33.9(7)$ C17C18C133O135 $-151.5(4)$ C18C19C20C110.0(5)C18C19C20C77 $-179.9(3)$ C19C18C133O134 $-137.6(4)$ C19C18C133O135 $36.9(6)$ C19C20C77C78 $-119.1(3)$ C19C20C77C78 $-119.1(3)$ C19C20C77C82 $59.5(4)$ C20C11C12C13 $166.2(3)$ C20C11C12C17 $-12.3(4)$ C20C77C78C79 $-177.1(3)$ C20C77C78C123 $3.5(4)$ C20C77C82C81 $176.5(3)$ C20C77C82C83 $-2.9(4)$ C21C22C23C24 $-0.7(4)$ C21C22C23C24 $-0.7(4)$ C21C22C27C28 $62.3(4)$ C21C26C67C68 $-111.2(4)$ C21C26C67C72 $66.3(4)$ C22C23C24C25 $1.4(4)$ C22C23C24C25 $1.4(4)$ C22C23C24C25 $1.4(4)$ C22C23C27C28C29C23C24C27C28 $-118.9(3)$ C22C23C27C28C17C23C24C25C26 $-0.7(5)$ <tr< td=""><td>C17</td><td>C18</td><td>C19</td><td>C20</td><td>-12.2(5)</td></tr<>	C17	C18	C19	C20	-12.2(5)
C17 $C18$ $C133$ $O135$ $-151.5(4)$ $C18$ $C19$ $C20$ $C11$ $0.0(5)$ $C18$ $C19$ $C20$ $C77$ $-179.9(3)$ $C19$ $C18$ $C133$ $O134$ $-137.6(4)$ $C19$ $C18$ $C133$ $O135$ $36.9(6)$ $C19$ $C20$ $C77$ $C78$ $-119.1(3)$ $C19$ $C20$ $C77$ $C82$ $59.5(4)$ $C20$ $C11$ $C12$ $C13$ $166.2(3)$ $C20$ $C11$ $C12$ $C17$ $-12.3(4)$ $C20$ $C77$ $C78$ $C79$ $-177.1(3)$ $C20$ $C77$ $C78$ $C123$ $3.5(4)$ $C20$ $C77$ $C82$ $C81$ $176.5(3)$ $C20$ $C77$ $C82$ $C81$ $176.5(3)$ $C20$ $C77$ $C82$ $C83$ $-2.9(4)$ $C21$ $C14$ $C15$ $C16$ $-177.9(3)$ $C21$ $C22$ $C23$ $C24$ $-0.7(4)$ $C21$ $C22$ $C27$ $C28$ $62.3(4)$ $C21$ $C26$ $C67$ $C72$ $66.3(4)$ $C22$ $C21$ $C26$ $C67$ $-178.5(3)$ $C22$ $C23$ $C24$ $C25$ $1.4(4)$ $C22$ $C23$ $C24$ $C25$ $-14.4(4)$ $C22$ $C23$ $C24$ $C25$ $-178.9(3)$ $C22$ $C23$ $C24$ $C25$ $-118.9(3)$ $C22$ $C23$ $C24$ $C25$ $C26$ $-0.7(5)$	C17	C18	C133	0134	33.9(7)
C18C19C20C11 $0.0(5)$ C18C19C20C77 $-179.9(3)$ C19C18C133O134 $-137.6(4)$ C19C18C133O135 $36.9(6)$ C19C20C77C78 $-119.1(3)$ C19C20C77C78 $-119.1(3)$ C19C20C77C82 $59.5(4)$ C20C11C12C13 $166.2(3)$ C20C11C12C17 $-12.3(4)$ C20C77C78C79 $-177.1(3)$ C20C77C78C123 $3.5(4)$ C20C77C82C81 $176.5(3)$ C20C77C82C83 $-2.9(4)$ C21C14C15C16 $-177.9(3)$ C21C22C23C24 $-0.7(4)$ C21C22C27C2862.3(4)C21C26C67C68 $-111.2(4)$ C21C26C67C7266.3(4)C22C21C26C67 $-178.5(3)$ C22C23C24C47 $-178.7(3)$ C22C23C24C47 $-178.7(3)$ C22C23C37C42 $-121.3(3)$ C22C23C37C42 $-121.3(3)$ C22C23C37C42 $-121.3(3)$ C22C23C37C42 $-121.3(3)$ C22C23C37C42 $-121.3(3)$ C22C23C37C42 <td< td=""><td>C17</td><td>C18</td><td>C133</td><td>0135</td><td>-151.5(4)</td></td<>	C17	C18	C133	0135	-151.5(4)
C18C19C20C77 $-179.9(3)$ C19C18C133O134 $-137.6(4)$ C19C18C133O135 $36.9(6)$ C19C20C77C78 $-119.1(3)$ C19C20C77C82 $59.5(4)$ C20C11C12C13 $166.2(3)$ C20C11C12C17 $-12.3(4)$ C20C77C78C79 $-177.1(3)$ C20C77C78C123 $3.5(4)$ C20C77C78C123 $3.5(4)$ C20C77C78C123 $3.5(4)$ C20C77C78C123 $3.5(4)$ C20C77C78C123 $3.5(4)$ C20C77C82C81 $176.5(3)$ C20C77C82C83 $-2.9(4)$ C21C14C15C16 $-177.9(3)$ C21C22C23C24 $-0.7(4)$ C21C22C27C2862.3(4)C21C22C27C32 $-107.8(4)$ C21C26C67C7266.3(4)C22C21C26C67 $-178.5(3)$ C22C23C24C25 $1.4(4)$ C22C23C37C3863.9(4)C22C23C37C42 $-121.3(3)$ C22C27C32C31 $163.4(3)$ C22C27C28C29 $-165.4(3)$ C22C27C32C31 $163.4(3)$ </td <td>C18</td> <td>C19</td> <td>C20</td> <td>C11</td> <td>0.0(5)</td>	C18	C19	C20	C11	0.0(5)
C19C18C133O134 $-137.6(4)$ C19C18C133O135 $36.9(6)$ C19C20C77C78 $-119.1(3)$ C19C20C77C82 $59.5(4)$ C20C11C12C13 $166.2(3)$ C20C11C12C17 $-12.3(4)$ C20C77C78C79 $-177.1(3)$ C20C77C78C123 $3.5(4)$ C20C77C78C123 $3.5(4)$ C20C77C78C123 $3.5(4)$ C20C77C78C123 $3.5(4)$ C20C77C82C81 $176.5(3)$ C20C77C82C83 $-2.9(4)$ C21C14C15C16 $-177.9(3)$ C21C22C23C24 $-0.7(4)$ C21C22C27C2862.3(4)C21C22C27C2862.3(4)C21C26C67C7266.3(4)C21C26C67C7266.3(4)C22C21C26C67 $-178.5(3)$ C22C23C24C25 $1.4(4)$ C22C23C37C3863.9(4)C22C23C37C42 $-121.3(3)$ C22C27C28C29 $-165.4(3)$ C22C27C32C31 $163.4(3)$ C23C22C27C32C11C33C24C25C26 $-0.7(5)$ <td>C18</td> <td>C19</td> <td>C20</td> <td>C77</td> <td>-179.9(3)</td>	C18	C19	C20	C77	-179.9(3)
C19 $C18$ $C133$ $O135$ $36.9(6)$ $C19$ $C20$ $C77$ $C78$ $-119.1(3)$ $C19$ $C20$ $C77$ $C82$ $59.5(4)$ $C20$ $C11$ $C12$ $C13$ $166.2(3)$ $C20$ $C11$ $C12$ $C17$ $-12.3(4)$ $C20$ $C77$ $C78$ $C79$ $-177.1(3)$ $C20$ $C77$ $C78$ $C123$ $3.5(4)$ $C20$ $C77$ $C82$ $C81$ $176.5(3)$ $C20$ $C77$ $C82$ $C83$ $-2.9(4)$ $C20$ $C77$ $C82$ $C83$ $-2.9(4)$ $C21$ $C14$ $C15$ $C16$ $-177.9(3)$ $C21$ $C22$ $C23$ $C24$ $-0.7(4)$ $C21$ $C22$ $C27$ $C32$ $-107.8(4)$ $C21$ $C22$ $C27$ $C32$ $-107.8(4)$ $C21$ $C26$ $C67$ $C72$ $66.3(4)$ $C21$ $C26$ $C67$ $C72$ $66.3(4)$ $C22$ $C21$ $C26$ $C67$ $-178.5(3)$ $C22$ $C23$ $C24$ $C25$ $1.4(4)$ $C22$ $C23$ $C24$ $C47$ $-178.7(3)$ $C22$ $C23$ $C37$ $C38$ $63.9(4)$ $C22$ $C23$ $C37$ $C42$ $-121.3(3)$ $C22$ $C23$ $C27$ $C28$ $-118.9(3)$ $C22$ $C23$ $C27$ $C28$ $-118.9(3)$ $C23$ $C22$ $C27$ $C32$ $71.1(4)$ $C23$ <td< td=""><td>C19</td><td>C18</td><td>C133</td><td>0134</td><td>-137.6(4)</td></td<>	C19	C18	C133	0134	-137.6(4)
C19 $C20$ $C77$ $C78$ $-119.1(3)$ $C19$ $C20$ $C77$ $C82$ $59.5(4)$ $C20$ $C11$ $C12$ $C13$ $166.2(3)$ $C20$ $C11$ $C12$ $C17$ $-12.3(4)$ $C20$ $C77$ $C78$ $C79$ $-177.1(3)$ $C20$ $C77$ $C78$ $C123$ $3.5(4)$ $C20$ $C77$ $C82$ $C81$ $176.5(3)$ $C20$ $C77$ $C82$ $C83$ $-2.9(4)$ $C21$ $C14$ $C15$ $C16$ $-177.9(3)$ $C21$ $C22$ $C23$ $C24$ $-0.7(4)$ $C21$ $C22$ $C27$ $C28$ $62.3(4)$ $C21$ $C22$ $C27$ $C32$ $-107.8(4)$ $C21$ $C26$ $C67$ $C68$ $-111.2(4)$ $C21$ $C26$ $C67$ $C72$ $66.3(4)$ $C21$ $C26$ $C67$ $C72$ $66.3(4)$ $C21$ $C26$ $C67$ $C72$ $66.3(4)$ $C22$ $C21$ $C26$ $C25$ $1.3(5)$ $C22$ $C23$ $C24$ $C25$ $1.4(4)$ $C22$ $C23$ $C24$ $C47$ $-178.5(3)$ $C22$ $C23$ $C37$ $C38$ $63.9(4)$ $C22$ $C23$ $C37$ $C38$ $C3.9(4)$ $C22$ $C23$ $C27$ $C28$ $-118.9(3)$ $C22$ $C27$ $C32$ $C31$ $163.4(3)$ $C23$ $C22$ $C27$ $C32$ $71.1(4)$ $C23$ $C24$ </td <td>C19</td> <td>C18</td> <td>C133</td> <td>0135</td> <td>36.9(6)</td>	C19	C18	C133	0135	36.9(6)
C19 $C20$ $C11$ $C12$ $C13$ $166.2(3)$ $C20$ $C11$ $C12$ $C17$ $-12.3(4)$ $C20$ $C77$ $C78$ $C79$ $-177.1(3)$ $C20$ $C77$ $C78$ $C123$ $3.5(4)$ $C20$ $C77$ $C78$ $C123$ $3.5(4)$ $C20$ $C77$ $C82$ $C81$ $176.5(3)$ $C20$ $C77$ $C82$ $C83$ $-2.9(4)$ $C21$ $C14$ $C15$ $C16$ $-177.9(3)$ $C21$ $C22$ $C23$ $C24$ $-0.7(4)$ $C21$ $C22$ $C23$ $C37$ $178.9(3)$ $C21$ $C22$ $C27$ $C28$ $62.3(4)$ $C21$ $C22$ $C27$ $C32$ $-107.8(4)$ $C21$ $C26$ $C67$ $C68$ $-111.2(4)$ $C21$ $C26$ $C67$ $C72$ $66.3(4)$ $C21$ $C26$ $C67$ $C72$ $66.3(4)$ $C21$ $C26$ $C67$ $C72$ $66.3(4)$ $C22$ $C21$ $C26$ $C67$ $-178.5(3)$ $C22$ $C23$ $C24$ $C25$ $1.4(4)$ $C22$ $C23$ $C24$ $C47$ $-178.7(3)$ $C22$ $C23$ $C24$ $C47$ $-178.7(3)$ $C22$ $C23$ $C27$ $C28$ $C29$ $-165.4(3)$ $C22$ $C23$ $C27$ $C28$ $-118.9(3)$ $C23$ $C22$ $C27$ $C32$ $71.1(4)$ $C23$ $C24$ $C25$ $C26$ $-0.7(5)$ <	C19	C20	C77	C78	-119.1(3)
C20 $C11$ $C12$ $C13$ $166.2(3)$ $C20$ $C11$ $C12$ $C17$ $-12.3(4)$ $C20$ $C77$ $C78$ $C79$ $-177.1(3)$ $C20$ $C77$ $C78$ $C123$ $3.5(4)$ $C20$ $C77$ $C82$ $C81$ $176.5(3)$ $C20$ $C77$ $C82$ $C83$ $-2.9(4)$ $C21$ $C14$ $C15$ $C16$ $-177.9(3)$ $C21$ $C22$ $C23$ $C24$ $-0.7(4)$ $C21$ $C22$ $C23$ $C37$ $178.9(3)$ $C21$ $C22$ $C27$ $C28$ $62.3(4)$ $C21$ $C22$ $C27$ $C32$ $-107.8(4)$ $C21$ $C26$ $C67$ $C72$ $66.3(4)$ $C22$ $C23$ $C24$ $C25$ $1.3(5)$ $C22$ $C23$ $C24$ $C25$ $1.4(4)$ $C22$ $C23$ $C24$ $C47$ $-178.7(3)$ $C22$ $C23$ $C37$ $C42$ $-121.3(3)$ $C22$ $C27$ $C28$ $C29$ $-165.4(3)$ $C23$ $C22$ $C27$ $C32$ $71.1(4)$ $C23$ $C24$ $C25$ $C26$ $-0.7(5)$ $C23$ $C24$ $C25$ $C26$ $-0.7(5)$	C19 C20	C20	C/7	C82	59.5(4)
C20 $C11$ $C12$ $C17$ $-12.3(4)$ $C20$ $C77$ $C78$ $C79$ $-177.1(3)$ $C20$ $C77$ $C78$ $C123$ $3.5(4)$ $C20$ $C77$ $C82$ $C81$ $176.5(3)$ $C20$ $C77$ $C82$ $C83$ $-2.9(4)$ $C21$ $C14$ $C15$ $C16$ $-177.9(3)$ $C21$ $C22$ $C23$ $C24$ $-0.7(4)$ $C21$ $C22$ $C23$ $C24$ $-0.7(4)$ $C21$ $C22$ $C23$ $C37$ $178.9(3)$ $C21$ $C22$ $C27$ $C28$ $62.3(4)$ $C21$ $C22$ $C27$ $C32$ $-107.8(4)$ $C21$ $C26$ $C67$ $C68$ $-111.2(4)$ $C21$ $C26$ $C67$ $C72$ $66.3(4)$ $C21$ $C26$ $C67$ $C72$ $66.3(4)$ $C22$ $C21$ $C26$ $C67$ $-178.5(3)$ $C22$ $C23$ $C24$ $C47$ $-178.7(3)$ $C22$ $C23$ $C24$ $C47$ $-178.7(3)$ $C22$ $C23$ $C37$ $C42$ $-121.3(3)$ $C22$ $C23$ $C37$ $C42$ $-121.3(3)$ $C22$ $C27$ $C28$ $C29$ $-165.4(3)$ $C22$ $C27$ $C28$ $C29$ $-165.4(3)$ $C23$ $C22$ $C27$ $C32$ $71.1(4)$ $C23$ $C24$ $C25$ $C26$ $-0.7(5)$ $C23$ $C24$ $C25$ $C26$ $-0.7(5)$	C20		C12	C13	166.2(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C20	C11	C12	C17	-12.3(4)
C20 $C77$ $C78$ $C123$ $3.5(4)$ $C20$ $C77$ $C82$ $C81$ $176.5(3)$ $C20$ $C77$ $C82$ $C83$ $-2.9(4)$ $C21$ $C14$ $C15$ $C16$ $-177.9(3)$ $C21$ $C22$ $C23$ $C24$ $-0.7(4)$ $C21$ $C22$ $C23$ $C37$ $178.9(3)$ $C21$ $C22$ $C27$ $C28$ $62.3(4)$ $C21$ $C22$ $C27$ $C32$ $-107.8(4)$ $C21$ $C26$ $C67$ $C68$ $-111.2(4)$ $C21$ $C26$ $C67$ $C72$ $66.3(4)$ $C22$ $C21$ $C26$ $C67$ $-178.5(3)$ $C22$ $C23$ $C24$ $C25$ $1.4(4)$ $C22$ $C23$ $C24$ $C47$ $-178.7(3)$ $C22$ $C23$ $C37$ $C42$ $-121.3(3)$ $C22$ $C27$ $C28$ $C29$ $-165.4(3)$ $C22$ $C27$ $C28$ $C29$ $-165.4(3)$ $C23$ $C22$ $C27$ $C32$ $71.1(4)$ $C23$ $C24$ $C25$ $C26$ $-0.7(5)$ $C23$ $C24$ $C25$ $C26$ $-0.7(5)$	C20	C77	C78	C192	-1//.1(3)
C20 $C77$ $C82$ $C81$ $176.3(3)$ $C20$ $C77$ $C82$ $C83$ $-2.9(4)$ $C21$ $C14$ $C15$ $C16$ $-177.9(3)$ $C21$ $C22$ $C23$ $C24$ $-0.7(4)$ $C21$ $C22$ $C23$ $C37$ $178.9(3)$ $C21$ $C22$ $C27$ $C28$ $62.3(4)$ $C21$ $C22$ $C27$ $C32$ $-107.8(4)$ $C21$ $C26$ $C67$ $C68$ $-111.2(4)$ $C21$ $C26$ $C67$ $C72$ $66.3(4)$ $C22$ $C21$ $C26$ $C67$ $-178.5(3)$ $C22$ $C23$ $C24$ $C25$ $1.4(4)$ $C22$ $C23$ $C24$ $C47$ $-178.7(3)$ $C22$ $C23$ $C37$ $C42$ $-121.3(3)$ $C22$ $C27$ $C28$ $C29$ $-165.4(3)$ $C22$ $C27$ $C32$ $C31$ $163.4(3)$ $C23$ $C22$ $C27$ $C32$ $71.1(4)$ $C23$ $C24$ $C25$ $C26$ $-0.7(5)$ $C23$ $C24$ $C25$ $C57$ $175.8(3)$	C20	C77	CP2	C123	3.5(4) 176 F(2)
C20 $C77$ $C82$ $C83$ $-2.9(4)$ $C21$ $C14$ $C15$ $C16$ $-177.9(3)$ $C21$ $C22$ $C23$ $C24$ $-0.7(4)$ $C21$ $C22$ $C23$ $C37$ $178.9(3)$ $C21$ $C22$ $C27$ $C28$ $62.3(4)$ $C21$ $C22$ $C27$ $C32$ $-107.8(4)$ $C21$ $C26$ $C67$ $C68$ $-111.2(4)$ $C21$ $C26$ $C67$ $C72$ $66.3(4)$ $C22$ $C21$ $C26$ $C67$ $-178.5(3)$ $C22$ $C21$ $C26$ $C67$ $-178.5(3)$ $C22$ $C23$ $C24$ $C25$ $1.4(4)$ $C22$ $C23$ $C24$ $C47$ $-178.7(3)$ $C22$ $C23$ $C37$ $C42$ $-121.3(3)$ $C22$ $C27$ $C28$ $C29$ $-165.4(3)$ $C22$ $C27$ $C32$ $C31$ $163.4(3)$ $C23$ $C22$ $C27$ $C32$ $71.1(4)$ $C23$ $C24$ $C25$ $C26$ $-0.7(5)$ $C23$ $C24$ $C25$ $C57$ $175.8(3)$	C20	C77			1/0.5(3)
C21 $C14$ $C15$ $C16$ $-177.9(3)$ $C21$ $C22$ $C23$ $C24$ $-0.7(4)$ $C21$ $C22$ $C23$ $C37$ $178.9(3)$ $C21$ $C22$ $C27$ $C28$ $62.3(4)$ $C21$ $C22$ $C27$ $C32$ $-107.8(4)$ $C21$ $C26$ $C67$ $C68$ $-111.2(4)$ $C21$ $C26$ $C67$ $C72$ $66.3(4)$ $C22$ $C21$ $C26$ $C67$ $-178.5(3)$ $C22$ $C21$ $C26$ $C67$ $-178.5(3)$ $C22$ $C23$ $C24$ $C47$ $-178.7(3)$ $C22$ $C23$ $C24$ $C47$ $-178.7(3)$ $C22$ $C23$ $C37$ $C42$ $-121.3(3)$ $C22$ $C27$ $C28$ $C29$ $-165.4(3)$ $C23$ $C22$ $C27$ $C32$ $C14$ $C23$ $C22$ $C27$ $C32$ $71.1(4)$ $C23$ $C24$ $C25$ $C26$ $-0.7(5)$ $C23$ $C24$ $C25$ $C57$ $175.8(3)$	C21	C17	C82	C83	-2.9(4) 177.0(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C21	C22	C13	C10	-177.9(3)
C21 $C22$ $C23$ $C37$ $176.3(3)$ $C21$ $C22$ $C27$ $C28$ $62.3(4)$ $C21$ $C22$ $C27$ $C32$ $-107.8(4)$ $C21$ $C26$ $C67$ $C68$ $-111.2(4)$ $C21$ $C26$ $C67$ $C72$ $66.3(4)$ $C22$ $C21$ $C26$ $C25$ $1.3(5)$ $C22$ $C21$ $C26$ $C67$ $-178.5(3)$ $C22$ $C23$ $C24$ $C25$ $1.4(4)$ $C22$ $C23$ $C24$ $C47$ $-178.7(3)$ $C22$ $C23$ $C37$ $C38$ $63.9(4)$ $C22$ $C23$ $C37$ $C42$ $-121.3(3)$ $C22$ $C27$ $C28$ $C29$ $-165.4(3)$ $C23$ $C22$ $C27$ $C32$ $C31$ $163.4(3)$ $C23$ $C22$ $C27$ $C32$ $71.1(4)$ $C23$ $C24$ $C25$ $C26$ $-0.7(5)$ $C23$ $C24$ $C25$ $C57$ $175.8(3)$	C21	C22	C23	C24 C37	178 9(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C21	C22	C27	C28	622(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C21	C22	C27	C20	-107.8(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C21	C26	C67	C68	-107.0(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C21	C26	C67	C72	66 3(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C22	C20	C26	C25	13(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C22	C21	C26	C67	-1785(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C22	C23	C24	C25	170.5(3) 14(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C22	C23	C24	C47	-1787(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C22	C23	C37	C38	63.9(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C22	C23	C37	C42	-121.3(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C22	C27	C28	C29	-165.4(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C22	C27	C32	C31	163.4(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C23	C22	C27	C28	-118.9(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C23	C22	C27	C32	71.1(4)
C23 C24 C25 C57 175.8(3)	C23	C24	C25	C26	-0.7(5)
	C23	C24	C25	C57	175.8(3)

Atom	Atom	Atom	Atom	Angle/°
C23	C24	C47	C48	65.2(4)
C23	C24	C47	C52	-113.0(4)
C23	C37	C38	C39	170.7(3)
C23	C37	C42	C41	-170.7(3)
C24	C23	C37	C38	-116.5(3)
C24	C23	C37	C42	58.3(4)
C24	C25	C26	C21	-0.6(4)
C24	C25	C26	C67	179.2(3)
C24	C25	C57	C58	63.0(4)
C24	C25	C57	C62	-112.3(4)
C24	C47	C48	C49	-178.0(3)
C24	C47	C52	C51	177.7(3)
C25	C24	C47	C48	-114.9(3)
C25	C24	C47	C52	66.9(4)
C25	C26	C67	C68	69.1(4)
C25	C26	C67	C72	-113.4(3)
C25	C57	C58	C59	-173.3(3)
625	657	C62	C61	1/3.3(3)
C26	C21	C22	C23	-0.7(4)
C26	C2E			1/8.2(3)
C26	C25	C57	C50	-120.4(4)
C26	C23	C68	C69	174.7(3)
C26	C67	C72	C71	-1755(3)
C27	C22	C23	C24	-1795(3)
C27	C22	C23	C37	0.1(4)
C27	C28	C29	C30	1.3(6)
C28	C27	C32	C31	-6.9(5)
C28	C29	C30	C31	-5.7(7)
C28	C29	C30	C33	171.7(4)
C29	C30	C31	C32	3.7(7)
C29	C30	C33	C34	-166.9(4)
C29	C30	C33	C35	-48.3(6)
C29	C30	C33	C36	70.4(6)
C30	C31	C32	C27	2.6(6)
C31	C30	C33	C34	10.3(7)
C21	C30	C33	C35	128.9(5)
(3)	C27	C28	C29	51(2)
C32	C27	C20	C27	-1735(4)
C37	C23	C24	C25	-1782(3)
C37	C23	C24	C47	1.7(4)
C37	C38	C39	C40	0.2(6)
C38	C37	C42	C41	4.3(5)
C38	C39	C40	C41	3.8(5)
C38	C39	C40	C43	-171.5(3)
C39	C40	C41	C42	-3.8(5)
C39	C40	C43	C44	-32.5(5)
C39	C40	C43	C45	-155.2(4)
C39	C40	C43	C46	87.2(4)
C40	C41	C42	C37	-0.2(5)
C41	C40	C43	C44	152.4(3)
C41	C40	C43	U40 C46	29.8(5) 87.0(4)
C41	C40	C28	C20	-07.9(4)
C43	C40	C41	C42	171 5(3)
C47	C24	C25	C26	179 3(3)
C47	C24	C25	C57	-4.1(4)
C47	C48	C49	C50	1.1(6)
C48	C47	C52	C51	-0.6(5)
C48	C49	C50	C51	-1.9(6)

Atom	Atom	Atom	Atom	Angle/°
C48	C49	C50	C53	-177.5(4)
C49	C50	C51	C52	1.6(6)
C49	C50	C53	C54	-46.6(6)
C49	C50	C53	C55	-167.9(4)
C49	C50	C53	C56	72.6(5)
C50	C51	C52	C47	-0.4(6)
C51	C50	C53	C54	138.1(5)
C51	C50	C53	C55	16.8(6)
C51	C50	C53	C56	-102.7(5)
C52	C47	C48	C49	0.2(5)
C53	C50	C51	C52	177.0(4)
C57	C25	C26	C21	-177.1(3)
C57	C25	C26	C67	2.6(4)
C57	C58	C59	C60	0.1(6)
C58	C57	C62	C61	-2.2(5)
C58	C59	C60	C61	-2.4(6)
C58	C59	C60	C63	1/3.9(4)
CE0	C60	C62	C64	2.4(5) 165 0(4)
C59	C60	C62	C65	103.9(4)
C59	C60	C63	C66	-74.5(5)
C60	C61	C62	C57	43.0(3)
C61	C60	C63	C64	-179(5)
C61	C60	C63	C65	1018(4)
C61	C60	C63	C66	-1383(4)
C62	C57	C58	C59	2.2(6)
C63	C60	C61	C62	-173.9(3)
C67	C68	C69	C70	1.4(5)
C68	C67	C72	C71	2.2(5)
C68	C69	C70	C71	0.9(5)
C68	C69	C70	C73	-178.7(3)
C69	C70	C71	C72	-1.6(5)
C69	C70	C73	C74	3.7(5)
C69	C70	C73	C75	-116.0(6)
C69	C70	C73	C76	120.8(5)
C70	C71	C72	C67	0.0(5)
C71	C70	C73	C74	-175.9(4)
C/1	C70	C73	C75	64.4(6)
C72	C/0	C/3		-58.8(5)
C72	C70	C00	C72	-2.9(3) 178 1(3)
C77	C78	C79	C80	170.1(3) 11(4)
C77	C78	C79	C113	-1771(3)
C77	C78	C123	C124	-118.4(4)
C77	C78	C123	C128	68.0(4)
C77	C82	C83	C84	62.1(5)
C77	C82	C83	C88	-117.5(4)
C78	C77	C82	C81	-4.9(4)
C78	C77	C82	C83	175.6(3)
C78	C79	C80	C81	-5.8(4)
C78	C79	C80	C103	172.0(3)
C78	C79	C113	C114	-116.4(4)
C78	C79	C113	C118	66.1(4)
C78	C123	C124	C125	-169.6(3)
U/8 C70	U123 C79	U128	C124	169.2(3)
U/9 C70	U/0 C70	U123 C122	U124 C129	62.2(4)
U/9 C70	U/0 CQ0	C123 C91	U120 C83	-111.4(4) E 1(E)
C79	C80	C01 C81	C02	3.1(3) -174.8(2)
C79	C80	C103	C104	66 1 (5)
C79	C80	C103	C108	-112.7(4)

Atom	Atom	Atom	Atom	Angle/°
C79	C113	C114	C115	-174.7(3)
C79	C113	C118	C117	174.3(3)
C80	C79	C113	C114	65.4(4)
C80	C79	C113	C118	-112.1(4)
C80	C81	C82	C77	0.3(5)
C80	C81	C82	C83	179.7(3)
C80	C81	C93	C94	-117.2(4)
C80	C81	C93	C98	59.8(5)
C80	C103	C104	C105	179.1(4)
C80	C103	C108	C107	-179.1(4)
C81	C80	C103	C104	-116.1(4)
C81	C80	C103	C108	65.0(5)
C81	C82	C83	C84	-117.3(4)
C81	C82	C83	C88	63.1(5)
C81	C93	C94	C95	160.1(7)
C81	C93	C94	C161	-170.5(6)
C81	C93	C98	C97	-167.8(6)
C81	C93	C98	C149	168.7(8)
C82	C77	C78	C79	4.3(4)
C82	C77	C78	C123	-175.1(3)
C82	C81	C93	C94	62.9(5)
C82	C81	C93	C98	-120.2(4)
C82	C83	C84	C85	-179.5(5)
C82	C83	C88	C87	178.3(4)
C83	C84	C85	C86	1.2(9)
C84	C83	C88	C87	-1.3(7)
C84	C85	C86	C87	-1.3(11)
C84	C85	C86	C89	176.6(8)
C85	C86	C87	C88	0.1(11)
C85	C86	C89	C90	-105.0(9)
C85	C86	C89	C91	-0.4(15)
C85	C86	C89	C92	142.3(9)
C86	C87	C88	C83	1.2(9)
C87	C86	C89	C90	72.8(10)
C87	C86	C89	C91	177.5(8)
C87	C86	C89	C92	-39.8(14)
C88	C83	C84	C85	0.1(7)
C89	C86	C87	C88	-177.9(8)
C93	C81	C82	C77	-179.8(3)
C93	C81	C82	C83	-0.4(5)
C93	C94	C95	C96	12.0(14)
C93	C94	C161	C134	-5.6(15)
C93	C98	C149	C134	5.8(16)
C94	093	C98	C97	9.3(8)
C94	693	C98	C149	-14.2(10)
C94	C95	C96	C97	-0.4(17)
C94	C95	C96	C99	-177.1(10)
C95	C96	C97	C98	-5.8(19)
C95	C96	C99	C100	147.1(15)
C95	C96	C99	C101	10(2)
C95	C96	C99	C102	-109.8(17)
C96	C97	C98	C100	1.1(15)
C97	C96	C99	C100	-29.6(19)
C97	C96	C00	C101	-100.5(10)
C00	670 C02	677 C04	C102	16 0(0)
C90	C03 C03	C94 CQ/	C161	-10.7(7) 17 E(0)
C90	C96	C97	C101	171 0(11)
C103	C80	C81	C82	-172 7(2)
C103	C80	C81	C02	-1/2./(3) 7 /.(4)
C103	C104	C105	C106	0 9(7)
0100	0101	0100	0100	0.7(7)

Atom	Atom	Atom	Atom	Angle/°
C104	C103	C108	C107	2.0(6)
C104	C105	C106	C107	0.5(8)
C104	C105	C106	C112	-176.5(6)
C105	C106	C107	C108	-0.5(8)
C105	C106	C112	C109	-160.1(8)
C105	C106	C112	C110	-49.4(11)
C105	C106	C112	C111 C102	67.5(14)
C105	C107	C108	C103	-0.8(7)
C107	C106	C112 C112	C109	23.1(11) 122.9(10)
C107	C106	C112	C110	-1094(13)
C108	C103	C104	C105	-2.1(6)
C112	C106	C107	C108	176.5(6)
C113	C79	C80	C81	172.5(3)
C113	C79	C80	C103	-9.8(4)
C113	C114	C115	C116	0.4(6)
C114	C113	C118	C117	-3.3(5)
C114	C115	C116	C117	-3.1(6)
C114	C115	C116	C119	175.9(4)
C115	C116	C117	C118	2.7(5)
C115	C116	C119 C110	C120	121.3(4)
	C116	C119 C110	C121	1.0(6)
C115 C116	C110 C117	C119 C118	C122 C113	-119.4(3) 05(5)
C110 C117	C116	C110 C119	C120	-59 7(5)
C117	C116	C119	C121	-179 9(4)
C117	C116	C119	C122	59.7(6)
C118	C113	C114	C115	2.9(5)
C119	C116	C117	C118	-176.4(3)
C123	C78	C79	C80	-179.5(3)
C123	C78	C79	C113	2.3(4)
C123	C124	C125	C126	-0.3(6)
C124	C123	C128	C127	-4.6(5)
C124	C125	C126	C127	-3.5(6)
C124	C125	C126	C129	1/2.3(4)
C125	C126	C120	C120	3.2(0) 128.2(7)
C125	C120 C126	C129	C130	120.3(7) 129(7)
C125	C126	C129	C132	-1025(7)
C126	C127	C128	C123	0.8(6)
C127	C126	C129	C130	-56.1(8)
C127	C126	C129	C131	-171.5(5)
C127	C126	C129	C132	73.1(7)
C128	C123	C124	C125	4.3(5)
C129	C126	C127	C128	-172.7(4)
C133	0135	C136	C138	160.9(5)
C133	C18	C19	C20	159.6(4)
C136	0135	C133	0134	7.5(8)
C126	0135	C133		-166.9(5)
C130 C137	C134	C139 C149	C140 C98	-1/3.0(0)
C137	C134	C161	C94	-1772(11)
C138	C139	C140	C141	73 8(10)
C139	C140	C141	C142	-180.0(7)
C140	C141	C142	C143	177.2(15)
C140	C141	C142	C174	-178.3(14)
C141	C142	C143	C144	-169(2)
C141	C142	C174	C186	172.9(11)
C142	C143	C144	C145	-62(4)
C142	C174	C186	C148	169.1(15)
C143	C144	C145	C146	164.8(18)

Atom	Atom	Atom	Atom	Angle/°
C146	C148	C186	C174	171.9(13)
C147	0149	C150	C151	-164.5(4)
C147	C16	C17	C12	-162.5(3)
C147	C16	C17	C18	18.9(5)
C149	C134	C137	C135	147.5(16)
C149	C134	C137	C162	27(2)
C149	C134	C137	C175	-91(2)
C149	C134	C161	C94	-2(2)
C150	0149	C147	0148	-2.9(5)
C150	0149	C147	C16	-178.7(3)
C150	C151	C152	C153	-174.9(5)
C151	C152	C153	C154	59.0(7)
C152	C153	C154	C155	177.0(6)
C153	C154	C155	C156	-177.3(6)
C154	C155	C156	C157	178.7(7)
C155	C156	C157	C158	-175.9(7)
C156	C157	C158	C159	-174.8(9)
C160	0162	C163	C164	-169.5(4)
C160	C3	C4	C5	-19.4(6)
C160	C3	C4	С9	159.5(3)
C161	C134	C137	C135	-37.7(19)
C161	C134	C137	C162	-158.2(18)
C161	C134	C137	C175	84(2)
C161	C134	C149	C98	2.5(19)
C163	0162	C160	0161	0.4(6)
C163	0162	C160	C3	-178.3(3)
C163	C164	C165	C166	-58.7(6)
C164	C165	C166	C167	-175.8(4)
C165	C166	C167	C168	-178.7(4)
C166	C167	C168	C169	175.4(4)
C167	C168	C169	C170	-175.4(4)
C168	C169	C170	C171	176.8(4)
C169	C170	C171	C172	-68.0(6)
C173	0175	C176	C177	-175.3(12)
C173	C5	C6	C7	-172.6(3)
C176	0175	C173	0174	-4.5(11)
C176	0175	C173	C5	179.3(10)
C176	C177	C178	C179	-60.5(16)
C177	C178	C179	C180	-164.1(12)
C178	C179	C180	C181	-168.5(13)
C179	C180	C181	C182	-76.6(15)
C180	C181	C182	C183	-150.9(14)
C181	C182	C183	C184	-156(2)
C182	C183	C184	C185	-125(4)

Table 13: Hydrogen Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **20Hir_CD02_2**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Atom	X	у	Z	Ueq
H1	9218.27	7268.09	2723.42	45
H2	10324.52	7443.99	2261.44	50
H6	7874.2	9343.07	1212.48	44
H7	6653.99	8824.7	1475.21	40
H15	4411.71	7358.08	1822.27	42
H19	7107.52	7275.72	3694.69	48
H28	5726.14	9445.94	2027.34	50
H29	5408.21	9924.51	2813.48	65
H31	2962.3	8832.45	2420.58	66
H32	3242.68	8394.66	1611.62	52
H34A	2719.46	9340.88	3173.8	104

Atom	x	У	Z	Uea
H34B	3163.56	9406.78	3710.4	104
H34C	3248.56	8711.78	3270.2	104
H35A	4872.9	8949.47	3489.94	122
H35B	4766.6	9636.17	3931.04	122
H35C	5393.1	9738.37	3543.34	122
H36A	4583.39	10721.54	3343.56	121
H36B	4058 39	10643.04	3777 56	121
H36C	3546 59	10596 54	325946	121
H38	4599.25	9932.96	1173 71	49
H20	2604.06	10761.62	1012.02	52
П35 Ц/1	1004 24	0062.65	1012.02	33
	1904.24	9003.05	190.02	47
	2011.01	0229.40	337.3	47
H44A	2077.27	11249.03	1092.11	88
H44B	1934.67	11650.73	6/7.61	88
	2889.87	11530.03	δ64.91 207.42	88 100
H45A	852.29	10654.42	206.43	103
H45B	962.19	10115.92	539.03	103
H45C	1079.29	9847.32	-22.57	103
H46A	2204.8	11047.59	-174.06	84
H46B	2382.7	10213.4	-329.16	84
H46C	3127.5	10842.49	-4.76	84
H48	5000.66	9180.1	3.48	47
H49	4442.86	9347.53	-734.1	54
H51	3121.48	7281.43	-1148.27	60
H52	3686.1	7101.29	-414.43	53
H54A	3561.36	9615.55	-1275.31	115
H54B	2605.66	9275.75	-1231.31	115
H54C	2857.16	9303.55	-1749.41	115
H55A	2128.37	7876.6	-1605.09	116
H55B	2792.87	7395	-1885.99	116
H55C	2386.87	7990.7	-2103.49	116
H56A	3906.44	8457.58	-2155.31	111
H56B	4352.84	7962.68	-1862.01	111
H56C	4585 44	8835.68	-1677.21	111
H58	6212.28	7811 85	-309 23	55
н50	6438 59	7074.08	-1065.87	54
H61	5236.8	5279 92	-767 36	50
H62	5015 29	6025 11	-9.28	46
H64A	6200 64	4662.05	-1380 /	70 20
H64P	5825 01	1003.95 1203.95	-10280	09 QQ
1104D H64C	5023.74	4022.00 1616 25	-1226.2	07 QQ
	J100.34 1622 02	4040.33 5656 55	-1000.0	07 105
ПОЗА ПСЕР	4033.72 5960 79	5050.55	-1043.44 2220 <i>4</i> 4	105
ПОЭД ПСЕС	3200./2 E207 E2	ここ47.45 くつつの つ F	-2229.04 1052.04	105
	5287.52	0338.35 6220.04	-1052.04	105
пора	0920.99	0329.84	-1001.91	93
НббВ	6895.09	5497.44	-1997.81	93
H66C	7287.29	5745.64	-1435.41	93
H68	7325.63	/341.03	657.93	50
H69	8290.25	6532.24	784.72	55
H71	6372.21	5348.47	1222.9	56
H72	5415.76	6168	1112.16	51
H74A	9024.74	5472.36	688.23	135
H74B	9399.54	5230.16	1148.33	135
H74C	9197.54	6051.06	1215.73	135
H75A	7143.22	4388.87	810.24	175
H75B	8108.02	4186.47	856.04	175
H75C	7781.62	4541.07	440.04	175
H76A	8322.95	5818.04	1870.25	114
H76B	8508.35	4985.54	1732.95	114
H76C	7533.05	5164.54	1731.85	114
H84	8366.71	6138.48	2799.09	65

Atom	х	У	Z	Ueq	
H85	7581.02	4967.31	2640.27	94	
H87	7573.33	5289.92	4096.33	89	
H88	8393.33	6432.44	4249.04	59	
H90A	5577.33	4639.11	3126.9	258	
H90B	5865.83	4786.41	3696.11	258	
H90C	5459.43	3981.31	3367.6	258	
H91A	6291.77	3362.4	2726.49	148	
H91B	7165.27	3731	2596.19	148	
H91C	6309.37	4119	2590.19	148	
H92A	6881.84	3317.22	3494.05	226	
H92B	6944.84	4058.82	3924.65	226	
H92C	7779.14	3855.02	3667.25	226	
H94	10115.61	5975.81	3461.62	73	
H94A	10379.79	6029.54	3439.5	73	
H95	11157.54	5288.43	3635.46	77	
H97	11233.27	6394.67	5049.12	77	
H98A	10496.66	7369.06	4804.14	71	
H98	10329.87	7271.9	4845.3	71	
H10A	13059.43	6084.16	4879.4	250	
H10B	12902.03	5445.76	5134.2	250	
H10C	12286.63	6072.26	5200.3	250	
H10D	11986.31	4407.51	3967.54	250	
H10E	12950.61	4749.71	4223.94	250	
H10F	12442.81	5135.01	3874.34	250	
H10G	11313.84	5089.68	5047 59	250	
H10H	12078.14	4599.38	4943.89	250	
H10I	11211 54	4420.88	4563.69	250	
H104	11172 44	8955.63	4901 58	59	
H105	12623.76	9101 7	5233.18	69	
H107	12025.70	7661 57	4006 25	72	
H108	116924	7510 79	3670.87	59	
H100	1471145	8623.13	4359.64	257	
H10K	14399 55	7777.83	4302.24	257	
	15194.65	8216.23	4704 14	257	
	1/088 53	0210.25	5158.01	368	
	141500.33	9397.03	5130.01	368	
	14130.93	0502.62	1006.91	368	
нттс H11D	14122.43	9372.03 8146 3	5411.82	433	
	12700.00	7626 7	5411.02 E10E 02	433	
1111Ľ H11C	13707.07 12701 E0	2422.7 8422 0	5103.02	400 122	
нтт. П111	11/02 22	0762 02	3630 10	400 EE	
11114 U115	11402.32	7233.73 10427.07	3037.47 2010 75	55	
пттэ П117	14101./3	10427.97	3740./3 1010 0	37 E1	
птт/ П110	10343.02	11037.23	4010.0 1501 21	51 47	
П110 Ц124	7347.02 11727.60	70/0.77 17771 66	43U1.21 1601 72	47 195	
П12А 1112Р	11/34.07	12/31.00	4001./3	120	
П12В 112С	10001.49	12209.20	4/04.23	125	
П12U	11150.99	12137.20	4231.23	125	
	13103.53	11415.66	4530.0	110	
	13053.63	12246.26	4563.3	110	
П12F	12644.93	11599.86	4087.8	118	
H126	11600.89	11/32.13	5360.26	130	
HIZH	12456.39	122/1.83	5366.16	136	
HIZI	12495.09	11414.13	5275.36	136	
H124	9542.21	9279.36	3013.48	57	
H125	9092.31	10360.65	2909.33	73	
H127	7213.51	10221.87	3769.47	65	
H128	7653.15	9129.71	3871.36	53	
H13A	6803.2	10852.47	2828.14	208	
H13B	6812.6	11663.17	3174.44	208	
H13C	6608.3	10971.17	3374.84	208	
H13D	8189.18	11922.82	2887.82	206	
Atom	v	V	7	I I	
---------------	--------------------	----------------------	--------------------	------------	
H12F	87 <i>1.1</i> .19	y 11085 72	261252	206	
ПТЭЕ Н13Е	0244.40 0010 50	11550.72	2012.32 2024 82	200	
нтэг H13C	2010.30 2010.30	11621 0	3024.02 1071 19	200 179	
H12U	8108 Q1	11041.7 17740 Q	4071.43 3803 03	170 178	
птэц П151	0100.01	1447.0 11700 0	30U3.73 3867 72	1/0 170	
11131 H121	1000/.11	11/00.3	1002.13 1117 10	1/0 250	
П13J 1112V	10094.44	4343.90	4442.40	250	
	10055.04	3975.10	4033.40	250	
	10932.24	4223.90	41/2.20	250	
	JZJ0.01	62F7 4F	3011.32 4010 F0	100	
H13N	4598.38	0357.45	4019.59	108	
	0313.20	0421.7	4525.07	90	
П13Р 11120	3309.30	0090.00 5702.11	4/30.4	90 107	
H13Q	4/40.54	5/82.11	4/09.33	127	
HI3K	5540.81	5353.53	4606.38	127	
HI4A	6418.04	61/4.48	5303.32	136	
H14B	5/15.35	5592	5407.94	130	
H14C	4826.69	6505.29	5640.7	104	
H14D	5530.17	/088.73	5535.71	104	
H14E	5796.47	6403.28	6300.28	159	
H14F	6531.66	6957.14	6187.22	159	
H14G	5842.37	6376.93	6274.72	159	
H14H	6524.42	6976.11	6174.94	159	
H14I	4944.53	7273.35	6490.49	159	
H14J	5538.19	7817.35	6296.41	159	
H14K	6490.38	8218.24	7078.32	159	
H14L	5517.06	8368.02	7141.63	159	
H14M	6101.84	7076.67	7292.56	132	
H14N	5257.22	7412.6	7466.1	132	
H14R	6975.67	7812.06	7909.88	190	
H14S	6023.67	7566.06	8014.38	190	
H14T	6424.27	8413.56	8186.28	190	
H140	7007.57	7898.96	7924.88	190	
H14P	6177.17	7736.56	8178.28	190	
H14Q	6321.57	8468.56	8014.08	190	
H14U	5384.1	8071	7442.53	132	
H14V	6304.34	8482.03	7392.13	132	
H149	10850.61	6505.5	5177.22	77	
H15A	2594.39	7355.62	2751.3	74	
H15B	2956.3	6739.25	2969.01	74	
H15C	2360.06	5833.09	2218.52	74	
H15D	1949.23	6457.04	2034.47	74	
H15E	1482.69	6054	2873.64	67	
H15F	1035.91	6621.05	2647.5	67	
H15G	384.07	5675.13	1967.24	83	
H15H	113.92	5518.18	2450.53	83	
H15I	1346.68	4802.1	1900.06	99	
H15J	1127.09	4662.39	2396.19	99	
H15K	-31.21	4252.78	1521.35	93	
H15L	-283.44	4138.46	2018.22	93	
H15M	936.08	3368.15	1477.65	106	
H15N	705.7	3261.15	1980.49	106	
H150	-420.15	2842.84	1107.17	114	
H15P	-699.04	2775.86	1609.36	114	
H15Q	541.63	1967.02	1139.23	125	
H15R	176.64	1872.66	1615.46	125	
H15S	-928.07	1503.88	740.74	217	
H15T	-1037.37	1221.88	1207.14	217	
H15U	-323.37	939.88	868.94	217	
H161	10767.51	5094.85	3851.87	77	
H16A	11194.64	5704.8	5499.08	250	
H16B	11145.84	4847.3	5444.58	250	

Atom	X	у	Z	Ue	q
H16C	10297.04	5175.7	5293.58	250	
H16D	10974.66	7417.81	673.96	73	
H16E	11276.98	8286.83	877.67	73	
H16F	10739.93	7960.73	28.87	81	
H16G	10170.44	8511.15	337.28	81	
H16H	9042.61	7528.58	253.14	78	
H16I	9241.69	7568.91	-270.85	78	
H16I	9808 68	6528.84	193 99	80	
H16K	10081 48	6586 37	-313 73	80	
H16L	8310.68	6186.12	-176.25	74	
H16M	8595 71	6228 31	-684 96	74	
H16N	9374 47	5224 73	-723 73	76	
H160	9169.05	520238	-197 45	76	
H16P	790712	4821 73	-1048.96	70	
H160	7657.83	4851 98	-521 97	73	
H174	8693 79	3830 32	-1040.06	76	
H17R	8501 1	3875 17	-500 85	76	
П17D Ц17C	759151	20110	-300.03	70	
	7155 2	2091.10	121725	74	
	7133.2	2222 61	-1317.33	111	
	7019.25	3332.01 2060 E1	-300.21	111	
	6249.36	3009.51	-810.31	111	
	0584.20	3924.31	-5/4.91	111	
	4989.21	/301.18	6558.72	159	
H1/I	5/62.99	/886.34	6506.63	159	
H17J	12301.48	5177.64	4531.48	250	
H17K	12269.29	4653.94	4878.18	250	
H17L	12383.89	5524.04	5106.78	250	
H17M	11146	9604.37	1241.22	250	
H17N	10859.61	10354.02	1550.26	250	
H170	12241.65	10229.89	1862.93	250	
H17P	11880.93	9459.28	1936.99	250	
H17Q	10995.61	10114.63	2582.73	250	
H17R	12001.87	10437.15	2751.25	250	
H17S	10718.07	11087.34	2316.19	250	
H17T	11725.32	11349.35	2325.36	250	
H18A	11948.28	11762.59	3170.65	250	
H18B	11017.86	11382.54	3206.78	250	
H18C	10408.97	12485.36	2934.9	250	
H18D	10897.47	12702.8	3487.05	250	
H18E	12331.19	12723.48	3031.94	250	
H18F	11697.07	12889.64	2622.1	250	
H18G	11542.37	13943.35	3273.51	250	
H18H	12419.84	13781.38	3511.76	250	
H18I	12633.46	14041.81	2738.72	250	
H18I	12044.16	14582.83	3008.04	250	
H18K	13180.97	15168.94	3511 93	313	
H18L	13146.27	15150.51	2953 43	313	
H18M	13743.97	14653 74	3169 43	313	
H18N	5932.72	6905	7138 02	150	
H180	6779 04	7255 21	703111	150	
11100	0775.04	/ 555.51	/031.11	137	

 Table 14: Atomic Occupancies for all atoms that are not fully occupied in 20Hir_CD02_2.

Atom	Occupancy	Atom	Occupancy	Atom	Occupancy	Atom	Occupancy
H94	0.523(5)	H97	0.523(5)	H10B	0.523(5)	C102	0.523(5)
H94A	0.477(5)	H98A	0.477(5)	H10C	0.523(5)	H10G	0.523(5)
C95	0.523(5)	H98	0.523(5)	C101	0.523(5)	H10H	0.523(5)
H95	0.523(5)	C99	0.523(5)	H10D	0.523(5)	H10I	0.523(5)
C96	0.523(5)	C100	0.523(5)	H10E	0.523(5)	C134	0.477(5)
C97	0.523(5)	H10A	0.523(5)	H10F	0.523(5)	C135	0.477(5)

Atom	Occupancy
H13J	0.477(5)
H13K	0.477(5)
H13L	0.477(5)
C137	0.477(5)
H14E	0.447(9)
H14F	0.447(9)
H14G	0.553(9)
H14H	0.553(9)
C143	0.447(9)
H14I	0.447(9)
H14J	0.447(9)
C144	0.447(9)
H14K	0.447(9)
H14L	0.447(9)
C145	0.447(9)
H14M	0.447(9)
H14N	0.447(9)
H14R	0.553(9)
H14S	0.553(9)
H14T	0.553(9)
H140	0.447(9)
H14P	0.447(9)
H14Q	0.447(9)
C148	0.553(9)
H14U	0.553(9)
H14V	0.553(9)
C149	0.477(5)
H149	0.477(5)
C161	0.477(5)
H161	0.477(5)
C162	0.477(5)
H16A	0.477(5)
H16B	0.477(5)
H16C	0.477(5)
C174	0.553(9)
H17H	0.553(9)
H17I	0.553(9)
C1/5	0.477(5)
H17J	0.477(5)
H1/K	0.477(5)
H1/L	0.4/(5)
	0.553(9)
H10N	0.553(9)
<u>пто</u> Л	0.553(9)

Citations

CrysAlisPro (ROD), Rigaku Oxford Diffraction, Poland (?).

CrysAlisPro Software System, Rigaku Oxford Diffraction, (2019).

O.V. Dolomanov and L.J. Bourhis and R.J. Gildea and J.A.K. Howard and H. Puschmann, Olex2: A complete structure solution, refinement and analysis program, *J. Appl. Cryst.*, (2009), **42**, 339-341.

Sheldrick, G.M., Crystal structure refinement with ShelXL, Acta Cryst., (2015), C71, 3-8.

Sheldrick, G.M., ShelXT-Integrated space-group and crystal-structure determination, *Acta Cryst.*, (2015), **A71**, 3-8.

S6. References

- [1] Y. Lin, Q. Song, Eur. J. Org. Chem. 2016, 2016, 3056–3059.
- [2] M. M. Martin, D. Lungerich, P. Haines, F. Hampel, N. Jux, Angew. Chem. Int. Ed. 2019, 58, 8932– 8937.
- [3] D. Reger, P. Haines, F. W. Heinemann, D. M. Guldi, N. Jux, Angew. Chem. Int. Ed. 2018, 57, 5938– 5942.
- [4] T. Heek, J. Nikolaus, R. Schwarzer, C. Fasting, P. Welker, K. Licha, A. Herrmann, R. Haag, *Bioconjug. Chem.* **2013**, *24*, 153–158.