Assembly of four modules onto a tetraazide platform by consecutive 1,2,3-triazole formations

Suguru Yoshida, ${ }^{* a}$ Yuki Sakata, ${ }^{a}$ Yoshihiro Misawa, ${ }^{a}$ Takamoto Morita, ${ }^{a}$ Tomoko Kuribara, ${ }^{a}$ Harumi Ito, ${ }^{a b}$ Yuka Koike, ${ }^{c}$ Isao Kii, ${ }^{b c}$ and Takamitsu Hosoya*a
${ }^{a}$ Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
${ }^{b}$ Pathophysiological and Health Science Team, Division of Bio-Function Dynamics Imaging, Imaging Platform and Innovation Group, RIKEN Center for Life Science Technologies (CLST), 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan. ${ }^{\circ}$ Common Facilities Unit, Compass to Healthy Life Research Complex Program, RIKEN Cluster for Science and Technology Hub, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.

Contents

General Remarks S1
Chemical Experiments S2
Biological Experiments S20
Chemical modification of the HaloTag protein by 27 S21
Characterization Data of New Compounds S22
Absorption and Fluorescent Properties and Spectra of 26-28 S39
References for Supporting Information S43
NMR Spectra of Compounds S44

General Remarks

All reactions were performed in dry glassware under atmosphere of argon otherwise noted. Analytical thin-layer chromatography (TLC) was performed on precoated (0.25 mm) silica-gel plates (Merck Chemicals, Silica Gel $60 \mathrm{~F}_{254}$, Cat. No. 1.05715). Column chromatography was conducted using silica-gel (Kanto Chemical Co., Inc., Silica Gel 60N, spherical neutral, particle size $40-50 \mu \mathrm{~m}$, Cat. No. 37563-85 or particle size 63-210 $\mu \mathrm{m}$, Cat. No. 37565-85). Preparative thin-layer chromatography (PTLC) was performed on silica-gel (Wako Pure Chemical Industries Ltd., Wakogel B5-F, Cat. No. 230-00043). Melting points (Mp) were measured on a YANACO MP-J3 instrument or an OptiMelt MPA100 (Stanford Research Systems), and are uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained with a Bruker AVANCE 500 spectrometer at 500 or 126 MHz , respectively. ${ }^{19}$ F NMR spectra were obtained with a Bruker AVANCE 400 spectrometer at 376 MHz . Chemical shifts (δ) are given in parts per million (ppm) downfield from $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}\left(\delta 0.00\right.$ for ${ }^{1} \mathrm{H}$ NMR in CDCl_{3}) or the solvent peak ($\delta 77.0$ for ${ }^{13} \mathrm{C} \mathrm{NMR}$ in CDCl_{3}) as an internal reference or α, α, α-trifluorotoluene ($\delta-$ 63.0 ppm for ${ }^{19} \mathrm{~F}$ NMR in CDCl_{3}) as an external standard with coupling constants (J) in hertz (Hz). The abbreviations $\mathrm{s}, \mathrm{d}, \mathrm{t}, \mathrm{q}$, sept, m , and br signify singlet, doublet, triplet, quartet, septet, multiplet, and broad, respectively. IR spectra were measured by diffuse reflectance method on a Shimadzu IRPrestige-21 spectrometer attached with DRS-8000A with the absorption band given in cm^{-1}. Highresolution mass spectra (HRMS) were measured on a Bruker micrOTOF mass spectrometer under positive electrospray ionization (ESI^{+}) conditions. High-performance liquid chromatography (HPLC) was performed on a Shimadzu Prominence HPLC system (CBM-20A lite, LC-20AD $\times 2$, DGU20A3R, SUS316L, and CTO-20A) equipped with a Shimadzu SPD-20A UV/Vis detector. The absorbance spectra (UV/Vis) and fluorescence spectra (FL) were measured with a JASCO UV-650 spectrophotometer and a JASCO FP-8500 spectrofluorophotometer, respectively, at $25^{\circ} \mathrm{C}$ using a quartz cuvette (10 mm light path).

Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. 5,6-Didehydro-11,12-dihydrodibenzo[a,e]cyclooctene (7), ${ }^{\text {S1 }} \quad(1 \alpha, 8 \alpha, 9 \alpha)$ -bicyclo[6.1.0]non-4-yn-9-ylmethyl N-(2-(2-(2-propyn-1-yloxy)ethoxy)ethyl)carbamate (17), ${ }^{\mathrm{S} 2} \beta$ ketoamide 22, ${ }^{\text {S3 }}$ alkyne 23, ${ }^{\text {S3 }}$ cycloalkyne 24, ${ }^{\text {S3 }} 3$-azidoadamantane-1-carboxylic acid (S2), ${ }^{\text {S4 }} 4$ (azidomethyl)phenylboronic acid (S5), ${ }^{\text {S5 }} \quad 1$-azido-2,6-diisopropyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene (S8), ${ }^{\text {S3 }} 3$ 3-azido-5-(azidomethyl)phenylboronic acid (S14), ${ }^{\text {S6 }}$ and tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (TBTA) ${ }^{57}$ were prepared according to the reported methods.

Chemical Experiments

A typical procedure for the CuAAC reaction

To a mixture of 1-azidoadamantane (9) (88.7 mg, 0.500 mmol$),(\mathrm{MeCN})_{4} \mathrm{CuBF}_{4}(7.87 \mathrm{mg}, 25.0$ $\mu \mathrm{mol}$) , and TBTA ($13.3 \mathrm{mg}, 25.1 \mu \mathrm{~mol}$) dissolved in THF (3.0 mL) was added phenylacetylene (14) $(61.4 \mathrm{mg}, 0.601 \mathrm{mmol}$) at room temperature. After stirring for 24 h at the same temperature, the mixture was concentrated under reduced pressure. The residue was purified by column chromatography (Biotage ${ }^{\circledR}$ ZIP sphere cartridge $10 \mathrm{~g}, n$-hexane/EtOAc $=89 / 11$ to $68 / 32$) to give 1 -(adamantan-1-yl)-4-phenyl-1 H -1,2,3-triazole (10a) ($139 \mathrm{mg}, 0.498 \mathrm{mmol}, 99 \%$) as a colorless solid.

Synthesis of 3-azido-N-(4-azidobenzyl)- 1-adamantanamide (13)

To a mixture of 4-azidobenzylamine (S1) (415 mg, 2.80 mmol) and 3-azido-1adamantanecarboxylic acid (S2) ($682 \mathrm{mg}, 3.08 \mathrm{mmol}$) dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride ($644 \mathrm{mg}, 3.36 \mathrm{mmol}$) and 4(dimethylamino)pyridine ($410 \mathrm{mg}, 3.36 \mathrm{mmol}$) at room temperature. After stirring for 1 h at the same temperature, the mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (Biotage ${ }^{\circledR}$ ZIP-sphere cartridge $45 \mathrm{~g}, n$-hexane $/ \mathrm{EtOAc}=1 / 1$) to give 3 -azido- N-(4-azidobenzyl)-1-adamantanamide (13) ($910 \mathrm{mg}, 2.59 \mathrm{mmol}, 93 \%$) as a colorless solid.

To a mixture of 3-azido- N -(4-azidobenzyl)-1-adamantanamide (13) ($35.2 \mathrm{mg}, 0.100 \mathrm{mmol}$), acetylacetone (5) ($12.1 \mathrm{mg}, 0.121 \mathrm{mmol})$ dissolved in DMF $(2.0 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(2.8 \mathrm{mg}, 20$ $\mu \mathrm{mol})$ at room temperature. After stirring for 24 h at the same temperature, to the mixture was added water. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extract was washed with brine and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by preparative TLC (n-hexane/EtOAc $=1 / 1$) to give N-(4-(4-acetyl-5-methyl-1,2,3-triazol-1-yl)benzyl)-3-azido-1-adamantanamide (S3) ($43.0 \mathrm{mg}, 99.2 \mu \mathrm{~mol}, 99 \%$) as a colorless oil.

Synthesis of N-(4-(4-acetyl-5-methyl-1,2,3-triazol-1-yl)benzyl)-3-(4-phenyl-1,2,3-triazol-1-yl)-1adamantanamide (15a)

To a mixture of N-(4-(4-acetyl-5-methyl-1,2,3-triazol-1-yl)benzyl)-3-azido-1-adamantanamide (S3) $(21.4 \mathrm{mg}, 49.4 \mu \mathrm{~mol}),(\mathrm{MeCN})_{4} \mathrm{CuBF}_{4}(0.78 \mathrm{mg}, 2.5 \mu \mathrm{~mol})$, and TBTA $(1.30 \mathrm{mg}, 2.45 \mu \mathrm{~mol})$ dissolved in THF (1.0 mL) was added phenylacetylene (14) $(6.05 \mathrm{mg}, 59.2 \mu \mathrm{~mol})$ at room temperature. After stirring for 24 h at the same temperature, the mixture was concentrated under reduced pressure. The residue was purified by preparative $\mathrm{TLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=19 / 1\right)$ to give N-(4-(4-acetyl-5-methyl-1,2,3-triazol-1-yl)benzyl)-3-(4-phenyl-1,2,3-triazol-1-yl)-1-adamantanamide (15a) (25.7 mg, $48.0 \mu \mathrm{mmol}, 97 \%)$ as a colorless solid.

Synthesis of 3-azido-N-(4-(4-phenyl-1,2,3-triazol-1-yl)benzyl)-1-adamantanamide (S4)

To a mixture of 3-azido- N -(4-azidobenzyl)-1-adamantanamide (13) ($42.2 \mathrm{mg}, 0.120 \mathrm{mmol}$), $(\mathrm{MeCN})_{4} \mathrm{CuBF}_{4}(1.57 \mathrm{mg}, 4.99 \mu \mathrm{~mol})$, and TBTA $(2.65 \mathrm{mg}, 4.99 \mu \mathrm{~mol})$ dissolved in THF $(2.0 \mathrm{~mL})$ was added phenylacetylene (14) $(10.2 \mathrm{mg}, 99.9 \mu \mathrm{~mol})$ at room temperature. After stirring for 24 h at
the same temperature, the mixture was concentrated under reduced pressure. The residue was purified by preparative TLC (n-hexane/EtOAc $=1 / 2$) to give 3-azido- N-(4-(4-phenyl-1,2,3-triazol-1-yl)benzyl)-1-adamantanamide (S4) ($39.6 \mathrm{mg}, 87.3 \mu \mathrm{~mol}, 87 \%$) as a colorless solid.

Synthesis of 3-(4-(2-hydroxyprop-2-yl)-N-(4-(4-phenyl-1,2,3-triazol-1-yl)benzyl)-1,2,3-triazol-1-yl)-1-adamantanamide ($\mathbf{1 5 b}$)

To a mixture of 3-azido- N-(4-(4-phenyl-1,2,3-triazol-1-yl)benzyl)-1-adamantanamide (S4) (25.9 $\mathrm{mg}, 57.1 \mu \mathrm{~mol}),(\mathrm{MeCN}){ }_{4} \mathrm{CuBF}_{4}(0.90 \mathrm{mg}, 2.9 \mu \mathrm{~mol})$, and TBTA $(1.51 \mathrm{mg}, 2.85 \mu \mathrm{~mol})$ dissolved in THF (1.2 mL) was added 2-methyl-3-butyn-2-ol (6) ($5.76 \mathrm{mg}, 68.5 \mu \mathrm{~mol}$) at room temperature. After stirring for 24 h at the same temperature, the mixture was concentrated under reduced pressure. The residue was purified by preparative TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=10 / 1\right)$ to give N-(4-(4-phenyl-1,2,3-triazol-1-yl)benzyl)-3-(4-(2-hydroxyprop-2-yl)-1,2,3-triazol-1-yl)-1-adamantanamide (15b) (27.9 $\mathrm{mg}, 51.9 \mu \mathrm{~mol}, 91 \%$) as a pale yellow oil.

One-pot synthesis of 3-(4-(2-hydroxyprop-2-yl)-N-(4-(4-phenyl-1,2,3-triazol-1-yl)benzyl)-1,2,3-triazol-1-yl)-1-adamantanamide (15b)

To a mixture of 3 -azido- N-(4-azidobenzyl)-1-adamantanamide (13) ($42.2 \mathrm{mg}, 0.120 \mathrm{mmol}$), $(\mathrm{MeCN})_{4} \mathrm{CuBF}_{4}(1.57 \mathrm{mg}, 4.99 \mu \mathrm{~mol})$, and TBTA $(2.65 \mathrm{mg}, 4.99 \mu \mathrm{~mol})$ dissolved in THF $(2.0 \mathrm{~mL})$ was added phenylacetylene (14) ($10.2 \mathrm{mg}, 9.99 \mu \mathrm{~mol})$ at room temperature. After stirring for 24 h at the same temperature, to the mixture was added 2-methyl-3-butyn-2-ol (6) ($12.0 \mathrm{mg}, 0.143 \mathrm{mmol}$). After stirring for 24 h , the mixture was concentrated under reduced pressure. The residue was purified by preparative $\mathrm{TLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=10 / 1\right)$ to give 3-(4-(2-hydroxyprop-2-yl)- N -(4-(4-phenyl-1,2,3-triazol-1-yl)benzyl)-1,2,3-triazol-1-yl)-1-adamantanamide (15b) ($44.8 \mathrm{mg}, 83.3 \mu \mathrm{~mol}, 83 \%$) as a pale yellow oil.

Synthesis of methyl 3-(4-(azidomethyl)phenyl)-5-bromobenzoate (S7)

To a solution of 4-(azidomethyl)phenylboronic acid (S5) ($354 \mathrm{mg}, 2.00 \mathrm{mmol}$), methyl 3-bromo-5-iodobenzoate (S6) ($1.02 \mathrm{~g}, 2.99 \mathrm{mmol}$), and $\mathrm{Pd}_{\left(\mathrm{PPh}_{3}\right)_{4}(116 \mathrm{mg}, 0.100 \mathrm{mmol}) \text { dissolved in toluene }}$ $(8.0 \mathrm{~mL})$ and $\mathrm{EtOH}(1.3 \mathrm{~mL})$ was added aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(2.0 \mathrm{M}, 8.0 \mathrm{~mL})$ at room temperature. After stirring for 3 h at $80^{\circ} \mathrm{C}$, to the mixture was added water. The mixture was extracted with EtOAc. The combined organic extract was washed with brine and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (Biotage ${ }^{\circledR}$ ZIP sphere cartridge $45 \mathrm{~g}, n$-hexane/EtOAc $=100 / 0$ to $94 / 6$) to give methyl 3-(4-(azidomethyl)phenyl)-5-bromobenzoate (S7) ($585 \mathrm{mg}, 1.69 \mathrm{mmol}, 85 \%$) as a colorless solid.

Synthesis of methyl 3-(4-azido-3,5-diisopropylphenyl)-5-(4-(azidomethyl)phenyl)benzoate (S9)

To a mixture of methyl 3-(4-(azidomethyl)phenyl)-5-bromobenzoate (S7) ($82.6 \mathrm{mg}, 0.239 \mathrm{mmol}$), 1-azido-2,6-diisopropyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene (S8) (94.4 mg, $0.287 \mathrm{mmol}), \mathrm{Pd}(\mathrm{amphos})_{2} \mathrm{Cl}_{2}(16.9 \mathrm{mg}, 0.0239 \mathrm{mmol})$, and tripotassium phosphate n hydrate (56.3 mg , ca. 0.3 mmol$)$ was added $\mathrm{MeCN}(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ at room temperature. After stirring for 1.5 h at $80^{\circ} \mathrm{C}$, to the mixture was added water. The mixture was extracted with EtOAc. The combined organic extract was washed with brine and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (Biotage ${ }^{\circledR}$ ZIP sphere cartridge 5 g , n-hexane/EtOAc $=100 / 0$ to $95 / 5$) to give methyl 3-(4-azido-3,5-diisopropylphenyl)-5-(4-(azidomethyl)phenyl)benzoate (S9) $(94.8 \mathrm{mg}, 0.202 \mathrm{mmol}, 85 \%$) as a pale yellow oil.

Synthesis of 3-(4-azido-3,5-diisopropylphenyl)-5-(4-(azidomethyl)phenyl)benzyl alcohol (S10)

To a solution of methyl 3-(4-azido-3,5-diisopropylphenyl)-5-(4-(azidomethyl)phenyl)benzoate (S9) ($114 \mathrm{mg}, 0.243 \mathrm{mmol}$) dissolved in THF (1.5 mL) was slowly added diisobutylaluminium hydride (1.02 M in n-hexane, $950 \mu \mathrm{~L}, 0.972 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. After stirring for 3 h at the same temperature, to the mixture was slowly added water, and then aqueous $\mathrm{HCl}(2 \mathrm{M})$. The mixture was extracted with EtOAc, and the combined organic extract was washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by
column chromatography (Biotage ${ }^{\circledR}$ ZIP sphere cartridge 5 g , n-hexane/EtOAc $=100 / 0$ to $75 / 25$) to give 3-(4-azido-3,5-diisopropylphenyl)-5-(4-(azidomethyl)phenyl)benzyl alcohol (S10) (88.1 mg , $0.200 \mathrm{mmol}, 82 \%$) as a pale orange oil.

Synthesis of N-(3-(4-azido-3,5-diisopropylphenyl)-5-(4-(azidomethyl)phenyl)benzyl)phthalimide (S11)

To a solution of 3-(4-azido-3,5-diisopropylphenyl)-5-(4-(azidomethyl)phenyl)benzyl alcohol (S10) $(86.3 \mathrm{mg}, 0.196 \mathrm{mmol})$, phthalimide $(45.0 \mathrm{mg}, 0.306 \mathrm{mmol})$, and bis(2-methoxyethyl) azodicarboxylate (DMEAD) ($71.7 \mathrm{mg}, 0.306 \mathrm{mmol})$ dissolved in THF $(2.0 \mathrm{~mL})$ was added $\mathrm{PPh}_{3}(80.3$ $\mathrm{mg}, 0.306 \mathrm{mmol}$) at room temperature. After stirring for 15 h at the same temperature, the mixture was concentrated under reduced pressure. The residue was purified by column chromatography (Biotage ${ }^{\circledR}$ ZIP sphere cartridge $5 \mathrm{~g}, n$-hexane/EtOAc $=100 / 0$ to $86 / 14$) to give N-(3-(4-azido-3,5-diisopropylphenyl)-5-(4-(azidomethyl)phenyl)benzyl)phthalimide (S11) ($83.3 \mathrm{mg}, 0.146 \mathrm{mmol}$, 74%) as a pale orange oil.

Synthesis of 3-azido-N-(3-(4-azido-3,5-diisopropylphenyl)-5-(4-(azidomethyl)phenyl)benzyl)-1adamantanamide (16)

To
a
solution
of
N-(3-(4-azido-3,5-diisopropylphenyl)-5-(4(azidomethyl)phenyl)benzyl)phthalimide (S11) ($45.1 \mathrm{mg}, 73.2 \mu \mathrm{~mol}$) dissolved in EtOH (1.6 mL) was added hydrazine monohydrate ($41.2 \mathrm{mg}, 0.823 \mathrm{mmol}$) at room temperature. After stirring for 2 h at $80^{\circ} \mathrm{C}$, the mixture was concentrated under reduced pressure. After water was added to the residue, the mixture was extracted with EtOAc. The combined organic extract was washed with brine and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the filtrate was concentrated under reduced pressure. To the resulting mixture, 3-azido-1-adamantanecarboxylic acid (S2) (19.4 mg, $87.8 \mu \mathrm{~mol}$), 1-ethyl-3-(3(dimethylamino)propyl)carbodiimide hydrochloride ($16.8 \quad \mathrm{mg}, \quad 87.8 \mu \mathrm{~mol}$), and 4(dimethylamino)pyridine ($10.7 \mathrm{mg}, 87.8 \mu \mathrm{~mol}$) was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ at room temperature. After stirring for 18 h at the same temperature, the mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (Biotage ${ }^{\circledR}$ ZIP-sphere cartridge $5 \mathrm{~g}, n-$ hexane/EtOAc $=100 / 0$ to $75 / 25$) to give 3 -azido- N-(3-(4-azido-3,5-diisopropylphenyl)-5-(4-(azidomethyl)phenyl)benzyl)-1-adamantanamide (16) ($45.5 \mathrm{mg}, 70.8 \mu \mathrm{~mol}, 97 \%$, in 2 steps) as a pale
brown solid.

Synthesis of mono(triazole) S12

To a solution of platform $16(32.1 \mathrm{mg}, 50.0 \mu \mathrm{~mol})$ dissolved in toluene $(1.0 \mathrm{~mL})$ was added phenylacetylene (14) (7.7 $\quad \mathrm{mg}$, $75 \quad \mu \mathrm{~mol}) \quad$ and (pentamethylcyclopentadienyl)bis(triphenylphosphine)ruthenium(II) chloride ($1.99 \mathrm{mg}, 2.50 \mu \mathrm{~mol}$) at room temperature. After stirring for 2 h at $80^{\circ} \mathrm{C}$, the mixture was concentrated under reduced pressure. The residue was purified by preparative $\mathrm{TLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=30 / 1\right)$ to give mono(triazole) $\mathbf{S 1 2}(30.8 \mathrm{mg}, 41.3 \mu \mathrm{~mol}, 83 \%)$ as a brown solid.

Synthesis of bis(triazole) S13

To a solution of mono(triazole) $\mathbf{S 1 2}(20.3 \mathrm{mg}, 27.3 \mu \mathrm{~mol})$ dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.50 \mathrm{~mL})$ was added 5,6-didehydro-11,12-dihydrodibenzo $[a, e]$ cyclooctene (7) ($5.06 \mathrm{mg}, 24.8 \mu \mathrm{~mol}$) at the room temperature. After stirring for 1 h at the same temperature, the mixture was concentrated under reduced pressure. The residue was purified by preparative TLC (n-hexane/EtOAc $=1 / 2$) to give bis(triazole) $\mathbf{S 1 3}(20.9 \mathrm{mg}, 22.0 \mu \mathrm{~mol}, 89 \%)$ as a colorless solid.

To a solution of $\quad(1 \alpha, 8 \alpha, 9 \alpha)$-bicyclo[6.1.0]non-4-yn-9-ylmethyl N-(2-(2(propargyloxy)ethoxy)ethyl)carbamate (17) $(3.38 \mathrm{mg}, 10.6 \mu \mathrm{~mol})$ dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.50 \mathrm{~mL})$ was added tetrakis(acetonitrile)copper(I) tetrafluoroborate $(6.61 \mathrm{mg}, 21.0 \mu \mathrm{~mol})$ at room temperature. After stirring for 30 min at the same temperature, to the mixture was added bis(triazole) $\mathbf{S 1 3}$ (6.40 $\mathrm{mg}, 6.74 \mu \mathrm{~mol}$) dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.50 \mathrm{~mL})$ and TBTA ($7.46 \mathrm{mg}, 14.1 \mu \mathrm{~mol}$). After stirring for 3 days, to the mixture was added aqueous EDTA $2 \mathrm{Na}(0.1 \mathrm{M}, 8.4 \mathrm{~mL})$. After stirring for 24 h , the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by preparative TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ $=20 / 1)$ and then preparative $\mathrm{TLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=20 / 1\right)$ to give tris(triazole) $\mathbf{1 8}(7.29 \mathrm{mg}, 5.75$ $\mu \mathrm{mol}, 85 \%$) as a colorless solid.

Synthesis of methyl 3-(3-azido-5-(azidomethyl)phenyl)-5-bromobenzoate (S15)

To a solution of methyl 3-bromo-5-iodobenzoate ($\mathbf{S 6}$) ($1.40 \mathrm{~g}, 4.10 \mathrm{mmol}$) dissolved in toluene $(12 \mathrm{~mL})$ and $\mathrm{EtOH}(2.0 \mathrm{~mL})$ was added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(159 \mathrm{mg}, 0.138 \mathrm{mmol})$, aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(1.6 \mathrm{M}$, 15.0 mL), and 3-azido-5-(azidomethyl)phenylboronic acid (S14) ($597 \mathrm{mg}, 2.74 \mathrm{mmol}$) at room temperature. After stirring for 3 h at $80^{\circ} \mathrm{C}$, to the mixture was added water. The mixture was extracted with EtOAc. The combined organic extract was washed with brine and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (Biotage ${ }^{\circledR}$ ZIP-sphere cartridge $120 \mathrm{~g}, n$-hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=58 / 42$) to give methyl 3-(3-azido-5-(azidomethyl)phenyl)-5-bromobenzoate (S15) ($813 \mathrm{mg}, 2.10 \mathrm{mmol}, 77 \%$) as a brown solid.

Synthesis of methyl 3-(3-azido-5-(azidomethyl)phenyl)-5-(4-azido-3,5-diisopropylphenyl)benzoate (S16)

To a mixture of methyl 3-(3-azido-5-(azidomethyl)phenyl)-5-bromobenzoate (S15) (1.61 g, 4.16 mmol), 1-azido-2,6-diisopropyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene (S8) (1.65 g , $5.01 \mathrm{mmol}), \mathrm{Pd}(\mathrm{amphos})_{2} \mathrm{Cl}_{2}(296 \mathrm{mg}, 0.417 \mathrm{mmol})$, and tripotassium phosphate n hydrate $(1.23 \mathrm{~g}$, ca. 6 mmol$)$ was added $\mathrm{MeCN}(16 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1.6 \mathrm{~mL})$ at room temperature. After stirring for 16 h at $80^{\circ} \mathrm{C}$, to the mixture was added water. The mixture was extracted with EtOAc. The combined organic extract was washed with brine and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (Biotage ${ }^{\circledR}$ ZIP-sphere cartridge 30 g , n-hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=59 / 41$ to $0 / 100$) to give methyl 3-(3-azido-5-(azidomethyl)phenyl)-5-(4-azido-3,5-diisopropylphenyl)benzoate (S16) ($1.50 \mathrm{~g}, 2.95 \mathrm{mmol}, 71 \%$) as a brown oil.

Synthesis of 3-(3-azido-5-(azidomethyl)phenyl)-5-(4-azido-3,5-diisopropylphenyl)benzyl alcohol (S17)

To a solution of methyl 3-(3-azido-5-(azidomethyl)phenyl)-5-(4-azido-3,5diisopropylphenyl)benzoate (S16) ($12.7 \mathrm{mg}, 24.9 \mu \mathrm{~mol}$) dissolved in THF (0.15 mL) was slowly added diisobutylaluminium hydride (1.02 M in n-hexane, $100 \mu \mathrm{~L}, 102 \mu \mathrm{~mol}$) at $-78^{\circ} \mathrm{C}$. After stirring for 3 h at the same temperature, to the mixture was slowly added water. The mixture was extracted with EtOAc. The combined organic extract was washed with brine and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (Biotage ${ }^{\circledR}$ ZIP-sphere cartridge $5 \mathrm{~g}, n$-hexane/EtOAc $=77 / 23$) to give 3-(3-azido-5-(azidomethyl)phenyl)-5-(4-azido-3,5-diisopropylphenyl)benzyl alcohol (S17) ($10.4 \mathrm{mg}, 21.6 \mu \mathrm{~mol}$, 87%) as a brown oil.

To a solution of 3-(3-azido-5-(azidomethyl)phenyl)-5-(4-azido-3,5-diisopropylphenyl)benzyl alcohol (S17) ($278 \mathrm{mg}, 0.576 \mathrm{mmol}$), phthalimide ($128 \mathrm{mg}, 0.867 \mathrm{mmol}$), and dis(2-methoxyethyl) azodicarboxylate (DMEAD) ($206 \mathrm{mg}, 0.877 \mathrm{mmol}$) dissolved in THF $\left(6.0 \mathrm{~mL}\right.$) was added $\mathrm{PPh}_{3}(222$ $\mathrm{mg}, 0.846 \mathrm{mmol}$) at room temperature. After stirring for 1 h at the same temperature, the mixture was concentrated under reduced pressure. The residue was purified by column chromatography (Biotage ${ }^{\circledR}$ ZIP-sphere cartridge $45 \mathrm{~g}, n$-hexane/EtOAc $=87 / 13$ to $66 / 34$) to give N-(3-(3-azido-5-(azidomethyl)phenyl)-5-(4-azido-3,5-diisopropylphenyl)benzyl)phthalimide (S18) ($313 \mathrm{mg}, 0.513$ $\mathrm{mmol}, 89 \%$) as a pale brown solid.

Synthesis of 3-(3-azido-5-(azidomethyl)phenyl)-5-(4-azido-3,5-diisopropylphenyl)benzylamine (S19)

To a solution of N-(3-(3-azido-5-(azidomethyl)phenyl)-5-(4-azido-3,5diisopropylphenyl)benzyl)phthalimide ($\mathbf{S 1 8}$) $(1.00 \mathrm{~g}, 1.64 \mathrm{mmol})$ dissolved in EtOH (38 mL) was added hydrazine monohydrate ($821 \mathrm{mg}, 821 \mathrm{mmol}$) at room temperature. After stirring for 1.5 h at $80^{\circ} \mathrm{C}$, the mixture was concentrated under reduced pressure. After water was added to the residue, the mixture was extracted with EtOAc. The combined organic extract was washed with brine and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (Biotage ${ }^{\circledR}$ ZIP-sphere cartridge $45 \mathrm{~g}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ $=95 / 5$ to $87 / 13$) to give 3-(3-azido-5-(azidomethyl)phenyl)-5-(4-azido-3,5diisopropylphenyl)benzylamine ($\mathbf{S 1 9}$) ($708 \mathrm{mg}, 1.47 \mathrm{mmol}, 90 \%$) as a brown oil.

To a mixture of 3-(3-azido-5-(azidomethyl)phenyl)-5-(4-azido-3,5-diisopropylphenyl)benzyl amine (S19) ($631 \mathrm{mg}, 1.31 \mathrm{mmol}$), 3-azido-1-adamantanecarboxylic acid (S2) ($350 \mathrm{mg}, 1.58 \mathrm{mmol}$), 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide hydrochloride ($304 \mathrm{mg}, 1.58 \mathrm{mmol}$), and 4 (dimethylamino)pyridine ($192 \mathrm{mg}, 1.57 \mathrm{mmol}$) was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13 \mathrm{~mL})$ at room temperature. After stirring for 19 h at the same temperature, the mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (Biotage ${ }^{\circledR}$ ZIP-sphere cartridge 45 g , n hexane/EtOAc $=75 / 25$ to $54 / 46$) to give 3 -azido- N-(3-(3-azido-5-(azidomethyl)phenyl)-5-(4-azido-3,5-diisopropylphenyl)benzyl)-1-adamantinamide (19) ($855 \mathrm{mg}, 1.25 \mathrm{mmol}, 95 \%$) as a pale yellow solid.

Synthesis of mono(triazole) S20

To a mixture of platform $19(68.4 \mathrm{mg}, 0.100 \mathrm{mmol})$, and acetylacetone (5) (11.9 mg, 0.119 mmol$)$ dissolved in DMF (1.0 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(2.8 \mathrm{mg}, 20 \mu \mathrm{~mol})$ at room temperature. After stirring for 17 h at the same temperature, to the mixture was added water. The mixture was extracted with EtOAc. The combined organic extract was washed with brine and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (Biotage ${ }^{\circledR}$ ZIP-sphere cartridge $10 \mathrm{~g}, n$-hexane/EtOAc $=67 / 33$ to $46 / 54$) to give mono(triazole) S20 ($56.2 \mathrm{mg}, 73.4 \mu \mathrm{~mol}, 73 \%$) as an orange solid.

To a solution of mono(triazole) $\mathbf{S 2 0}(51.2 \mathrm{mg}, 66.8 \mu \mathrm{~mol})$ dissolved in toluene (1.0 mL) was added 2-methyl-3-butyn-2-ol (6) (9.1 $\quad \mathrm{mg}, \quad 0.11 \quad \mathrm{mmol})$ and (pentamethylcyclopentadienyl)bis(triphenylphosphine)ruthenium(II) chloride ($2.8 \mathrm{mg}, 3.5 \mu \mathrm{~mol}$) at room temperature. After stirring for 3 h at $80^{\circ} \mathrm{C}$, the mixture was concentrated under reduced pressure. The residue was purified by column chromatography (Biotage ${ }^{\circledR}$ ZIP-sphere cartridge 10 g , $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}=55 / 45$ to $0 / 100$) to give bis(triazole) $\mathbf{S 2 1}(49.3 \mathrm{mg}, 58.0 \mu \mathrm{~mol}, 87 \%)$ as a brown solid.

Synthesis of tris(triazole) S22

To a mixture of bis(triazole) S21 ($41.7 \mathrm{mg}, 49.1 \mu \mathrm{~mol} .1 .19$ equiv), and 5,6 -didehydro- $11,12-$ dihydrodibenzo $[a, e]$ cyclooctene (7) ($8.4 \mathrm{mg}, 41 \mu \mathrm{~mol}$) was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.50 \mathrm{~mL})$, and MeOH $(0.50 \mathrm{~mL})$ at room temperature. After stirring for 2 h at the same temperature, the mixture was concentrated under reduced pressure. The residue was purified by preparative TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ $=29 / 1)$, preparative $\operatorname{TLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=19 / 1\right)$, and then preparative $\mathrm{TLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone $\left.=6 / 4\right)$ to give tris(triazole) $\mathbf{S 2 2}(39.2 \mathrm{mg}, 37.2 \mu \mathrm{~mol}, 90 \%)$ as a colorless solid.

To a mixture of tris(triazole) S22 (14.7 mg, $13.9 \mu \mathrm{~mol})$ and 4-ethynyltoluene (20) ($2.0 \mathrm{mg}, 17$ $\mu \mathrm{mol}$) dissolved in DMF ($60 \mu \mathrm{~L}$) was added tetrakis(acetonitrile)copper(I) tetrafluoroborate (0.23 mg , $0.73 \mu \mathrm{~mol})$ and TBTA $(0.37 \mathrm{mg}, 0.70 \mu \mathrm{~mol})$ dissolved in DMF ($140 \mu \mathrm{~L}$) at the room temperature. After stirring for 24 h at the same temperature, to the mixture was added water. The mixture was extracted with EtOAc. The combined organic extract was washed with brine and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (Biotage ${ }^{\circledR}$ ZIP-sphere cartridge $10 \mathrm{~g}, n$-hexane/EtOAc $=8 / 92$ to $0 / 100$) to give tetrakis(triazole) $\mathbf{2 1}(15.7 \mathrm{mg}, 13.4 \mu \mathrm{~mol}, 96 \%)$ as a colorless solid.

Synthesis of N-(5,11-bis(((1,3-dihydroxypropan-2-yl)oxy)methyl)-1,15-dihydroxy-2,14-bis(hydroxymethyl)-3,6,10,13-tetraoxapentadecan-8-yl)-4-ethynylbenzamide (25)

To a mixture of azide $\mathbf{S 2 3}(67.0 \mathrm{mg}, 73.3 \mu \mathrm{~mol})$ and $5 \mathrm{wt} \% \mathrm{Pd} / \mathrm{C}$ (wetted with ca. 50% water) $(239 \mathrm{mg})$ was added methanol $(6.0 \mathrm{~mL})$ and THF $(3.0 \mathrm{~mL})$ at room temperature. After stirring for 16 h at $50^{\circ} \mathrm{C}$ under a hydrogen atmosphere, the mixture was filtered with celite, and the filtrate was concentrated under reduced pressure. To the residue was added N-succinimidyl 4-ethynylbenzoate (S24) $(20.0 \mathrm{mg}, 82.2 \mu \mathrm{~mol})$, triethylamine ($22.3 \mathrm{mg}, 220 \mu \mathrm{~mol}$), and DMF (3.0 mL) at room temperature. After stirring for 20 h at the same temperature, the mixture was concentrated under reduced pressure. The residue was purified by column chromatography (CHROMATOREX Q-PACK ODS30 SIZE10, water/MeCN = 9/1) to give N-(5,11-bis(((1,3-dihydroxypropan-2-yl)oxy)methyl)-1,15-dihydroxy-2,14-bis(hydroxymethyl)-3,6,10,13-tetraoxapentadecan-8-yl)-4-ethynylbenzamide (25) ($27.1 \mathrm{mg}, 40.8 \mu \mathrm{~mol}, 56 \%$ in 2 steps) as colorless oil.

22

$$
\begin{aligned}
& \mathrm{K}_{2} \mathrm{CO}_{3}(21 \mathrm{~mol} \%) \\
& \mathrm{DMF} \\
& \mathrm{rt}, 16 \mathrm{~h}
\end{aligned}
$$

To a mixture of platform $\mathbf{1 9}(103 \mathrm{mg}, 0.150 \mathrm{mmol})$ and β-ketoamide $22(118 \mathrm{mg}, 0.181 \mathrm{mmol})$ dissolved in DMF (1.0 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(4.3 \mathrm{mg}, 31 \mu \mathrm{~mol})$ at room temperature. After stirring for 16 h at the same temperature, to the mixture was added water. The mixture was extracted with EtOAc. The combined organic extract was washed with brine and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (Biotage ${ }^{\circledR}$ ZIP-sphere cartridge 10 g , $\mathrm{EtOAc} / \mathrm{MeOH}=100 / 0$ to $94 / 6$) to give platform-HTL conjugate $\mathbf{S 2 5}(148 \mathrm{mg}, 0.112 \mathrm{mmol}, 75 \%)$ as a pale brown solid.

To a mixture of platform-HTL conjugate $\mathbf{S 2 5}(51.1 \mathrm{mg}, 38.7 \mu \mathrm{~mol})$, alkyne $23(23.5 \mathrm{mg}, 58.1$ $\mu \mathrm{mol}$), and (pentamethylcyclopentadienyl)bis(triphenylphosphine)ruthenium(II) chloride (1.6 mg , $2.0 \mu \mathrm{~mol}$) was added toluene $(0.50 \mathrm{~mL})$ at room temperature. After stirring for 1.5 h at $80^{\circ} \mathrm{C}$, the mixture was concentrated under reduced pressure. The residue was purified by column chromatography (Biotage ${ }^{\circledR}$ ZIP-sphere cartridge 10 g , $\mathrm{EtOAc} / \mathrm{MeOH}=100 / 0$ to $90 / 10$) to give platform-HTL-BODIPY conjugate $\mathbf{S 2 6}(49.8 \mathrm{mg}, 28.9 \mu \mathrm{~mol}, 75 \%)$ as a red solid.

To a solution of platform-HTL-BODIPY conjugate $\mathbf{S 2 6}(10.9 \mathrm{mg}, 6.32 \mu \mathrm{~mol})$ dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.15 \mathrm{~mL})$ and $\mathrm{MeOH}(0.15 \mathrm{~mL})$ was added cycloalkyne $24(5.16 \mathrm{mg}, 5.60 \mu \mathrm{~mol})$ dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.10 \mathrm{~mL})$ and $\mathrm{MeOH}(0.10 \mathrm{~mL})$ at room temperature. After stirring for 2 h at the same temperature, the mixture was concentrated under reduced pressure. The residue was purified by column chromatography (silica-gel $700 \mathrm{mg}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ acetone $=50 / 50$, then $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=90 / 10$) to give platform-HTL-BODIPY-biotin conjugate $26(11.3 \mathrm{mg}, 4.27 \mu \mathrm{~mol}, 76 \%)$ as a red solid.

To a mixture of platform-HTL-BODIPY-biotin conjugate 26 ($6.80 \mathrm{mg}, 2.57 \mu \mathrm{~mol}$), tetrakis(acetonitrile)copper(I) tetrafluoroborate ($0.21 \mathrm{mg}, 0.67 \mu \mathrm{~mol}$), and TBTA ($0.24 \mathrm{mg}, 0.45$ $\mu \mathrm{mol})$ was added alkyne $25(2.17 \mathrm{mg}, 3.27 \mu \mathrm{~mol})$ and DMF $(0.10 \mathrm{~mL})$ at room temperature. After stirring for 18 h at the same temperature, the mixture was concentrated under reduced pressure. The residue was purified by column chromatography (silica-gel $700 \mathrm{mg}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=100 / 0$ to $0 / 100$) to give platform-HTL-BODIPY-biotin-BGL conjugate $27(5.1 \mathrm{mg}, 1.5 \mu \mathrm{~mol}, 60 \%)$ as a red solid.

To a mixture of platform-HTL-BODIPY-biotin conjugate 26 ($1.65 \mathrm{mg}, 0.624 \mu \mathrm{~mol}$), tetrakis(acetonitrile)copper(I) tetrafluoroborate ($0.23 \mathrm{mg}, 0.73 \mu \mathrm{~mol}$), and TBTA ($0.31 \mathrm{mg}, 0.58$
$\mu \mathrm{mol}$) was added Alexa Fluor ${ }^{\mathrm{TM}} 555$ alkyne triethylammonium salt ($\mathrm{MW}=\sim 750,0.5 \mathrm{mg}$, ca. 0.7 $\mu \mathrm{mol})$ dissolved in DMF $(0.10 \mathrm{~mL})$ at room temperature. After stirring for 18 h at the same temperature, the mixture was concentrated under reduced pressure. The residue was purified by column chromatography (silica-gel $500 \mathrm{mg}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=4 / 1$) and then column chromatography (CHROMATOREX ODS-DM1020T $100-200$ mesh $500 \mathrm{mg}, \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}=1 / 2$ to MeOH) to give platform-HTL-BODIPY-biotin-Alexa555 conjugate 28 (MW $=\sim 3400,1.3 \mathrm{mg}, 0.38$ $\mu \mathrm{mol}, 61 \%$) as a red solid.

Biological Experiments

Production of recombinant GST-HaloTag protein in E. coli
Escherichia coli strain Rosetta (DE3) pLysS cells (Merck Chemicals Ltd., Nottingham, England) were transformed with pGEX6P-1-HaloTag vector, ${ }^{58}$ and cultured in LB media containing $50 \mathrm{mg} \mathrm{L}^{-}$ ${ }^{1}$ Carbenicillin (Nacalai Tesque, Kyoto, Japan) and $34 \mathrm{mg} \mathrm{L}^{-1}$ chloramphenicol (Nacalai Tesque). After induction for 16 h at $30^{\circ} \mathrm{C}$, the cells were collected by centrifugation at $4,500 \mathrm{~g}$ for 20 min , and frozen in liquid N_{2}. After thawing, the cells were suspended in cell lysis buffer containing 20 mM HEPES-KOH (pH 8.0), $200 \mathrm{mM} \mathrm{NaCl}, 2 \mathrm{mM}$ tris(2-carboxyethyl)phosphine hydrochloride (Nacalai Tesque), 10% glycerol (Nacalai Tesque), and 1% Triton X-100, and then lysozyme (TCEP; Nacalai Tesque) was added to the cell lysate, which were incubated on ice for $30 \mathrm{~min} . \mathrm{MgCl}_{2}$ (final concentration at 10 mM) and DNase I (final concentration of approximately $20 \mu \mathrm{~g} \mathrm{~mL}$ into the cell lysate, and incubation was continued for 1 h at $4^{\circ} \mathrm{C}$. Cell debris and larger particles were removed by centrifugation at $8,000 \mathrm{~g}$ for 20 min at $4^{\circ} \mathrm{C}$, and the supernatant was then filtered through a $0.45-\mu \mathrm{m}$ filter. The filtrated supernatants were frozen in liquid N_{2}, and stored at $-80^{\circ} \mathrm{C}$ until use for the following labeling experiments.

Chemical modification of GST-HaloTag

Into five hundred microlitter of the filtrated supernatants in a 1.5 mL -tube, five microlitter of the indicated compounds (10 mM stock in DMSO) were added, and immediately mix by vortex for 10 sec to be the final concentration of $100 \mu \mathrm{M}$. The solvent DMSO was used as a negative control. The mixtures were rotated gently in a dark room at room temperature for 16 h . Twenty-five microlitter of this reacted mixtures was diluted with equal volume of $2 \times$ SDS sample loading buffer (0.12 M Tris$\mathrm{HCl}, \mathrm{pH} 6.8$, containing 3.4% SDS, 10% glycerol, and 20 mM DTT ; Nacalai Tesque), heated at $98^{\circ} \mathrm{C}$ for 10 min .

SDS-polyacrylamide gel electrophoresis (SDS-PAGE)
SDS-PAGE analysis was carried out under reducing conditions using a $5-20 \%$ polyacrylamide gel (ATTO, Tokyo, Japan). The gels were directly visualized by laser-scanning in a fluorescence imaging analyzer Typhoon 9410 (GE Healthcare). The gels were also stained with Coomassie brilliant blue (CBB) rapid stain kit (Nacalai Tesque).

The separated proteins in the gels were electrically transferred onto PVDF membranes in Mini Trans-Blot Cell (Bio-Rad Laboratories, Inc.). The membranes were immersed in Blocking One solution (Nacalai Tesque), and then incubated with horseradish peroxidase-conjugated streptavidin (HRP-streptavidin) (Kirkegaard \& Perry Laboratories, Inc., Meryland, USA) diluted in 1\% Blocking One /Tris-based saline containing 0.1% Tween 20 (TBST) at $4^{\circ} \mathrm{C}$ for 16 h . The membranes were extensively washed with TBST, and then reacted with ImmunoStar Zeta (FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan). Luminescence signals were imaged on Amersham Imager 600 (GE Healthcare).

Chemical modification of the HaloTag protein by 27

Characterization Data of New Compounds

1-(1-Adamantyl)-4-phenyl-1 H -1,2,3-triazole (10a), ${ }^{\text {s9 }} \quad$ 1-(1-adamantyl)-4-(1-hydroxy-1-methylethyl)-1 H -1,2,3-triazole (10b), ${ }^{\text {s10 }}$ and 1-(1-adamantyl)-4-(ethyoxycarbonyl)-1 $\mathrm{H}-1,2,3$ triazole $(\mathbf{1 0 c})^{\text {S11 }}$ were identical in spectra data with those reported in the literature.

1-(1-Adamanty)-4-ethoxy-1 H -1,2,3-triazole (10d)

Colorless solid; Mp 136-138 ${ }^{\circ} \mathrm{C}$; TLC R 0.37 (n-hexane/EtOAc $=4 / 1$); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$) $\delta 1.40(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.75-1.81(\mathrm{~m}, 6 \mathrm{H}), 2.20-2.25(\mathrm{~m}, 9 \mathrm{H}), 4.27(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 7.04(\mathrm{~s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 14.9(1 \mathrm{C}), 29.4$ (3C), 35.9 (3C), 42.7 (3C), 59.6 (1C), 66.0 (1C), 102.5 (1C), 160.3 (1C); IR (KBr, cm ${ }^{-1}$) 1182, 1215, 1369, 1452, 1560, 2914, 3127; HRMS (ESI ${ }^{+}$m/z $270.1576\left([\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{NaO}^{+}\right.$requires 270.1577).

3-Azido- N-(4-azidobenzyl)-1-adamantanamide (13)

Colorless solid; Mp $83-85^{\circ} \mathrm{C}$; TLC $\mathrm{R}_{f} 0.51$ (n-hexane/EtOAc $=1 / 1$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ $1.63-1.67(\mathrm{~m}, 2 \mathrm{H}), 176-1.82(\mathrm{~m}, 8 \mathrm{H}), 1.88-1.92(\mathrm{~m}, 2 \mathrm{H}), 2.29-2.33(\mathrm{~m}, 2 \mathrm{H}), 4.40(\mathrm{~d}, 2 \mathrm{H}, J=6.0$ $\mathrm{Hz}), 5.88(\mathrm{br}, 1 \mathrm{H}), 6.98-7.01(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.27(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 29.5(2 \mathrm{C})$, 34.8 (1C), 38.0 (2C), 40.5 (2C), 42.9 (1C), 43.1 ($1 \mathrm{C}+1 \mathrm{C}$, two signals overlapped), 58.9 (1C), 119.3 (2C), 129.1 (2C), 135.1 (1C), 139.3 (1C), 175.8 (1C); IR (KBr, cm^{-1}) 1287, 1506, 1638, 2089, 2922, 3333; HRMS (ESI ${ }^{+}$) m/z $374.1700\left([\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{7} \mathrm{NaO}^{+}\right.$requires 374.1700).
N-(4-(4-Acetyl-5-methyl-1 H -1,2,3-triazole-1-yl)benzyl)-3-azido-1-adamantanamide (S3)

Colorless oil; TLC $\mathrm{R}_{f} 0.23$ (n-hexane $/ \mathrm{EtOAc}=1 / 1$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.65-1.69(\mathrm{~m}$, 2H), 1.78-1.86 (m, 8H), 1.92-1.96 (m, 2H), 2.32-2.36 (m, 2H), 2.59 (s, 3H), 2.76 (s, 3H), 4.55 (d, $2 \mathrm{H}, J=5.5 \mathrm{~Hz}), 6.03(\mathrm{br}, 1 \mathrm{H}), 7.41-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.48(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$ $\delta 10.2$ (1C), 27.9 (1C), 29.5 (2C), 34.8 (1C), 38.0 (2C), 40.5 (2C), 42.8 (1C), 43.2 (1C+1C, two signals overlapped), 58.9 (1C), 125.5 (2C), 128.7 (2C), 134.5 (1C), 137.4 (1C), 140.8 (1C), 143.7 (1C), 176.1 (1C), 194.4 (1C); IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 1244, 1517, 1643, 1681, 2089, 2920, 3342; HRMS $\left(\mathrm{ESI}^{+}\right) m / z 434.2284\left([\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{7} \mathrm{O}_{2}{ }^{+}\right.$requires 434.2299).
N-(4-(4-Acetyl-5-methyl-1 H -1,2,3-triazole-1-yl)benzyl)-3-(4-phenyl-1H-1,2,3-triazol-1-yl)-1adamantanamide (15a)

Colorless solid; Mp 179-181 ${ }^{\circ} \mathrm{C}$; TLC $\mathrm{R}_{f} 0.66\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=10 / 1\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ $\delta 1.77-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.98-2.02(\mathrm{~m}, 4 \mathrm{H}), 2.27-2.31(\mathrm{~m}, 4 \mathrm{H}), 2.43-2.47(\mathrm{~m}, 4 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.75$ $(\mathrm{s}, 3 \mathrm{H}), 4.55(\mathrm{~d}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 6.36(\mathrm{t}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}), 7.31-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.46(\mathrm{~m}, 6 \mathrm{H})$, $7.78-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 10.1$ (1C), 27.9 (1C), 29.3 (2C), 34.9 (1C), 38.0 (2C), 42.0 (2C), 42.8 (1C), 42.9 (1C), 44.3 (1C), 59.8 (1C), 116.2 (1C), 125.5 (2C), 125.6 (2C), 128.1 (1C), 128.7 (2C), 128.8 (2C), 130.7 (1C), 134.4 (1C), 137.4 (1C), 140.8 (1C), 143.7 (1C), 147.0 (1C), 175.9 (1C), 194.4 (1C); IR ($\mathrm{KBr}^{2} \mathrm{~cm}^{-1}$) 1287, 1422, 1548, 1651, 1674, 2933, 3116, 3252; HRMS (ESI $\left.{ }^{+}\right) m / z 558.2590\left([\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{31} \mathrm{H}_{33} \mathrm{~N}_{7} \mathrm{NaO}_{2}{ }^{+}\right.$requires 558.2588).

3-Azido- N -(4-(4-phenyl-1H-1,2,3-triazole-1-yl)benzyl)-1-adamantanamide (S4)

Colorless solid; Mp 211-214 ${ }^{\circ} \mathrm{C}$; $\operatorname{TLC~R}_{f} 0.51$ (n-hexane/EtOAc $=1 / 1$); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$) $\delta 1.64-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.86(\mathrm{~m}, 8 \mathrm{H}), 1.92-1.96(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.34(\mathrm{~m}, 2 \mathrm{H}), 4.52(\mathrm{~d}, 2 \mathrm{H}, J=5.5$ Hz), 5.99 (br s, 1H), 7.36-7.40 (m, 1H), 7.41-7.49 (m, 4H), 7.72-7.73 (m, 2H), 7.88-7.91 (m, 2H), $8.18(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 29.5(2 \mathrm{C}), 34.8(1 \mathrm{C}), 38.0(2 \mathrm{C}), 40.5(2 \mathrm{C}), 42.8$ (1C), 43.2 ($1 \mathrm{C}+1 \mathrm{C}$, two signals overlapped), 58.9 (1 C), 117.6 (1 C), 120.7 (2C), 125.8 (2C), 128.5 (1 C), 128.8 (2C), 128.9 (2C), 130.1 (1C), 136.2 (1C), 139.4 (1C), 148.3 (1C), 176.1 (1C); IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 1240, 1450, 1523, 1626, 2085, 2916, 3306; HRMS (ESI $) ~ m / z 476.2165\left([M+N a]^{+}, \mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{7} \mathrm{NaO}^{+}\right.$ requires 476.2169).

3-(4-(1-Hydroxy-1-methylethyl)-1H-1,2,3-triazol-1-yl)- N -(4-(4-phenyl-1H-1,2,3-triazole-1-yl)benzyl)-1-adamantanamide (15b)

Colorless solid; Mp 133-136 ${ }^{\circ} \mathrm{C}$; TLC $\mathrm{R}_{f} 0.51\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=10 / 1\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ $\delta 1.62(\mathrm{~s}, 6 \mathrm{H}), 1.76-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.96-2.00(\mathrm{~m}, 4 \mathrm{H}), 2.20-2.24(\mathrm{~m}, 4 \mathrm{H}), 2.35-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.40-$ $2.44(\mathrm{~m}, 2 \mathrm{H}), 4.50(\mathrm{~d}, 2 \mathrm{H}, J=5.0 \mathrm{~Hz}), 6.36(\mathrm{br}, 1 \mathrm{H}), 7.36-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{~s}$, 1H), 7.69-7.73 (m, 2H), 7.88-7.91 (m, 2H), 8.19 (s, 1H), ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 29.2$ (2C), 30.4 (2C), 34.8 (1C), 37.9 (2C), 41.9 (2C), 42.8 (1C), 42.9 (1C), 44.3 (1C), 60.0 (1C), 68.5 (1C),
115.7 (1C), 117.7 (1C), 120.7 (2C), 125.8 (2C), 128.5 (1C), 128.8 (2C), 128.9 (2C), 130.1 (1C), 136.1 (1C), 139.5 (1C), 148.4 (1C), 154.8 (1C), 176.0 (1C); IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 1228, 1521, 1628, 2922, 3142, 3335; HRMS (ESI $\left.{ }^{+}\right) m / z 560.2729\left([M+N a]^{+}, \mathrm{C}_{31} \mathrm{H}_{35} \mathrm{~N}_{7} \mathrm{NaO}_{2}{ }^{+}\right.$requires 560.2744).

Methyl 3-(4-(azidomethyl)phenyl)-5-bromobenzoate (S7)

Colorless solid; Mp 71-72 ${ }^{\circ} \mathrm{C}$; $\mathrm{TLC}_{f} 0.37$ (n-hexane/EtOAc $=9 / 1$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ $3.96(\mathrm{~s}, 3 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 7.41-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.91(\mathrm{dd}, 1 \mathrm{H}, J=1.8,1.8 \mathrm{~Hz}), 8.16$ (dd, $1 \mathrm{H}, J=1.8,1.8 \mathrm{~Hz}$), 8.19 (dd, $1 \mathrm{H}, J=1.8,1.8 \mathrm{~Hz}$), ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 52.5$ (1C), 54.4 (1C), 122.9 (1C), 126.7 (1C), 127.6 (2C), 128.9 (2C), 131.3 (1C), 132.4 (1C), 134.2 (1 C), 135.6 (1C), 138.7 (1C), 142.7 (1C), 165.7 (1C); IR (KBr, cm ${ }^{-1}$) 1250, 1305, 1443, 1560, 1720, 2102, 2951; HRMS (ESI ${ }^{+}$) $m / z 368.0007\left([\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{15} \mathrm{H}_{12}{ }^{79} \mathrm{BrN}_{3} \mathrm{NaO}_{2}{ }^{+}\right.$requires 368.0005).

Methyl 3-(4-azido-3,5-diisopropylphenyl)-5-(4-(azidomethyl)phenyl)benzoate (S9)

Pale yellow oil; $\operatorname{TLC~R}_{f} 0.33$ (n-hexane/EtOAc $=9 / 1$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.34(\mathrm{~d}, 12 \mathrm{H}$, $J=6.9 \mathrm{~Hz}$), 3.41-3.47 (m, 2H), 3.99 (s, 3H), 4.42 (s, 2H), 7.37 (s, 2H), 7.43-7.47 (m, 2H), 7.68-7.71 (m, 2H), 7.91 (dd, $1 \mathrm{H}, J=1.5,1.5 \mathrm{~Hz}$), 8.20 (dd, $1 \mathrm{H}, J=1.5,1.5 \mathrm{~Hz}$), 8.24 (dd, $1 \mathrm{H}, J=1.5,1.5 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 23.6$ (4C), 29.0 (2C), 52.4 (1C), 54.5 (1C), 123.0 (2C), 127.1 (1C), 127.3 (1C), 127.8 (2C), 128.8 (2C), 130.3 (1C), 131.3 (1C), 135.1 (1C), 135.2 (1C), 138.7 (1C), 140.2 (1C), 141.5 (1C), 142.3 (1C), 143.8 (2C), 166.9 (1C); IR (KBr, cm^{-1}) 1242, 1328, 1436, 1597, 1724, 2100, 2962; HRMS (ESI ${ }^{+}$) $m / z 491.2161\left([\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{NaO}_{2}{ }^{+}\right.$requires 491.2166).

3-(4-Azido-3,5-diisopropylphenyl)-5-(4-(azidomethyl)phenyl)benzyl alcohol (S10)

Pale orange oil; $\mathrm{TLC} \mathrm{R}_{f} 0.19$ (n-hexane/EtOAc $=4 / 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.33(\mathrm{~d}, 12 \mathrm{H}$, $J=6.9 \mathrm{~Hz}$), $1.80(\mathrm{t}, 1 \mathrm{H}, J=5.7 \mathrm{~Hz}), 3.39-3.46(\mathrm{~m}, 2 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 4.85(\mathrm{~d}, 2 \mathrm{H}, J=5.7 \mathrm{~Hz}), 7.37$ (s, 2H), 7.41-7.45 (m, 2H), $7.54(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.68(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 126$ $\mathrm{MHz}) \delta 23.6$ (4C), 29.0 (2C), 54.5 (1C), 65.3 (1C), 123.0 (2 C), 124.8 (1 C), 125.0 (1 C), 125.4 (1 C), 127.8 (2C), 128.8 (2C), 134.7 (1C), 134.9 (1C), 139.4 (1C), 141.0 (1C), 141.5 (1C), 142.0 (1C), 142.3 (1C), 143.6 (2C); IR (KBr, cm ${ }^{-1}$) 1259, 1327, 1438, 1597, 2100, 2962, 3327; HRMS (ESI ${ }^{+}$) m / z $463.2211\left([\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{NaO}^{+}\right.$requires 463.2217).
N-(3-(4-Azido-3,5-diisopropylphenyl)-5-(4-(azidomethyl)phenyl)benzyl)phthalimide (S11)

Pale orange oil; $\operatorname{TLC~R~}_{f} 0.40$ (n-hexane/EtOAc $=4 / 1$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.32(\mathrm{~d}, 12 \mathrm{H}$, $J=6.8 \mathrm{~Hz}), 3.37-3.44(\mathrm{~m}, 2 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 4.98(\mathrm{~s}, 2 \mathrm{H}), 7.32(\mathrm{~s}, 2 \mathrm{H}), 7.39-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.65$ $(\mathrm{m}, 5 \mathrm{H}), 7.69-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.84-7.88(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 23.5(4 \mathrm{C}), 29.0(2 \mathrm{C})$, 41.6 (1C), 54.5 (1C), 123.1 (2C), 123.4 (2C), 125.7 (1C), 126.4 (1C), 126.8 (1C), 127.8 (2C), 128.7 (2C), 132.1 (2C), 134.1 (2C), 134.7 (1C), 134.9 (1C), 137.5 (1C), 139.3 (1C), 140.8 (1C), 141.7 (1C), 142.5 (1C), 143.5 (2C), 168.1 (2C); IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 1260, 1340, 1597, 1716, 1770, 2102, 2965; HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z} 592.2425\left([\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{34} \mathrm{H}_{31} \mathrm{~N}_{7} \mathrm{NaO}_{2}{ }^{+}\right.$requires 592.2431).

3-Azido-N-(3-(4-azido-3,5-diisopropylphenyl)-5-(4-(azidomethyl)phenyl)benzyl)-1adamantanamide (16)

Pale brown solid; Mp $150{ }^{\circ} \mathrm{C}$ (decomp.); $\mathrm{TLC} \mathrm{R}_{f} 0.37$ (n-hexane/EtOAc $=7 / 3$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta 1.33(\mathrm{~d}, 12 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.64-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.83(\mathrm{~m}, 4 \mathrm{H}), 1.84-1.88(\mathrm{~m}, 4 \mathrm{H})$, $1.93-1.97(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.34(\mathrm{~m}, 2 \mathrm{H}), 3.39-3.47(\mathrm{~m}, 2 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 4.59(\mathrm{~d}, 2 \mathrm{H}, J=5.6 \mathrm{~Hz})$, $5.97(\mathrm{t}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}), 7.34(\mathrm{~s}, 2 \mathrm{H}), 7.37-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.62-7.66(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 23.6$ (4C), 28.9 (2C), 29.5 (2C), 34.8 (1C), 38.1 (2C), 40.5 (2C), 43.15 (1C), 43.19 (1C), 43.4 (1C), 54.5 (1C), 58.9 (1C), 123.0 (2C), 125.3 (1C), 125.4 (1C), 125.5 (1C), 127.7 (2C), 128.9 (2C), 134.8 (1C), 135.0 (1C), 139.2 (1C), 139.5 (1C), 140.8 (1C), 141.8 (1C), 142.5 (1C), 143.6 (2C), 175.9 (1C); IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 1257, 1327, 1438, 1535, 1637, 2090, 2926, 3327; HRMS $\left(\mathrm{ESI}^{+}\right) m / z 665.3446\left([\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{37} \mathrm{H}_{42} \mathrm{~N}_{10} \mathrm{NaO}^{+}\right.$requires 665.3435).

3-Azido- N-(3-(4-azido-3,5-diisopropylphenyl)-5-(4-((5-phenyl-1H-1,2,3-triazol-1-yl)methyl)phenyl)benzyl)-1-adamantanamide (S12)

Brown solid; $\mathrm{Mp} 96^{\circ} \mathrm{C}$ (decomp.); $\mathrm{TLC} \mathrm{R}_{f} 0.47\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=30 / 1\right) ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$) $\delta 1.32(\mathrm{~d}, 12 \mathrm{H}, J=6.5 \mathrm{~Hz}), 1.62-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.84(\mathrm{~m}, 4 \mathrm{H}), 1.84-1.89(\mathrm{~m}, 4 \mathrm{H}), 1.92-1.97(\mathrm{~m}$, $2 \mathrm{H}), 2.29-2.34(\mathrm{~m}, 2 \mathrm{H}), 3.38-3.45(\mathrm{~m}, 2 \mathrm{H}), 4.57(\mathrm{~d}, 2 \mathrm{H}, J=5.6 \mathrm{~Hz}), 5.60(\mathrm{~s}, 2 \mathrm{H}), 5.98-6.02(\mathrm{br}, 1 \mathrm{H})$, $7.18-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.52-7.56(\mathrm{~m}$, $2 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 23.6(4 \mathrm{C}), 28.9(2 \mathrm{C}), 29.5(2 \mathrm{C}), 34.8$ (1C), 38.1 (2C), 40.5 (2C), 43.1 (1C), 43.2 (1C), 43.4 (1C), 51.5 (1C), 58.9 (1C), 122.9 (2C), 125.2 $(1 \mathrm{C}), 125.4(1 \mathrm{C}), 125.5(1 \mathrm{C}), 126.9(1 \mathrm{C}), 127.7(2 \mathrm{C}), 127.8(2 \mathrm{C}), 128.9$ (2C), 129.0 (2C), 129.6 (1C), 133.3 (1C), 134.9 (1C), 135.0 (1C), 138.2 (1C), 139.2 (1C), 139.5 (1C), 140.7 (1C), 141.6 (1C), 142.5 (1C), 143.6 (2C), 175.9 (1C); IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 1246, 1439, 1517, 1643, 2089, 2926, 3323; HRMS $\left(\mathrm{ESI}^{+}\right) m / z 767.3903\left([\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{45} \mathrm{H}_{48} \mathrm{~N}_{10} \mathrm{NaO}^{+}\right.$requires 767.3905).

3-Azido- N-(3-(4-(8,9-dihydro-1H-dibenzo[3,4:7,8]cycloocta[1,2-d][1,2,3]triazol-1-yl)-3,5-diisopropylphenyl)-5-(4-((5-phenyl-1 H -1,2,3-triazol-1-yl)methyl)phenyl)benzyl)-1adamantanamide (S13)

Colorless solid; Mp 132-134 ${ }^{\circ} \mathrm{C}$; TLC $\mathrm{R}_{f} 0.27\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=30 / 1\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ $\delta 1.08-1.42(\mathrm{br}, 12 \mathrm{H}), 1.62-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.89(\mathrm{~m}, 8 \mathrm{H}), 1.92-1.97(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.34(\mathrm{~m}, 2 \mathrm{H})$, 2.40-2.52 (br, 2H), 3.08-3.28 (br, 2H), 3.32-3.48 (br, 2H), 4.58 (d, 2H, J=5.7 Hz), 5.60 (s, 2H), 6.08 (br t, 1H, $J=5.7 \mathrm{~Hz}$), 6.75 (d, 1H, $J=7.6 \mathrm{~Hz}$), 6.96 (dd, $1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.15-7.29(\mathrm{~m}, 7 \mathrm{H})$, 7.29-7.35 (m, 2H), 7.35-7.50 (m, 7H), 7.52-7.59 (m, 2H), 7.62 (s, 1H), 7.66-7.72 (m, 1H), 7.77 (s, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$) $\delta 22.6$ (2C), 25.4 (2C), 28.9 (2C), 29.5 (2 C), 32.7 (1 C), 34.8 (1 C), 36.8 (1C), 38.1 (2C), 40.5 (2C), 43.1 (1C), 43.2 (1C), 43.3 (1C), 51.5 (1C), 58.9 (1C), 122.9 (2C), 125.3 (1C), 125.7 (1C), 125.8 (1C), 125.9 (1C), 126.0 (1C), 126.1 (1C), 126.9 (1C), 127.7 (2C), 127.8 (2C), 128.1 (2C), 128.8 (1C), 128.9 (2C), 129.1 (2C), 129.55 (1C), 129.58 (1C), 129.6 (2C), 129.9 (1C), 130.9 (1C), 131.6 (1C), 132.6 (1C), 135.0 (1C), 135.1 (1C), 137.5 (2C), 139.7 (1C), 140.6 (1C), 141.5 (1C), 141.7 (1C), 142.0 (1C), 142.9 (2C), 146.2 (1C), 176.0 (1C); IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 1244, 1454, 1504, 1643, 2087, 2926, 3335; HRMS (ESI $) ~ m / z ~ 971.4868\left([M+N a]^{+}, \mathrm{C}_{61} \mathrm{H}_{60} \mathrm{~N}_{10} \mathrm{NaO}^{+}\right.$requires 971.4844).

3-(4-((()(((1R*, $\left.8 S^{*}, 9 R^{*}\right)$-Bicyclo[6.1.0]non-4-yn-9-
yl)methyl)oxycarbonylamino)ethoxy)ethoxy)methyl)-1H-1,2,3-triazol-1-yl)-N-(3-(4-(8,9-dihydro$1 H$-dibenzo[3,4:7,8]cycloocta[1,2- d] [1,2,3]triazol-1-yl)-3,5-diisopropylphenyl)-5-(4-((5-phenyl1 H -1,2,3-triazol-1-yl)methyl)phenyl)benzyl)-1-adamantanamide (18)

Colorless solid; $\mathrm{Mp} 105-106{ }^{\circ} \mathrm{C}$; $\mathrm{TLC} \mathrm{R}_{f} 0.67\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=10 / 1\right)$; HPLC analysis: $\mathrm{R} t=28.4$ \min [column: Shiseido CAPCELL PAK MG II (4.6 mm i.d. $\times 250 \mathrm{~mm}$); mobile phase: $\mathrm{CH}_{3} \mathrm{CN}^{2}: \mathrm{H}_{2} \mathrm{O}$ $=40: 60(0-5 \mathrm{~min})$, linear gradient from 40:60 to 99:1 ($5-25 \mathrm{~min}$), 99:1 ($25-35 \mathrm{~min}$); flow rate: 1.00 $\mathrm{mL} / \mathrm{min}$; detection: UV at 254 nm$]$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1278,1452,1517,1720,2922,3340$; HRMS $\left(\mathrm{ESI}^{+}\right) m / z 1290.6617\left([\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{79} \mathrm{H}_{85} \mathrm{~N}_{11} \mathrm{NaO}_{5}{ }^{+}\right.$requires 1266.6627).

HPLC chart:

(3-Azido-5-(azidomethyl)phenyl)boronic acid (S8)

Pale yellow solid; Mp $114-116{ }^{\circ} \mathrm{C}$; TLC $R_{\mathrm{f}} 0.45$ (n-hexane/EtOAc $=1 / 1$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ MHz , observed as a mixture of the titled compound and its boroxine) $\delta 4.37$ ($\mathrm{s}, 2 \mathrm{H}$ for boroxine), $4.48(\mathrm{~s}, 2 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}$ for boroxine), $7.23(\mathrm{dd}, 1 \mathrm{H}, J=2.0,2.0 \mathrm{~Hz}), 7.37(\mathrm{~s}, 1 \mathrm{H}$ for boroxine), 7.43 (s, 1 H for boroxine), $7.77(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 7.87(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right.$, observed as a mixture of the titled compound and its boroxine) $\delta 54.2,121.2,122.9,123.7,125.6,129.5,131.4$, $132.0,137.5,140.6,140.8 ;$ IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1293,1355,1428,2105,3287 ; \mathrm{HRMS}_{\left(\mathrm{ESI}^{+}\right)} m / z 241.0616$ $\left([\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{7} \mathrm{H}_{7} \mathrm{BN}_{6} \mathrm{NaO}_{2}{ }^{+}\right.$requires 241.0616).

Methyl 3-(3-azido-5-(azidomethyl)phenyl)-5-bromobenzoate (S15)

Brown solid; Mp 93-94 ${ }^{\circ} \mathrm{C}$ (decomp.); TLC $R_{\mathrm{f}} 0.35$ (n-hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=2 / 3$); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500$ $\mathrm{MHz}) \delta 3.97(\mathrm{~s}, 3 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 7.03(\mathrm{dd}, 1 \mathrm{H}, J=1.8,1.8 \mathrm{~Hz}), 7.17(\mathrm{dd}, 1 \mathrm{H}, J=1.8,1.8 \mathrm{~Hz}), 7.28$ (dd, $1 \mathrm{H}, J=1.6,1.6 \mathrm{~Hz}), 7.88(\mathrm{dd}, 1 \mathrm{H}, J=1.8,1.8 \mathrm{~Hz}), 8.15(\mathrm{dd}, 1 \mathrm{H}, J=1.6,1.6 \mathrm{~Hz}), 8.19(\mathrm{dd}, 1 \mathrm{H}$, $J=1.6,1.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 52.6(1 \mathrm{C}), 54.2(1 \mathrm{C}), 117.5(1 \mathrm{C}), 118.1$ (1C), 123.0 (1C), 123.3 (1C), 126.9 (1C), 131.9 (1C), 132.5 (1C), 134.3 (1C), 138.3 (1C), 141.1 (1C), 141.6 (1C), 141.8 (1C), 165.5 (1C); IR (KBr, cm ${ }^{-1}$) 768, 855, 1245, 1284, 1327, 1345, 1431, 1569, 1595, 1726, 2110; HRMS (ESI ${ }^{+}$) $m / z 409.0017\left([M+N a]^{+}, \mathrm{C}_{15} \mathrm{H}_{11}{ }^{79} \mathrm{BrN}_{6} \mathrm{NaO}_{2}{ }^{+}\right.$requires 409.0019).

Methyl 3-(3-azido-5-(azidomethyl)phenyl)-5-(4-azido-3,5-diisopropylphenyl)benzoate (S16)

Pale brown solid; Mp $100-102{ }^{\circ} \mathrm{C}$ (decomp.); TLC $R_{\mathrm{f}} 0.49$ (n-hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=3 / 7$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.34(\mathrm{~d}, 12 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.43(\mathrm{sept}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H})$, 7.04 (dd, $1 \mathrm{H}, J=1.6,1.6 \mathrm{~Hz}), 7.25$ (dd, $1 \mathrm{H}, J=1.8,1.8 \mathrm{~Hz}$), 7.36 (s, 3H), 7.86 (dd, $1 \mathrm{H}, J=1.8,1.8$ $\mathrm{Hz}), 8.20(\mathrm{dd}, 1 \mathrm{H}, J=1.6,1.6 \mathrm{~Hz}), 8.22(\mathrm{dd}, 1 \mathrm{H}, J=1.6,1.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta$ 23.5 (4 C), 29.0 (2 C), 52.4 (1C), 54.3 (1C), 117.8 (2C), 123.1 (2C), 123.5 (1 C), 127.1 (1 C), 127.9 (1C), 130.3 (1C), 131.4 (1C), 135.3 (1C), 138.2 (1C), 138.5 (1C), 140.7 (1C), 141.4 (1C), 142.5 (1C), 142.7 (1C), 143.8 (2C), 166.7 (1C); IR (KBr, cm^{-1}) 1243, 1261, 1288, 1308, 1332, 1438, 2110, 2966; HRMS (ESI ${ }^{+} \mathrm{m} / \mathrm{z} 532.2180\left([\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{9} \mathrm{NaO}_{2}{ }^{+}\right.$requires 532.2180).

3-(3-Azido-5-(azidomethyl)phenyl)-5-(4-azido-3,5-diisopropylphenyl)benzyl alcohol (S17)

Brown oil; TLC $R_{\mathrm{f}} 0.36$ (n-hexane/EtOAc $=7 / 3$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.34(\mathrm{~d}, 12 \mathrm{H}, J=$ $6.8 \mathrm{~Hz}), 1.84(\mathrm{t}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}), 3.43(\mathrm{sept}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 4.86(\mathrm{~d}, 2 \mathrm{H}, J=4.9 \mathrm{~Hz})$, $7.00(\mathrm{dd}, 1 \mathrm{H}, J=1.6,1.6 \mathrm{~Hz}), 7.24(\mathrm{dd}, 1 \mathrm{H}, J=1.8,1.8 \mathrm{~Hz}), 7.34-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.55-7.56(\mathrm{~m}, 2 \mathrm{H})$, $7.61(\mathrm{dd}, 1 \mathrm{H}, J=1.6,1.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 23.6(4 \mathrm{C}), 29.0(2 \mathrm{C}), 54.3$ (1C), 65.2 (1C), 117.5 (1C), 117.7 (1C), 123.0 (2C), 123.6 (1C), 124.7 (1C), 125.4 (1C), 125.5 (1C), 135.0 (1 C), 138.0 (1C), 139.2 (1C), 140.7 (1C), 141.3 (1C), 142.1 (1C), 142.5 (1C), 143.5 (1C), 143.7 (2C); IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 853,1254,1285,1309,1337,1364,1392,1422,1440,1462,1592,2108,2872,2932$, 2966, 3319; HRMS (ESI^{+}) $m / z 504.2221\left([\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{9} \mathrm{NaO}^{+}\right.$requires 504.2231).
N-(3-(3-Azido-5-(azidomethyl)phenyl)-5-(4-azido-3,5-diisopropylphenyl)benzyl)phthalimide (S18)

Pale brown sold; Mp $56-58{ }^{\circ} \mathrm{C}$ (decomp.); TLC $R_{\mathrm{f}} 0.33$ (n-hexane/EtOAc $=4 / 1$); ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $500 \mathrm{MHz}) \delta 1.32(\mathrm{~d}, 12 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.41$ (sept, $2 \mathrm{H}, J=6.8 \mathrm{~Hz}$), $4.42(\mathrm{~s}, 2 \mathrm{H}), 4.98$ (s, 2H), $7.00(\mathrm{dd}$, $1 \mathrm{H}, J=1.8,1.8 \mathrm{~Hz}), 7.19(\mathrm{dd}, 1 \mathrm{H}, J=1.8,1.8 \mathrm{~Hz}), 7.29(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 2 \mathrm{H}), 7.57(\mathrm{dd}, 1 \mathrm{H}, J=$ $1.6,1.6 \mathrm{~Hz}), 7.59(\mathrm{dd}, 1 \mathrm{H}, J=1.6,1.6 \mathrm{~Hz}), 7.62(\mathrm{dd}, 1 \mathrm{H}, J=1.6,1.6 \mathrm{~Hz}), 7.70-7.73(\mathrm{~m}, 2 \mathrm{H})$, $7.84-7.88(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 23.5(4 \mathrm{C}), 29.0(2 \mathrm{C}), 41.6$ (1C), 54.3 (1C), 117.4 (1C), $117.9(1 \mathrm{C}), 123.1(2 \mathrm{C}), 123.4(2 \mathrm{C}), 123.6(1 \mathrm{C}), 125.7(1 \mathrm{C}), 126.5$ (1C), $127.4(1 \mathrm{C}), 132.1$ (2C), 134.1 (2C), 135.0 (1C), 137.6 (1C), 138.0 (1C), 139.1 (1C), 140.9 (1C), 141.2 (1C), 142.7 (1C), 143.3 (1C), $143.6(2 \mathrm{C}), 168.0(2 \mathrm{C})$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 713, 733, 1255, 1285, 1311, 1323, 1342, 1364, 1393, 1428, 1440, 1467, 1592, 1716, 1770, 2109, 2966; HRMS (ESI ${ }^{+}$) m/z 633.2447 ([M+Na] ${ }^{+}$, $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{~N}_{10} \mathrm{NaO}_{2}{ }^{+}$requires 633.2445).

3-(3-Azido-5-(azidomethyl)phenyl)-5-(4-azido-3,5-diisopropylphenyl)benzylamine (S19)

Brown oil; TLC $R_{\mathrm{f}} 0.39\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=9 / 1\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.34(\mathrm{~d}, 12 \mathrm{H}, J=6.8$ Hz), 1.66-1.81 (br, 2H), 3.43 (sept, 2H, $J=6.8 \mathrm{~Hz}$), 4.04 (s, 2H), 4.43 (s, 2H), 7.00 (dd, $1 \mathrm{H}, J=1.6$, $1.6 \mathrm{~Hz}), 7.24(\mathrm{dd}, 1 \mathrm{H}, J=1.8,1.8 \mathrm{~Hz}), 7.34-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.50-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{dd}, 1 \mathrm{H}, J=1.6$,
$1.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 23.6$ (4C), 29.0 (2C), 46.5 (1C), 54.3 (1C), 117.4 (1C), 117.8 (1C), 123.1 (2C), 123.6 (1C), 124.7 (1C), 125.1 (1C), 125.9 (1C), 135.0 (1C), 137.9 (1C), 139.4 (1C), 140.7 (1C), 141.2 (1C), 142.5 (1C), 143.6 (2C), 143.7 (1C), 144.4 (1C); IR (KBr, cm ${ }^{-1}$) 851, 1254, 1284, 1309, 1333, 1364, 1387, 1421, 1440, 1462, 1591, 2109, 2872, 2929, 2965; HRMS (ESI ${ }^{+}$) m / z $481.2571\left([\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{10}{ }^{+}\right.$requires 481.2571$)$.

3-Azido-N-(3-(3-azido-5-(azidomethyl)phenyl)-5-(4-azido-3,5-diisopropylphenyl)benzyl)adamantane-1-carboxamide (19)

Pale yellow solid; Mp $113-115^{\circ} \mathrm{C}$ (decomp.); TLC $R_{\mathrm{f}} 0.32$ (n-hexane/EtOAc $=7 / 3$); HPLC analysis: $\mathrm{R} t=32.4 \mathrm{~min}$ [column: Shiseido CAPCELL PAK MG II (4.6 mm i.d. $\times 250 \mathrm{~mm}$); mobile phase: $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}=40: 60(0-5 \mathrm{~min})$, linear gradient from 40:60 to 99:1 ($5-25 \mathrm{~min}$), 99:1 ($25-35 \mathrm{~min}$); flow rate: $1.00 \mathrm{~mL} / \mathrm{min}$; detection: UV at 254 nm$] ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.33(\mathrm{~d}, 12 \mathrm{H}, J=$ 6.8 Hz), 1.63-1.68 (m, 2H), 1.77-1.89 (m, 8H), 1.93-1.97 (m, 2H), 2.31-2.32 (m, 2H) 3.43 (sept, $2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 4.59(\mathrm{~d}, 2 \mathrm{H}, J=5.5 \mathrm{~Hz}), 6.00(\mathrm{t}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}), 7.00(\mathrm{dd}, 1 \mathrm{H}, J=1.6$, $1.6 \mathrm{~Hz}), 7.20(\mathrm{dd}, 1 \mathrm{H}, J=1.8,1.8 \mathrm{~Hz}), 7.31-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{dd}, 1 \mathrm{H}, J=1.6$, $1.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 23.5(4 \mathrm{C}), 28.9(2 \mathrm{C}), 29.5(2 \mathrm{C}), 34.8(1 \mathrm{C}), 38.1$ (2C), 40.5 (2C), 43.1 (1C), 43.2 (1C), 43.3 (1C), 54.3 (1C), 58.9 (1C), 117.6 (1C), 117.7 (1C), 123.0 (2C), 123.5 (1C), 125.3 (1C), 125.4 (1C), 126.1 (1C), 135.1 (1C), 138.1 (1C), 139.1 (1C), 139.7 (1C), 140.9 (1C), 141.3 (1C), 142.7 (2C), 143.3 (1C), 143.7 (1C), 175.9 (1C); $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 850,1252,1284,1306$, 1338, 1364, 1422, 1441, 1462, 1527, 1593, 1639, 2091, 2109, 2857, 2911, 2928, 2965, 3331; HRMS $\left(\mathrm{ESI}^{+}\right) m / z 706.3450\left([\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{37} \mathrm{H}_{41} \mathrm{~N}_{13} \mathrm{NaO}^{+}\right.$requires 706.3449).
HPLC chart:

N-(3-(3-(4-Acetyl-5-methyl-1H-1,2,3-triazol-1-yl)-3-azido-5-(azidomethyl)phenyl)-5-(4-azido-3,5-diisopropylphenyl)benzyl)adamantane-1-carboxamide (S20)

Orange solid; Mp 74-76 ${ }^{\circ} \mathrm{C}$ (decomp.); TLC $R_{\mathrm{f}} 0.39$ (n-hexane/EtOAc $=1 / 1$); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500$ $\mathrm{MHz}) \delta 1.33(\mathrm{~d}, 12 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.63-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.90(\mathrm{~m}, 8 \mathrm{H}), 1.91-1.97(\mathrm{br}, 2 \mathrm{H})$, $2.29-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H}), 3.37-3.47(\mathrm{~m}, 2 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 4.60(\mathrm{~d}, 2 \mathrm{H}, J=5.8$ $\mathrm{Hz}), 6.03(\mathrm{t}, 1 \mathrm{H}, J=5.8 \mathrm{~Hz}), 7.31(\mathrm{~s}, 2 \mathrm{H}), 7.43(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.44-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{dd}, 1 \mathrm{H}, J=1.5$, 1.5 Hz), $7.65(\mathrm{dd}, 1 \mathrm{H}, J=1.5,1.5 \mathrm{~Hz}), 7.73(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 10.3(1 \mathrm{C})$, 23.6 (4C), 27.9 (1C), 28.9 (2C), 29.5 (2C), 34.8 (1C), 38.1 (2C), 40.5 (2C), 43.17 (1C), 43.21 (1C), 43.24 (1C), $54.0(1 \mathrm{C}), 58.9(1 \mathrm{C}), 123.0(2 \mathrm{C}), 123.5(1 \mathrm{C}), 123.9$ (1C), 125.3 (1C), 125.5 (1C), 126.5 (1C), 128.2 (1C), 135.2 (1C), 136.3 (1C), 137.5 (1C), 138.3 (1C), 138.9 (1C), 140.0 (2C), 142.9 (1C), 143.5 (1C), 143.7 (2C), 143.8 (1C), 176.0 (1C), 194.3 (1C); IR (KBr, cm^{-1}) 706, 737, 853, 870, 953, $976,1016,1074,1246,1265,1281,1337,1362,1385,1429,1445,1483,1524,1555,1595,1647$, 1684, 2091, 2857, 2911, 2928, 2963; HRMS (ESI ${ }^{+}$) m/z $788.3870\left([\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{42} \mathrm{H}_{47} \mathrm{~N}_{13} \mathrm{NaO}_{2}^{+}\right.$ requires 788.3868).

3-Azido- N-(3-(3-(4-acetyl-5-methyl-1H-1,2,3-triazol-1-yl)-5-((5-(2-hydroxypropan-2-yl)-1H-1,2,3-triazol-1-yl)methyl)phenyl)-5-(4-azido-3,5-diisopropylphenyl)benzyl)adamantane-1-carboxamide (S21)

Brown solid; Mp 84-86 ${ }^{\circ} \mathrm{C}$ (decomp.); TLC $R_{\mathrm{f}} 0.35$ (n-hexane/EtOAc $=1 / 4$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta 1.32(\mathrm{~d}, 12 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.61-1.67(\mathrm{~m}, 8 \mathrm{H}), 1.75-1.85(\mathrm{~m}, 8 \mathrm{H}), 1.91-1.95(\mathrm{~m}, 2 \mathrm{H})$, $2.28-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.37-3.47(\mathrm{~m}, 2 \mathrm{H}), 4.53(\mathrm{~d}, 2 \mathrm{H}, J=$ $5.8 \mathrm{~Hz}), 5.96(\mathrm{~s}, 2 \mathrm{H}), 6.21(\mathrm{t}, 1 \mathrm{H}, J=5.8 \mathrm{~Hz}), 7.30(\mathrm{~s}, 2 \mathrm{H}), 7.31(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.41(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.43(\mathrm{~s}$, $1 \mathrm{H}), 7.57(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.59(\mathrm{dd}, 1 \mathrm{H}, J=1.6,1.6 \mathrm{~Hz}), 7.76(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta$ 10.2 (1C), 23.5 (4C), 27.9 (1C), 28.9 (2C), 29.5 (2C), 30.9 (2C), 34.8 (1C), 38.0 (2C), 40.5 (2C), 43.1 $(1 \mathrm{C}), 43.19(1 \mathrm{C}), 43.23(1 \mathrm{C}), 52.1(1 \mathrm{C}), 58.9(1 \mathrm{C}), 67.9(1 \mathrm{C}), 122.9(2 \mathrm{C}), 123.4(1 \mathrm{C}), 123.5(1 \mathrm{C})$, 125.1 (1C), $125.7(1 \mathrm{C}), 126.4(1 \mathrm{C}), 128.4(1 \mathrm{C}), 130.8(1 \mathrm{C}), 135.2(1 \mathrm{C}), 136.0(1 \mathrm{C}), 137.5(1 \mathrm{C}), 138.9$ (1C), $139.0(1 \mathrm{C}), 139.9(1 \mathrm{C}), 140.0(1 \mathrm{C}), 142.8(1 \mathrm{C}), 143.1(1 \mathrm{C}), 143.2(1 \mathrm{C}), 143.6(1 \mathrm{C}), 143,7(2 \mathrm{C})$, 176.2 (1C), $194.2(1 \mathrm{C})$; IR (KBr, cm^{-1}) 696, 706, 741, 854, 872, 955, 984, 1125, 1175, 1244, 1265, 1285, 1364, 1429, 1445, 1483, 1528, 1555, 1595, 1639, 1684, 2089, 2116, 2859, 2911, 2932, 2965, 3354; HRMS (ESI $\left.{ }^{+}\right) m / z 872.4415\left([\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{47} \mathrm{H}_{55} \mathrm{~N}_{13} \mathrm{NaO}_{3}{ }^{+}\right.$requires 872.4443).

3-Azido- N -(3-(3-(4-acetyl-5-methyl-1 H-1,2,3-triazol-1-yl)-5-((5-(2-hydroxypropan-2-yl)-1H-1,2,3-triazol-1-yl)methyl)phenyl)-5-(4-(8,9-dihydro-1- H-dibenzo[3,4:7,8]cycloocta[1,2-d][1,2,3]triazol-1-yl)-3,5-diisopropylphenyl)benzyl)adamantane-1-carboxamide (S22)

Colorless solid; Mp $151{ }^{\circ} \mathrm{C}$ (decomp.); TLC $R_{\mathrm{f}} 0.32$ (n-hexane/EtOAc $=1 / 4$); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3} 500$ $\mathrm{MHz}) \delta 1.10-1.40(\mathrm{br}, 12 \mathrm{H}), 1.61-1.67(\mathrm{~m}, 8 \mathrm{H}), 1.76-1.86(\mathrm{~m}, 8 \mathrm{H}), 1.92-1.96(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.34$ (m, 2H), 2.41-2.49 (br, 2H), 2.57 (s, 3H), 2.72 (s, 3H), 3.09-3.24 (br, 2H), 3.25 (br s, 1H), 3.31-3.46 (br, 2H), $4.55(\mathrm{~d}, 2 \mathrm{H}, J=5.5 \mathrm{~Hz}), 5.96(\mathrm{~s}, 2 \mathrm{H}), 6.31(\mathrm{t}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}), 6.76(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 6.98$ (dd, $1 \mathrm{H}, J=7.5,7.5 \mathrm{~Hz}$), $7.20-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.40(\mathrm{br}, 2 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H})$, 7.46 (br s, 2H), $7.59-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.77(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$ $\delta 10.2(1 \mathrm{C}), 22.6$ (2C), $25.4(2 \mathrm{C}), 27.9(1 \mathrm{C}), 28.9(1 \mathrm{C}), 29.2$ (1C), 29.5 (2C), 30.9 (2C), 32.7 (1C), $34.8(1 \mathrm{C}), 36.8(1 \mathrm{C}), 38.0(2 \mathrm{C}), 40.5(2 \mathrm{C}), 43.0(1 \mathrm{C}), 43.1(1 \mathrm{C}), 43.2(1 \mathrm{C}), 52.1(1 \mathrm{C}), 58.9$ (1C), 67.9 (1C), 122.9 (2C), 123.5 (2C), 125.2 (1C), 125.8 (1C), 126.0 (1C), 126.1 (2C), 126.5 (1C), 128.1 (1C), 128.5 (1C), 128.8 (2C), 129.5 (1C), 129.6 (1C), 129.9 (1C), 130.8 (1C), 130.9 (1C), 131.7 (1C), 132.5 (1C), 135.1 (1 C), $136.0(1 \mathrm{C}), 137.4(1 \mathrm{C}), 137.5(1 \mathrm{C}), 139.0(1 \mathrm{C}), 140.0(1 \mathrm{C}), 140.2$ (1C), $141.4(1 \mathrm{C})$, 142.2 (1C), 142.6 (1C), 143.0 (1C), 143.2 (1C), 143.7 (2C), 146.2 (1C), 176.3 (1C), 194.2 (1C); IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1240,1365,1450,1595,1681,2089,2928$, 3347; HRMS (ESI $) ~ m / z 1076.5381$ $\left([\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{63} \mathrm{H}_{67} \mathrm{~N}_{13} \mathrm{NaO}_{3}{ }^{+}\right.$requires 1076.5382).

3-(4-(4-Metylphenyl)-1H-1,2,3-triazol-1-yl)-N-(3-(3-(4-acetyl-5-methyl-1H-1,2,3-triazol-1-yl)-5-((5-(2-hydroxypropan-2-yl)-1H-1,2,3-triazol-1-yl)methyl)phenyl)-5-(4-(8,9-dihydro-1-H-dibenzo[3,4:7,8]cycloocta[1,2-d][1,2,3]triazol-1-yl)-3,5-diisopropylphenyl)benzyl)adamantane-1carboxamide (21)

Colorless solid; Mp $173{ }^{\circ} \mathrm{C}$ (decomp.); TLC $R_{\mathrm{f}} 0.17$ (n-hexane/EtOAc $=1 / 9$); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3} 500$ $\mathrm{MHz}) \delta 1.10-1.40(\mathrm{br}, 12 \mathrm{H}), 1.62(\mathrm{~s}, 6 \mathrm{H}), 1.72-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.90-2.00(\mathrm{~m}, 4 \mathrm{H}), 2.12-2.24(\mathrm{~m}, 4 \mathrm{H})$, $2.27-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.35-2.40(\mathrm{br}, 2 \mathrm{H}), 2.41-2.49(\mathrm{br}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H})$, $3.09-3.23$ (br, 2H), 3.32-3.46 (br, 2H), 4.10-4.30 (br, 1H), 4.51 (d, 2H, $J=5.3 \mathrm{~Hz}$), 5.94 (s, 2H), $6.74(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 6.77-6.87(\mathrm{br}, 1 \mathrm{H}), 6.96(\mathrm{dd}, 1 \mathrm{H}, J=7.6,7.6 \mathrm{~Hz}), 7.15-7.33(\mathrm{~m}, 8 \mathrm{H})$, $7.34-7.41(\mathrm{br}, 2 \mathrm{H}), 7.44(\mathrm{~s}, 2 \mathrm{H}), 7.52-7.62(\mathrm{~m}, 5 \mathrm{H}), 7.66-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 10.2(1 \mathrm{C}), 21.2(1 \mathrm{C}), 22.6$ (2C), 25.4 (2C), 27.8 (1C), 28.9 (2C), 29.2 (2C), 30.8 (2 C), 32.7 (1 C), 34.8 (1C), 36.8 (1C), 37.9 (2 C), 41.9 (2 C), 42.9 (1C), 43.1 (1C), 44.0 (1C), 52.1 (1C), 59.8 (1C), 67.7 (1C), 115.9 (1C), 122.9 (2C), 123.4 (2C), 125.1 (1C), 125.4 (2C), 125.8 (1C), 126.0 (1C), 126.10 (1C), 126.14 (1C), 126.8 (1C), 127.5 (1C), 128.1 (1C), 128.5 (1C), 128.8 (2C), 129.5 (2C), 129.6 (2C), 129.9 (1C), 130.9 (2C), 131.7 (1C), 132.5 (1C), 135.1 (1C), 135.9 (1C), 137.5 (2C), 138.0 (1C), 138.9 (1C), 140.0 (1C), 140.4 (1C), 141.4 (1C), 142.2 (1C), 142.7 (1C), 142.9 (1C), 143.6 (2C), 143.7 (1C), 146.2 (1C), 146.7 (1C), 176.2 (1C), 194.1 (1C); IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) $1278,1365,1454,1595,1681,2926,3341 ; \mathrm{HRMS}^{\left(\mathrm{ESI}^{+}\right)} \mathrm{m} / \mathrm{z} 1192.6005\left([\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{72} \mathrm{H}_{75} \mathrm{~N}_{13} \mathrm{NaO}_{3}{ }^{+}\right.$ requires 1192.6008).
N-(5,11-Bis(((1,3-dihydroxypropan-2-yl)oxy)methyl)-1,15-dihydroxy-2,14-bis(hydroxymethyl)-3,6,10,13-tetraoxapentadecan-8-yl)-4-ethynylbenzamide (25)

Colorless oil; TLC (reverse phase) $R_{\mathrm{f}} 0.29\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{MeCN}=4 / 1\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right) \delta$ $3.40-3.45(\mathrm{~m}, 4 \mathrm{H}), 3.54-3.59(\mathrm{~m}, 8 \mathrm{H}), 3.61-3.66(\mathrm{~m}, 8 \mathrm{H}), 3.67(\mathrm{~s}, 1 \mathrm{H}), 3.70-3.77(\mathrm{~m}, 10 \mathrm{H})$, 3.82-3.88 (m, 4H), 4.36-4.41 (m, 1H), 7.55-7.56 (m, 2H), 7.84-7.85 (m, 2H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, $126 \mathrm{MHz}) \delta 51.9(1 \mathrm{C}), 62.45-62.50(\mathrm{~m}, 8 \mathrm{C}), 70.0(2 \mathrm{C}), 70.8-70.9(\mathrm{~m}, 4 \mathrm{C}), 80.4$ (2C), 81.1 (1C), $83.1-83.2$ (m, 4C), 83.6 (1C), 127.0 (1C), 128.7 (2C), 133.0 (2C), 135.8 (1C), 169.5 (1C); IR (KBr, cm^{-1}) $1033,1053,1109,1318,1347,1402,1465,1549,1646,2844,2883,2940,3357 ;$ HRMS (ESI $^{+}$)
$m / z 686.2990\left([\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{30} \mathrm{H}_{49} \mathrm{NNaO}_{15}{ }^{+}\right.$requires 686.2994).
Platform-HTL conjugate S25

Pale brown solid; Mp 60-62 ${ }^{\circ} \mathrm{C}$ (decomp.); TLC $R_{\mathrm{f}} 0.45$ (EtOAc/MeOH = 9/1); HPLC analysis: $\mathrm{R} t=$ 30.4 min [column: Shiseido CAPCELL PAK MG II (4.6 mm i.d. $\times 250 \mathrm{~mm}$); mobile phase: $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}=40: 60(0-5 \mathrm{~min})$, linear gradient from 40:60 to 99:1 ($5-25 \mathrm{~min}$), 99:1 ($25-35 \mathrm{~min}$); flow rate: $1.00 \mathrm{~mL} / \mathrm{min}$; detection: UV at 254 nm$] ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.30-1.43(\mathrm{~m}$, $16 \mathrm{H}), 1.54-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.69-1.89(\mathrm{~m}, 10 \mathrm{H}), 1.94(\mathrm{~s}, 2 \mathrm{H}), 2.29(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{~s}$, $3 \mathrm{H}), 3.38-3.49(\mathrm{~m}, 6 \mathrm{H}), 3.58-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.65-3.71(\mathrm{~m}, 18 \mathrm{H}), 3.95(\mathrm{t}, 2 \mathrm{H}, J=5.0 \mathrm{~Hz}), 4.56(\mathrm{~s}$, $2 \mathrm{H}), 4.59-4.62(\mathrm{~m}, 4 \mathrm{H}), 6.39(\mathrm{t}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}), 6.85-6.86(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 2 \mathrm{H}), 7.39(\mathrm{~m}, 1 \mathrm{H}), 7.46$ $(\mathrm{s}, 2 \mathrm{H}), 7.62-7.64(\mathrm{~m}, 3 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.78-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.83-7.85(\mathrm{~m}, 2 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 9.7,23.5,25.3,26.6,28.9,29.4,29.5,32.4,34.8,38.0,38.7,39.7,40.5$, $43.1,43.2,45.0,50.3,53.9,58.9,69.4,69.6,69.7,70.0,70.2,70.4,70.49,70.50,70.6,71.2,121.7$, $122.9,123.3,123.7,125.1,125.4,126.5,127.5,128.1,133.70,133.71,135.1,136.4,136.7,138.2$, 138.6, 138.9, 139.9, 140.2, 142.7, 143.4, 143.7, 146.5; IR (KBr, cm ${ }^{-1}$) 860, 1109, 1255, 1284, 1325, 1339, 1348, 1447, 1456, 1490, 1522, 1586, 1652, 2862, 2912, 2933, 3341; HRMS (ESI ${ }^{+}$m/z $1341.6499\left([\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{68} \mathrm{H}_{87}{ }^{35} \mathrm{ClN}_{18} \mathrm{NaO}_{8}{ }^{+}\right.$requires 1341.6535).
HPLC chart:

Platform-HTL-BODIPY conjugate S26

Red solid; Mp 95-97 ${ }^{\circ} \mathrm{C}$ (decomp.); TLC $R_{\mathrm{f}} 0.51$ ($\mathrm{EtOAc} / \mathrm{MeOH}=9 / 1$); HPLC analysis: $\mathrm{R} t=33.3$ \min [column: Shiseido CAPCELL PAK MG II (4.6 mm i.d. $\times 250 \mathrm{~mm}$); mobile phase: $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ $=40: 60(0-5 \mathrm{~min})$, linear gradient from $40: 60$ to $99: 1(5-25 \mathrm{~min}), 99: 1(25-35 \mathrm{~min})$; flow rate: 1.00 $\mathrm{mL} / \mathrm{min}$; detection: UV at 254 nm$] ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.91(\mathrm{t}, 6 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.16(\mathrm{~s}$, $6 \mathrm{H}), 1.28-1.43(\mathrm{~m}, 16 \mathrm{H}), 1.53-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.69-1.88(\mathrm{~m}, 10 \mathrm{H}), 1.92(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, 2.19-2.25 (m, 4H), 2.27-2.31 (m, 2H), 2.51 (s, 6H), 2.56 (s, 3H), 3.38-3.49 (m, 6H), 3.58-3.60 (m, $2 \mathrm{H}), 3.61-3.71(\mathrm{~m}, 18 \mathrm{H}), 3.92(\mathrm{t}, 2 \mathrm{H}, J=5.0 \mathrm{~Hz}), 4.56-4.60(\mathrm{~m}, 4 \mathrm{H}), 5.81(\mathrm{~s}, 2 \mathrm{H}), 6.33(\mathrm{t}, 1 \mathrm{H}, J=$ $5.8 \mathrm{~Hz}), 6.85(\mathrm{t}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz}), 7.12(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 2 \mathrm{H}), 7.38-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.45(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $7.48-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.81-7.85(\mathrm{~m}, 2 \mathrm{H})$, $7.89(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 9.7,11.8,12.5,14.6,17.0,23.5,25.4,26.6$, $28.9,29.4,29.5,32.5,34.8,38.0,38.7,39.7,40.5,43.1,43.2,45.0,50.4,51.3,58.9,69.4,69.7,69.8$, $70.0,70.2,70.43,70.49,70.5,70.6,71.3,121.8,122.3,122.9,123.9,125.1,125.4,125.5,126.7$, $127.01,127.04,127.5,129.2,129.6,130.4,133.1,133.70,133.71,133.8,135.2,136.6,136.7,137.5$, $137.6,137.7,137.9,138.1,138.7,138.8,139.6,140.3,142.8,143.6,143.7,146.5,154.4,161.0,167.0$, 176.1; IR (KBr, cm^{-1}) 1192, 1321, 1539, 1651, 2089, 2116, 2928; HRMS (ESI ${ }^{+}$m/z 1745.8769 $\left([\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{93} \mathrm{H}_{114}{ }^{11} \mathrm{~B}^{35} \mathrm{ClF}_{2} \mathrm{~N}_{20} \mathrm{NaO}_{8}{ }^{+}\right.$requires 1745.8770).

HPLC chart:

Platform-HTL-BODIPY-biotin conjugate 26

Red solid; TLC $R_{\mathrm{f}} 0.20\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=9 / 1\right)$; HPLC analysis: $\mathrm{R} t=27.1 \mathrm{~min}(51 \%)$ and 27.4 (49\%) [column: Shiseido CAPCELL PAK MG II (4.6 mm i.d. $\times 250 \mathrm{~mm}$); mobile phase: $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}=$ 40:60 ($0-5 \mathrm{~min}$), linear gradient from 40:60 to 99:1 ($5-25 \mathrm{~min}$), 99:1 ($25-35 \mathrm{~min}$); flow rate: 1.00 $\mathrm{mL} / \mathrm{min}$; detection: UV at 254 nm]; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1192,1454,1539,1645,2089,2932$; HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z} 2666.3073\left([\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{142} \mathrm{H}_{174}{ }^{11} \mathrm{~B}^{35} \mathrm{ClF}_{2} \mathrm{~N}_{28} \mathrm{NaO}_{16} \mathrm{~S}^{+}\right.$requires 2666.3025).
HPLC chart:

Platform-HTL-BODIPY-biotin-BGL conjugate 27

Red solid; TLC $R_{\mathrm{f}} 0.27$ (tailing) $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=8 / 2\right)$; HPLC analysis: $\mathrm{R} t=21.2 \mathrm{~min}(51 \%)$ and $21.6 \mathrm{~min}(49 \%)$ [column: Shiseido CAPCELL PAK MG II (4.6 mm i.d. $\times 250 \mathrm{~mm}$); mobile phase: $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}=40: 60(0-5 \mathrm{~min})$, linear gradient from 40:60 to 99:1 ($5-25 \mathrm{~min}$), 99:1 ($25-35 \mathrm{~min}$); flow rate: $1.00 \mathrm{~mL} / \mathrm{min}$; detection: UV at 254 nm]; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1193,1454,1537,1645,2928$, 3337; HRMS (ESI $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z} 3329.6127\left([\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{172} \mathrm{H}_{223}{ }^{11} \mathrm{~B}^{35} \mathrm{ClF}_{2} \mathrm{~N}_{29} \mathrm{NaO}_{31} \mathrm{~S}^{+}\right.$requires 3329.6127).
HPLC chart:

Platform-HTL-BODIPY-biotin-Alexa555 conjugate 28

Red solid; TLC $R_{\mathrm{f}} 0.45\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=7 / 3\right)$; HPLC analysis: $\mathrm{R} t=14.6 \mathrm{~min}$ [column: Shiseido CAPCELL PAK MG II (4.6 mm i.d. $\times 250 \mathrm{~mm}$); mobile phase: $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}=40: 60(0-5 \mathrm{~min})$, linear gradient from 40:60 to 99:1 ($5-10 \mathrm{~min}$), $99: 1(10-25 \mathrm{~min})$; flow rate: $1.00 \mathrm{~mL} / \mathrm{min}$; detection: UV at 550 nm]

HPLC chart:

Absorption and Fluorescent Properties and Spectra

Platform-HTL-BODIPY-biotin conjugate 26

In MeOH
UV/Vis $(4 \mu \mathrm{M}): \lambda_{\text {max }}(\varepsilon)=526(79341) \mathrm{nm}$
FL $(4 \mu \mathrm{M}): \lambda_{\max }=538 \mathrm{~nm}$ (excited at 350 nm)

Platform-HTL-BODIPY-biotin-BGL conjugate 27

In MeOH
UV/Vis $(4 \mu \mathrm{M}): \lambda_{\text {max }}(\varepsilon)=526(42808) \mathrm{nm}$
FL $(0.4 \mu \mathrm{M}): \lambda_{\max }=539 \mathrm{~nm}$ (excited at 350 nm)

Platform-HTL-BODIPY-biotin-Alexa555 conjugate 28

In MeOH
$\mathrm{UV} / \operatorname{Vis}(4 \mu \mathrm{M}): \lambda_{\max }(\varepsilon)=523(165620), 555$ (212082) nm
$\mathrm{FL}(4 \mu \mathrm{M}): \lambda_{\max }=572 \mathrm{~nm}($ excited at 350 nm$)$

Merged absorption spectra of $\mathbf{2 6 - 2 8}(1 \mu \mathrm{M}$ in MeOH$)$ (26: red, 27: blue, 28: green)

Merged fluorescence spectra of 26-28 (1 $\mu \mathrm{M}$ in MeOH) (26: red, 27: blue, 28: green)

References for Supporting Information

S1) G.-J. Boons, J. Guo, X. Ning and M. Wolfert, WO 2009/067663, 2009.
S2) S. Yoshida, T. Kuribara, H. Ito, T. Meguro, Y. Nishiyama, F. Karaki, Y. Hatakeyama, Y. Koike, I. Kii and T. Hosoya, Chem. Commun., 2019, 55, 3556.

S3) S. Yoshida, K. Kanno, I. Kii, Y. Misawa, M. Hagiwara and T. Hosoya, Chem. Commun., 2018, 54, 3705.
S4) J.-P. Berndt, A. Engel, R. Hrdina, S. Dehnen and P. R. Schreiner, Organometallics, 2019, 38, 329.

S5) C. K. L. Gordon, D. Wu, A. Pusuluri, T. A. Feagin, A. T. Csordas, M. S. Eisenstein, C. J. Hawker, J. Niu and H. T. Soh, ACS Chem. Biol., 2019, 14, 2652.
S6) S. Shimizu, T. Hosoya, M. Murohashi and S. Yoshida, WO 2013/118842A1, 2013.
S7) T. R. Chan, R. Hilgraf, K. B. Sharpless and V. V. Fokin, Org. Lett., 2004, 6, 2853.
S8) I. Kii, A. Shiraishi, T. Hiramatsu, T. Matsushita, H. Uekusa, S. Yoshida, M. Yamamoto, A. Kudo, M. Hagiwara and T. Hosoya, Org. Biomol. Chem., 2010, 8, 4051.
S9) K. Kamata, Y. Nakagawa, K. Yamaguchi and N. Mizuno, J. Am. Chem. Soc., 2008, 130, 15304.

S10) H. Hagiwara, H. Sasaki, T. Hoshi and T.Suzuki, Synlett, 2009, 643.
S11) N. Candelon, D. Lastécouères, A. K. Diallo, J. R. Aranzaes, D. Astruca and J.-M. Vincent, Chem. Commun., 2008, 741.

NMR Spectra of New Compounds

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectra of 1-(1-adamantyl)-4-ethoxy-1H-1,2,3triazole (10d) $\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectra of 3-azido- N -(4-azidobenzyl)adamantanamide (13) $\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectra of N -(4-(4-acetyl-5-methyl-1 $\mathrm{H}-1,2,3$-triazole-1-yl)benzyl)-3-azido-1-adamantanamide (S3) (CDCl_{3})

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectra of N -(4-(4-acetyl-5-methyl-1 $\mathrm{H}-1,2,3$-triazole-1-yl)benzyl)-3-(4-phenyl-1 H -1,2,3-triazol-1-yl)-1-adamantanamide (15a) (CDCl_{3})

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectra of 3-azido- N -(4-(4-phenyl-1 $\mathrm{H}-1,2,3$-triazole1 -yl)benzyl)-1-adamantanamide (S4) $\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectra of 3-(4-(1-hydroxy-1-methylethyl)-1H-1,2,3-triazol-1-yl)- N -(4-(4-phenyl-1 H -1,2,3-triazole-1-yl)benzyl)-1-adamantanamide (15b) $\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectra of methyl 3-(4-(azidomethyl)phenyl)-5bromobenzoate (S7) $\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectra of methyl 3-(4-azido-3,5-diisopropylphenyl)-5-(4-(azidomethyl)phenyl)benzoate ($\mathbf{S 9}$) (CDCl_{3})

-

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectra of 3-(4-azido-3,5-diisopropylphenyl)-5-(4(azidomethyl)phenyl)benzyl alcohol ($\mathbf{S 1 0}$) $\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectra of N -(3-(4-azido-3,5-diisopropylphenyl)-5-(4-(azidomethyl)phenyl)benzyl)phthalimide ($\mathbf{S 1 1}$) $\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectra of 3-azido-N-(3-(4-azido-3,5-diisopropylphenyl)-5-(4-(azidomethyl)phenyl)benzyl)-1-adamantanamide (16) (CDCl_{3})

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectra of 3-azido-N-(3-(4-azido-3,5-diisopropylphenyl)-5-(4-((5-phenyl-1 H-1,2,3-triazol-1-yl)methyl)phenyl)benzyl)-1adamantanamide (S12) $\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectra of 3-azido- N -(3-(4-(8,9-dihydro- 1 H -dibenzo[3,4:7,8]cycloocta[1,2- d][1,2,3]triazol-1-yl)-3,5-diisopropylphenyl)-5-(4-((5-phenyl-1 H -1,2,3-triazol-1-yl)methyl)phenyl)benzyl)-1-adamantanamide (S13) $\left(\mathrm{CDCl}_{3}\right)$

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	

${ }^{1} \mathrm{H} \quad \mathrm{NMR} \quad(500 \mathrm{MHz}) \quad$ spectrum of $3-\left(4-\left(\left(\left(()\left(\left(1 R^{*}, 8 S^{*}, 9 R^{*}\right)\right.\right.\right.\right.\right.$-bicyclo[6.1.0]non-4-yn-9-yl)methyl)oxycarbonylamino)ethoxy)ethoxy)methyl)-1H-1,2,3-triazol-1-yl)-N-(3-(4-(8,9-dihydro1 H -dibenzo[3,4:7,8]cycloocta[1,2-d][1,2,3]triazol-1-yl)-3,5-diisopropylphenyl)-5-(4-((5-phenyl$1 H$-1,2,3-triazol-1-yl)methyl)phenyl)benzyl)-1-adamantanamide (18) $\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectra of (3-azido-5-(azidomethyl)phenyl)boronic $\operatorname{acid}(\mathbf{S 8})\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectra of methyl 3-(3-azido-5-(azidomethyl)phenyl)-5-bromobenzoate ($\mathbf{S 1 5) ~ (\mathrm { CDCl } _ { 3 }) ~}$

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectra of methyl 3-(3-azido-5-(azidomethyl)phenyl)-5-(4-azido-3,5-diisopropylphenyl)benzoate (S16) (CDCl_{3})

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectra of 3-(3-azido-5-(azidomethyl)phenyl)-5-(4-azido-3,5-diisopropylphenyl)benzyl alcohol ($\mathbf{S 1 7}$) $\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectra of N -(3-(3-azido-5-(azidomethyl)phenyl)-5-(4-azido-3,5-diisopropylphenyl)benzyl)phthalimide (S18) $\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectra of 3-(3-azido-5-(azidomethyl)phenyl)-5-(4-azido-3,5-diisopropylphenyl)benzylamine ($\mathbf{S 1 9}$) $\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectra of 3-azido-N-(3-(3-azido-5-(azidomethyl)phenyl)-5-(4-azido-3,5-diisopropylphenyl)benzyl)adamantane-1-carboxamide $\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectra of N -(3-(3-(4-acetyl-5-methyl-1H-1,2,3-triazol-1-yl)-3-azido-5-(azidomethyl)phenyl)-5-(4-azido-3,5-diisopropylphenyl)benzyl)adamantane-1-carboxamide (S20) $\left(\mathrm{CDCl}_{3}\right)$

$\begin{array}{lllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100\end{array}$
${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectra of 3-azido-N-(3-(3-(4-acetyl-5-methyl-1 H -1,2,3-triazol-1-yl)-5-((5-(2-hydroxypropan-2-yl)-1 H-1,2,3-triazol-1-yl)methyl)phenyl)-5-(4-azido-3,5-diisopropylphenyl)benzyl)adamantane-1-carboxamide (S21) $\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectra of 3-azido- N -(3-(3-(4-acetyl-5-methyl-1 H -1,2,3-triazol-1-yl)-5-((5-(2-hydroxypropan-2-yl)-1H-1,2,3-triazol-1-yl)methyl)phenyl)-5-(4-(8,9-dihydro-1-H-dibenzo[3,4:7,8]cycloocta[1,2-d][1,2,3]triazol-1-yl)-3,5-diisopropylphenyl)benzyl)adamantane-1-carboxamide (S22) $\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectra of 3-(4-(4-metylphenyl)-1 H -1,2,3-triazol-1-yl)-N-(3-(3-(4-acetyl-5-methyl-1H-1,2,3-triazol-1-yl)-5-((5-(2-hydroxypropan-2-yl)-1H-1,2,3-triazol-1-yl)methyl)phenyl)-5-(4-(8,9-dihydro-1- H-dibenzo[3,4:7,8]cycloocta[1,2-d][1,2,3]triazol-1-yl)-3,5-diisopropylphenyl)benzyl)adamantane-1-carboxamide (21) $\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectra of N -(5,11-bis(((1,3-dihydroxypropan-2-yl)oxy)methyl)-1,15-dihydroxy-2,14-bis(hydroxymethyl)-3,6,10,13-tetraoxapentadecan-8-yl)-4ethynylbenzamide (25) (CD ${ }_{3} \mathrm{OD}$)

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectra of platform-HTL conjugate $\mathbf{S 2 5}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectra of platform-HTL-BODIPY conjugate $\mathbf{S 2 6}$ $\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of platform-HTL-BODIPY-biotin conjugate $26\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of platform-HTL-BODIPY-biotin-BGL conjugate $27\left(\mathrm{CDCl}_{3}\right)$

