Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Synthesis of deuterated γ-linolenic acid and application for biological studies: metabolic tuning and Raman imaging

Kosuke Dodo,^{*abcd} Ayato Sato,^{ab} Yuki Tamura,^{ab} Syusuke Egoshi,^{ac} Koichi Fujiwara,^{ac} Kana Oonuma,^d Shuhei Nakao,^{ac} Naoki Terayama,^{acd} and Mikiko Sodeoka,^{*abcd}

*To whom correspondence should be addressed. E-mail: dodo@riken.jp and sodeoka@riken.jp

^aSynthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan

^bSodeoka Live Cell Chemistry Project, ERATO, JST, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan ^cAMED-CREST, Japan Agency for Medical Research and Development, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan

^dRIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan

Contents

Chemistry	
General	S2
Synthesis of deuterated GLA derivatives	S2
Biology	
Cell culture	S14
AlamarBlue assay	S14
Enzymatic oxidation of GLA and deuterated GLA (Fig. S1)	S14
Raman imaging	
Raman spectra of GLA and deuterated GLA (Fig. S2)	S16
Raman imaging of VA-13/WI-38 cells (Fig. S3-S6)	S16
References	S19
NMR spectra	S20

Chemistry

General

¹H, ²H and ¹³C NMR spectra were recorded on a JNM-ECA500 spectrometer. IR spectra were measured on Thermo Nicolet AVATAR 370 FT-IR. ESI-HRMS was taken on a Bruker Daltonics micrOTOF-QII-_{RSL}. Column chromatography was performed with silica gel 60 (40-100 μ m) purchased from Kanto Chemical Co.. Gel permeation chromatography (GPC) was performed using LC-Forte/R (YMC Co., Ltd.).

Synthesis of deuterated GLA derivatives

Compound 2

To a stirred solution of trimethylsilylacetylene 1 (1.0 mL, 7.23 mmol) in dry THF (36 mL) was added *n*BuLi (4.7 mL, 7.23 mmol, 1.55 M in hexane) at -40 °C. The mixture was stirred at the same temperature for 30 min, and then $(CD_2O)_n$ (232 mg, 7.23 mmol) was added at the same temperature. Stirring was continued at 0 °C for 26 h, and then saturated aqueous NH₄Cl solution was added to quench the reaction. The resulting mixture was extracted with Et₂O twice. The combined organic phases were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo to yield an alcohol, which was used for the next reaction without further purification.

To a stirred solution of the above alcohol in dry DCM (36 mL) were added *p*-TsOH-H₂O (138 mg, 0.723 mmol) and DHP (788 μ L, 8.67 mmol) successively at room temperature. The mixture was stirred at the same temperature for 2 h, then further DHP (788 μ L, 8.67 mmol) was added, and stirring was continued at the same temperature for 30 min. Saturated aqueous NaHCO₃ solution was added to quench the reaction, and the resulting mixture was extracted with DCM twice. The combined organic phases were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo to give the THP ether, which was used for the next reaction without further purification.

To a stirred solution of the above THP ether in dry THF (36 mL) was added TBAF (8.7 mL, 8.7 mmol, 1.0 M in THF) at 0 °C. The resulting mixture was stirred at the same temperature for 30 min, and then water was added. The resulting mixture was extracted with Et₂O twice. The combined organic phases were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by column chromatography (EtOAc:hexane = 1:9) and then further purified by GPC (CHCl₃, 10 mL/min) to afford the desired alkyne **2** (511 mg, 3.59 mmol, 50% in 3 steps) as a colorless oil.

¹H-NMR (500 MHz, CDCl₃): δ 4.81 (t, J = 3.5 Hz, 1H), 3.80-3.85 (m, 1H), 3.50-3.55 (m, 1H), 2.39 (s, 1H), 1.78-1.85 (m, 1H), 1.70-1.76 (m, 1H), 1.49-1.65 (m, 4H). ²H-NMR (77 MHz, CHCl₃): δ 4.22 (d, J = 3.5 Hz, 2H). ¹³C-NMR (126 MHz, CDCl₃): δ 96.8, 79.8, 74.1, 62.1, 53.5 (quintet, J = 22.8 Hz), 30.3, 25.4, 19.1. IR (neat, cm⁻¹): 3297, 2945, 2872, 1450, 1388, 1202, 1119, 1023, 895. HRMS (ESI):

Calculated for C₈H₁₀D₂NaO₂ [M+Na]⁺, 165.0855: found, 165.0841.

Compound 4a

To a stirred solution of 1-heptyne **3** (0.68 mL, 5.2 mmol) in dry THF (26 mL) was added *n*BuLi (3.7 mL, 5.7 mmol, 1.55 M in hexane) at -20 °C. The mixture was stirred at the same temperature for 1 h, and then $(CH_2O)_n$ (172 mg, 5.7 mmol) was added at the same temperature. Stirring was continued at room temperature for 15.5 h, and then saturated aqueous NH₄Cl solution was added to quench the reaction. The resulting mixture was extracted with EtOAc twice. The combined organic phases were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by short-path column chromatography (EtOAc:hexane = 1:1) to yield an alcohol, which was used for the next reaction without further purification.

To a stirred solution of the above alcohol in H₂O (3.8 mL) were added 1-hexadecylimidazole¹ (152 mg, 0.52 mmol), K₂CO₃ (0.86 g, 6.24 mmol), and TsCl (1.49 g, 7.8 mmol) successively at room temperature. The resulting mixture was stirred at the same temperature for 26.5 h, and extracted with EtOAc twice. The combined organic phases were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by column chromatography (EtOAc:hexane = 1:9) and then further purified by GPC (CHCl₃, 10 mL/min) to afford **4a** (625 mg, 2.23 mmol, 43% in 2 steps) as a colorless oil. The analytical data were in good agreement with reported data.²

Compound 5a

To a stirred solution of tosylate **4a** (300 mg, 1.07 mmol) and alkyne **2** (152 mg, 1.07 mmol) in dry DMF (5.4 mL) were added K_2CO_3 (222 mg, 1.61 mmol), NaI (321 mg, 2.14 mmol), and CuI (224 mg, 1.18 mmol) successively at 0 °C. The mixture was stirred at room temperature for 15 h, then EtOAc was added, and the resulting mixture was filtered through a pad of Celite. The filtrate was washed with brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by short-path column chromatography (EtOAc:hexane = 1:4) to afford a diyne, which was used for the next reaction without further purification.

To a stirred solution of the above diyne in MeOH (5.4 mL) was added p-TsOH·H₂O (20 mg, 0.105 mmol) at room temperature. The mixture was stirred at the same temperature for 1 h, and then saturated aqueous NaHCO₃ solution was added to quench the reaction. The resulting mixture was extracted with EtOAc twice. The combined organic phases were washed with brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo* to yield an alcohol, which was used for the next reaction without further purification.

To a stirred solution of the above alcohol in H₂O (0.77 mL) were added 1-hexadecylimidazole¹ (31

mg, 0.107 mmol), K_2CO_3 (177 mg, 1.28 mmol), and TsCl (306 mg, 1.61 mmol) successively at room temperature. The mixture was stirred at the same temperature for 21 h, and then extracted with EtOAc twice. The combined organic phases were washed with brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (EtOAc:hexane = 1:9 to 1:4) and then further purified by GPC (CHCl₃, 10 mL/min) to afford **5a** (195.2 mg, 0.609 mmol, 57% in 3 steps) as a colorless oil.

¹H-NMR (500 MHz, CDCl₃): δ 7.82 (d, *J* = 8.0 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 3.04 (t, *J* = 2.4 Hz, 2H), 2.45 (s, 3H), 2.13 (tt, *J* = 7.3, 2.4 Hz, 2H), 1.45-1.51 (m, 2H), 1.27-1.36 (m, 4H), 0.89 (t, *J* = 7.2 Hz, 3H). ²H-NMR (77 MHz, CHCl₃): δ 4.66 (brs, 2H). ¹³C-NMR (126 MHz, CDCl₃): δ 145.0, 133.1, 129.8, 128.1, 84.6, 81.4, 72.2, 71.8, 57.8 (quint, *J* = 24.0 Hz), 31.0, 28.3, 22.2, 21.6, 18.6, 13.9, 9.8. IR (neat, cm⁻¹): 2956, 2928, 2859, 1600, 1365, 1175, 1099, 953, 805, 735, 656. HRMS (ESI): Calculated for C₁₈H₂₀D₂NaO₃S [M+Na]⁺, 343.1307: found, 343.1322.

Compound 6a

To a stirred solution of tosylate **5a** (188.2 mg, 0.587 mmol) and methyl 6-heptynoate (91 mg, 0.646 mmol) in dry DMF (5.9 mL) were added K₂CO₃ (122 mg, 0.881 mmol), NaI (176 mg, 1.17 mmol), and CuI (123 mg, 0.646 mmol) successively at 0 °C. The mixture was stirred at room temperature for 21 h, then EtOAc was added, and the resulting mixture was filtered through a pad of Celite. The filtrate was washed with brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by short-path column chromatography (EtOAc:hexane = 1:9) to yield a triyne, which was used for the next reaction without further purification.

To a stirred solution of Ni(OAc)₂ (104 mg, 0.587 mmol) in dry MeOH (3.0 mL) under an H₂ atmosphere were added NaBH₄ (22 mg, 0.587 mmol) and ethylenediamine (0.16 ml, 2.35 mmol) at 0 °C. The mixture was stirred at the same temperature for 10 min, and then to it was added the above triyne in dry MeOH (2.9 mL). Stirring was continued at room temperature for 20 h, Et₂O was added, and the resulting mixture was filtered through a pad of Celite. The filtrate was concentrated *in vacuo*. The residue was purified by column chromatography (EtOAc:hexane = 1:9) and then further purified by GPC (CHCl₃, 10 mL/min) to afford **6a** (96.8 mg, 0.329 mmol, 56% in 2 steps) as a colorless oil.

¹H-NMR (500 MHz, CDCl₃): δ 5.30-5.42 (m, 6H), 3.67 (s, 3H), 2.80 (t, *J* = 6.6 Hz, 2H), 2.32 (t, *J* = 7.4 Hz, 2H), 2.03-2.10 (m, 4H), 1.62-1.68 (m, 2H), 1.26-1.42 (m, 8H), 0.89 (t, *J* = 6.9 Hz, 3H). ²H-NMR (77 MHz, CHCl₃): δ 2.78 (brs, 2H). ¹³C-NMR (126 MHz, CDCl₃): δ 174.2, 130.5, 129.7, 128.5, 128.2, 128.1, 127.7, 51.6, 34.1, 31.6, 29.4, 29.2, 27.3, 27.0, 25.7, 25.1 (quint, *J* = 19.2 Hz), 24.7, 22.7, 14.2. IR (neat, cm⁻¹): 3007, 2925, 2852, 1742, 1437, 1192, 711. HRMS (ESI): Calculated for C₁₉H₃₀D₂NaO₂ [M+Na]⁺, 317.2420: found, 317.2433.

To a stirred solution of **6a** (60 mg, 0.204 mmol) in dry THF (2.0 mL) was added 1.0 M aqueous LiOH·H₂O solution (2.0 mL, 2.0 mmol) at room temperature. The mixture was stirred at the same temperature for 7 h, and then the pH was adjusted to \sim 3 by adding 1.0 M aqueous HCl solution at room temperature. The resulting mixture was extracted with EtOAc twice. The combined organic phases were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by column chromatography (EtOAc:hexane = 1:4) to afford the desired compound **7a** (56.5 mg, 0.201 mmol, 99%) as a colorless oil.

¹H-NMR (500 MHz, CDCl₃): δ 5.31-5.43 (m, 6H), 2.80 (t, *J* = 6.6 Hz, 2H), 2.37 (t, *J* = 7.4 Hz, 2H), 2.03-2.12 (m, 4H), 1.63-1.69 (m, 2H), 1.25-1.46 (m, 8H), 0.89 (t, *J* = 6.9 Hz, 3H). ²H-NMR (77 MHz, CHCl₃): δ 2.78 (brs, 2H). ¹³C-NMR (126 MHz, CDCl₃): δ 180.3, 130.6, 129.7, 128.6, 128.4, 128.1, 127.7, 34.1, 31.7, 29.5, 29.1, 27.4, 27.0, 25.8, 25.1 (quint, *J* = 19.2 Hz), 24.4, 22.7, 14.2. IR (neat, cm⁻¹): 3007, 2925, 2859, 1711, 1410, 1285, 936, 711. HRMS (ESI): Calculated for C₁₈H₂₈D₂NaO₂ [M+Na]⁺, 303.2264: found, 303.2236.

Compound 4b

To a stirred solution of 1-heptyne **3** (1.3 mL, 10.0 mmol) in dry THF (50 mL) was added *n*BuLi (7.1 mL, 11.0 mmol, 1.55 M in hexane) at -20 °C. The mixture was stirred at the same temperature for 1 h, then $(CD_2O)_n$ (352 mg, 11.0 mmol) was added at the same temperature. Stirring was continued at room temperature for 18 h, and then saturated aqueous NH₄Cl solution was added to quench the reaction. The resulting mixture was extracted with EtOAc twice. The combined organic phases were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by short-path column chromatography (EtOAc:hexane = 1:1) to yield an alcohol, which was used for the next reaction without further purification.

To a stirred solution of the above alcohol in H₂O (7.2 mL) were added 1-hexadecylimidazole¹ (293 mg, 1.0 mmol), K₂CO₃ (1.7 g, 12 mmol), and TsCl (2.9 g, 15 mmol) successively at room temperature. The mixture was stirred at the same temperature for 30 h, and then extracted with EtOAc twice. The combined organic phases were washed with brine, dried over MgSO₄, filtered, and concentrated in vacuo. The residue was purified by column chromatography (EtOAc:hexane = 1:9) and then further purified by GPC (CHCl₃, 10 mL/min) to afford **4b** (1.62 g, 5.74 mmol, 57% in 2 steps) as a colorless oil.

¹H-NMR (500 MHz, CDCl3): δ 7.82 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 2.45 (s, 3H), 2.06 (t, J = 6.9 Hz, 2H), 1.35-1.41 (m, 2H), 1.24-1.28 (m, 4H), 0.88 (t, J = 6.9 Hz, 3H). ²H-NMR (77 MHz, CHCl3): δ 4.68 (brs, 2H). ¹³C-NMR (126 MHz, CDCl3): δ 144.9, 133.5, 129.8, 128.1, 90.6,

71.8, 58.4 (quint, J = 24.0 Hz), 31.0, 27.8, 22.2, 21.7, 18.6, 14.0. IR (neat, cm⁻¹): 2959, 2927, 2862, 2250, 1742, 1597, 1365, 1178, 950, 808, 729, 652. HRMS (ESI): Calculated for $C_{15}H_{18}D_2NaO_3S$ [M+Na]⁺, 305.1156: found, 305.1158.

Compound 5b

To a stirred solution of tosylate **4b** (300 mg, 1.06 mmol) and propargyl alcohol (63 μ L, 1.06 mmol) in dry DMF (5.3 mL) were added K₂CO₃ (220 mg, 1.59 mmol), NaI (318 mg, 2.12 mmol), and CuI (223 mg, 1.17 mmol) successively at 0 °C. The mixture was stirred at room temperature for 20 h, EtOAc was added, and the resulting mixture was filtered through a pad of Celite. The filtrate was washed with brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo* to yield a crude product, which was used for the next reaction without further purification.

To a stirred solution of the above alcohol in H_2O (0.76 mL) were added 1-hexadecylimidazole¹ (31 mg, 0.106 mmol), K_2CO_3 (176 mg, 1.27 mmol), and TsCl (303 mg, 1.59 mmol) successively at room temperature. The mixture was stirred at the same temperature for 21 h, and then extracted with EtOAc twice. The combined organic phases were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by column chromatography (EtOAc:hexane = 1:9 to 1:4) and then further purified by GPC (CHCl₃, 10 mL/min) to afford the desired compound **5b** (288.9 mg, 0.902 mmol, 85% in 2 steps) as a colorless oil.

¹H-NMR (500 MHz, CDCl₃): δ 7.81 (d, *J* = 8.0 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 4.69 (s, 2H), 2.45 (s, 3H), 2.13 (t, *J* = 7.2 Hz, 2H), 1.45-1.50 (m, 2H), 1.28-1.36 (m, 4H), 0.89 (t, *J* = 7.2 Hz, 3H). ²H-NMR (77 MHz, CHCl₃): δ 3.00 (brs, 2H). ¹³C-NMR (126 MHz, CDCl₃): δ 145.0, 133.1, 129.8, 128.1, 84.6, 81.4, 72.2, 71.9, 58.2, 31.0, 28.3, 22.1, 21.6, 18.5, 13.9, 9.4 (quint, *J* = 20.4 Hz). IR (neat, cm⁻¹): 2959, 2921, 2859, 1745, 1600, 1364, 1192, 1171, 939, 815, 753, 659. HRMS (ESI): Calculated for C₁₈H₂₀D₂NaO₃S [M+Na]⁺, 343.1307: found, 343.1322.

Compound 6b

To a stirred solution of tosylate **5b** (245.8 mg, 0.767 mmol) and methyl 6-heptynoate (118 mg, 0.844 mmol) in dry DMF (7.7 mL) were added K_2CO_3 (159 mg, 1.15 mmol), NaI (230 mg, 1.53 mmol), and CuI (161 mg, 0.844 mmol) successively at 0 °C. The mixture was stirred at room temperature for 19 h, then EtOAc was added, and the resulting mixture was filtered through a pad of Celite. The filtrate was washed with brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by short-path column chromatography (EtOAc:hexane = 1:9) to yield a triyne, which was used for the next reaction without further purification.

To a stirred solution of Ni(OAc)₂ (136 mg, 0.767 mmol) in dry MeOH (3.7 mL) under an H₂ atmosphere were added NaBH₄ (29 mg, 0.767 mmol) and ethylenediamine (0.21 ml, 3.07 mmol) at 0 °C. The mixture was stirred at the same temperature for 10 min. To the mixture was added the above triyne in dry MeOH (4.0 mL). Stirring was continued at room temperature for 24 h, then Et₂O was added, and the resulting mixture was filtered through a pad of Celite. The filtrate was concentrated *in vacuo*. The residue was purified by column chromatography (EtOAc:hexane = 1:9) and then further purified by GPC (CHCl₃, 10 mL/min) to afford **6b** (150.3 mg, 0.51 mmol, 67% in 2 steps) as a colorless oil.

¹H-NMR (500 MHz, CDCl₃): δ 5.31-5.42 (m, 6H), 3.67 (s, 3H), 2.80 (t, J = 5.4 Hz, 2H), 2.32 (t, J = 7.7 Hz, 2H), 2.03-2.10 (m, 4H), 1.62-1.68 (m, 2H), 1.27-1.41 (m, 8H), 0.89 (t, J = 7.2 Hz, 3H). ²H-NMR (77 MHz, CHCl₃): δ 2.78 (brs, 2H). ¹³C-NMR (126 MHz, CDCl₃): δ 174.1, 130.5, 129.6, 128.3, 128.3, 128.1, 127.5, 51.5, 34.0, 31.6, 29.4, 29.2, 27.3, 26.9, 25.7, 25.1 (quint, J = 19.2 Hz), 24.6, 22.7, 14.1. IR (neat, cm⁻¹): 3004, 2921, 2848, 1738, 1431, 1164. HRMS (ESI): Calculated for C₁₉H₃₀D₂NaO₂ [M+Na]⁺, 317.2420: found, 317.2443.

11,11-D₂-GLA (7b)

To a stirred solution of **6b** (58.8 mg, 0.20 mmol) in dry THF (2.0 mL) was added 1.0 M aqueous LiOH·H₂O solution (2.0 mL, 2.0 mmol) at room temperature. The mixture was stirred at the same temperature for 8 h, and then the pH was adjusted to ~3 with 1.0 M aqueous HCl solution at room temperature. The resulting mixture was extracted with EtOAc twice. The combined organic phases were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by column chromatography (EtOAc:hexane = 1:4) to afford **7b** (50.7 mg, 0.181 mmol, 90%) as a colorless oil.

¹H-NMR (500 MHz, CDCl₃): δ 5.31-5.42 (m, 6H), 2.80 (t, *J* = 5.4 Hz, 2H), 2.36 (t, *J* = 7.4 Hz, 2H), 2.03-2.11 (m, 4H), 1.63-1.69 (m, 2H), 1.25-1.44 (m, 8H), 0.89 (t, *J* = 6.9 Hz, 3H). ²H-NMR (77 MHz, CHCl₃): δ 2.79 (brs, 2H). ¹³C-NMR (126 MHz, CDCl₃): δ 180.5, 130.6, 129.6, 128.5 (two peaks), 128.2, 127.6, 34.1, 31.7, 29.5, 29.1, 27.4, 27.0, 25.8, 25.1 (quint, J = 19.2 Hz), 24.4, 22.7, 14.2. IR (neat, cm⁻¹): 3004, 2925, 2852, 1711, 1413, 1271, 919. HRMS (ESI): Calculated for C₁₈H₂₈D₂NaO₂ [M+Na]⁺, 303.2264: found, 303.2264.

Compound 5c

To a stirred solution of tosylate 4b (300 mg, 1.06 mmol) and alkyne 2 (151 mg, 1.06 mmol) in dry

DMF (5.3 mL) were added K_2CO_3 (220 mg, 1.59 mmol), NaI (318 mg, 2.12 mmol), and CuI (223 mg, 1.17 mmol) successively at 0 °C. The mixture was stirred at room temperature for 30 h, then EtOAc was added, and the resulting mixture was filtered through a pad of Celite. The filtrate was washed with brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by shortpath column chromatography (EtOAc:hexane = 1:4) to yield a diyne, which was used for the next reaction without further purification.

To a stirred solution of the above diyne in MeOH (5.3 mL) was added p-TsOH·H₂O (20 mg, 0.105 mmol) at room temperature. The mixture was stirred at the same temperature for 5 h, and then saturated aqueous NaHCO₃ solution was added to quench the reaction. The resulting mixture was extracted with EtOAc twice. The combined organic phases were washed with brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo* to yield an alcohol, which was used for the next reaction without further purification.

To a stirred solution of the above alcohol in H₂O (0.76 mL) were added 1-hexadecylimidazole¹ (31 mg, 0.106 mmol), K₂CO₃ (176 mg, 1.27 mmol), and TsCl (303 mg, 1.59 mmol) successively at room temperature. The mixture was stirred at the same temperature for 19 h, and then extracted with EtOAc twice. The combined organic phases were washed with brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (EtOAc:hexane = 1:9 to 1:4) and then further purified by GPC (CHCl₃, 10 mL/min) to afford **5c** (198.7 mg, 0.616 mmol, 58% in 3 steps) as a colorless oil.

¹H-NMR (500 MHz, CDCl₃): δ 7.80 (d, *J* = 8.0 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 2.44 (s, 3H), 2.12 (t, *J* = 7.2 Hz, 2H), 1.44-1.50 (m, 2H), 1.27-1.35 (m, 4H), 0.88 (t, *J* = 6.9 Hz, 3H). ²H-NMR (77 MHz, CHCl₃): δ 4.66 (brs, 2H), 3.01 (brs, 2H). ¹³C-NMR (126 MHz, CDCl₃): δ 145.0, 133.1, 129.7, 128.1, 84.6, 81.4, 72.2, 71.8, 57.7 (quint, *J* = 24.0 Hz), 31.0, 28.3, 22.1, 21.6, 18.5, 13.9, 9.3 (quint, *J* = 20.4 Hz). IR (neat, cm⁻¹): 2959, 2925, 2862, 2264, 1749, 1597, 1372, 1182, 943, 815, 725, 656. HRMS (ESI): Calculated for C₁₈H₁₈D₄NaO₃S [M+Na]⁺, 345.1433: found, 345.1460.

Compound 6c

To a stirred solution of tosylate **5c** (179.4 mg, 0.556 mmol) and methyl 6-heptynoate (86 mg, 0.612 mmol) in dry DMF (5.6 mL) were added K_2CO_3 (115 mg, 0.834 mmol), NaI (167 mg, 1.11 mmol), and CuI (117 mg, 0.612 mmol) successively at 0 °C. The mixture was stirred at room temperature for 17 h, and then EtOAc was added. The resulting mixture was filtered through a pad of Celite. The filtrate was washed with brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by short-path column chromatography (EtOAc:hexane = 1:9) to yield a triyne, which was used for the next reaction without further purification.

To a stirred solution of $Ni(OAc)_2$ (98 mg, 0.556 mmol) in dry MeOH (2.6 mL) under an H₂ atmosphere were added NaBH₄ (21 mg, 0.556 mmol) and ethylenediamine (0.15 ml, 2.22 mmol) at

0 °C. The mixture was stirred at the same temperature for 10 min. To the mixture was added the above triyne in dry MeOH (3.0 mL). Stirring was continued at room temperature for 18 h, then Et₂O was added, and the resulting mixture was filtered through a pad of Celite. The filtrate was concentrated *in vacuo*. The residue was purified by column chromatography (EtOAc:hexane = 1:9) and then further purified by GPC (CHCl₃, 10 mL/min) to afford **6c** (125.8 mg, 0.424 mmol, 76% in 2 steps) as a colorless oil.

¹H-NMR (500 MHz, CDCl₃): δ 5.31-5.42 (m, 6H), 3.67 (s, 3H), 2.32 (t, *J* = 7.7 Hz, 2H), 2.03-2.10 (m, 4H), 1.62-1.68 (m, 2H), 1.25-1.43 (m, 8H), 0.89 (t, *J* = 7.2 Hz, 3H). ²H-NMR (77 MHz, CHCl₃): δ 2.77 (brs, 4H). ¹³C-NMR (126 MHz, CDCl₃): δ 174.1, 130.5, 129.7, 128.4, 128.2, 128.0, 127.6, 51.5, 34.0, 31.6, 29.4, 29.2, 27.3, 26.9, 25.1 (quint, J = 19.2 Hz, two peaks), 24.6, 22.7, 14.1. IR (neat, cm⁻¹): 3010, 2929, 2854, 1743, 1452, 1191, 1168, 848. HRMS (ESI): Calculated for C₁₉H₂₈D₄NaO₂ [M+Na]⁺, 319.2546: found, 319.2543.

8,8,11,11-D₄-GLA (7c)

To a stirred solution of **6c** (64.2 mg, 0.217 mmol) in dry THF (2.2 mL) was added 1.0 M aqueous LiOH·H₂O solution (2.2 mL, 2.2 mmol) at room temperature. The mixture was stirred at the same temperature for 14 h, and then the pH was adjusted to \sim 3 with 1.0 M aqueous HCl solution at room temperature. The resulting mixture was extracted with EtOAc twice. The combined organic phases were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by column chromatography (EtOAc:hexane = 1:4) to afford compound **7c** (58.8 mg, 0.208 mmol, 96%) as a colorless oil.

¹H-NMR (500 MHz, CDCl₃): δ 5.31-5.43 (m, 6H), 2.36 (t, J = 7.4 Hz, 2H), 2.03-2.11 (m, 4H), 1.63-1.69 (m, 2H), 1.27-1.46 (m, 8H), 0.89 (t, J = 6.9 Hz, 3H). ²H-NMR (77 MHz, CHCl₃): δ 2.79 (brs, 4H). ¹³C-NMR (126 MHz, CDCl₃): δ 180.6, 130.6, 129.6, 128.5, 128.4, 128.1, 127.6, 34.1, 31.6, 29.5, 29.1, 27.4, 27.0, 25.1 (quint, J = 19.2 Hz, two peaks), 24.4, 22.7, 14.2. IR (neat, cm⁻¹): 33007, 2925, 2855, 1704, 1461, 1292, 933, 704. HRMS (ESI): Calculated for C₁₈H₂₆D₄NaO₂ [M+Na]⁺, 305.2389: found, 305.2384.

Compound 9

To a stirred solution of cyclohexene-d10 **8** (1.00 g, 10.84 mmol) in CD₃OD (7.2 mL) and dry DCM (36 mL) was added anhydrous NaHCO₃ (273 mg, 3.25 mmol). The mixture was cooled to -78 °C, and bubbled with O₃ until the solution turned blue. Then, N₂ was passed through the solution until the blue color disappeared. To the resulting mixture was added benzene (11 mL), and the volume of the

solution was reduced to approximately 8 mL. Then, dry DCM (36 mL) NEt₃ (2.3 mL, 16.3 mmol) and Ac₂O (3.1 mL, 32.5 mmol) were added at 0 °C. The resulting mixture was stirred at the same temperature for 15 min, then warmed to room temperature, stirred for another 2 h, and washed with aqueous 0.1 M hydrochloric acid, 10% aqueous solution of sodium hydroxide, water, and brine. The organic phase was dried over Na₂SO₄, filtered, and concentrated in vacuo to yield a crude product, which was used for the next reaction without further purification.

To a stirred solution of the above crude product in CD₃OD (5.5 mL) were added K₂CO₃ (3.0 g, 21.7 mmol) and dimethyl (1-diazo-2-oxopropyl)phosphonate (Ohira-Bestmann reagent, 1.65 mL, 10.8 mmol) successively at 0 °C. The mixture was stirred at the same temperature for 2 h, and then saturated aqueous NH₄Cl solution was added to quench the reaction. The resulting mixture was extracted with EtOAc twice. The combined organic phases were washed with brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (EtOAc:hexane = 1:9) to afford compound **9** (1.24 g, 8.13 mmol, 75% in 3 steps) as a colorless oil.

¹H-NMR (500 MHz, CDCl₃): δ 3.67 (s), 1.94 (s). Small peaks of **H**-C = C- and C(=O)O**Me** were observed. ²H-NMR (77 MHz, CHCl₃): δ 3.64 (brs, 3H), 2.30 (brs, 2H), 2.16 (brs, 2H), 1.94 (brs, 1H), 1.70 (brs, 2H), 1.51 (brs, 2H). ¹³C-NMR (126 MHz, CDCl₃): δ 173.9, 83.9 (H-C = C-), 83.4 (brt, *J* = 7.2 Hz), 68.7 (H-C = C-), 68.4 (t, *J* = 38.4 Hz), 51.5 (-COO**Me**), 50.8 (sept, *J* = 22.8 Hz), 32.7 (quintet, *J* = 19.2 Hz), 26.7 (quintet, *J* = 19.2 Hz), 22.9 (quintet, *J* = 19.2 Hz), 17.3 (quintet, *J* = 19.2 Hz). IR (neat, cm⁻¹): 2925, 2855, 1735, 1296, 1081. HRMS (ESI): Calculated for C₈D₁₂NaO₂ [M+Na]⁺, 175.1483: found, 175.1463.

Compound 10

To a stirred solution of **2** (100 mg, 0.703 mmol) in dry THF (2.5 mL) were added HMPA (0.15 mL, 0.844 mmol) and *n*BuLi (0.59 mL, 0.914 mmol, 1.55 M in hexane) successively at -78 °C. The mixture was stirred at 0 °C for 1 h, and then $C_5D_{11}Br$ (125 mg, 0.773 mmol) in dry THF (1.0 mL) was added at -78 °C. Stirring was continued at room temperature for 21 h, and then saturated aqueous NH₄Cl solution was added to quench the reaction. The resulting mixture was extracted with EtOAc twice. The combined organic phases were washed with brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by short-path column chromatography (EtOAc:hexane = 1:4) to yield the alkylated compound, which was used for the next reaction without further purification.

To a stirred solution of the above THP ether in MeOH (3.5 mL) was added p-TsOH·H₂O (13 mg, 0.068 mmol) at room temperature. The mixture was stirred at the same temperature for 80 min, and then saturated aqueous NaHCO₃ solution was added to quench the reaction. The resulting mixture was

extracted with EtOAc twice. The combined organic phases were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo to yield an alcohol, which was used for the next reaction without further purification.

To a stirred solution of the above alcohol in H₂O (0.5 mL) were added 1-hexadecylimidazole¹ (21 mg, 0.0703 mmol), K₂CO₃ (117 mg, 0.844 mmol), and TsCl (200 mg, 1.05 mmol) successively at room temperature. The mixture was stirred at the same temperature for 22 h, and then extracted with EtOAc twice. The combined organic phases were washed with brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (EtOAc:hexane = 1:9) and then further purified by GPC (CHCl₃, 10 mL/min) to afford **10** (86.2 mg, 0.294 mmol, 42% in 3 steps) as a colorless oil.

¹H-NMR (500 MHz, CDCl₃): δ 7.81 (d, *J* = 8.0 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 2.44 (s, 3H). ²H-NMR (77 MHz, CHCl₃): δ 4.68 (brs, 2H), 2.01 (brs, 2H), 1.32 (brs, 2H), 1.20 (brs, 4H), 0.82 (brs, 3H). ¹³C-NMR (126 MHz, CDCl₃): δ 144.9, 133.5, 129.8, 128.1, 90.7, 71.7, 58.4 (quintet, J = 24.0 Hz), 29.6 (quintet, J = 19.2 Hz), 26.6 (quintet, J = 19.2 Hz), 21.7, 20.9 (quintet, J = 19.2 Hz), 17.9 (quintet, J = 19.2 Hz), 12.8 (sept, J = 19.2 Hz). IR (neat, cm⁻¹): 2256, 2215, 2104, 1599, 1364, 1172, 940, 819, 724, 659. HRMS (ESI): Calculated for C₁₅H₇D₁₃NaO₃S [M+Na]⁺, 316.1841: found, 316.1825.

Compound 11

To a stirred solution of tosylate **10** (500 mg, 1.70 mmol) and alkyne **2** (242 mg, 1.70 mmol) in dry DMF (9.0 mL) were added K_2CO_3 (352 mg, 2.55 mmol), NaI (510 mg, 3.40 mmol), and CuI (356 mg, 1.87 mmol) successively at 0 °C. The mixture was stirred at room temperature for 21 h, then EtOAc was added, and the resulting mixture was filtered through a pad of Celite. The filtrate was washed with brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by short-path column chromatography (EtOAc:hexane = 1:4) to give a diyne, which was used for the next reaction without further purification.

To a stirred solution of the above diyne in MeOH (9.0 mL) was added p-TsOH·H₂O (32 mg, 0.17 mmol) at room temperature. The mixture was stirred at the same temperature for 2 h, and then saturated aqueous NaHCO₃ solution was added to quench the reaction. The resulting mixture was extracted with EtOAc twice. The combined organic phases were washed with brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo* to afford an alcohol, which was used for the next reaction without further purification.

To a stirred solution of the above alcohol in H_2O (1.2 mL) were added 1-hexadecylimidazole¹ (50 mg, 0.17 mmol), K_2CO_3 (282 mg, 2.04 mmol), and TsCl (486 mg, 2.55 mmol) successively at room temperature. The mixture was stirred at the same temperature for 19 h, and then extracted with EtOAc

twice. The combined organic phases were washed with brine, dried over Na_2SO_4 , filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (EtOAc:hexane = 1:9 to 1:4) and then further purified by GPC (CHCl₃, 10 mL/min) to afford **11** (311.8 mg, 0.935 mmol, 55% in 3 steps) as a colorless oil.

¹H-NMR (500 MHz, CDCl₃): δ 7.82 (d, *J* = 8.6 Hz, 2H), 7.35 (d, *J* = 8.6 Hz, 2H), 2.45 (s, 3H). ²H-NMR (77 MHz, CHCl₃): δ 4.67 (brs, 2H), 3.01 (brs, 2H), 2.08 (brs, 2H), 1.42 (brs, 2H), 1.24 (brs, 4H), 0.83 (brs, 3H). ¹³C-NMR (126 MHz, CDCl₃): δ 145.1, 133.2, 129.9, 128.2, 84.7, 81.6, 72.2, 71.9, 57.9 (quintet, *J* = 24.0 Hz), 29.7 (quintet, *J* = 19.2 Hz), 27.2 (quintet, *J* = 19.2 Hz), 21.7, 21.0 (quintet, *J* = 19.2 Hz), 17.9 (quintet, *J* = 19.2 Hz), 12.9 (sept, *J* = 19.2 Hz), 9.5 (quintet, *J* = 20.4 Hz). IR (neat, cm⁻¹): 2216, 2101, 1365, 1182, 957, 818, 735, 659. HRMS (ESI): Calculated for C₁₈H₇D₁₅NaO₃S [M+Na]⁺, 356.2129: found, 356.2125.

Compound 12

To a stirred solution of tosylate **11** (131.6 mg, 0.395 mmol) and **9** (66 mg, 0.435 mmol) in dry DMF (4.0 mL) were added K_2CO_3 (82 mg, 0.593 mmol), NaI (118 mg, 0.79 mmol), and CuI (83 mg, 0.435 mmol) successively at 0 °C. Stirring was continued at room temperature for 31 h, and then further alkyne **9** (33 mg, 0.217 mmol) in dry DMF (0.5 mL) was added. Stirring was continued at the same temperature for 13 h, then EtOAc was added, and the resulting mixture was filtered through a pad of Celite. The filtrate was washed with brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by short-path column chromatography (EtOAc:hexane = 1:9) to give a triyne, which was used for the next reaction without further purification.

To a stirred solution of Ni(OAc)₂ (70 mg, 0.395 mmol) in CD₃OD (2.0 mL) under a D₂ atmosphere were added NaBD₄ (17 mg, 0.395 mmol) and ethylenediamine (107 μ l, 1.58 mmol) at 0 °C. The mixture was stirred at the same temperature for 10 min, and the above triyne in CD₃OD (2.0 mL) was added. Stirring was continued at room temperature for 22 h, then Et₂O was added, and the resulting mixture was filtered through a pad of Celite. The filtrate was concentrated *in vacuo*. The residue was purified by column chromatography (EtOAc:hexane = 1:9) and then further purified by GPC (CHCl₃, 10 mL/min) to afford **12** (82.6 mg, 0.254 mmol, 64% in 2 steps) as a colorless oil.

¹H-NMR (500 MHz, CDCl₃): δ 3.66 (s). Small peak of methyl ester was observed. ²H-NMR (77 MHz, CHCl₃): δ 5.38 (brs, 6H), 3.64 (s, 3H), 2.76 (brs, 4H), 2.27 (brs, 2H), 2.03-1.97 (m, 4H), 1.59 (brs, 2H), 1.22-1.33 (m, 8H), 0.83 (brs, 3H). ¹³C-NMR (126 MHz, CDCl₃): δ 174.3, 130.0 (t, *J* = 22.8 Hz), 129.1 (t, *J* = 22.8 Hz), 128.2-127.0 (m), 50.8 (sept, *J* = 22.8 Hz), 33.3 (quint, *J* = 19.2 Hz), 30.7-29.8 (m), 28.6-27.7 (m), 26.5-25.7 (m), 24.9 (quint, *J* = 19.2 Hz), 24.0-23.3 (m), 21.8-21.1 (m), 13.0 (sept, *J* = 19.2 Hz). IR (neat, cm⁻¹): 2209, 2098, 1738, 1278, 1088. HRMS (ESI): Calculated for C₁₉D₃₂NaO₂ [M+Na]⁺, 347.4303: found, 347.4283.

All-D-GLA

To a stirred solution of **12** (30 mg, 0.0924 mmol) in dry THF (0.92 mL) was added 1.0 M aqueous $LiOH \cdot H_2O$ solution (2.2 mL, 2.2 mmol) at room temperature. The mixture was stirred at the same temperature for 16 h, and then the pH was adjusted to ~3 with 1.0 M aqueous HCl solution at room temperature. The resulting mixture was extracted with EtOAc twice. The combined organic phases were washed with brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (EtOAc:hexane = 1:4) to afford all-D-GLA (28.4 mg, 0.0923 mmol, quant.) as a colorless oil.

²H-NMR (77 MHz, CHCl₃): δ 5.39 (brs, 6H), 2.76 (brs, 4H), 2.30 (brs, 2H), 1.92-2.04 (m, 4H), 1.60 (brs, 2H), 1.36-1.23 (m, 8H), 0.83 (brs, 3H). ¹³C-NMR (126 MHz, CDCl₃): δ 180.5, 130.0 (t, *J* = 22.8 Hz), 129.0 (t, *J* = 22.8 Hz), 128.2-127.0 (m), 33.3 (quintet, *J* = 19.2 Hz), 30.6-29.8 (m), 28.6-27.6 (m), 26.6-25.6 (m), 24.9 (quintet, *J* = 19.2 Hz), 23.6-22.8 (m), 21.8-21.1 (m), 13.0 (sept, *J* = 19.2 Hz). IR (neat, cm⁻¹): 3035, 2212, 2098, 1704, 1410, 1289. HRMS (ESI): Calculated for C₁₈D₂₉NaO₂ [M+Na]⁺, 330.3958: found, 330.3960.

Biology

Cell culture

VA-13 and WI-38 cells were maintained in Dulbecco's modified Eagle's medium supplemented with 100 U/mL penicillin, 100 μ g/mL streptomycin, and 10% heat-inactivated fetal bovine serum (FBS). Cells were grown in a humidified incubator at 37 °C under 5% CO₂/95% air.

AlamarBlue assay

VA-13 or WI-38 cells (5 x 10³ cells/well, 100 μ L) were suspended in fresh medium in a 96-well plate. After overnight incubation, the cells were treated with GLA derivatives in EtOH. After incubation for 48 h, 10 μ L of AlamarBlue was added to each well. The cell viability was determined based on the increase of fluorescence (excitation 560 m/emission 590 nm) during a 2 h incubation. The fluorescence was measured with a microplate reader (Molecular Devices, SpectraMAX M2^e). Data are presented as mean \pm S.D. (n = 3).

Enzymatic oxidation of GLA and deuterated GLA

To confirm the effects of deuteration on GLA metabolism, we examined the oxidation of GLA by lipoxygenase according to the reported procedure using arachidonic acid (AA).³ GLA and deuterated GLA **7a-c** (10 mM EtOH solution, final concentration: 500 μ M) were reacted with soybean lipoxygenase (LOX, Sigma-Aldrich L7395) (2.5 μ g/mL) in 100 mM sodium phosphate buffer (pH 7.4, 500 μ L) with 50 μ M diethylenetriamine-*N*,*N*,*N'*,*N''*,*P''*-pentaacetic acid (DTPA) at 37 °C under air. After the indicated time, 50 μ L of the reaction mixture was sampled and mixed with 50 μ L of CH₃CN, and then analyzed by HPLC (Fig. S1). As shown in Fig. S1A, GLA showed several peaks after 5 min incubation with LOX. However, *d*₄-GLA (**7c**) showed very weak peaks in the same region even after 30 min incubation (Fig. S1B). We also examined GLA and deuterated GLA **7a-c** treated with LOX for 30 min (Fig. S1C) As a result, only *d*₂-GLA **7a** showed the peaks of metabolites in the same region as GLA, indicating that LOX selectively abstracts the proton at C11 carbon. In contrast, **7b** and **7c** having deuterium at C11 carbon are resistant to LOX metabolism. These results support the metabolic inhibition by deuteration of allylic methylenes of GLA in the same manner as AA.

HPLC system: Thermo Fisher UltiMate 3000

Type: GL Sciences Inertsil ODS-3 C18; size: 1.0 mm (ID)–150 mm (L) 3 μ m (particle size); flow rate 50 μ L/min; detector: UV 210 nm; eluent: mobile phase A, H₂O with 0.1 % trifluoroacetic acid; mobile phase B, CH₃CN with 0.1% trifluoroacetic acid; temperature 40 °C; injection volume 5 μ L. Analysis of lipid: Gradient curve: 50% B (0–5min), 50% to 95% B (5-35 min), 95% B (35–45 min), 95% to 50% B (45–55 min), 50% B (55–65 min); run time 65 min; RT = 28.3 min.

Fig. S1 HPLC analysis of GLA and deuterated GLA **7a-c** reacted with lipoxygenase (LOX). (A, B) GLA or d_4 -GLA **7c** was treated with LOX. After 5, 15, 30 min incubation, the reaction mixtures were analyzed by HPLC. (C) After 30 min reaction with LOX, GLA and deuterated GLA **7a-c** were analyzed by HPLC.

Raman imaging

Raman spectra of GLA and deuterated GLA

Raman spectra were obtained with a RAMAN-11 slit-scanning Raman microscope (Nanophoton, Japan), with excitation at 532 nm. Samples were placed on a quartz substrate during the measurements. The laser output was focused into the sample by a 60X/1.27 numerical aperture (NA) water immersion objective lens (CFI Plan Apo IR 60X WI, NIKON, Japan). The slit width of the spectrograph was 70 μ m. The light intensity at the sample plane was calculated as 6.0 mW/ μ m² from the measured laser power at the sample position and the area of the illumination line. The exposure time for each line was 10 sec.

Fig. S2 Raman Spectra of deuterated GLA 7a-7c.

Raman imaging of VA-13/WI-38 cells treated with all-D-GLA

VA-13/WI-38 cells (2.4 mL, 5.0×10^4 cells/mL) were placed on sterilized $\Phi 25$ mm quartz substrate in a tissue culture dish (TPP, Switzerland). After overnight incubation, 2.4 µL of all-D-GLA stock solution (100 mM in EtOH, final concentration: 100 µM) was added and incubation was continued for 6-48 hours. The medium was replaced with Tyrode's buffer (150 mM NaCl, 10 mM glucose, 10 mM HEPES, 4 mM KCl, 1 mM MgCl₂, 1 mM CaCl₂, 4 mM NaOH). The quartz substrate was used for observation of Raman spectra with a RAMAN-11 slit-scanning Raman microscope, with excitation at 532 nm. The laser output was focused into the sample by a 60X/1.27 NA water immersion objective lens. The slit width of the spectrograph was 70 µm. The exposure time for each line was 10 sec. The light intensity at the sample plane was calculated as 6.0 mW/µm² from the measured laser power at the sample position and the area of the illumination line. To obtain Raman images, the Raman spectral data set was further processed using the singular value decomposition (SVD) technique for noise reduction.⁴ We selected the several spectral regions (705-3105 cm⁻¹ for H-C-H/C=C-H bonds and cytochrome *c*, 1500-1800 cm⁻¹ for C=C bond, 2000-2300 cm⁻¹ for D-C-D bond) in the calculation procedure for SVD to avoid artifacts in constructed images. A modified polyfit technique⁵ was then used at each pixel to determine the autofluorescence baseline signal, which was subtracted from the original Raman spectrum. Finally, Raman images were reconstructed using each vibrational band of interest. All data processing was performed by Raman Viewer image processing software (Nanophoton, Japan).

Cellular distribution of mitochondria was compared with those of all-D-GLA and lipid droplets (Figs. S3 and S4). All-D-GLA colocalized with lipid droplets but not mitochondria in VA-13 cells (Fig. S3).

Fig. S3 Comparison of Raman images of mitochondria, all-D-GLA, lipid droplets in VA-13 cells. VA-13 cells were treated with 100 μ M all-D-GLA. The Raman signals at 749 cm⁻¹, 2115 cm⁻¹ and 3015 cm⁻¹ were assigned to the blue, red and green channels, respectively, and merged images were generated.

In WI-38 cells, all-D-GLA mainly localized in lipid droplets at first, however a diffuse distribution in the cytoplasm was also observed during 48 h incubation (Fig. S4). Therefore, it is difficult to confirm all-D-GLA is not incorporated into mitochondria in WI-38 cells. GLA could be also used to synthesize membrane phospholipids in the same manner as other PUFAs. Due to the limitation of resolution, it is difficult to discriminate between mitochondria and other organelles. Therefore, there is the possibility that GLA may be incorporated into mitochondria in WI-38 cells.

Fig. S4 Comparison of Raman images of mitochondria, all-D-GLA, lipid droplets in WI-38 cells. WI-38 cells were treated with 100 μ M all-D-GLA. The Raman signals at 749 cm⁻¹, 2115 cm⁻¹ and 3015 cm⁻¹ were assigned to the blue, red and green channels, respectively, and merged images were generated.

In Fig. S5A, average Raman spectra in lipid droplets region of five VA-13/WI-38 were obtained by removing the water background. To show the changes clearly, the Raman peak intensities of D-C-D, H-C-H, and C=C-H were calculated as the difference of the peak top and peak bottom intensity (Fig. S6). In VA-13 cells, all-D-GLA accumulated into lipid droplets in proportion to incubation time (Fig. S6A). In contrast, in WI-38 cells, the accumulation of all-D-GLA reached a plateau around 12-24 h, and the signals from endogenous lipids decreased gradually (Fig. S6B). These data indicate the limited uptake of GLA and replacement of endogenous fatty acids by all-D-GLA in WI-38 cell. These differences in lipid droplets might be responsible for tumor-selective cytotoxicity of GLA.

Fig. S5 (A) Average Raman spectra in the lipid droplets region (3 μ m × 3.8 μ m: 10 × 10 pixels) of five VA-13 and WI-38 cells treated with 100 μ M all-D-GLA. (B) Comparison of Raman images of all-D-GLA and lipid droplets in VA-13 and WI-38 cells. VA-13 and WI-38 cells were treated with 100 μ M all-D-GLA for 48 hr. The Raman signals at 2115 cm⁻¹ and 3015 cm⁻¹ were assigned to the red and green channels, respectively, and merged images were generated.

Fig. S6 Raman peak intensities of D-C-D (2115 cm⁻¹), H-C-H (2854 cm⁻¹), and C=C-H (3015 cm⁻¹) in the lipid droplets region of VA-13 (A) and WI-38 cells (B) treated with 100 μ M all-D-GLA. Error bars indicate the standard error of the mean (n = 5).

References

- 1 K. Asano and S. Matsubara, Org. Lett., 2009, 11, 1757–1759.
- 2 C. J. Hastings, D. Fiedler, R. G. Bergman and K. N. Raymond, J. Am. Chem. Soc., 2008, 130, 10977–10983.
- 3 K. Yamada, F. Mito, Y. Matsuoka, S. Ide, K. Shikimachi, A. Fujiki, D. Kusakabe, Y. Ishida, M. Enoki, A. Tada, M. Ariyoshi, T. Yamasaki and M. Yamato, *Nat. Chem. Biol.*, 2016, 12, 608–13.
- 4 H. J. Van Manen, Y. M. Kraan, D. Roos and C. Otto, J. Phys. Chem. B, 2004, 108, 18762– 18771.
- 5 A. Mahadevan-Jansen and C. A. Lieber, Appl. Spectrosc., 2003, 57, 1363–1367.

NMR spectra

Compound 5a

Compound 6a

Compound 7a

Compound 5b

Compound 6b

Compound 7b

Compound 6c

Compound 9

Compound 11

Compound 12

all-D-GLA

