1

Enantiopure Dimagnesium(I) and Magnesium(II) Hydride Complexes

Incorporating Chiral Amidinate or β-Diketiminate Ligands

Caspar N. de Bruin-Dickason,^{a,b} Christopher A. Rosengarten,^{a,b} Glen B. Deacon,^a Cameron Jones^{*,a}

^a School of Chemistry, Monash University, PO Box 23, Melbourne, VIC, 3800, Australia. Email:

cameron.jones@monash.edu.

Web: https://www.monash.edu/science/research-groups/chemistry/jonesgroup

^b These authors contributed equally to the study, and are co-first authors

Electronic Supplementary Information (22 pages)

Contents	1. Experimental	S2
	2. X-Ray Crystallography	S19
	3. References	S22

1. Experimental

General considerations.

All manipulations were carried out using standard Schlenk and glove box techniques under an atmosphere of high purity dinitrogen. Pentane and diethyl ether were distilled over Na/K alloy (50:50), while hexane, toluene and THF were distilled over molten potassium. ¹H and ¹³C{¹H} NMR spectra were recorded on either Bruker DPX300, Bruker AvanceIII 600 or Bruker AvanceIII 400 spectrometers and were referenced to the resonances of the solvent used. Mass spectra were collected using an Agilent Technologies 5975D inert MSD with a solid-state probe. FTIR spectra were collected for solid samples or Nujol mulls on an Agilent Cary 630 attenuated total reflectance (ATR) spectrometer. Microanalyses were carried out at the Science Centre, London Metropolitan University, or using a PerkinElmer- 2400 CHNS/O Series II System. Melting points were determined in sealed glass capillaries under dinitrogen, and are uncorrected. The starting materials L¹H,¹ Ar*NCCIBu^{*t*}² and 5% w/w Na/NaCl³ were prepared by literature procedures. All other reagents were used as received.

L²H. Ar*NCCIBu^{*t*} (26 g, 40 mmol) and (*S*)-α-methylbenzylamine (7.1 g, 40 mmol) were combined in a Schlenk flask. Toluene (30 mL) and triethylamine (7.5 mL, 53 mmol) were added, resulting in formation of a white precipitate. The mixture was heated at reflux overnight, cooled, and treated with 1 M NaHCO₃ (30 mL). The mixture was then transferred to a separating funnel and the organic layer was washed with water (2 x 30 mL). The organic layer was separated and volatiles removed *in vacuo* to give a sticky solid which was washed with methanol, then redissolved in isopropanol (50 mL) to give the title compound as colourless crystals after storage at room temperature overnight (26 g, 82%). $[\alpha]_D^{25} = -243$ (c 1.00, CHCl₃); m.p. 201-204 °C; ¹H NMR (600 MHz, C₆D₆, 298 K): δ = 0.85 (overlapping, 12H, C(CH₃)₃ and CHCH₃), 1.94 (s, 3H, *p*-CH₃), 4.30 (m, 1H, NH), 4.39, (m, 1H, CHPhCH₃), 5.37 (s, 1H, CHPh₂), 5.82 (s, 1H, CHPh₂), 6.72-7.33 (m 27H, ArH); ¹³C{¹H} NMR (151 MHz, C₆D₆, 298 K): δ = 21.3 (CHCH₃(Ph), 25.3 (Ar-CH₃), 29.0 (C(CH₃)₃), 38.9 (*C*(CH₃)₃), 51.3 (CH(Ph)Me), 52.4, (CHPh₂), 52.9 (CHPh₂), 126.0, 126.0, 126.1, 126.2, 126.4, 127.2, 128.4, 128.6, 128.9, 129.1, 129.2, 129.7, 129.9, 130.0, 130.3, 130.5, 132.4, 132.8, 137.2, 142.6, 144.6, 144.6, 145.3, 145.4, 145.5, 146.0 (Ar-*C*), 156.1 (N*C*N); IR v/cm⁻¹ (ATR): 3463 (w, br, *v*(N-H)), 1655 (vs, *v*(C=N)), 1167 (m), 1076 (m), 1030 (m), 909 (w), 858 (m), 759 (s), 746 (s), 730 (s), 695 (vs).

Figure S1. ¹H NMR spectrum (600 MHz, 298 K, C_6D_6) of L^2H .

Figure S2. ¹³C{¹H} NMR spectrum (151 MHz, 298 K, C₆D₆) of L²H.

 $[(L^1)MgI(OEt_2)]$ 1. To a solution of L¹H (5.00 g, 13.8 mmol) dissolved in diethyl ether (15 ml) was added a freshly prepared solution of MeMgI in diethyl ether (MeI 1.2 mL, 17.9 mmol, Mg 0.50 g, 20.7 mmol) at -30 °C. The mixture was slowly warmed to room temperature and stirred for 12 hours, resulting in formation of a white suspension. The mixture was filtered and the precipitate dried in *vacuo*, yielding **1** as an analytically pure off-white power. The mother liquor was concentrated *in* vacuo and stored at -30 °C, yielding a second crop of the product. Colorless crystals suitable for crystallographic characterisation were grown from diethyl ether at -30 °C (5.98 g, 74%). M.p. 148-152; ¹H NMR (600 MHz, C₆D₆, 298 K): $\delta = 0.88$ (br, 6H, OCH₂CH₃), 1.17 (d, ³J_{H-H} = 7 Hz, 3H, CH(CH₃)₂), 1.23 (d, ³*J*_{H-H} = 7 Hz, 3H, CH(CH₃)₂), 1.40 (br, 3H, CH(CH₃)₂), 1.65 (br, 6H, NCCH₃ & CH(CH₃)₂), 1.75 (br, 3H, NCCH₃), 1.86 (br, 3H, CH(Ph)CH₃), 3.21 (br, 3H, OCH₂CH₃ & CHMe₂), 3.63 (br, 3H, OCH2CH3 & CHMe2), 4.64 (br, 2H, NCH3CH & CH(Ph)(Me)), 7.10-7.47 (m, 8H, Ar-*H*); ¹³C{1H} NMR (151 MHz, C₆D₆, 298 K): $\delta = 13.9$ (OCH₂CH₃), 23.9, 24.0 (CH(CH₃)₂), 24.4, 25.0 (NCCH₃), 25.3, 25.4 (CH(CH₃)₂), 27.5 (CH(Ph)CH₃), 28.5 (br, CH(CH₃)₂), 59.0 (CH(Ph)(Me)), 65.7 (OCH₂), 95.6 (NCH₃CH), 123.3, 124.4, 125.7, 127.0, 128.9, 141.7, 143.0, 145.0, 147.2 (Ar-C), 169.0, 169.4 (CN); IR (Nujol): $v/cm^{-1} = 1625$ (w), 1560 (m), 1261 (s), 1093 (br), 1020 (br), 799 (s); Mass/ESI m/z (%): 513.2 (L¹MgI+H⁺, 5), 385.2 (L¹Mg⁺, 12), 362.3 (L¹H⁺, 12); anal. calc. for C₂₉H₄₃IMgN₂O: C, 59.35 % H, 7.39 %, N, 4.77 %; found C, 59.28 %, H, 7.51 %, N, 4.78 %.

Figure S3. ¹H NMR spectrum (600 MHz, 298 K, C₆D₆) of **1**.

Figure S4. $^{13}C{^{1}H}$ NMR spectrum (151 MHz, 298 K, C₆D₆) of 1.

Figure S5. COSY NMR spectrum (600 MHz, 298 K, C₆D₆) of 1.

[(L¹)Mg–Mg(L¹)] 2. [(L¹)MgI(OEt₂)] (4.00 g, 6.82 mmol) and 5% w/w Na/NaCl powder (16 g, 0.8 g of Na, 34.8 mmol) were combined in a Schlenk flask and a mixture of toluene (90 mL) and diethyl ether (10 mL) was added. The mixture was stirred vigorously for 2 days yielding a yellow suspension, which was allowed to settle before filtration. Volatiles were then removed from the filtrate in vacuo and the resultant dark yellow oil was dissolved in pentane, and the solution stored at -30 °C overnight, yielding yellow crystals of 2. A second crop of crystals was obtained by filtration and concentration of the mother liquor in vacuo and storage at -30 °C (626 mg, 24 %). Yellow crystals suitable for crystallographic characterisation were grown from hexane at room temperature. M.p.: 153-158 °C (decomp. 180 °C); ¹H NMR (400 MHz, C₆D₆, 298 K): $\delta = 1.10$ (d, ³J_{H-H} = 7 Hz, 6H, CH(CH₃)₂), 1.14 (d, ${}^{3}J_{\text{H-H}} = 7$ Hz, 6H, CH(CH₃)₂), 1.20 (d, ${}^{3}J_{\text{H-H}} = 7$ Hz, 6H, CH(CH₃)₂), 1.23 (d, ${}^{3}J_{\text{H-H}} = 7$ Hz, 6H, CH(Ph)CH₃), 1.36 (d, ${}^{3}J_{H-H} = 7$ Hz, 6H, CH(CH₃)₂), 1.63 (s, 6H, NCCH₃) 1.73 (s, 6H, NCCH₃), 3.10 (sept, ${}^{3}J_{H-H} = 7$ Hz, 2H, CH(CH₃)₂), 3.38 (sept, ${}^{3}J_{H-H} = 7$ Hz, 2H, CH(CH₃)₂), 4.58 (q, ${}^{3}J_{H-H} = 7$ Hz, 2H, CH(Ph)Me), 4.65 (s, 2H, NCH₃CH), 7.10-7.19 (m, 16H, Ar-H); ¹³C{¹H} NMR (151 MHz, C₆D₆, 298 K): δ = 23.5, 23.7, 23.9, 24.4 (CH(CH₃)₂), 25.2, 25.3 (NCCH₃), 25.4 (CH(Ph)CH₃), 28.2, 28.8 (CH(CH₃)₂), 57.7 (CH(Ph)(Me)), 96.1 (NCH₃CH), 123.5, 124.0, 124.9, 125.2, 126.4, 127.0, 128.6, 142.3, 142.5, 146.1, 147.6 (Ar-C), 165.6, 167.7 (C-N); IR (Nujol): $\nu/cm^{-1} = 1600$ (w), 1521 (w), 1459 (m), 1389 (s), 1366 (s) 1315 (m), 1020 (br), 935 (m), 759 (s), 699 (vs); anal. calc. for C₅₀H₆₆Mg₂N₄: C, 77.82 %, H, 8.62 %, N, 7.26 %; found: C, 77.09 %, H, 8.97 %, N, 7.03 %.

Figure S6. ¹H NMR spectrum (400 MHz, 298 K, C₆D₆) of 2

Figure S7. ¹³C{¹H} NMR spectrum (151 MHz, 298 K, C₆D₆) of 2

Figure S8. COSY NMR spectrum (600 MHz, 298 K, C₆D₆) of 2

in situ formation of [(L¹)MgBuⁿ] 3. To a solution of L¹H (1.00 g, 2.8 mmol) dissolved in toluene (10 ml) was added a solution of MgBuⁿ₂ in heptanes (6.4 mL, 2.8 mmol, 0.44 M). The mixture was heated at 60 °C for 24 h resulting in a bright orange solution. The solution was warmed to room temperature, and volatiles removed in vacuo to give a mobile, colourless, very air sensitive oil. Attempts to obtain **3** as a solid material by dissolving this oil in a small volume of pentane or hexane, then placing the solution at -30 °C or -78 °C, were not successful. Accordingly, the compound was prepared and used in situ in subsequent reactions, assuming quantitative conversion. NMR spectroscopic data presented here are of an aliquot of the total reaction mixture, at completion of the reaction, and are tentatively assigned. ¹H NMR (600 MHz, C₆D₆, 298 K): $\delta = -0.19$ (br, 2H, MgCH₂), 0.95 (br, 5H, MgCH₂CH₂CH₂CH₃ and MgCH₂CH₂CH₂CH₃), 1.16 (m, 6H, CH(CH₃)₂), 1.26 (d, ³J_{H-H} = 7 Hz, 3H, CH(CH₃)₂), 1.30 (br, 3H, CH(CH₃)₂), 1.40 (br, 2H, MgCH₂CH₂CH₂CH₃), 1.58 (br, 3H, CH(CH₃)Ph), 1.64 (br, 3H, NCCH₃), 1.78 (br, 3H, NCCH₃), 3.20 (br, 2H, CHMe₂), 4.57 (br, 1H, CH(Ph)Me), 4.73 (br, 1H, NCH₃CH), 7.06-7.21 (m, 8H, Ar-H); ¹³C{¹H} NMR (151 MHz, C₆D₆, 298 K): $\delta = 1.4$ (MgCH₂), 14.0 (MgCH₂CH₂CH₂CH₃), 14.3 (MgCH₂CH₂), 23.4, 23.7, 23.9, 24.6 (CH(CH₃)₂), 25.2 (CH(Ph)CH₃), 28.5 (CH(CH₃)₂), 28.6 (MgCH₂CH₂CH₂CH₃), 29.2, 29.8 (NCCH₃) 31.5 (CH(CH₃)₂), 57.3 (CH(Ph)(Me)), 95.8 (NCH₃CH), 123.9, 124.0, 125.6, 125.7, 126.3, 127.0, 128.5, 129.3, 142.0, 142.3, 144.9, 147.0 (Ar-C), 168.1, 169.2 (CN).

Figure S9. ¹H NMR spectrum (600 MHz, 298 K, C_6D_6) of an aliquot taken from the reaction mixture containing **3**.

Figure S10. ¹³C{¹H} NMR spectrum (151 MHz, 298 K, C_6D_6) of an aliquot taken from the reaction mixture containing **3**.

[(L²)MgBuⁿ] 4. L²H (500 mg, 0.80 mmol) was dissolved in toluene and treated with MgBuⁿ₂ (0.96 mL, 0.96 mmol, 1M). After heating at 60 °C overnight, a yellow solution had formed. Volatiles were removed *in vacuo*, and the residue was washed with ice cold hexane (5 mL) to give 4 as a colorless solid (404 mg, 78 %). M.p. 178-198 °C (decomp.); ¹H NMR (400 MHz, C₆D₆, 298 K): δ = -0.84 (br, 2H, MgCH₂), 1.09 (m, 3H, Mg(CH₂)₃CH₃), 1.08 (br, 2H, MgCH₂CH₂), 1.20 (s, 9H, C(CH₃)₃), 1.37 (d, ³J_{H-H} = 6 Hz, 3H, CHPhCH₃), 1.45 (br, 2H, Mg(CH₂)₂CH₂), 1.92 (s, 3H, p-CH₃), 4.97 (q, ³J_{H-H} = 6 Hz, 1H, CHPhCH₃), 5.79 (br, 2H, CHPh₂), 6.81 (m, 2H, *m*-Ar*H), 7.02-7.29 (m, 25H, ArH); ¹³C{¹H} NMR (101 MHz, C₆D₆, 298 K): δ = 14.5 (br, BuⁿCH₃), 21.3 (CH(CH₃)Ph) 25.2 (CH₂), 26.8 (Ar*CH₃), 30.6(C(CH₃)₃), 32.1 (br, CH₂ x 2) 40.6 (C(CH₃)₃), 53.9 (br, CHPh₂), 54.6 (CH(CH₃)Ph), 125.7, 126.5, 126.6, 126.7, 128.6, 128.7 (2 peaks), 128.8 (2 peaks), 129.3, 129.6, 129.7, 130.1, 138.5, 138.6, 143.6, 143.6, 145.4, 148.1 (ArC), no resonances attributable to MgCH₂ or NCN were observed; IR v/cm⁻¹ (Nujol mull): 1600 (vs), 1584 (w), 1550 (m), 1071 (s), 1032 (s), 1030 (s), 982 (w), 956 (w), 910 (w), 863 (w), 801 (m), 762 (m), 700 (vs). A satisfactory microanalysis could not be obtained as the compound could not be purified by recrystallisation.

Figure S11. ¹H NMR spectrum (400 MHz, 298 K, C₆D₆) of an impure sample of 4.

Figure S12. ${}^{13}C{}^{1}H$ NMR spectrum (101 MHz, 298 K, C₆D₆) of an impure sample of 4.

[(L¹)₄Mg₅H₆] 5. An *in situ* generated solution of 3 (2.76 mmol) in toluene (10 mL) was treated with PhSiH₃ (0.48 mL, 3.31 mmol), and the mixture heated at 60 °C for 24 h resulting in a golden yellow solution. Upon warming to room temperature, pentane (20 mL) was added to the reaction solution, resulting in the precipitation of 5 as an analytically pure white solid. The solution was filtered and the filtrate concentrated in vacuo to 5 mL, then stored at -30 °C, resulting in a second crop of 5 (114 mg, 31% yield). Crystals suitable for crystallographic characterisation were grown from toluene. M.p. 158-163 °C; ¹H NMR (400 MHz, C₆D₆, 298 K): $\delta = 0.40$ (d, ³J_{H-H} = 7 Hz, 12H, CH(CH₃)₂), 0.94 (m, 24H, CH(Ph)CH₃ and CH(CH₃)₂), 1.27 (d, ${}^{3}J_{H-H} = 7$ Hz, 12H, CH(CH₃)₂), 1.57 (d, ${}^{3}J_{H-H} = 7$ Hz, 12H, CHCH₃), 1.62 (s, 12H, CNCH₃), 1.79 (s, 12H, CNCH₃), 2.60 (sept, ${}^{3}J_{H-H} = 7$ Hz, 4H, CHMe₂), 3.36 (br, 6H, MgH), 3.63 (sept, ${}^{3}J_{H-H} = 7$ Hz, 4H, CHMe₂), 4.33 (q, ${}^{3}J_{H-H} = 7$ Hz, 4H, CH(Ph)(Me)), 4.65 (s, 4H, NCH₃CH), 7.00-7.49 (m, 32H, Ar-H); ¹H NMR (400 MHz, C₇D₈, 298 K): $\delta = 0.33$ (d, ³J_{H-H} = 7 Hz, 12H, CH(CH₃)₂), 0.86 (d, ${}^{3}J_{H-H}$ = 7 Hz, 12H, CH(Ph)CH₃), 0.91 (d, ${}^{3}J_{H-H}$ = 7 Hz, 12H, CH(CH₃)₂), 1.24 (d, ${}^{3}J_{H-H} = 7$ Hz, 12H, CH(CH₃)₂), 1.52 (d, ${}^{3}J_{H-H} = 7$ Hz, 12H, CH(CH₃)₂), 1.59 (s, 12H, NCCH₃), 1.77 (s, 12H, NCCH₃), 2.54 (sept, ${}^{3}J_{H-H} = 7$ Hz, 4H, CHMe₂), 3.29 (br, 6H, MgH), 3.57 (sept, ${}^{3}J_{H-H} = 7$ Hz, 4H, CHMe₂), 4.27 (q, ${}^{3}J_{H-H} = 7$ Hz, 4H, CH(Ph)(Me)), 4.61 (s, 4H, NCH₃CH), 7.03-.43 (m, 32H, Ar-H); ${}^{13}C{}^{1}H{NMR}$ (151 MHz, C₆D₆, 298 K): $\delta = 23.7$, 24.1, 25.2, 25.3 (CH(CH₃)₂), 25.5 (CH(Ph)CH₃), 26.3, 26.5 (NCCH₃), 27.5, 28.5 (CH(Me)₂), 60.6 (CH(Ph)Me), 94.7 (NCH₃CH), 123.7, 124.4, 125.5, 125.7, 127.0, 127.0, 129.0, 143.1, 144.3, 145.7, 149.2 (Ar-C), 168.0, 171.3 (C-N); IR (Nujol): $v/cm^{-1} = 1625$ (w), 1516 (w), 1188 (w), 1153 (w), 1089 (s), 1025 (s), 969 (w), 939 (w), 849 (w), 799 (s), 767(w), 699 (s); mass/ESI m/z (%): 385.3 (L¹Mg⁺, 20); anal. calc. for C₁₀₀H₁₃₈N₈Mg₅: C, 76.32 % H, 8.84 %, N, 7.12 %; found C, 76.42 %, H, 9.49 %, N, 6.62 %.

Figure S13. ¹H NMR spectrum (400 MHz, 298 K, C₆D₆) of **5**.

Figure S14. ¹H NMR spectrum (400 MHz, 298 K, C₇D₈) of 5.

Figure S15. ${}^{13}C{}^{1}H$ NMR spectrum (151 MHz, 298 K, C₆D₆) of 5.

Figure S16. COSY NMR spectrum (600 MHz, 298 K, C₆D₆) of 5.

Figure S17. HMQC spectrum (¹H: 600 MHz; ¹³C: 151 MHz; 298 K, C₆D₆) of **5**.

Figure S18. Variable temperature (25 to -80 $^{\circ}$ C) ¹H NMR spectra (400 MHz, 298 K, C₇D₈) of **5**, highlighting magnesium hydride resonances.

[**Mg**(**L**¹)₂]. A by-product that formed during the synthesis of **5** was presumed to be the homoleptic complex [Mg(L¹)₂]. This was rationally synthesised to confirm the identity of the by-product. To a solution of L¹H (1.00 g, 2.70 mmol) in toluene (10 mL) was added a solution of MgBu^{*n*}₂ (1.35 mL, 1M, 1.35 mmol) in heptanes. The mixture was then heated at 70 °C for 48 h, resulting in the formation of an orange solution. Volatiles were removed from the mixture *in vacuo*, leaving a dark yellow oil. Attempts were made to isolate the product as a solid by rectystallising it from a range of solvents, however this was unsuccessful, as the product was always obtained as an oil. As a result, NMR spectroscopic data could only be obtained on the impure oil, though these corresponded to the signals seen in the total reaction mixture that gave **5**. ¹H NMR (400 MHz, C₆D₆, 298 K): $\delta = 1.24$ -1.30 (m, 18H, CH(CH₃)₂), 1.40-1.45 (m, 18H, CH(CH₃)₂, CHPhCH₃, NC(CH₃)), 1.70 (s, 6H, NC(CH₃)) 3.25 (sept, ³J_{H-H} = 7 Hz, 2H, CH(CH₃)₂), 3.38 (sept, ³J_{H-H} = 7 Hz, 2H, CH(CH₃)₂), 4.45 (q, ^{3J}_{H-H} = 7 Hz, 2H, CH(Me(Ph))), 4.54 (s, 2H, CH backbone), 7.03-7.22 (m, 16H, Ar-H); ¹³C{¹H} NMR: $\delta = 24.2$, 25.0, 25.1, 25.3 (CH(CH₃)₂), 25.7, 25.9 (NCCH₃) 27.6 (CH(Ph)CH₃), 28.3, 29.3 (CH(Me)₂), 58.1 (CH(Ph)(Me))), 97.2 (NCH₃CH), 123.6, 124.0, 125.0, 126.0, 126.2, 128.4, 142.4, 143.5, 147.8, 148.3 (Ar-C), 168.6, 170.8 (CN).

Figure S19. ¹H NMR spectrum (400 MHz, 298 K, C_6D_6) of an impure sample of $[Mg(L^1)_2]$.

Figure S20. ¹³C{¹H} NMR spectrum (101 MHz, 298 K, C_6D_6) of an impure sample of [Mg(L¹)₂].

 $[(L^2)Mg(\mu-H)_2Mg(L^2)]$ 6. Compound 4 (1.77 g, 2.52 mmol) was dissolved in toluene (10 mL) and PhSiH₃ (1 mL, 8.07 mmol) added to the solution. The mixture was heated at 60 °C for 4 h, before volatiles were removed in vacuo, leaving a yellow oil. The oil was redissolved in pentane (1 mL) and stored at -30 °C overnight. Volatiles were then removed from the solution, and the residue washed with a small amount of cold pentane. This gave 6 as a white solid, contaminated with some of the reaction by-product PhSiH₂Buⁿ, which could not otherwise be easily removed (1.55 g, 95 %). M.p. 220-224 °C (decomp.); ¹H NMR (400 MHz, C₆D₆, 298 K): $\delta = 1.02$ (s, 18H, C(CH₃)₃), 1.62 (d, ³J_H- $_{\rm H}$ = 6 Hz, 6H, CHPhCH₃), 1.99 (s, 6H, *p*-ArCH₃), 3.28 (s, 2H, MgH), 5.10 (q, $^{3}J_{\rm H-H}$ = 6 Hz, 2H. CHPhCH₃), 5.73 (s, 2H, CHPh₂), 6.29 (s, 2H, CHPh₂), 6.73-7.62 (m, 54H, ArH); ¹³C{¹H} NMR (101 MHz, C₆D₆, 298 K): $\delta = 21.2$ (CH(*C*H₃)Ph), 27.6 (*p*-Ar*C*H₃), 30.5 (C(*C*H₃)₃), 39.9 (*C*(CH₃)₃), 52.4, 53.6 (CHPh₂), 55.3 (CH(CH₃)Ph), 126.2, 126.6, 126.6, 126.8, 127.1, 128.8, 128.9, 128.9, 129.5, 129.8, 129.8, 130.1, 130.1, 130.6, 130.7, 130.8, 131.0, 131.1, 132.9, 135.6, 138.3, 139.1, 142.6, 143.6, 144.1, 145.7, 146.5, 148.0 (Ar-C), 177.8 (NCN); IR v/cm⁻¹ (Nujol mull): 1183 (m), 1079 (m), 1032 (s), 930 (m), 894 (m), 837 (m), 762 (m), 702 (s). A satisfactory microanalysis could not be obtained for the compound as traces of PhSiH₂Buⁿ could not be completely removed, and the compound could not be recrystallised.

Figure S21. ¹H NMR spectrum (400 MHz, 298 K, C₆D₆) of **6**.

Figure S22. ¹³C{¹H} NMR spectrum (101 MHz, 298 K, C₆D₆) of 6.

[(L²)(THF)Mg(μ-H)₂Mg(THF)(L²)] 7. Compound 6 (200 mg, 0.30 mmol) was dissolved in THF (0.5 mL). The solution was stored at -30° C overnight, yielding colourless crystals of 7 (180 mg, 81 %). M.p. 162-164 °C; ¹H NMR (400 MHz, C₆D₆, 298 K): δ = 0.86 (s, 18H, C(CH₃)₃), 1.30 (m, 8H, OCH₂CH₂), 1.65 (d, ³J_{H-H} = 6 Hz, 6H, CHPhCH₃), 2.03 (s, 6H, *p*-ArCH₃), 3.52 (br, 8H, OCH₂CH₂), 4.48 (s, 2H, MgH), 5.10 (q, ³J_{H-H} = 6 Hz, 2H. CHPhCH₃), 6.53 (s, 2H, CHPh₂), 6.90 (s, 2H, CHPh₂), 6.65-7.47 (m, 54H, ArH); ¹³C{¹H} NMR (101 MHz, C₆D₆, 298 K): δ = 21.2 (CH(CH₃)Ph), 25.7 (OCH₂CH₂), 27.4 (*p*-ArCH₃), 30.6 (C(CH₃)₃), 39.9 (C(CH₃)₃), 52.4 (CHPh₂ – two signals), 55.5 (CH(CH₃)Ph), 126.3, 126.5 (2 signals), 126.6, 128.3, 128.5, 128.6, 126.7, 128.8, 128.9, 127.8, 130.1, 130.2, 130.3, 130.5, 130.9, 131.0, 137.7, 137.9, 143.2, 147.3, 148.6 (ArC), 178.8 (NCN); IR v/cm⁻¹ (Nujol mull): 1196 (m), 1080 (m), 1068 (s), 1030 (s), 958 (w), 912 (w), 883 (m), 832 (m), 757 (s), 746 (s), 689 (vs); anal. calc. for C₁₀₀H₁₀₈Mg₂N₄O₂: C, 83.03 % H, 7.53 %, N, 3.87 %; found C, 82.45 %, H, 7.58 %, N, 3.97 %.

Figure S23. ¹H NMR spectrum (400 MHz, 298 K, C₆D₆) of **7**.

Figure S24. ¹³C{¹H} NMR spectrum (101 MHz, 298 K, C₆D₆) of 7.

2. X-Ray Crystallography

Crystals of compounds suitable for X-ray structural determination were mounted in silicone oil. Crystallographic measurements were made using a Rigaku Xtalab Synergy Dualflex using a graphite monochromator with Mo K α radiation (0.71073 Å) or Cu K α radiation (1.54180 Å). All structures were solved by direct methods and refined on F² by full matrix least squares (SHELX97⁴) using all unique data. Hydrogen atoms are typically included in calculated positions (riding model), except the hydride ligands, the atomic displacement and positional parameters a of which were refined isotropically. Crystal data, details of data collections and refinements for all structures can be found in their CIF files and are summarized in Table S1.

	$L^{1}H$	$L^{2}H$	1	2	$5 \cdot (toluene) 2$	7 ·(THF)2
empirical formula	$C_{25}H_{34}N_2$	$C_{46}H_{46}N_2$	C ₂₉ H ₄₃ IMgN ₂ O	$C_{50}H_{66}MgN_4$	$C_{114}H_{154}Mg_5N_8\\$	$C_{108}H_{124}Mg_2N_4O_4\\$
formula weight	362.54	626.85	586.86	771.68	1757.99	1590.72
crystal system	Monoclinic	Monoclinic	Orthorhombic	Triclinic	Orthorhombic	Monoclinic
space group	$P2_{1}$	$P2_1$	$P2_{1}2_{1}2_{1}$	<i>P</i> 1	<i>I</i> 222	$P2_1$
a (Å)	8.3950(2)	17.043(1)	8.5021(3)	9.3482(1)	14.8055(4)	13.2573(8)
b (Å)	12.0810(3)	10.6510(7)	18.0429(6)	11.4823(2)	18.0071(4)	23.7844(17)
c (Å)	11.1318(2)	20.5830(13)	19.2698(7)	12.0801(2)	19.8803(6)	14.6312(11)
α (°)	90	90	90	109.948(2)	90	90
β (°)	96.590(2)	96.752(2)	90	97.683(1)	90	105.348(2)
γ (°)	90	90	90	99.626(1)	90	90
V (Å ³)	1121.53(4)	3710.4(4)	2956.04(18)	1175.98(3)	5300.2(2)	4448.9(5)
Ζ	2	4	4	1	2	2
T (K)	123(2)	123(2)	123(2)	123(2)	123(2)	123(2)
$\rho_{calcd} (g \times cm^3)$	1.074	1.122	1.319	1.090	1.102	1.187
μ (mm ⁻¹)	0.466	0.064	1.127	0.087	0.090	0.084
F(000)	396	1344	1216	418	1908	1712
reflns collected	11635	34525	17827	35181	20136	39019
unique reflns	3728	13709	5499	8512	4938	16478
R _{int}	0.0861	0.0755	0.0617	0.0258	0.0370	0.1718
R1 [I > $2\sigma(I)$]	0.0496	0.0683	0.0384	0.0278	0.0307	0.0843
wR2 (all data)	0.1308	0.1334	0.0584	0.0760	0.0764	0.2204
Flack parameter	0.1(5)	-1.6(10)	-0.019(16)	0.05(5)	0.04(8)	-0.1(4)
largest peak and hole (e×Å ⁻³)	0.17, -0.20	0.22, -0.26	0.47, -0.45	0.21, -0.17	0.19, -0.19	0.47, -0.43
CCDC No.	2047964	2047967	2047963	2047968	2047966	2047965

Table S1. Summary of Crystallographic Data for Compounds L^1H , L^2H , 1, 2, 5, and 7.

Figure S25. Molecular structure of L¹H (20% ellipsoids; *N*-substituents shown as wire frame for clarity; hydrogen atoms, except amine proton, omitted). Selected bond lengths (Å) and angles (°): N(1)-C(2) 1.351(4), N(2)-C(4) 1.292(4), C(2)-C(3) 1.368(4), C(3)-C(4) 1.440(4), C(2)-C(3)-C(4) 1.25.8(3).

Figure S26. Molecular structure of L²H (20% ellipsoids; *N*-substituents shown as wire frame for clarity; hydrogen atoms, except amine proton, omitted). Selected bond lengths (Å) and angles (°): N(1)-C(9) 1.382(6), N(2)-C(9) 1.271(6), N(2)-C(9)-N(1) 115.1(5).

Figure S27. Molecular structure of **1** (20% ellipsoids; *N*-substituents shown as wire frame for clarity; hydrogen atoms omitted). Selected bond lengths (Å) and angles (°): I(1)-Mg(1) 2.6865(16), Mg(1)-O(1) 2.026(4), Mg(1)-N(1) 2.035(5), Mg(1)-N(2) 2.044(5), N(1)-Mg(1)-N(2) 93.51(18), O(1)-Mg(1)-I(1) 101.06(11).

4. References

- 1 E. A. Weerawardhana, A. Pena, M. Zeller and W.-T. Lee, *Inorg. Chim. Acta*, 2017, **460**, 29.
- 2 C. N. de Bruin-Dickason, T. Sutcliffe, C. A. Lamsfus, G. B. Deacon, L. Maron and C. Jones, *Chem. Commun.*, 2018, **54**, 786.
- J. Hicks, M. Juckel, A. Paparo, D. Dange and C. Jones, *Organometallics*, 2018, **37**, 4810.
- 4 G. M. Sheldrick, *SHELX-16*, University of Göttingen, 2016.