Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Iron-Catalyzed Intramolecular Acyl Nitrene/Alkyne Metalation for the Divergent Synthesis of Pyrrolo[2,1-*a*]isoindol-5-ones and Isoindol-1-ones

Xiaojing Lai,^a Jin-Biao Liu,^b Yu-Chao Wang,^a and Guanyinsheng Qiu*,^a

^a College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China; E-mail: <u>qiuguanyinsheng@mail.zjxu.edu.cn</u>.
^b School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China

Table of contents

1. General information	S2
2. General procedures for the synthesis of 3, 5, 6 and 8	S2
3. Fluorescence experiment	S4
4. Mechanism	S10
5. Characterization data	S13
6. The ¹ H and ¹³ C NMR Spectra of Compounds	S39

1. General information

The UV-Vis spectra were recorded on an Ultraviolet spectrophotometer (UV-2550). Emission spectra were performed on a Fluorescence spectrometer (F-4600). Error limits were estimated: λ (±1 nm); τ (±10%); φ (±10%). The solvents were distilled from standard drying agents. Unless otherwise stated, commercial reagents purchased from Alfa Aesar, Acros and Aldrich chemical companies were used without further purification. Purification of reaction products was carried out by flash chromatography using Qing Dao Sea Chemical Reagent silica gel (200-300 mesh). ¹H NMR spectra were recorded on a Bruker Avance III 400 (400 MHz) spectrometer and referenced internally to the residual proton resonance in CDCl₃ ($\delta =$ 7.26 ppm), or with tetramethylsilane (TMS, $\delta = 0.00$ ppm) as the internal standard. Chemical shifts were reported as parts per million (ppm) in the δ scale downfield from TMS. Multiplicity is indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), m (multiplet), dd (doublet of doublet), bs (broad singlet). ¹³C NMR spectra were recorded on Bruker spectrometer with complete proton decoupling, and chemical shifts were reported in ppm from TMS with the solvent as the internal reference (CDCl₃, $\delta = 77.0$ ppm).

2. General procedure

(a) Synthesis of compounds 3

N-methoxy-2-(phenylethynyl)benzamide **1** (0.2 mmol), Acetylacetone **2a** (1.5 equiv), HOAc (20 mol%), Fe(OAc)₂ (50 mol%) were added to a test tube, the solvent (toluene:DCE, 1:1, v/v, 2 mL) was added. The mixture was stirred at 80 °C for 6 h. After the disappearance of substrate as indicated by TLC, the mixture was filtrated, Evaporation of the solvent and purification by flash column chromatograph provided

the desired products 3.

(b) Synthesis of compounds 3bc and 3bd

N-methoxy-2-(phenylethynyl)acetamide **1bb-1bc** (0.2 mmol), Acetylacetone **2a** (1.5 equiv), HOAc (20 mol%), Fe(OAc)₂ (50 mol%) were added to a test tube, the solvent (toluene:DCE, 1:1, v/v, 2 mL) was added. The mixture was stirred at 80 °C for 6 h. After the disappearance of substrate as indicated by TLC, the mixture was filtrated, Evaporation of the solvent and purification by flash column chromatograph provided the desired products **3bb** and **3bc**.

(c) Synthesis of compound 3be

3-methoxy-1-methyl-1-(2-(phenylethynyl)phenyl)urea 1bd (0.2 mmol), Acetylacetone **2a** (1.5 equiv), HOAc (20 mol%), Fe(OAc)₂ (50 mol%) were added to a test tube, the solvent THF (2.0 mL) was added. The mixture was stirred at 80 °C for 6 h. After the disappearance of substrate as indicated by TLC, the mixture was filtrated, Evaporation of the solvent and purification by flash column chromatograph provided the desired products **3bd**.

(d) Synthesis of compounds 3be-3bk

N-methoxy-2-(phenylethynyl)acetamide **1a** (0.2 mmol), Acetylacetone **2b-2f** (1.5 equiv), HOAc (20 mol%), Fe(OAc)₂ (50 mol%) were added to a test tube, the solvent (toluene:DCE, 1:1, v/v, 2 mL) was added. The mixture was stirred at 80 °C for 6 h. After the disappearance of substrate as indicated by TLC, the mixture was filtrated, Evaporation of the solvent and purification by flash column chromatograph provided the desired products **3be-3bk**.

3. Fluorescence experiment

	3aa	3ab	3ac	3ad	3ae	3af		3ai	3aj	3ak
Ex/nm	410	481	456	419	420	440		399	416	421
Em/nm	538	573	529	519	551	573		524	523	530
	3al	3am	3an	3 ao	3ap	3aq		3ar	3as	3at
Ex/nm	505	480	432	438	404	486		439	487	423
Em/nm	586	568	561	562	538	559		566	552	531
	3au	3av	3aw	3ax	3ay	3az	3ba	3be	3bf	
Ex/nm	423	402	420	429	410	461	460	402	402	
Em/nm	543	530	540	549	522	547	550	518	517	

3.1 Excitation and emission wavelengths for products

3.2 The selectivity of the Hg²⁺ detection method using 3ak as the probe.

8 mM of various ions (Be²⁺, Cr³⁺, Fe²⁺, Ni²⁺, Ca²⁺, Al³⁺, Sn²⁺, Co²⁺, Zn²⁺, Cu²⁺, Pb²⁺, Mg²⁺, Mn²⁺, Ba²⁺, K⁺, Na⁺, Li⁺, Fe³⁺, Ag⁺, Ce⁴⁺, Hg²⁺) were prepared in water as stock solutions. Various ions (120 μ M) were added to DCE/H₂O solution (v = 19:1) containing 5-acetyl-6-methyl-4-phenyl-8*H*-thieno[3,2-*a*]pyrrolizin-8-one (**3ak**) (40 μ M). Then the mixture was incubated at room temperature for 1h. Emission spectra were measured in the range of 461 nm to 721 nm with an excitation wavelength at 421 nm, and the slit width is 10 nm/20 nm.

The results showed that only Hg^{2+} triggered a significant fluorescence enhancement, and encouragingly even Ce^{4+} only slightly enhance the fluorescence of the system (Figure 1). To demonstrate the specificity of the sensor to Hg^{2+} , a competition experiment was carried out by adding Hg^{2+} (120 μ M) to a system containing the same concentration of another metal cations. No significant change in fluorescence was observed, indicating that this method possesses great potential for the detection of Hg^{2+} , even in the presence of other common amines. These results demonstrat the high selectivity of this method towards Hg^{2+} .

Figure 1. Fluorescence intensity upon addition of different ions (Be²⁺, Cr³⁺, Fe²⁺, Ni²⁺, Ca²⁺, Al³⁺, Sn²⁺, Co²⁺, Zn²⁺, Cu²⁺, Pb²⁺, Mg²⁺, Mn²⁺, Ba²⁺, K⁺, Na⁺, Li⁺, Fe³⁺, Ag⁺, Ce⁴⁺, Hg²⁺). The red bars represent the addition of 120 μ M different ions to the sensoring system. The black bars represent the subsequent addition of 120 μ M Hg²⁺ to the system. $\lambda_{ex} = 421$ nm, $\lambda_{em} = 530$ nm.

3.3 Detection of Hg²⁺ using 3ak in DCE

The stock solution of **3ai** (8 mM) and Hg^{2+} (8 mM) were prepared in DCE solvent. Solutions of **3ak** (40 μ M), Hg^{2+} (40 μ M), and **3ak** (40 μ M) with Hg^{2+} (40 μ M) were incubated in DCE at room temperature for 1 h, respectively. Then, emission spectra were measured in the range of 461 nm to 721 nm with an excitation wavelength at 421 nm, and the slit width is 10 nm/20 nm.

Figure 2. Fluorescence emission spectra ($\lambda_{ex} = 421$ nm) of the control experiments containing 40 μ M 3ak ($\lambda_{em} = 530$ nm), Hg²⁺ (40 μ M), and 3ak with Hg²⁺ ($\lambda_{em} = 539$ nm) in the DCE. Photographs of 1 mM of 3ak (I), 1 mM

of 3ak with 1 mM of Hg²⁺ (II) under 365 nm UV illumination.

The results show that fluorescence enhancement occurs when **3ak** and Hg²⁺ are presented (Figure 2). Bright yellow fluorescence could be observed with the naked eye via irradiation with an ultraviolet lamp at 365 nm (Figure 2) when **3ak** (1 mM) and Hg²⁺ (1 mM) were mixed at room temperature. From λ_{em} data, slight red-shift effect was observed.

3.4 Detection of Hg²⁺ in various ratios in mixed solvent of water:DCE

The stock solutions of **3ak** (8 mM) and Hg^{2+} (8 mM) were prepared in DCE. **3ak** (40 μ M) and Hg^{2+} (0.4 μ M) were added into various percentages of water in DCE (water content 0-100%), and then the mixture was incubated at room temperature for 1 h. Emission spectra were measured in the range of 461 nm to 721 nm with an excitation wavelength at 421 nm, and the slit width is 10 nm/20 nm.

To obtain the optimum performance of this sensing platform, we examined the luminescence response of the reaction between the probe molecule **3ak** and Hg^{2+} for 1 h in solvent systems consisting of various DCE/H₂O ratios. As shown in figure 3, the luminous efficiency is enhanced when the water content in DCE increases. The highest luminescence enhancement was obtained with a 4:6 DCE/H₂O ratio. The luminescence rate gradually decreases thereafter. We therefore chose a 4:6 DCE/H₂O solution as the best detection system for subsequent experiments. The results were presneted in Figure 3.

Figure 3. Fluorescence enhancement of 5-acetyl-6-methyl-4-phenyl-8*H*-thieno[3,2-*a*]pyrrolizin-8-one (3ak) (40 μ M) with 120 μ M of Hg²⁺ in various percentages of water in DCE.

3.5 Emission titration experiments

Different concentrations of Hg²⁺ were added to DCE containing **3ak** (40 μ M) in a cuvette. Then emission spectra were recorded after 1-hour incubation in the range of 461 nm to 721 nm at $\lambda_{ex} = 421$ nm, and the slit width is 10 nm/20 nm.

Figure 4. (a) Fluorescence responses of the system to various concentrations of Hg²⁺. The concentration of 5-acetyl-6-methyl-4-phenyl-8*H*-thieno[3,2-*a*]pyrrolizin-8-one (3ak) is 40 μ M and the concentration of Hg²⁺ is in the range of 0–130 μ M; (b) Fluorescence responses at 530 nm of the system at various concentrations of Hg²⁺ (1–130 μ M). (c) The linear correlation between fluorescence intensity and the concentration of Hg²⁺ (5–30 μ M). $\lambda_{ex} = 421$ nm, $\lambda_{em} = 530$ nm.

We next examined the fluorescence responses of the method to various concentrations of Hg^{2+} . The system containing 5-acetyl-6-methyl-4-phenyl-8*H*-thieno[3,2-*a*]pyrrolizin-8-one (**3ak**) (40 µM) was incubated with the indicated concentrations of Hg^{2+} at rt for 1 h (Figure 4a). The fluorescence intensity of the system increased with increasing concentration of Hg^{2+} (0–130 µM). Upon the addition of Hg^{2+} , the sensor displayed more than a 13-fold enhancement in fluorescence, according to literature reported calculations. A good linear relationship was established at a range of 5–30 µM (Linear correlation index: $R^2 = 0.9962$). The limit of detection (LOD) was calculated as 2.90 µM, according to LOD = $3\sigma/s$.

3.6 Study of the detection of Hg²⁺ in various water samples

River water was collected from the river, tap water was collected from chemistry laboratory, and rainwater was collected from Zhejiang. Hg^{2+} was spiked into arious water samples to obtain sample solutions with 19.2 µM of Hg^{2+} in DCE/H₂O (v =

19:1).

Lateritic soils were collected from Zhejiang. The samples were pre-treated according to a reported method¹ as noted below: Hg^{2+} (0.05 mmol) was spiked into 5 g of soil and stired well before use. Then the sample was extracted with water. After filtration, the sample was diluted to obtain a solution with 19.2 μ M of Hg^{2+} in DCE/H₂O (v = 19:1).

The **3ak** was added into above real samples to a final solution with 40 μ M. Then the mixture solutions were incubated at room temperature for 1 h. Emission spectra were measured in the range of 461 nm to 721 nm with an excitation wavelength at 421 nm, and the slit width is 10 nm/20 nm.

The results were presented in Table 1.

Table 1. Study of the detection of Hg²⁺ in water samples and lateritic soils samples^a

	Samples	Added	Found	Std Dev	RSD	Recovery
		amount	amount	(µM)	(%,	(%, n=3)
		(µM)	(µM)		n=3)	
Entry 1	River water	19.20	18.50	0.68	1.56	96.15
Entry 2	Tap water	19.20	18.23	1.12	2.37	95.58
Entry 3	Rainwater	19.20	18.56	0.55	1.52	97.26
Entry 4	Lateritic soils	19.20	17.12	1.34	2.50	94.06
	water					

^aResults of the determination of Hg²⁺ in water samples and lateritic soils sample. Experimental condition: DCE/H₂O (v/v = 4:6); Hg²⁺ (19.2 μ M), 5-acetyl-6-methyl-4-phenyl-8*H*-thieno[3,2-*a*]pyrrolizin-8-one (**3ak**) (40 μ M); reaction time: 1 h.

First, we collected Zhejiang river water, rainwater, tap water, lateritic soils, and pre-treated the samples according to a reported method.^{2,3} Next, exogenous Hg²⁺ was added and the samples studied. The results show that Hg²⁺ (19.20 μ M) can enhance the luminescence intensity of the sample significantly. The relative standard deviations and recoveries are shown in Table 1. The recovery rates for lateritic soils and rainwater samples were 94.06% and 97.26%, with relative standard deviations of 2.50% and 1.52%, respectively. The fluorescent probe can be used for the detection of Hg²⁺ in water samples and lateritic soils, and has good selectivity and sensitivity.

3.7 The selectivity of the Cys detection method using 3bf as the probe.

8 mM of various amino acids (Lysine, Tryptophan, Arginine, Histidine, Leucine, Isoleucine, Phenylalanine, Threonine, Valine, Methionine, Glutamate, Glycine, Serine, Aspartic acid, Tyrosine, L-Cysteine) were prepared in water as stock solutions. Various amino acid interferers (120 μ M) were added to DCE/H₂O solution (v = 19:1) containing 2-acetyl-1-phenyl-3-(trifluoromethyl)-5*H*-pyrrolo[2,1-*a*]isoindol-5-one (**3bf**) (40 μ M). Then the mixture was incubated at room temperature for 1 h. Emission spectra were measured in the range of 450 nm to 710 nm with an excitation wavelength at 402 nm, and the slit width is 10 nm/20 nm. The results were showed in Figure 5.

Figure 5. Fluorescence intensity upon addition of different amino acids (define lysine, tryptophan, arginine, histidine, leucine, Isoleucine, phenylalanine, threonine, valine, methionine, glutamate, glycine, serine, aspartic acid, tyrosine, L-cysteine, as Lys, Trp, Arg, His, Leu, Lle, Phe, Thr, Val, Met, Glu, Gly, Ser, Asp, Tyr, Cys). The red bars represent the addition of 120 μ M different amino acids to the sensoring system. The black bars represent the subsequent addition of 120 μ M Cys to the system. $\lambda_{ex} = 402 \text{ nm}, \lambda_{em} = 517 \text{ nm}.$

The results showed that only Cys triggered a significant fluorescence enhancement, and other amino acids exhibited low fluorescence enhancement. (Figure 6). To demonstrate the specificity of the probe to Cys, a competition experiment was carried out by adding Cys (120 μ M) to a system containing the same concentration of another amino acids. No significant change in fluorescence was observed, indicating that this reaction-based probe possesses great potential for the detection of Cys, even in the presence of other amino acids. The results demonstrate that the compound possesses application as the highly specific Cys fluorescence probe. It is anticipated that further optimization would lead to the development of a practical probe with great potential for the vivo detection of Cys.

3.8 The emission spectra of 3bf with Cys in DCE

The stock solution of **3bf** (8 mM) and Cys (8 mM) were prepared in DCE solvent. **3bf** (40 μ M), Cys (40 μ M), and **3bf** (40 μ M) with Cys (40 μ M) were mixed in DCE, and then the mixture was incubated at room temperature for 1 h. Emission spectra were measured in the range of 450 nm to 710 nm with an excitation wavelength at 402 nm, and the slit width is 10 nm/20 nm.

Figure 6. Fluorescence emission spectra ($\lambda_{ex} = 402 \text{ nm}$) of the control experiments containing 40 μ M **3bf** ($\lambda_{em} = 517 \text{ nm}$), Cys (40 μ M), **3bf** with Cys ($\lambda_{em} = 533 \text{ nm}$) in the DCE. Photographs of 1 mM of **3bf** (IV), 1 mM of **3bf** with 1 mM of Hg²⁺ (V) under 365 nm UV illumination

The results show that fluorescence enhancement occurs only when **3bf** and Cys are present at the same time (Figure 6). Bright yellow fluorescence could be observed with the naked eye via irradiation with an ultraviolet lamp at 365 nm. From λ_{em} data, slight red-shift effect was observed.

3.9 The emission spectra of 3ak with N₂H₄ in DCE

The stock solution of **3ak** (8 mM) and N_2H_4 (40 μ M) were prepared in DCE solvent. **3ak** (8 mM), N_2H_4 (40 μ M), **3ak** (40 μ M) with N_2H_4 (40 μ M) were mixed in DCE, respectively. Then, the mixture was incubated at room temperature for 1 h. Emission spectra were measured in the range of 461 nm to 721 nm with an excitation

wavelength at 421 nm, and the slit width is 10 nm/20 nm.

The results show that fluorescence enhancement occurs only when **3ak** and N₂H₄ are present (Figure 7). Bright yellow fluorescence could be observed with the naked eye via irradiation with an ultraviolet lamp at 365 nm when **3ak** (1 mM) and N₂H₄ (1 mM) were mixed at room temperature. From λ_{em} data, slight red-shift effect was observed.

Figure 7. Fluorescence emission spectra ($\lambda_{ex} = 421$ nm) of the control experiments containing 40 μ M 3ak ($\lambda_{em} = 530$ nm), N₂H₄ (40 μ M), 3ak with N₂H₄ ($\lambda_{em} = 576$ nm) in the DCE. Photographs of 1 mM of 3ak (I), 1 mM of 3ak with 1 mM of N₂H₄ (III) under 365 nm UV illumination

3.10 The correlation between emission wavelength and the R substituents Hammett constant (σ_p) in phenyl ring of the products (3ad (OMe), 3ac (Me), 3aa (H), 3ae (Cl), 3af (Br))

Figure 8. Structure-photophysical property relationship of fused-ring compounds. The compound order is **3ad** (OMe), **3ac** (Me), **3aa** (H), **3ae** (CI), **3af** (Br), and stock solution of the compound was prepared in DCE (120 μM). Correlation between emission wavelength and Hammett constant (σp) of R substituents in fused-ring compounds.

1. Y.-M. Lv, Modern. Agrochem., 2004, 3, 9.

- 2. A. R. Jacobson, S. Dousset, F. Andreux and P. C. Baveye, *Environ. Sci. Tec.*, **2007**, *41*, 6343.
- 3. Y. Wang, J. Li, Y. Gao, Y. Yang, Y. Gao and Z. Xu, *Hydrometallurgy.*, **2020**, *191*, 105220.

4. Mechanism

Fe(acac)₃: IR (KBr): 2995, 2961, 2919, 1520, 1363, 1274, 1189, 1023, 929, 801, 771, 665, 559, 433 cm⁻¹;

3a-A: IR (KBr): 3245, 3067, 2920, 2226, 1677, 1571, 1524, 1369, 1295, 1274, 1209, 1120, 1085, 1023, 926, 893, 855, 802, 770, 750, 749, 665, 559, 433 cm⁻¹;

3a: IR (KBr): 3244, 3067, 2944, 2226, 1676, 1595, 1394, 1294, 1209, 893, 807, 750, 702 cm⁻¹

¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 7.4 Hz, 1H), 7.46 (m, 3H), 7.43 – 7.39 (m, 3H), 7.32 (t, 1H), 7.18 (t, 1H), 7.03 (d, J = 7.6 Hz, 1H), 2.72 (s, 3H), 1.94 (s, 3H). ¹³C

NMR (100 MHz, CDCl₃) δ 196.6, 164.1, 136.9, 135.4, 134.9, 133.5, 131.1, 130.0, 129.2 – 128.7, 128.3, 127.4, 125.9, 123.8, 119.4, 31.1, 11.9.

5. Characterization data

2-acetyl-3-methyl-1-phenyl-5*H***-pyrrolo[2,1-***a***]isoindol-5-one (3aa): Following the general procedure, the reaction of** *N***-methoxy-2-(phenylethynyl)benzamide (50.2 mg, 0.2 mmol), acetylacetone (30.0 mg, 1.5 equiv), HOAc (20 mol%), Fe(OAc)₂ (24.6 mg, 50 mol%), and solvent (toluene:DCE, 1:1, v/v, 2 mL) at 80 °C for 6 h. The product was purified by flash chromatography (PE/EA = 15/1) to give 3aa** 51.2 mg (85% yield) as yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 7.5 Hz, 1H), 7.49 – 7.40 (m, 5H), 7.30 (t, 1H), 7.15 (t, 1H), 7.02 (d, *J* = 7.3 Hz, 1H), 2.70 (s, 3H), 1.94 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 196.5, 164.0, 136.9, 135.3, 134.9, 133.5, 131.1, 130.0, 129.2 – 128.7, 128.3, 127.4, 125.8, 123.8, 119.4, 31.1, 11.9; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₀H₁₆NO₂ 302.1204; Found: 302.1206

2-acetyl-3,8-dimethyl-1-phenyl-5H-pyrrolo[2,1-a]isoindol-5-one (3ab): Following the procedure, the reaction of general *N*-methoxy-4-methyl-2-(phenylethynyl)benzamide (53.0)0.2 mg, mmol), acetylacetone (30.0 mg, 1.5 equiv), HOAc (20 mol%), Fe(OAc)₂ (24.6 mg, 50 mol%), and solvent (toluene:DCE, 1:1, v/v, 2 mL) at 80 °C for 6 h. The product was purified by flash chromatography (PE/EA = 15/1) to give **3ab** 51.7 mg (82% yield) as yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.40 (m, 4H), 7.35 (d, J = 8.1 Hz, 2H), 7.13 (d, J = 7.8 Hz, 1H), 6.91 (d, J = 7.8 Hz, 1H), 2.69 (s, 3H), 2.32 (s, 3H), 1.99 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 196.0, 164.1, 138.0, 136.7, 135.6, 134.1,

132.4, 132.2, 131.3, 130.4, 129.0, 128.6, 126.5, 121.6, 119.2, 31.2, 21.2, 11.9; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₀H₁₈NO₂ 316.1328; Found: 316.1329

2-acetyl-3,7-dimethyl-1-phenyl-5H-pyrrolo[2,1-a]isoindol-5-one (3ac): Following the general procedure, the reaction of N-methoxy-5-methyl-2-(phenylethynyl)benzamide (53.0)0.2 mmol), mg, acetylacetone (30.0 mg, 1.5 equiv), HOAc (20 mol%), Fe(OAc)₂ (24.6 mg, 50 mol%), and solvent (toluene:DCE, 1:1, v/v, 2 mL) at 80 °C for 6 h. The product was purified by flash chromatography (PE/EA = 15/1) to give **3ac** 51.7 mg (89% yield) as yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.43 (m, 7H), 7.11 (d, J = 7.7 Hz, 1H), 6.92 (d, J = 7.7 Hz, 1H), 2.70 (s, 3H), 2.31 (s, 3H), 1.94 (s, 3H). ${}^{13}C{}^{1}H{NMR}$ (100 MHz, CDCl₃) § 196.6, 164., 137.7 136.6, 135.5, 133.6, 132.7, 131.4, 130.1, 129.1, 128.7, 128.2, 126.3, 123.0, 119.2, 31.1, 21.2, 11.9; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₁H₁₈NO₂ 316.1316; Found: 316.1317

2-acetyl-7-methoxy-3-methyl-1-phenyl-5*H***-pyrrolo[2,1-***a***]isoindol-5-one (3ad): Following the general procedure, the reaction of** *N***,5-dimethoxy-2-(phenylethynyl)benzamide (56.2 mg, 0.2 mmol), acetylacetone (30.0 mg, 1.5 equiv), HOAc (20 mol%), Fe(OAc)₂ (24.6 mg, 50 mol%), and solvent (toluene:DCE, 1:1, v/v, 2 mL) at 80 °C for 6 h. The product was purified by flash chromatography (PE/EA = 15/1) to give 3ad** 53.0 mg (80% yield) as yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 6.0 Hz, 2H), 7.42 – 7.38 (m, 4H), 7.19 (d, J = 2.4 Hz, 1H), 6.96 (d, J = 8.4 Hz, 1H), 6.85 (m, 1H), 3.80 (s, 3H), 2.69 (s, 3H), 1.95 (s, 3H).¹³C{¹H}NMR (100 MHz, CDCl₃) δ 196.6, 164.0, 159.5, 136.6, 133.7, 132.7, 130.2, 129.1, 128.7, 128.1, 122.2, 121.3, 120.5, 110.2, 55.7, 31.0, 11.9 ; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₁H₁₈NO₃ 332.1310; Found: 332.1311

2-acetyl-7-chloro-3-methyl-1-phenyl-5*H*-pyrrolo[2,1-*a*]isoindol-5-one (3ae): Following the general procedure, the reaction of 5-chloro-N-methoxy-2-(phenylethynyl)benzamide (57.0 mg, 0.2 mmol), acetylacetone (30.0 mg, 1.5 equiv), HOAc (20 mol%), Fe(OAc)₂ (24.6 mg, 50 mol%), and solvent (toluene:DCE, 1:1, v/v, 2 mL) at 80 °C for 6 h. The product was purified by flash chromatography (PE/EA = 15/1) to give **3ae** 52.3 mg (78% yield) as yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 1.7 Hz, 1H), 7.49 – 7.45 (m, 3H), 7.42 – 7.39 (m, 2H), 7.30 - 7.27 (m, 1H), 6.96 (d, J = 8.1 Hz, 1H), 2.71 (s, 3H), 1.95 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 196.4, 162.8, 137.2, 134.7, 133.5, 133.1, 132.7, 129.1, 128.5, 126.0, 124.4, 120.3, 31.1, 11.9; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₀H₁₅ClNO₂ 336.0833; Found: 336.0832

2-acetyl-7-bromo-3-methyl-1-phenyl-5 <i>H</i> -pyrrolo[2,1- <i>a</i>]isoindol-5-one							
Following	the	general	procedure,	the	reaction	of	

5-bromo-*N*-methoxy-2-(phenylethynyl)benzamide (65.8 mg, 0.2 mmol), acetylacetone (30.0 mg, 1.5 equiv), HOAc (20 mol%), Fe(OAc)₂ (24.6 mg, 50 mol%), and solvent (toluene:DCE, 1:1, v/v, 2 mL) at 80 °C for 6 h. The product was purified by flash chromatography (PE/EA = 15/1) to give **3af** 60.6 mg (80% yield) as yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.78 (s, 1H), 7.48 – 7.43 (m, 3H), 7.40 (d, *J* = 7.1 Hz, 3H), 6.90 (d, *J* = 8.1 Hz, 1H), 2.71 (s, 3H), 1.95 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 196.5, 162.6, 137.6, 137.1, 134.0, 133.1, 132.8, 130.2, 129.2, 128.9, 128.5, 124.5, 120.9, 120.6, 31.1, 12.0; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₀H₁₅BrNO₂ 380.0316; Found: 380.0317

2-acetyl-3-methyl-1-phenyl-7-(trifluoromethyl)-5H-pyrrolo[2,1-a]isoindol-5-one Following procedure, reaction of (3ag): the general the N-methoxy-2-(phenylethynyl)-5-(trifluoromethyl)benzamide (63.8 mg, 0.2 mmol), Acetylacetone (30.0 mg, 1.5 equiv), HOAc (20 mol%), Fe(OAc)₂ (24.6 mg, 50 mol%), and solvent (toluene:DCE, 1:1, v/v, 2 mL) at 80 °C for 6 h. The product was purified by flash chromatography (PE/EA = 25/1) to give **3ag** 51.7 mg (70% yield) as yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.93 (s, 1H), 7.58 (d, J = 7.9 Hz, 1H), 7.52 – 7.47 (m, 3H), 7.44 - 7.39 (m, 2H), 7.12 (d, J = 7.9 Hz, 1H), 2.75 (s, 3H), 1.97 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.4, 162.7, 138.2, 137.9, 132.9, 131.9, 131.5, 129.4, 128.9, 125.9, 122.9, 119.5, 31.1, 12.0.¹⁹F NMR (376 MHz, CDCl₃) δ -62.8; HRMS $(ESI-TOF) m/z: [M + H]^+ Calcd for C_{21}H_{15}F_3NO_2 370.0871; Found: 370.0871$

2-acetyl-3-methyl-7-nitro-1-phenyl-5H-pyrrolo[2,1-a]isoindol-5-one (3ah): Following the procedure, of general the reaction N-methoxy-5-nitro-2-(phenylethynyl)benzamide (59.2 mg, 0.2 mmol), Acetylacetone (30.0 mg, 1.5 equiv), HOAc (20 mol%), Fe(OAc)₂ (24.6 mg, 50 mol%), and solvent (toluene:DCE, 1:1, v/v, 2 mL) at 80 °C for 6 h. The product was purified by flash chromatography (PE/EA = 15/1) to give **3ah** 51.2 mg (74% yield) as yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.2 Hz, 1H), 7.85 (d, *J* = 8.2 Hz, 1H), 7.80 (d, J = 1.8 Hz, 1H), 7.52 (m, 3H), 7.45 – 7.41 (m, 2H), 2.74 (s, 3H), 1.97 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 196.4, 152.3, 137.8, 136.4, 135.7, 132.3, 129.8, 129.2, 128.8, 126.6, 122.4, 114.1, 105.0, 31.1, 12.0. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₀H₁₅N₂O₄ 347.0854; Found: 347.0854

2-acetyl-1-(4-chlorophenyl)-3,7-dimethyl-5*H***-pyrrolo[2,1-***a***]isoindol-5-one (3ai): Following the general procedure, the reaction of 2-((4-chlorophenyl)ethynyl)-***N***-methoxy-5-methylbenzamide (59.8 mg, 0.2 mmol), acetylacetone (30.0 mg, 1.5 equiv), HOAc (20 mol%), Fe(OAc)₂ (24.6 mg, 50 mol%), and solvent (toluene:DCE, 1:1, v/v, 2 mL) at 80 °C for 6 h. The product was purified by flash chromatography (PE/EA = 15/1) to give 3ai** 55.2 mg (79% yield) as yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 7.7 Hz, 1H), 7.47 (d, *J* = 6.7 Hz, 2H), 7.42 (d, J = 7.6 Hz, 3H), 6.98 (d, J = 7.7 Hz, 1H), 2.72 (s, 3H), 2.26 (s, 3H), 1.94 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 196.6, 164.1, 146.2, 136.9, 135.7, 133.6, 129.8, 129.1, 128.8, 128.6, 128.2, 125.8, 123.6, 120.0, 31.1, 22.2, 11.9; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₁H₁₇ClNO₂ 350.0965; Found: 350.0966

2-acetyl-3-methyl-1-phenyl-5*H*-benzo[*f*]pyrrolo[2,1-*a*]isoindol-5-one (3aj): Following the procedure, the reaction of general N-methoxy-3-(phenylethynyl)-2-naphthamide (60.2 mg, 0.2 mmol), acetylacetone (30.0 mg, 1.5 equiv), HOAc (20 mol%), Fe(OAc)₂ (24.6 mg, 50 mol%), and solvent (toluene:DCE, 1:1, v/v, 2 mL) at 80 °C for 6 h. The product was purified by flash chromatography (PE/EA = 15/1) to give **3aj** 43.5 mg (62% yield) as yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (m, 3H), 7.61 (d, *J* = 8.3 Hz, 1H), 7.53 (d, *J* = 6.8 Hz, 4H), 7.45 (d, *J* = 6.4 Hz, 2H), 7.37 (t, 1H), 6.93 (t, 1H), 6.62 (d, *J* = 8.6 Hz, 1H), 2.79 (s, 3H), 1.83 (s, 3H).¹³C{¹H}NMR (100 MHz, CDCl₃) δ 196.1, 164.7, 138.3, 137.6, 136.0, 135.5, 131.1, 130.5, 129.4, 129.0 - 128.5, 128.3, 128.1, 127.8, 127.1, 126.9,125.8, 125.6, 120.57, 31.2, 12.3; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₄H₁₈NO₂ 352.1355; Found: 352.1356

5-acetyl-6-methyl-4-phenyl-8*H***-thieno[3,2-***a***]pyrrolizin-8-one (3ak):** Following the general procedure, the reaction of -S20-

N-methoxy-3-(phenylethynyl)thiophene-2-carboxamide (51.4 mg, 0.2 mmol), acetylacetone (30.0 mg, 1.5 equiv), HOAc (20 mol%), Fe(OAc)₂ (24.6 mg, 50 mol%), and solvent (toluene:DCE, 1:1, v/v, 2 mL) at 80 °C for 6 h. The product was purified by flash chromatography (PE/EA = 15/1) to give **3ak** 38.1 mg (62% yield) as yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 4.7 Hz, 1H), 7.41 (m, 5H), 6.77 (d, *J* = 4.7 Hz, 1H), 2.67 (s, 3H), 2.01 (s, 3H).¹³C{¹H}NMR (100 MHz, CDCl₃) δ 196.4, 158.8, 147.8, 140.1, 139.6, 133.3, 130.3, 128.7, 128.3, 127.4, 126.8, 123.3, 119.0, 31.0, 12.0; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₈H₁₄NO₂S 308.0743; Found: 308.0744

2-acetyl-1-(2-chlorophenyl)-3-methyl-5H-pyrrolo[2,1-a]isoindol-5-one (3al): Following the procedure, the reaction of general 0.2 2-((2-chlorophenyl)ethynyl)-*N*-methoxybenzamide (57.0)mg, mmol), acetylacetone (30.0 mg, 1.5 equiv), HOAc (20 mol%), Fe(OAc)₂ (24.6 mg, 50 mol%), and solvent (toluene:DCE, 1:1, v/v, 2 mL) at 80 °C for 6 h. The product was purified by flash chromatography (PE/EA = 15/1) to give **3al** 57.0 mg (85% yield) as yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 7.5 Hz, 1H), 7.55 – 7.51 (m, 1H), 7.44 (d, J = 3.0 Hz, 1H), 7.40 – 7.37 (m, 2H), 7.32 (t, 1H), 7.19 (t, 1H), 6.77 (d, J =7.6 Hz, 1H), 2.78 (s, 3H), 1.96 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 195.6, 164.1, 137.2, 135.0, 134.1, 132.8, 131.2, 130.8, 130.0, 128.6, 127.6, 127.2, 125.9, 120.1, 119.7, 30.1, 12.2; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₀H₁₅ClNO₂ 336.0831; Found: 336.0830

2-acetyl-1-(3-fluorophenyl)-3-methyl-5H-pyrrolo[2,1-a]isoindol-5-one (3am): Following the procedure, of general the reaction 2-((3-fluorophenyl)ethynyl)-N-methoxybenzamide (52.3)mg, 0.2 mmol), acetylacetone (30.0 mg, 1.5 equiv), HOAc (20 mol%), Fe(OAc)₂ (24.6 mg, 50 mol%), and solvent (toluene:DCE, 1:1, v/v, 2 mL) at 80 °C for 6 h. The product was purified by flash chromatography (PE/EA = 15/1) to give **3am** 31.9 mg (82% yield) as yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 7.3 Hz, 1H), 7.45 (m, 1H), 7.35 (t, 1H), 7.16 (m, 5H), 7.03 (d, J = 7.4 Hz, 1H), 2.72 (s, 3H), 1.99 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 196.0, 164.0, 161.6, 137.0, 135.8, 135.0, 131.1, 130.4, 128.7, 127.7, 126.0, 125.0, 122.3, 119.4, 116.3, 116.1, 115.4, 115.2, 31.0, 11.9; ¹⁹F NMR $(376 \text{ MHz}, \text{CDCl}_3) \delta$ -150.8; HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₂₀H₁₅FNO₂ 320.1123; Found: 320.1122

2-acetyl-1-(4-chlorophenyl)-3-methyl-5H-pyrrolo[2,1-a]isoindol-5-one (3an): Following of the general procedure, the reaction 2-((4-chlorophenyl)ethynyl)-N-methoxybenzamide (57.0)0.2 mg, mmol), acetylacetone (30.0 mg, 1.5 equiv), HOAc (20 mol%), Fe(OAc)₂ (24.6 mg, 50 mol%), and solvent (toluene:DCE, 1:1, v/v, 2 mL) at 80 °C for 6 h. The product was purified by flash chromatography (PE/EA = 15/1) to give **3an** 50.3 mg (75% yield) as yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 7.5 Hz, 1H), 7.46 (d, *J* = 8.1 Hz, 2H), 7.36 (m, 3H), 7.20 (t, 1H), 7.02 (d, J = 7.6 Hz, 1H), 2.73 (s, 3H), 2.00 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 196.0, 137.0, 135.0, 134.3, 132.0, 131.1, 130.5, 130.2, 129.0, 128.7, 127.6, 126.0, 122.4, 119.4, 31.2, 12.0; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₀H₁₅ClNO₂ 336.0832; Found: 336.0830

2-acetyl-3-methyl-1-(*p*-tolyl)-5*H*-pyrrolo[2,1-*a*]isoindol-5-one (3ao): Following the general procedure, the reaction of *N*-methoxy-2-(*p*-tolylethynyl)benzamide (53.0 mg, 0.2 mmol), acetylacetone (30.0 mg, 1.5 equiv), HOAc (20 mol%), Fe(OAc)₂ (24.6 mg, 50 mol%), and solvent (toluene:DCE, 1:1, v/v, 2 mL) at 80 °C for 6 h. The product was purified by flash chromatography (PE/EA = 15/1) to give **3ao** 501.7 mg (82% yield) as yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 7.5 Hz, 1H), 7.35 – 7.27 (m, 6H), 7.19 – 7.15 (m, 1H), 7.06 (d, *J* = 7.6 Hz, 1H), 2.71 (s, 3H), 2.43 (s, 3H), 1.96 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 196.8, 164.1, 138.2, 136.8, 135.4, 134.8, 131.1, 130.4, 129.8, 129.5, 129.0, 127.3, 125.7, 124.0, 119.4, 31.1, 21.4, 11.9; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₁H₁₈NO₂ 316.1362; Found: 316.1360

2-acetyl-1-(4-methoxyphenyl)-3-methyl-5*H***-pyrrolo[2,1-***a***]isoindol-5-one (3ap): Following the general procedure, the reaction of** *N***-methoxy-2-((4-methoxyphenyl)ethynyl)benzamide (56.2 mg, 0.2 mmol), acetylacetone (30.0 mg, 1.5 equiv), HOAc (20 mol%), Fe(OAc)₂ (24.6 mg, 50 mol%),** and solvent (toluene:DCE, 1:1, v/v, 2 mL) at 80 °C for 6 h. The product was purified by flash chromatography (PE/EA = 15/1) to give **3ap** 51.7 mg (78% yield) as yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 7.5 Hz, 1H), 7.35 – 7.30 (m, 4H), 7.16 (t, 1H), 7.05 (d, *J* = 7.6 Hz, 1H), 7.00 (d, *J* = 8.7 Hz, 2H), 3.87 (s, 3H), 2.71 (s, 3H), 1.97 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 196.7, 164.10, 159.6, 136.8, 135.4, 134.9, 131.1, 130.3, 129.8, 129.0, 127.2, 125.8, 125.5, 123.7, 119.3, 114.2, 55.3, 31.1, 11.9; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₁H₁₈NO₃ 332.1312; Found: 332.1311

1-([1,1'-biphenyl]-4-yl)-2-acetyl-3-methyl-5*H*-pyrrolo[2,1-*a*]isoindol-5-one (3aq): Following the procedure, reaction of general the 2-([1,1'-biphenyl]-4-ylethynyl)-*N*-methoxybenzamide (65.4 0.2 mg, mmol), acetylacetone (30.0 mg, 1.5 equiv), HOAc (20 mol%), Fe(OAc)₂ (24.6 mg, 50 mol%), and solvent (toluene:DCE, 1:1, v/v, 2 mL) at 80 °C for 6 h. The product was purified by flash chromatography (PE/EA = 15/1) to give **3aq** 58.8 mg (78% yield) as yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 8.3 Hz, 2H), 7.68 (d, J = 7.8 Hz, 2H), 7.51 (d, J = 7.6 Hz, 2H), 7.47 (d, J = 7.2 Hz, 2H), 7.40 – 7.33 (m, 3H), 7.20 (t, 1H), 7.15 (d, J = 7.5 Hz, 1H), 2.75 (s, 3H), 2.04 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 196.6, 164.1, 141.0, 140.0, 136.9, 135.3, 134.9, 132.4, 131.2, 130.1, 129.6, 129.0, 127.7, 127.4, 127.0, 125.9, 123.5, 119.5, 31.2, 12.0; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₆H₂₀NO₂ 378.1520; Found: 378.1520

2-acetyl-3-methyl-1-(2-(phenylethynyl)phenyl)-5H-pyrrolo[2,1-a]isoindol-5-one

(3ar): Following the general procedure, the reaction of *N*-methoxy-2-((2-(phenylethynyl)phenyl)ethynyl)benzamide (70.2 mg, 0.2 mmol), acetylacetone (30.0 mg, 1.5 equiv), HOAc (20 mol%), Fe(OAc)₂ (24.6 mg, 50 mol%), and solvent (toluene:DCE, 1:1, v/v, 2 mL) at 80 °C for 6 h. The product was purified by flash chromatography (PE/EA = 15/1) to give **3ar** 72.2 mg (90% yield) as yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 6.7 Hz, 2H), 7.49 (s, 1H), 7.47 – 7.43 (m, 2H), 7.33 (t, 1H), 7.24 (s, 5H), 7.18 (t, 1H), 6.98 (d, J = 7.5 Hz, 1H), 2.80 (s, 3H), 2.01 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 196.1, 164.3, 136.7, 135.9, 135.3, 134.9, 132.7, 131.4, 131.2, 130.7, 129.7, 129.2, 128.4, 127.4, 125.8, 123.6, 122.7, 122.1, 120.0, 93.9, 87.9, 30.4, 12.1; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₈H₂₀NO₂ 402.1518; Found: 402.1519

2-acetyl-3-methyl-1-(naphthalen-2-yl)-5*H***-pyrrolo[2,1-***a***]isoindol-5-one (3as): Following the general procedure, the reaction of** *N***-methoxy-2-(naphthalen-2-ylethynyl)benzamide (60.2 mg, 0.2 mmol), acetylacetone (30.0 mg, 1.5 equiv), HOAc (20 mol%), Fe(OAc)₂ (24.6 mg, 50 mol%), and solvent (toluene:DCE, 1:1, v/v, 2 mL) at 80 °C for 6 h. The product was purified by flash chromatography (PE/EA = 15/1) to give 3as** 58.3 mg (83% yield) as yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 5.3 Hz, 2H), 7.88 (d, J = 7.8 Hz, 1H), 7.69 (d, J = 6.8 Hz, 1H), 7.54 (m, 3H), 7.47 (d, J = 6.7 Hz, 1H), 7.19 – 7.12 (m, 2H), 6.47 (d, J = 6.4 Hz, 1H), 2.87 – 2.85 (s, 3H), 1.66 – 1.64 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 196.3, 164.2, 137.7, 135.2, 134.9, 133.7, 132.2, 131.1, 128.9, 128.5, 127.4, 127.0, 126.4, 125.8, 125.5, 121.2, 119.8, 105.1 – 104.9, 30.2, 12.3; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₄H₁₈NO₂ 352.1362; Found: 352.1361

2-acetyl-3-methyl-1-(thiophen-2-yl)-5H-pyrrolo[2,1-a]isoindol-5-one (3at): Following the procedure, of general the reaction N-methoxy-2-(thiophen-2-ylethynyl)benzamide (51.4 mg, 0.2 mmol), acetylacetone (30.0 mg, 1.5 equiv), HOAc (20 mol%), Fe(OAc)₂ (24.6 mg, 50 mol%), and solvent (toluene:DCE, 1:1, v/v, 2 mL) at 80 °C for 6 h. The product was purified by flash chromatography (PE/EA = 15/1) to give **3at** 47.9 mg (78% yield) as yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 7.5 Hz, 1H), 7.46 – 7.43 (m, 1H), 7.37 (t, 1H), 7.19 (m, 2H), 7.16 – 7.11 (m, 2H), 2.72 (s, 3H), 2.06 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) & 196.3, 163.9, 136.9, 135.0, 133.6, 131.5, 131.0, 129.3, 128.3, 127.7, 126.8, 125.9, 119.9, 115.5, 77.3, 77.0, 76.7, 30.6, 12.0; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₈H₁₄NO₂S 308.0767; Found: 308.0767

2-acetyl-1-cyclopropyl-3-methyl-5*H*-pyrrolo[2,1-*a*]isoindol-5-one (**3au**): procedure, Following general the the reaction of 2-(cyclopropylethynyl)-N-methoxybenzamide (43.0 mg, 0.2 mmol), acetylacetone (30.0 mg, 1.5 equiv), HOAc (20 mol%), Fe(OAc)₂ (24.6 mg, 50 mol%), and solvent (toluene:DCE, 1:1, v/v, 2 mL) at 80 °C for 6 h. The product was purified by flash chromatography (PE/EA = 15/1) to give **3au** 36.6 mg (69% yield) as yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 7.4 Hz, 1H), 7.67 (d, J = 7.4 Hz, 1H), 7.52 (t, 1H), 7.21 (t, 1H), 2.69 (s, 3H), 2.58 (s, 3H), 1.90 – 1.84 (m, 1H), 1.08 (m, 2H), 0.66 (m, 2H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 196.3, 164.2, 137.1, 135.2, 134.8, 131.4, 131.2, 129.8, 126.9, 125.6, 121.3, 31.3, 12.2, 8.4, 7.8; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₇H₁₈NO₂ 266.1208; Found: 266.1207

2-acetyl-3-methyl-5*H***-pyrrolo[2,1-***a***]isoindol-5-one (3av): Following the general procedure, the reaction of** *N***-methoxy-2-((trimethylsilyl)ethynyl)benzamide (49.4 mg, 0.2 mmol), acetylacetone (30.0 mg, 1.5 equiv), HOAc (20 mol%), Fe(OAc)₂ (24.6 mg, 50 mol%), and solvent (toluene:DCE, 1:1, v/v, 2 mL) at 80 °C for 6 h. The product was purified by flash chromatography (PE/EA = 15/1) to give 3av** 31.5 mg (70% yield) as yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 7.5 Hz, 1H), 7.49 (t, 1H), 7.32 (d, *J* = 7.5 Hz, 1H), 7.26 – 7.21 (m, 1H), 6.51 (s, 1H), 2.77 (s, 3H), 2.40 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 194.6, 163.9 – 163.7, 137.4, 135.4, 135.1, 132.8, 131.1, 127.9, 127.5, 125.9, 119.7, 106.9, 29.2, 12.0; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₄H₁₂NO₂ 226.0890; Found: 226.0891

2-acetyl-1-butyl-3-methyl-5*H***-pyrrolo[2,1-***a***]isoindol-5-one (3aw): Following the general procedure, the reaction of 2-(hex-1-yn-1-yl)-***N***-methoxybenzamide (46.2 mg, 0.2 mmol), acetylacetone (30.0 mg, 1.5 equiv), HOAc (20 mol%), Fe(OAc)₂ (24.6 mg, 50 mol%), and solvent (toluene:DCE, 1:1, v/v, 2 mL) at 80 °C for 6 h. The product was purified by flash chromatography (PE/EA = 15/1) to give 3aw** 40.5 mg (72% yield) as yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 7.6 Hz, 1H), 7.47 (t, 1H), 7.35 (d, *J* = 7.5 Hz, 1H), 7.18 (t, 1H), 2.80 (t, 2H), 2.73 (s, 3H), 2.43 (s, 3H), 1.57 – 1.52 (m, 2H), 1.41 (m, 2H), 0.93 (t, 3H).¹³C{¹H}NMR (100 MHz, CDCl₃) δ 195.2, 164.3, 137.1, 135.7, 134.9, 131.2, 130.0, 128.8, 126.7, 125.8, 119.6, 32.7, 31.3, 25.9, 22.8, 14.0, 12.7; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₈H₂₀NO₂ 282.1512; Found: 282.1513

2-acetyl-3-methyl-1-(3-phenylpropyl)-5*H***-pyrrolo[2,1-***a***]isoindol-5-one (3ax): Following the general procedure, the reaction of** *N***-methoxy-2-(5-phenylpent-1-yn-1-yl)benzamide (58.6 mg, 0.2 mmol), acetylacetone (30.0 mg, 1.5 equiv), HOAc (20 mol%), Fe(OAc)₂ (24.6 mg, 50 mol%), and solvent (toluene:DCE, 1:1, v/v, 2 mL) at 80 °C for 6 h. The product was purified by flash chromatography (PE/EA = 15/1) to give 3ax** 49.4 mg (72% yield) as yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 7.1 Hz, 1H), 7.37 (t, 1H), 7.29 (d, *J* = 7.4 Hz, 1H), 7.25 (s, 1H), 7.21 – 7.15 (m, 4H), 6.92 (d, *J* = 7.2 Hz, 1H), 2.84 – 2.79 (m, 2H), 2.72 (m, 5H), 2.42 (s, 3H), 1.95 - 1.90 (m, 2H). ${}^{13}C{}^{1}H{NMR}$ (100 MHz, CDCl₃) δ 195.2, 164.4, 142.0, 137.1, 135.5, 135.0, 131.1, 128.7, 128.3, 126.7, 125.8, 125.3, 119.7, 35.7, 31.9, 31.3, 25.4, 12.7; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₃H₂₂NO₂ 344.1672; Found: 344.1673

N-((2-acetyl-3-methyl-5-oxo-5*H*-pyrrolo[2,1-*a*]isoindol-1-yl)methyl)-4-methyl-*N*-phenylbenzenesulfonamide (3ay): Following the general procedure, the reaction of *N*-methoxy-2-(3-((4-methyl-*N*-phenylphenyl)sulfonamido)prop-1-yn-1-yl)benzamide (86.8 mg, 0.2 mmol), acetylacetone (30.0 mg, 1.5 equiv), HOAc (20 mol%), Fe(OAc)₂ (24.6 mg, 50 mol%), and solvent (toluene:DCE, 1:1, v/v, 2 mL) at 80 °C for 6 h. The product was purified by flash chromatography (PE/EA = 15/1) to give **3ay** 79.4 mg (82% yield) as yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.08 – 8.05 (d, 1H), 7.68 – 7.63 (m, 2H), 7.45 (d, *J* = 4.8 Hz, 2H), 7.27 (d, *J* = 5.9 Hz, 3H), 7.11 (d, *J* = 7.7 Hz, 3H), 6.88 (d, *J* = 5.8 Hz, 2H), 5.09 (s, 2H), 2.58 (s, 3H), 2.44 (s, 3H), 2.22 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 195.8, 143.8, 138.6, 135.8, 135.5, 134.6, 133.7, 130.7, 129.5, 128.4, 128.0, 127.7, 125.6, 122.7, 118.2, 43.8, 31.2, 21.6, 12.5; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₈H₂₅N₂O4S 485.1552; Found: 485.1551

2-acetyl-3-methyl-1-((((8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16, 17-decahydro-6*H*-cyclopenta[*a*]phenanthren-3-yl)oxy)methyl)-5*H*-pyrrolo[2,1-*a*]i Following the general procedure, the reaction of soindol-5-one (3az): *N*-methoxy-2-(3-(((8*R*,9*S*,13*S*,14*S*)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-dec ahydro-6*H*-cyclopenta[*a*]phenanthren-3-yl)oxy)prop-1-yn-1-yl)benzamide (91.4 mg, 0.2 mmol), acetylacetone (30.0 mg, 1.5 equiv), HOAc (20 mol%), Fe(OAc)₂ (24.6 mg, 50 mol%), and solvent (toluene:DCE, 1:1, v/v, 2 mL) at 80 °C for 6 h. The product was purified by flash chromatography (PE/EA = 15/1) to give **3az**62.9 mg (62% yield) as yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 7.5 Hz, 1H), 7.35 (m, 2H), 7.19 (m, 2H), 7.14 (t, 2H), 2.97 – 2.93 (m, 2H), 2.70 (s, 3H), 2.58 – 2.41 (m, 3H), 2.36 (d, J = 10.5 Hz, 1H), 2.21 – 2.05 (m, 4H), 2.00 (s, 3H), 1.66 (m, 3H), 1.60 – 1.53 (m, 3H), 0.95 (s, 3H). ${}^{13}C{}^{1}H{}NMR$ (100 MHz, CDCl₃) δ 220.67, 196.88, 164.09, 139.90, 136.76, 135.46, 134.82, 131.14, 130.63, 129.75, 129.47, 129.06, 127.28, 126.37, 125.84, 125.64, 124.01, 119.45, 50.53, 47.95, 44.42, 37.99, 35.82, 31.68 -31.10, 29.30, 26.44, 25.63, 21.58, 13.88, 11.88; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₃H₃₄NO₄ 508.2509; Found: 508.2508

2-acetyl-1-((((3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan -2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenan thren-3-yl)oxy)methyl)-3-methyl-5H-pyrrolo[2,1-a]isoindol-5-one (3ba): Following the general procedure, the reaction of 2-(3-(((3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2,3, 4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[a]phenanthren-3-yl)ox y)prop-1-yn-1-yl)-N-methoxybenzamide (114.7 mg, 0.2 mmol), acetylacetone (30.0 mg, 1.5 equiv), HOAc (20 mol%), Fe(OAc)₂ (24.6 mg, 50 mol%), and solvent (toluene:DCE, 1:1, v/v, 2 mL) at 80 °C for 6 h. The product was purified by flash chromatography (PE/EA = 15/1) to give **3ba** 106.0 mg (85% yield) as yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, J = 7.6 Hz, 1H), 7.66 (d, J = 7.5 Hz, 1H), 7.49 (t, 1H), 7.21 (t, 1H), 5.36 (s, 1H), 4.78 (s, 1H), 3.37 (s, 1H), 2.76 (s, 3H), 2.46 (s, 3H), 2.31 (t, 1H), 2.00 (m, 3H), 1.92 - 1.76 (m, 3H), 1.66 (s, 1H), 1.50 (m, 8H), 1.32 (s, 3H), 1.26 (d, J = 12.2 Hz, 3H), 1.10 (m, 7H), 1.01 (s, 5H), 0.90 (d, J = 6.0 Hz, 3H), 0.86 (d, J = 6.4 Hz, 5H), 0.67 (s, 2H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 195.2, 164.6, 140.6, 137.0, 135.7, 134.9, 131.0, 128.1, 127.1, 125.5, 122.7, 121.9, 79.5, 63.4, 56.7, 56.1, 50.1, 42.3, 39.7, 39.5, 39.0, 37.2, 36.9, 36.2, 35.8, 31.9, 31.1, 30.2, 29.7, 28.3, 28.0, 24.3, 23.8, 22.8, 22.6, 21.1, 19.4, 18.7, 12.6, 11.9; HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₄₂H₅₈NO₃ 624.4432; Found: 624.4431

6-acetyl-5-methyl-7-phenyl-1,2-dihydro-3*H***-pyrrolizin-3-one (3bb):** Following the general procedure, the reaction of *N*-methoxy-5-phenylpent-4-ynamide (40.6 mg, 0.2 mmol), acetylacetone (30.0 mg, 1.5 equiv), HOAc (20 mol%), Fe(OAc)₂ (24.6 mg, 50 mol%), and solvent (toluene:DCE, 1:1, v/v, 2 mL) at 80 °C for 6 h. The product was purified by flash chromatography (PE/EA = 15/1) to give 3bb 35.4 mg (70% yield) as yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.39 (t, 2H), 7.32 (d, *J* = 7.1 Hz, 1H), 7.26 (d, *J* = 7.1 Hz, 2H), 3.02 (t, 2H), 2.99 (t, 2H), 2.68 (s, 3H), 2.03 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 198.3, 173.6, 134.9, 134.1, 129.3, 128.7, 127.1, 119.0, 34.8, 31.3, 18.2, 11.1; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₆H₁₆NO₂ 254.1209; Found: 254.1208

6-acetyl-5-methyl-7-(*o*-tolyl)-1,2-dihydro-3*H*-pyrrolizin-3-one (3bc): Following the general procedure, the reaction of *N*-methoxy-5-(o-tolyl)pent-4-ynamide (43.4 mg, 0.2 mmol), acetylacetone (30.0 mg, 1.5 equiv), HOAc (20 mol%), Fe(OAc)₂ (24.6 mg, 50 mol%), and solvent (toluene:DCE, 1:1, v/v, 2 mL) at 80 °C for 6 h. The product was purified by flash chromatography (PE/EA = 15/1) to give **3bc** 37.9 mg (71% yield) as yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.27 – 7.25 (m, 2H), 7.20 (dd, *J* = 8.0, 3.4 Hz, 1H), 7.15 (d, *J* = 7.2 Hz, 1H), 3.03 (t, 2H), 2.83 (t, 2H), 2.75 (s, 3H), 2.17 (s, 3H), 1.83 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 197.6, 173.8, 137.0,

134.7, 133.9, 130.2, 129.8, 127.9, 126.0, 118.2, 105.0, 34.9, 30.5, 20.1, 18.0, 11.5; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₇H₁₈NO₂ 278.1360; Found: 278.1361

2-acetyl-3,6-dimethyl-1-phenylpyrrolo[1,2-c]quinazolin-5(6H)-one (**3bd**): Following general procedure, reaction the the of 3-methoxy-1-methyl-1-(2-(phenylethynyl)phenyl)urea 0.2 (56.0 mg, mmol), acetylacetone (30.0 mg, 1.5 equiv), HOAc (20 mol%), Fe(OAc)₂ (24.6 mg, 50 mol%), and THF (2 mL) at 80 °C for 6 h. The product was purified by flash chromatography (PE/EA = 3/1) to give **3bd** 42.9 mg (65% yield) as yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 7.2 Hz, 3H), 7.40 – 7.37 (m, 2H), 7.22 (d, J = 7.2 Hz, 1H), 7.14 (d, J = 8.3 Hz, 1H), 7.10 (d, J = 8.1 Hz, 1H), 6.84 (t, 1H), 3.66 (s, 3H), 3.01 (s, 3H),1.86 (s, 3H). ${}^{13}C{}^{1}H{NMR}$ (100 MHz, CDCl₃) δ 198.8, 148.2, 135.8, 134.7, 133.8, 130.4, 129.3, 128.4, 128.2, 127.4, 123.5, 122.9, 120.2, 116.4, 114.07, 31.8, 30.8, 14.3; HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₂₁H₁₉N₂O₂ 331.1468; Found: 331.1467

2-benzoyl-3-methyl-1-phenyl-5*H***-pyrrolo**[**2**,**1**-*a*]**isoindol-5-one** (**3be**)**:** Following the general procedure, the reaction of *N*-methoxy-2-(phenylethynyl)benzamide (50.2 mg, 0.2 mmol), 1-phenyl-1,3-butanedione (123.9 mg, 1.5 equiv), HOAc (20 mol%), Fe(OAc)₂ (24.6 mg, 50 mol%), and solvent (toluene:DCE, 1:1, v/v, 2 mL) at 80 °C for 6 h. The product was purified by flash chromatography (PE/EA = 15/1) to give **3be**

42.1 mg (58% yield) as yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 7.2 Hz, 3H), 7.37 (s, 3H), 7.29 (d, *J* = 6.7 Hz, 2H), 7.25 – 7.19 (m, 6H), 2.52 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 192.5, 164.0, 138.4, 135.6, 134.9, 132.6, 131.3, 129.5, 128.7, 128.3, 128.1, 127.6, 127.0, 125.9, 125.0, 119.6, 11.9; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₅H₁₈NO₂ 364.1360; Found: 364.1361

2-acetyl-1-phenyl-3-(trifluoromethyl)-5H-pyrrolo[2,1-a]isoindol-5-one (3bf): Following the general procedure, the reaction of *N*-methoxy-2-(phenylethynyl)benzamide (50.2)0.2 mmol), mg, 1,1,1-trifluoro-2,4-pentanedione (46.2 mg, 1.5 equiv), HOAc (20 mol%), Fe(OAc)₂ (24.6 mg, 50 mol%), and (toluene:DCE, 1:1, v/v, 2 mL) at 80 °C for 6 h. The product was purified by flash chromatography (PE/EA = 15/1) to give **3bf** 44.0 mg (62% yield) ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 7.8 Hz, 1H), 7.45 (m, as vellow solid: 6H), 7.33 – 7.29 (m, 2H), 2.21 (s, 3H). ${}^{13}C{}^{1}H{NMR}$ (100 MHz, CDCl₃) δ 197.6, 161.0, 135.2, 134.4, 133.8, 130.6, 129.4 – 128.8, 128.6, 126.7, 121.4, 120.6, 32.2. ¹⁹F NMR (376 MHz, cdcl₃) δ -59.4; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₀H₁₃F₃NO₂ 356.0919; Found: 356.0919

2-benzoyl-1,3-diphenyl-5*H***-pyrrolo[2,1-***a***]isoindol-5-one (3bg): Following the general procedure, the reaction of** *N***-methoxy-2-(phenylethynyl)benzamide (50.2 mg, 0.2 mmol), dibenzoylmethane (67.3 mg, 1.5 equiv), HOAc (20 mol%), Fe(OAc)₂**

(24.6 mg, 50 mol%), and (toluene:DCE, 1:1, v/v, 2 mL) at 80 °C for 6 h. The product was purified by flash chromatography (PE/EA = 15/1) to give **3bg** 38.2 mg (45% yield) as yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 7.1 Hz, 2H), 7.55 (s, 2H), 7.43 (d, *J* = 6.7 Hz, 2H), 7.38 (s, 2H), 7.30 (d, *J* = 6.3 Hz, 3H), 7.28 (s, 1H), 7.24 (m, 4H), 7.17 (m, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 192.8, 163.3, 137.6, 135.3, 134.9, 132.8, 132.1, 131.6, 130.0 – 129.7, 129.7 – 129.2, 128.9, 128.8 – 128.0, 127.8, 126.0, 125.3, 119.9; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₀H₂₀NO₂ 426.1512; Found: 426.1511

3-ethyl-1-phenyl-2-propionyl-5*H***-pyrrolo[2,1-***a***]isoindol-5-one (3bh): Following the general procedure, the reaction of** *N***-methoxy-2-(phenylethynyl)benzamide (50.2 mg, 0.2 mmol), heptane-3,5-dione (38.4 mg, 1.5 equiv), HOAc (20 mol%), Fe(OAc)₂ (24.6 mg, 50 mol%), and solvent (toluene:DCE, 1:1, v/v, 2 mL) at 80 °C for 6 h. The product was purified by flash chromatography (PE/EA = 15/1) to give 3bh** 54.6 mg (83% yield) as yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 7.3 Hz, 1H), 7.51 – 7.45 (m, 2H), 7.44 – 7.39 (m, 3H), 7.32 (t, 1H), 7.18 (t, 1H), 7.06 (d, *J* = 7.6 Hz, 1H), 3.10 (m, 2H), 2.19 (m, 2H), 1.32 (t, 3H), 0.92 (t, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 200.4, 163.8, 142.1, 135.5, 134.8, 133.6 131.3, 130.0, 128.9, 128.3, 127.4, 125.9, 123.5, 119.4, 36.2, 19.0, 13.3, 8.4; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₂₀NO₂ 330.1226; Found: 330.1224

(3R,8R,9R,10S,13S,14R,17S)-17-((2S,5S)-5-ethyl-6-methylheptan-2-yl)-10,13-dim ethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenan 3-methyl-5-oxo-1-phenyl-5H-pyrrolo[2,1-a]isoindole-2-carboxylate thren-3-yl Following reaction (3bi): the general procedure, the of *N*-methoxy-2-(phenylethynyl)benzamide (50.2)0.2 mmol), mg, (3R,8R,9R,10S,13S,14R,17S)-17-((2S,5S)-5-ethyl-6-methylheptan-2-yl)-10,13-dimeth yl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-3-yl 3-oxobutanoate (149.5 mg, 1.5 equiv), HOAc (20 mol%), Fe(OAc)₂ (24.6 mg, 50 mol%), and solvent (toluene:DCE, 1:1, v/v, 2 mL) at 80 °C for 6 h. The product was purified by flash chromatography (PE/EA = 25/1) to give **3bi** 69.9 mg (50% yield) as yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 7.6 Hz, 1H), 7.40 (m, 5H), 7.32 (t, 1H), 7.18 (t, 1H), 7.09 (d, J = 7.6 Hz, 1H), 5.32 (d, J = 3.4 Hz, 1H), 4.62 (t, 1H), 2.79 (d, J = 1.3 Hz, 3H), 2.09 – 1.89 (m, 3H), 1.84 – 1.75 (m, 2H), 1.60 – 1.29 (m, 9H), 1.28 - 1.18 (m, 3H), 1.07 (m, 9H), 0.91 (d, J = 9.3 Hz, 8H), 0.81 (m, 10H), 0.66 (d, J = 6.8 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ 164.1, 163.7, 139.6, 138.5, 135.5, 134.8, 133.3, 131.1, 129.9, 129.5, 127.8, 127.3, 125.9, 122.5, 119.6, 73.8, 56.6, 56.0, 50.0, 45.8, 42.3, 39.7, 37.9, 36.9, 36.5, 36.2, 33.9, 31.8, 29.1, 28.2, 27.5, 26.0, 24.3, 23.0, 21.0, 20.2, 19.8, 19.2, 19.0, 18.8, 12.1 – 11.5; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₈H₆₂NO₃ 700.3651; Found: 700.3651

2-acetyl-3,6-dimethyl-1-phenylpyrrolizino[2,1-b]indol-5(6H)-one (3bj): Following the procedure, reaction of general the *N*-methoxy-1-methyl-3-(phenylethynyl)-1*H*-indole-2-carboxamide (60.8) mg, 0.2 mmol), acetylacetone (30.0 mg, 1.5 equiv), HOAc (20 mol%), Fe(OAc)₂ (24.6 mg, 50 mol%), and solvent (toluene:DCE, 1:1, v/v, 2 mL) at 80 °C for 6 h. The product was purified by flash chromatography (PE/EA = 15/1) to give **3bj** 31.9 mg (45% yield) as vellow solid; ¹H NMR (400 MHz, CDCl₃) & 7.51 - 7.45 (m, 6H), 7.24 (s, 1H), 6.96 (m, 1H), 6.85 (d, J = 8.2 Hz, 1H), 3.86 (s, 3H), 2.66 (s, 3H), 1.94 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 196.1, 157.6, 143.6, 139.0, 134.4, 132.0, 131.6, 129.4, 128.6, 128.3, 127.7, 126.2, 122.9, 122.6, 122.3, 121.7, 119.0, 111.0, 31.0, 30.5, 12.1; HRMS (ESI-TOF) m/z: [M +H]+ Calcd for $C_{23}H_{19}N_2O_2$ 355.1473; Found: 308.1472

6-ethyl-4-phenyl-5-propionyl-8H-thieno[3,2-a]pyrrolizin-8-one (3bk): Following the general procedure, the reaction of (51.4 *N*-methoxy-3-(phenylethynyl)thiophene-2-carboxamide 0.2 mg, mmol). heptane-3,5-dione (38.4 mg, 1.5 equiv), HOAc (20 mol%), Fe(OAc)₂ (24.6 mg, 50 mol%), and solvent (toluene:DCE, 1:1, v/v, 2 mL) at 80 °C for 6 h. The product was purified by flash chromatography (PE/EA = 15/1) to give **3bk** 41.6 mg (62% yield) as yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 4.8 Hz, 1H), 7.43 – 7.36 (m,

2H), 7.33 (t, 3H), 6.72 (d, J = 4.8 Hz, 1H), 2.97 (m, 2H), 2.19 (m, 2H), 1.25 (t, 3H), 0.90 (t, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 200.1, 158.4, 147.9, 145.1, 139.3, 133.3, 130.4, 128.7, 128.4, 128.2, 127.4, 125.9, 122.85 (s), 119.0, 36.1, 18.9, 13.0, 8.5.HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₀H₁₈NO₂S 336.0871; Found: 336.0871

