Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

Supporting Information

# Simple generation of various $\alpha$ -monofluoroalkyl radicals by organic photoredox catalysis: modular synthesis of $\beta$ -monofluoroketones

Ryo Taniguchi,<sup>a</sup> Naoki Noto,<sup>a</sup> Seiya Tanaka,<sup>a</sup> Keigo Takahashi,<sup>a</sup> Sujan K. Sarkar,<sup>c</sup> Ryoko Oyama,<sup>c</sup> Manabu Abe,<sup>c</sup> Takashi Koike<sup>\*a,b</sup> and Munetaka Akita<sup>\*a,b</sup>

 <sup>a</sup>School of Materials and Chemical Technology, Tokyo Institute of Technology, R1-27, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.
 <sup>b</sup>Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Japan.

<sup>c</sup>Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan. E-mail: koike.t.ad@m.titech.ac.jp

# **Table of Contents**

| Materials and methods S2                                                      |
|-------------------------------------------------------------------------------|
| Reaction apparatus·····S2                                                     |
| Preparation of organic photoredox catalyst (2 <sup>t</sup> Bu-BDN) ······S3   |
| Preparation of monofluoroalkylating reagents 1 (Scheme 2)·····S4              |
| General procedures for NMR experiment (Table 1)·····S8                        |
| Reactions with other commonly used photocatalysts······S9                     |
| General procedures for fluoroalkylation and characterization (Table 2)·····S9 |
| Photo- and electro-chemical measurements S19                                  |
| Luminescence quenching experiments S22                                        |
| Radical trapping experiment with TEMPO S23                                    |
| Light/dark experiment·····S24                                                 |
| Quantum yield for photocatalytic reaction ······S25                           |
| LFP studies (Figure 1)······S26                                               |
| EPR experiments S28                                                           |
| Crystallographic data S30                                                     |
| References······S35                                                           |
| NMR spectra······S36                                                          |

#### Materials and methods

All the chemicals for synthesis of the substrates and the catalysts were commercially available. All vinyl acetates were prepared according to the reported procedures.<sup>1</sup> All the reactions were carried out with standard Schlenk techniques unless otherwise noted. Anhydrous acetone, acetonitrile, benzene and methanol were purchased from Kanto Chemical Co., Inc. Thin-layer chromatography was performed on TLC plates with 60  $F_{254}$  (Merck). Purification was performed by flash column chromatography on silica gel (Aldrich, silica gel 60 Å). Automated column chromatography was performed using silica gel cartridges (Biotage SNAP Ultra, particle size 25  $\mu$ m) on a Biotage Isolera One.

Experiments and measurements were carried out with the following apparatuses:

Visible light irradiation: Relyon LED lamp (3 W × 2 or 4:  $\lambda$  = 425 nm, 3 W × 2:  $\lambda$  = 380 nm). NMR spectra: Bruker AVANCE-400 (400 MHz for <sup>1</sup>H NMR) and Bruker AVANCE-500 (500 MHz for <sup>1</sup>H NMR) (Reference of <sup>1</sup>H NMR spectra: Residual protio impurities in the deuterated solvents. Reference of <sup>19</sup>F NMR spectra: Trifluoroacetic acid (–76.55 ppm)). EPR spectra: Brucker E-500. HRMS (ESI-TOF): Bruker micrOTOF II. Recycling preparative HPLC: Japan Analytical Industry Co., Ltd. (JAI) LC-9225. (Column: JAIGEL-1H-40 and JAIGEL-2H-40), and Japan Analytical Industry Co., Ltd. (JAI) LC-9201. (Column: JAIGEL-1H-20 and JAIGEL-2H-20). UV-vis: JASCO V-670DS. Fluorescence: HITACHI F-7000. Absolute PL quantum yield: Hamamatsu Photonics C9920-02G with an integration sphere. Excited-state lifetime: Hamamatsu Photonics C7700-ABS-N. Laser flash photolysis was performed with UNISOKU TSP-1000M. CV & DPV: Hokutodenkou HZ-5000. GC-MS(EI): SHIMADZU GC-2010/PARVUM2 (Column: Rxi-5ms). Single-crystal X-ray measurements were made on a Rigaku XtaLAB Synergy R, DW system. The crystallographic data were deposited at Cambridge Crystallographic Data Centre: CCDC 2047104 (**1d**), 2047105 (**1b**), 2047106 (2<sup>/</sup>Bu-BDN) and 2047107 (**3b**]).

## **Reaction apparatus**



# Preparation of organic photoredox catalyst (2<sup>t</sup>Bu-BDN)

4-(tert-Butyl)-N-phenylaniline



4-(*tert*-Butyl)-*N*-phenylaniline was synthesized according to the reported procedures.<sup>2a</sup> To a mixture of 1bromo-4-*tert*-butylbenzene (2.13g, 10.0 mmol), aniline (1.14 g, 12.2 mmol), sodium *tert*-butoxide (NaO<sup>t</sup>Bu) (1.39 g, 14.4 mmol), tris(dibenzylideneacetone)dipalladium(0) (Pd<sub>2</sub>(dba)<sub>3</sub>) (22.9 mg, 0.0250 mmol) and (*S*)-BINAP (46.7 mg, 0.0750 mmol) in a two-neck flask was added toluene (20 mL) under N<sub>2</sub> atmosphere. The reaction mixture was stirred at 80 °C for 21 hours. The solution was then allowed to cool to room temperature, taken up in ether (150 mL), filtered, and concentrated. The desired product was obtained as a brown solid (2.02 g, 8.96 mmol, 95%) after purification by flash column chromatography on silica-gel (hexane/ethyl acetate = 20/1).

The data is in accordance with the reported literature.<sup>2a</sup>

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, rt): δ 7.31-7.23 (4H), 7.04 (d, 4H, J = 8.6 Hz), 6.89 (t, 1H, J = 7.3 Hz), 5.63 (brs, 1H), 1.31 (s, 9H).

 $N^1$ ,  $N^4$ -Bis(4-(*tert*-butyl)phenyl)- $N^1$ ,  $N^4$ -diphenylnaphthalene-1,4-diamine (2<sup>t</sup>Bu-BDN)



 $2^{t}$ Bu-BDN was synthesized according to the reported procedures.<sup>2b</sup> To a mixture of 1,4dibromonaphthalene (0.428 g, 1.50 mmol), amine (0.827 g, 3.67 mmol), LiHMDS (0.602 g, 3.60 mmol), Pd<sub>2</sub>(dba)<sub>3</sub> (13.7 mg, 0.0150 mmol) and RuPhos (14.0 mg, 0.0300 mmol) in a two-neck flask was added 1,4-dioxane under N<sub>2</sub> atmosphere. The mixture was stirred at 100 °C for 24 h. After cooling it to room temperature, precipitates were filtered off and washed with CH<sub>2</sub>Cl<sub>2</sub>, and the volatiles were evaporated under reduced pressure. The desired product was obtained (0.735 g, 1.28 mmol, 85%) as a pale yellow solid after purification by flash column chromatography on alumina and reprecipitation (methanol/CH<sub>2</sub>Cl<sub>2</sub>). Recrystallization from CH<sub>2</sub>Cl<sub>2</sub> and methanol afforded crystals, which are suitable for single-crystal X-ray structure analysis.

<sup>1</sup>**H NMR** (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>, rt): δ 8.01 (dd, *J* = 6.5 Hz, 3.3 Hz, 2H; naphthalene's *Ar*), 7.34 (dd, *J* = 6.5 Hz,

3.3 Hz, 2H; naphthalene's *Ar*), 7.32 (s, 2H; naphthalene's *Ar*), 7.28-7.17 (8H; *Ar*), 7.04-6.98 (8H; *Ar*), 6.91 (t, *J* = 7.3 Hz, 2H; *Ar*), 1.30 (s, 18H; C*H*<sub>3</sub>). <sup>13</sup>**C NMR** (126 MHz, CD<sub>2</sub>Cl<sub>2</sub>, rt): δ 149.1, 146.0, 145.5, 142.3, 133.3, 129.4, 128.1, 126.8, 126.4, 125.3, 122.5, 121.4, 121.3, 34.5, 31.5. **HRMS** (ESI-TOF) calcd m/z for [C<sub>42</sub>H<sub>42</sub>N<sub>2</sub>]<sup>+</sup> 574.3344, found 574.3345.

# Preparation of monofluoroalkylating reagents 1 (Scheme 2)

*N*-((fluoromethyl)(oxo)(phenyl)- $\lambda^6$ -sulfaneylidene)-4-methylbenzenesulfonamide (**1a**) was synthesized according to the reported procedures.<sup>2b</sup>



The synthesis of CR<sup>1</sup>FR<sup>2</sup> reagent (**1b–1i**) was referred to the reported procedures.<sup>3a</sup> To a solution of **1a** (1.0 equiv.) in THF was added *n*BuLi (1.57 M in hexane, 1.2 equiv.) at –78 °C under N<sub>2</sub> atmosphere. After the mixture was stirred at the same temperature for 1 hour, alkyl halide or tosylate (R-X) (3.0 equiv.) was added at –78 °C. The mixture was stirred at room temperature for 24 hours. Then, saturated NH<sub>4</sub>Cl aq. was added and the water phase was extracted with ethyl acetate. The organic layer was washed with brine, dried over MgSO<sub>4</sub>, filtered and removed under reduced pressure. The desired product was obtained after purification by flash column chromatography on silica-gel and reprecipitation (hexane/ethyl acetate) or recycling preparative HPLC.

N-((1-Fluoroethyl)(oxo)(phenyl)- $\lambda^6$ -sulfaneylidene)-4-methylbenzenesulfonamide (**1b**)



According to the above procedures, **1a** (7.07 g, 21.6 mmol), <sup>*n*</sup>BuLi (1.57 M in hexane, 16.5 mL, 25.9 mmol), iodomethane (9.11 g, 64.2 mmol) and THF (140 mL) afforded **1b** as a white solid (3.69 g, 10.8 mmol, 50%). Eluent: Hexane/ethyl acetate = 2/1. Recrystallization from pentane and Et<sub>2</sub>O afforded crystals, which are suitable for single-crystal X-ray structure analysis.

The data is in accordance with the reported literature.<sup>3a</sup>

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt): δ 7.99 (d, *J* = 7.7 Hz, 2H), 7.86 (d, *J* = 8.2 Hz, 2H), 7.75 (t, *J* = 7.7 Hz, 1H), 7.62 (t, *J* = 7.7 Hz, 2H), 7.26 (d, *J* = 8.2 Hz, 2H), 5.97 (dq, *J* = 46.8, 6.3 Hz, 1H), 2.40 (s, 3H), 1.63 (dd, *J* = 23.0, 6.3 Hz, 3H).

N-((1-Fluoropropyl)(oxo)(phenyl)- $\lambda^6$ -sulfaneylidene)-4-methylbenzenesulfonamide (1c)



According to the above procedures, **1a** (1.28 g, 3.92 mmol), <sup>*n*</sup>BuLi (1.57 M in hexane, 3.0 mL, 4.71 mmol), iodoethane (1.84 g, 11.8 mmol) and THF (25 mL) afforded **1c** as a white solid (0.212 g, 0.597 mmol, 15%). Eluent: Hexane/ethyl acetate = 3/1.

The data is in accordance with the reported literature.<sup>3b</sup>

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt): δ 7.98 (d, *J* = 7.7 Hz, 2H), 7.85 (d, *J* = 8.2 Hz, 2H), 7.74 (t, *J* = 7.7 Hz, 1H), 7.61 (t, *J* = 7.7 Hz, 2H), 7.26 (d, *J* = 8.2 Hz, 2H), 5.60 (ddd, *J* = 47.3, 10.1, 2.8 Hz, 1H), 2.40 (s, 3H), 2.16 (m, 1H), 1.66 (m, 1H), 1.08 (t, *J* = 7.4 Hz, 3H).

N-((1-Fluoro-2-phenylethyl)(oxo)(phenyl)- $\lambda^6$ -sulfaneylidene)-4-methylbenzenesulfonamide (1d)



According to the above procedures, **1a** (1.28 g, 3.91 mmol), <sup>*n*</sup>BuLi (1.57 M in hexane, 3.0 mL, 4.71 mmol), benzyl bromide (2.02 g, 11.8 mmol) and THF (25 mL) afforded **1d** as a white solid (0.693 g, 1.66 mmol, 42%). Eluent: Hexane/ethyl acetate =  $3/1 \rightarrow 2/1$ . Recrystallization from acetone and methanol afforded crystals, which are suitable for single-crystal X-ray structure analysis.

The data is in accordance with the reported literature.<sup>3a</sup>

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt): δ 8.03 (d, *J* = 7.7 Hz, 2H), 7.88 (d, *J* = 8.2 Hz, 2H), 7.76 (t, *J* = 7.7 Hz, 1H), 7.63 (t, *J* = 7.7 Hz, 2H), 7.30-7.17 (7H), 5.88 (ddd, *J* = 47.3, 10.5, 1.7 Hz, 1H), 3.48 (m, 1H), 2.89 (m, 1H), 2.41 (s, 3H).

N-((1-Fluorobut-3-en-1-yl)(oxo)(phenyl)- $\lambda^6$ -sulfaneylidene)-4-methylbenzenesulfonamide (**1e**)



According to the above procedures, **1a** (0.820 g, 2.51 mmol), <sup>*n*</sup>BuLi (1.57 M in hexane, 1.9 mL, 3.02 mmol), allyl iodide (1.26 g, 7.53 mmol) and THF (15 mL) afforded **1e** as a white solid (0.447 g, 1.22 mmol, 49%, diastereomer ratio = 80:20). Eluent: Hexane/ethyl acetate = 3/1.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt): δ 8.03-7.98 (2H; *Ar* of major and minor), 7.89-7.85 (2H; *Ar* of major and minor), 7.75 (m, 1H; *Ar* of major and minor), 7.64-7.60 (2H; *Ar* of major and minor), 7.27-7.25 (2H; *Ar* of

major and minor), 5.84 (m, 1H; CHFCH<sub>2</sub>CH=CH<sub>2</sub> of major and minor), 5.71 (m, 1H; CHFCH<sub>2</sub>CH=CH<sub>2</sub> of major and minor), 5.21-5.17 (2H; CHFCH<sub>2</sub>CH=CH*H* of major and minor), 2.96 (m, 1H; CHFC*H*HCH=CH<sub>2</sub> of major and minor), 2.41 (m, 1H; CHFCH*H*CH=CH<sub>2</sub> of major and minor), 2.40 (s, 3H; ArCH<sub>3</sub> of major and minor). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>, rt):  $\delta$  128.9 (d, *J* = 2.8 Hz), 128.8 (d, *J* = 2.2 Hz), 121.0 (2C), 104.6 (d, *J* = 229.4 Hz), 102.5 (d, *J* = 227.8 Hz), 33.8 (d, *J* = 19.0 Hz), 32.8 (d, *J* = 19.0 Hz), 21.7, Aromatic signals of major and minor diastereomers were overlapped around (143.4, 143.3, 140.5, 135.5, 135.3, 132.2, 132.0, 130.3, 130.0, 129.7, 129.5, 129.4, 126.8). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>, rt):  $\delta$  -177.4 (m, 1F; major), -177.7 (m, 1F; minor). HRMS (ESI-TOF) calcd m/z for [C<sub>17</sub>H<sub>18</sub>FNO<sub>3</sub>S<sub>2</sub>+Na]<sup>+</sup> 390.0604, found 390.0603.

N-((1-Fluoropent-3-yn-1-yl)(oxo)(phenyl)- $\lambda^6$ -sulfaneylidene)-4-methylbenzenesulfonamide (1f)



According to the above procedures, **1a** (0.819 g, 2.50 mmol), <sup>*n*</sup>BuLi (1.57 M in hexane, 1.9 mL, 3.02 mmol), 1-bromo-2-butyne (1.00 g, 7.52 mmol) and THF (15 mL) afforded **1f** as a white solid (0.218 g, 0.575 mmol, 23%, diastereomeric ratio = 73:27). Eluent: Hexane/ethyl acetate =  $3/1 \rightarrow 2/1$ .

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt): δ 8.04-7.98 (2H; *Ar* of major and minor), 7.88-7.84 (2H; *Ar* of major and minor), 7.75 (m, 1H; *Ar* of major and minor), 7.64-7.60 (2H; *Ar* of major and minor), 7.28-7.26 (2H; *Ar* of major and minor), 5.93 (ddd, *J* = 46.4, 8.8, 3.1 Hz, 1H; C*H*FCH<sub>2</sub>C≡CCH<sub>3</sub> of major), 5.83 (ddd, *J* = 46.4, 8.8, 3.2 Hz, 1H; C*H*FCH<sub>2</sub>C≡CCH<sub>3</sub> of major), 5.83 (ddd, *J* = 46.4, 8.8, 3.2 Hz, 1H; C*H*FCH<sub>2</sub>C≡CCH<sub>3</sub> of minor), 3.19-2.53 (2H; CHFC*HH*C≡CCH<sub>3</sub> of major and minor), 2.40 (s, 3H; ArCH<sub>3</sub> of major and minor), 1.69 (s, 3H; CHFCH<sub>2</sub>C≡CCH<sub>3</sub> of major and minor). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>, rt): δ 103.0 (d, *J* = 232.3 Hz), 101.0 (d, *J* = 230.8 Hz), 80.7, 80.6, 69.5, 69.4, 21.7, 21.3 (d, *J* = 20.7 Hz), 20.4 (d, *J* = 20.6 Hz), 3.60, 3.57, Aromatic signals of major and minor diastereomers were overlapped around (143.4, 143.3, 140.4, 135.5, 135.4, 131.9, 130.4, 130.1, 129.7, 129.5, 126.8). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>, rt): δ -176.2 (m, 1F; major), -176.7 (m, 1F; minor). HRMS (ESI-TOF) calcd m/z for [C<sub>18</sub>H<sub>18</sub>FNO<sub>3</sub>S<sub>2</sub>+Na]<sup>+</sup> 402.0604, found 402.0605.

N-((5-Fluoronona-2,7-diyn-5-yl)(oxo)(phenyl)- $\lambda^6$ -sulfaneylidene)-4-methylbenzenesulfonamide (**1g**)



According to the above procedures, **1a** (0.819 g, 2.50 mmol), <sup>n</sup>BuLi (1.57 M in hexane, 1.9 mL, 3.02 mmol),

1-bromo-2-butyne (1.00 g, 7.52 mmol) and THF (15 mL) afforded **1g** as a pale yellow solid (0.193 g, 0.447 mmol, 18%). Eluent: Hexane/ethyl acetate =  $3/1 \rightarrow 2/1$ .

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt): δ 8.06 (d, J = 8.2 Hz, 2H; Ar), 7.83 (d, J = 8.2 Hz, 2H; Ar), 7.74 (m, 1H; Ar), 7.64-7.60 (2H; Ar), 7.24 (d, J = 8.2 Hz, 2H; Ar), 3.27-2.92 (4H; CH<sub>2</sub>C≡CCH<sub>3</sub>), 2.40 (s, 3H; ArCH<sub>3</sub>), 1.67-1.64 (6H; CH<sub>2</sub>C≡CCH<sub>3</sub>). <sup>13</sup>**C NMR** (126 MHz, CDCl<sub>3</sub>, rt): δ 142.9, 140.9, 135.3, 133.5, 131.2, 129.4, 129.3, 126.7, 109.1 (d, J = 234.9 Hz), 81.1 (d, J = 20.8 Hz), 69.3 (dd, J = 9.2, 4.3 Hz), 23.2 (dd, J = 123.7, 20.8 Hz), 21.6, 3.6 (d, J = 4.3 Hz). <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>, rt): δ -149.1 (m, 1F). **HRMS** (ESI-TOF) calcd m/z for [C<sub>22</sub>H<sub>22</sub>FNO<sub>3</sub>S<sub>2</sub>+Na]<sup>+</sup> 454.0917, found 454.0917.

N-((1-Fluoro-3-(thiophen-2-yl)propyl)(oxo)(phenyl)- $\lambda^6$ -sulfaneylidene)-4-methylbenzenesulfonamide (**1h**)



According to the above procedures, **1a** (0.820 g, 2.50 mmol), <sup>*n*</sup>BuLi (1.57 M in hexane, 1.9 mL, 3.02 mmol), 2-(2-thienyl)ethyl *p*-toluenesulfonate (2.13 g, 7.53 mmol) and THF (15 mL) afforded **1h** as a white solid (0.293 g, 0.669 mmol, 27%, diastereomeric ratio = 61:39). Eluent: Hexane/ethyl acetate = 3/1.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt): δ 8.02-7.97 (2H; *Ar* of major and minor), 7.87-7.83 (2H; *Ar* of major and minor), 7.75 (m, 1H; *Ar* of major and minor), 7.64-7.60 (2H; *Ar* of major and minor), 7.27-7.25 (2H; *Ar* of major and minor), 7.16 (dd, *J* = 5.1, 1.1 Hz, 1H; thiophene's *Ar* of major and minor), 6.92 (m, 1H; thiophene's *Ar* of major and minor), 6.81 (dd, *J* = 10.5, 3.3 Hz, 1H; thiophene's *Ar* of major and minor), 5.74 (m, 1H; *CH*FCH<sub>2</sub>CH<sub>2</sub>Ar of major and minor), 3.11-2.95 (2H; CHFCH<sub>2</sub>CH<sub>2</sub>Ar of major and minor), 2.58 (m, 1H; CHFCHHCH<sub>2</sub>Ar of major and minor), 2.40 (s, 3H; ArCH<sub>3</sub> of major and minor), 2.01 (m, 1H; CHFCH*H*CH<sub>2</sub>Ar of major and minor). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>, rt): δ 104.5 (d, *J* = 228.0 Hz), 102.5 (d, *J* = 226.3 Hz), 31.1 (d, *J* = 19.3 Hz), 30.5 (d, *J* = 18.9 Hz), 24.8 (d, *J* = 3.7 Hz), 24.8 (d, *J* = 2.6 Hz), 21.7, Aromatic signals of major and minor diastereomers were overlapped around (143.3, 141.1, 141.0, 140.5, 135.4, 135.3, 132.3, 132.2, 130.3, 130.0, 129.8, 129.5, 127.3, 127.2, 126.8, 125.6, 124.3). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>, rt): δ -178.5 (m, 1F; major), -178.9 (m, 1F; minor). HRMS (ESI-TOF) calcd m/z for [C<sub>20</sub>H<sub>20</sub>FNO<sub>3</sub>S<sub>3</sub>+Na]<sup>+</sup> 460.0482, found 460.0482.

N-((1-Fluoro-2-(5-(trifluoromethyl)furan-2-yl)ethyl)(oxo)(phenyl)- $\lambda^6$ -sulfaneylidene)-4methylbenzenesulfonamide (**1i**)



According to the above procedures, **1a** (0.491 g, 1.50 mmol), <sup>*n*</sup>BuLi (1.57 M in hexane, 1.1 mL, 1.80 mmol), 2-(bromomethyl)-5-(trifluoromethyl)furan (1.03 g, 4.50 mmol) and THF (9 mL) afforded **1i** as a white solid (0.221 g, 0.466 mmol, 31%, diastereomeric ratio = 78:22). Eluent: Hexane/ethyl acetate = 3/1.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt): δ 8.05-8.01 (2H; *Ar* of major and minor), 7.89-7.85 (2H; *Ar* of major and minor), 7.78 (m, 1H; *Ar* of major and minor), 7.67-7.63 (2H; *Ar* of major and minor), 7.29-7.25 (2H; *Ar* of major and minor), 6.68 (d, *J* = 2.9 Hz, 1H; furans's *Ar* of major and minor), 6.25 (d, *J* = 3.2 Hz, 1H; furans's *Ar* of major and minor), 6.05 (m, 1H; CHFCH<sub>2</sub>Ar of major and minor), 3.66 (m, 1H; CHFCH<sub>HAr</sub> of major and minor), 3.11 (m, 1H; CHFCH*H*Ar of major and minor), 2.41 (s, 3H; ArCH<sub>3</sub> of major and minor). <sup>13</sup>**C NMR** (126 MHz, CDCl<sub>3</sub>, rt): δ 149.6 (minor), 149.4 (major), 143.6 (minor), 143.5 (major), 142.01 (q, *J* = 42.8 Hz; major), 141.97 (q, *J* = 42.8 Hz; minor), 140.24 (major), 140.18 (minor), 131.9 (minor), 131.8 (major), 130.2 (minor), 129.93 (major), 129.91 (major), 129.87 (minor), 129.6 (minor), 112.81 (major), 126.82 (minor), 126.77 (major), 118.9 (q, *J* = 266.6 Hz; major and minor), 112.83 (minor), 112.81 (major), 122.79 (major), 122.6 (minor), 110.3 (major), 110.2 (minor), 102.5 (d, *J* = 231.4 Hz), 100.5 (d, *J* = 228.9 Hz), 28.6 (d, *J* = 20.1 Hz), 27.8 (d, *J* = 20.1 Hz), 21.6 (major and minor). <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>, rt): δ -64.2 (s, 3F; ArC*F*<sub>3</sub> of major and minor), -174.8 (m, 1F; minor), -175.8 (m, 1F; major). **HRMS** (ESI-TOF) calcd m/z for [C<sub>20</sub>H<sub>17</sub>F<sub>4</sub>NO<sub>4</sub>S<sub>2</sub>+Na]<sup>\*</sup> 498.0427, found 498.0427.

# General procedures for NMR experiment (Table 1)



An NMR tube was charged with **2a** (4.4 mg, 25.0  $\mu$ mol), **1b** (12.8 mg, 37.5  $\mu$ mol), photoredox catalyst (1.25  $\mu$ mol) and tetraethylsilane (2  $\mu$ L) under N<sub>2</sub> atmosphere. Then, deuterated solvent (0.50 mL in total) was added and the mixture was degassed by three freeze-pump-thaw cycles. The NMR tube was placed at 2-3 cm away from blue LED lamps in a water bath. The reaction was carried out under visible light irradiation for 24 hours at room temperature and monitored by NMR spectroscopy.

## Reactions with other commonly used photocatalysts

We conducted the reactions using Mes-Acr<sup>+</sup> (*N*-methyl-9-mesitylacridinium salt) and 4CzIPN (1,2,3,5-tetra(carbazole-9-yl)-4,6-dicyanobenzene) photocatalysts, but the reactions did not proceed at all.



# General procedures for fluoroalkylation and characterization (Table 2)



A 20 mL Schlenk tube was charged with vinyl acetate **2** (0.250 mmol), **1** (0.375 mmol), 2<sup>*t*</sup>Bu-BDN (12.5–25.0  $\mu$ mol), acetone (4.75 mL), and H<sub>2</sub>O (0.25 mL). The mixture was degassed by three freeze-pump-thaw cycles, and placed at 2-3 cm away from blue LED lamps ( $\lambda$  = 425 nm) in a water bath. The mixture was stirred for 24-72 h at room temperature under visible light irradiation. After the reaction, volatiles were removed *in vacuo*. The desired product was obtained after purification by flash column chromatography on silica-gel and recycling preparative HPLC.

3-Fluoro-1-(4-methylphenyl)butan-1-one (3ba)



According to the general procedures (reaction time = 24 h), 1-(4-methylphenyl)vinyl acetate **2a** (44.1 mg, 0.250 mmol), **1b** (128 mg, 0.375 mmol), 2<sup>t</sup>Bu-BDN (7.2 mg, 12.5  $\mu$ mol), acetone (4.75 mL) and H<sub>2</sub>O (0.25 mL) afforded **3ba** as a pale yellow oil (33.5 mg, 0.186 mmol, 74%). Eluent: Pentane/diethyl ether = 1/0  $\rightarrow$  9/1.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt): δ 7.85 (d, J = 8.1 Hz, 2H; Ar), 7.27 (d, J = 8.1 Hz, 2H; Ar), 5.30 (dq, J = 47.6 Hz, 6.2 Hz, 1H; C*H*FCH<sub>3</sub>), 3.48 (m, 1H; C*H*H), 3.06 (m, 1H; CH*H*), 2.41 (s, 3H, C<sub>6</sub>H<sub>4</sub>CH<sub>3</sub>), 1.46 (dd, J = 24.1 Hz, 6.2 Hz, 3H; CHFCH<sub>3</sub>). <sup>13</sup>**C NMR** (126 MHz, CDCl<sub>3</sub>, rt): δ 196.6 (d, J = 6.7 Hz), 144.4, 134.5, 129.5,

128.4, 87.3 (d, J = 165.4 Hz), 45.4 (d, J = 22.8 Hz), 21.8, 21.3 (d, J = 22.4 Hz). <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>, rt): δ –173.5 (m, 1F). **HRMS** (ESI-TOF) calcd m/z for [C<sub>11</sub>H<sub>13</sub>FO+Na]<sup>+</sup> 203.0843, found 203.0846.

3-Fluoro-1-(3-methylphenyl)butan-1-one (3bb)



According to the general procedures (reaction time = 24 h), 1-(3-methylphenyl)vinyl acetate **2b** (44.1 mg, 0.250 mmol), **1b** (128 mg, 0.375 mmol), 2<sup>*t*</sup>Bu-BDN (7.2 mg, 12.5  $\mu$ mol), acetone (4.75 mL) and H<sub>2</sub>O (0.25 mL) afforded **3bb** as a pale yellow oil (25.9 mg, 0.144 mmol, 58%). Eluent: Pentane/diethyl ether = 1/0  $\rightarrow$  4/1.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt): δ 7.76-7.74 (2H; *Ar*), 7.40-7.34 (2H; *Ar*), 5.30 (dq, *J* = 47.5 Hz, 6.2 Hz, 1H; C*H*FCH<sub>3</sub>), 3.49 (m, 1H; C*H*H), 3.07 (m, 1H; CH*H*), 2.41 (s, 3H, C<sub>6</sub>H<sub>4</sub>C*H*<sub>3</sub>), 1.47 (dd, *J* = 24.1 Hz, 6.2 Hz, 3H; CHFCH<sub>3</sub>). <sup>13</sup>**C NMR** (126 MHz, CDCl<sub>3</sub>, rt): δ 197.2 (d, *J* = 6.7 Hz), 138.6, 137.0, 134.3, 128.8, 128.7, 125.5, 87.4 (d, *J* = 165.5 Hz), 45.5 (d, *J* = 22.9 Hz), 21.5, 21.3 (d, *J* = 22.3 Hz). <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>, rt): δ -173.6 (m, 1F). **HRMS** (ESI-TOF) calcd m/z for [C<sub>11</sub>H<sub>13</sub>FO+Na]<sup>+</sup> 203.0843, found 203.0843.

3-Fluoro-1-(2-methylphenyl)butan-1-one (3bc)



According to the general procedures (reaction time = 72 h), 1-(2-methylphenyl)vinyl acetate **2c** (44.1 mg, 0.250 mmol), **1b** (128 mg, 0.375 mmol), 2'Bu-BDN (14.4 mg, 25.0  $\mu$ mol), acetone (4.75 mL) and H<sub>2</sub>O (0.25 mL) afforded **3bc** as a pale yellow oil (17.9 mg, 0.0993 mmol, 40%). Eluent: Pentane/diethyl ether = 1/0  $\rightarrow$  4/1.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, rt): δ 7.64 (d, *J* = 7.5 Hz, 1H; *Ar*), 7.39 (m, 1H; *Ar*), 7.29-7.25 (2H; *Ar*), 5.27 (dq, *J* = 47.6 Hz, 6.2 Hz, 1H; C*H*FCH<sub>3</sub>), 3.41 (m, 1H; C*H*H), 3.02 (m, 1H; CH*H*), 2.51 (s, 3H, C<sub>6</sub>H<sub>4</sub>C*H*<sub>3</sub>), 1.46 (dd, *J* = 24.0 Hz, 6.2 Hz, 3H; CHFCH<sub>3</sub>). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>, rt): δ 200.8 (d, *J* = 5.8 Hz), 138.5, 137.7, 132.2, 131.8, 128.7, 125.9, 87.5 (d, *J* = 165.3 Hz), 48.4 (d, *J* = 22.9 Hz), 21.4, 21.2 (d, *J* = 22.4 Hz). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>, rt): δ -173.7 (m, 1F). HRMS (ESI-TOF) calcd m/z for [C<sub>11</sub>H<sub>13</sub>FO+Na]<sup>+</sup> 203.0843, found 203.0842.

3-Fluoro-1-phenylbutan-1-one (3bd)



According to the general procedures (reaction time = 24 h), 1-phenylvinyl acetate **2d** (40.5 mg, 0.250 mmol), **1b** (128 mg, 0.375 mmol), 2<sup>*t*</sup>Bu-BDN (7.2 mg, 12.5  $\mu$ mol), acetone (4.75 mL) and H<sub>2</sub>O (0.25 mL) afforded **3bd** as a pale yellow oil (31.4 mg, 0.189 mmol, 76%). Eluent: Pentane/diethyl ether = 1/0  $\rightarrow$  9/1. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, rt):  $\delta$  7.96 (d, *J* = 7.5 Hz, 2H; *Ar*), 7.58 (t, *J* = 7.5 Hz, 1H; *Ar*), 7.47 (t, *J* = 7.5 Hz, 2H; *Ar*), 5.31 (dq, *J* = 47.5 Hz, 6.2 Hz, 1H; *CH*F), 3.51 (m, 1H; *CH*H), 3.09 (m, 1H; CH*H*), 1.47 (dd, *J* = 24.2 Hz, 6.2 Hz, 3H; *CH*<sub>3</sub>). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>, rt):  $\delta$  197.0 (d, *J* = 6.7 Hz), 136.9, 133.5, 128.8, 128.3, 87.3 (d, *J* = 165.3 Hz), 45.5 (d, *J* = 23.0 Hz), 21.3 (d, *J* = 22.1 Hz). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>, rt):  $\delta$  -173.6 (m, 1F). HRMS (ESI-TOF) calcd m/z for [C<sub>10</sub>H<sub>11</sub>FO+Na]<sup>+</sup> 189.0686, found 189.0687.

1-([1,1'-Biphenyl]-4-yl)-3-fluorobutan-1-one (3be)



According to the general procedures (reaction time = 24 h), 1-([1,1'-biphenyl]-4-yl)vinyl acetate **2e** (59.6 mg, 0.250 mmol), **1b** (128 mg, 0.375 mmol), 2<sup>*i*</sup>Bu-BDN (7.2 mg, 12.5  $\mu$ mol), acetone (4.75 mL) and H<sub>2</sub>O (0.25 mL) afforded **3be** as a white solid (44.4 mg, 0.183 mmol, 73%). Eluent: Pentane/diethyl ether = 1/0  $\rightarrow$  9/1.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt): δ 8.04 (d, J = 8.3 Hz, 2H; Ar), 7.70 (d, J = 8.3 Hz, 2H; Ar), 7.63 (d, J = 7.4 Hz, 2H; Ar), 7.48 (t, J = 7.4 Hz, 2H; Ar), 7.41 (t, J = 7.4 Hz, 1H; Ar), 5.34 (dq, J = 47.6 Hz, 6.2 Hz, 1H; CHF), 3.55 (m, 1H; CHH), 3.12 (m, 1H; CHH), 1.50 (dd, J = 24.1 Hz, 6.2 Hz, 3H; CH<sub>3</sub>). <sup>13</sup>**C NMR** (126 MHz, CDCl<sub>3</sub>, rt): δ 196.6 (d, J = 6.7 Hz), 146.3, 139.9, 135.6, 129.1, 128.9, 128.5, 127.5, 127.4, 87.4 (d, J = 165.5 Hz), 45.6 (d, J = 22.8 Hz), 21.4 (d, J = 22.5 Hz). <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>, rt): δ -173.5 (m, 1F). **HRMS** (ESI-TOF) calcd m/z for [C<sub>16</sub>H<sub>15</sub>FO+Na]<sup>+</sup> 265.0999, found 265.0997.

3-Fluoro-1-(4-methoxyphenyl)butan-1-one (3bf)



According to the general procedures (reaction time = 24 h), 1-(4-methoxyphenyl)vinyl acetate **1f** (48.1 mg, 0.250 mmol), **1b** (128 mg, 0.375 mmol), 2<sup>t</sup>Bu-BDN (7.2 mg, 12.5  $\mu$ mol), acetone (4.75 mL) and H<sub>2</sub>O (0.25 mL) afforded **3bf** as a pale yellow oil (37.5 mg, 0.191 mmol, 76%). Eluent: Pentane/diethyl ether = 1/0  $\rightarrow$ 

9/1.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt): δ 7.93 (d, J = 8.8 Hz, 2H; Ar), 6.93 (d, J = 8.8 Hz, 2H; Ar), 5.28 (dq, J = 47.6 Hz, 6.2 Hz, 1H; CHFCH<sub>3</sub>), 3.86 (s, 3H; OCH<sub>3</sub>), 3.45 (m, 1H; CHH), 3.02 (m, 1H; CHH), 1.45 (dd, J = 24.2 Hz, 6.2 Hz, 3H; CHFCH<sub>3</sub>). <sup>13</sup>**C NMR** (126 MHz, CDCl<sub>3</sub>, rt): δ 195.4 (d, J = 6.6 Hz), 163.8, 130.5, 130.0, 113.8, 87.4 (d, J = 165.2 Hz), 55.5, 45.1 (d, J = 22.8 Hz), 21.2 (d, J = 22.4 Hz). <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>, rt): δ -173.4 (m, 1F). **HRMS** (ESI-TOF) calcd m/z for [C<sub>11</sub>H<sub>13</sub>FO<sub>2</sub>+Na]<sup>+</sup> 219.0792, found 219.0792.

3-Fluoro-1-(4-fluorophenyl)butan-1-one (3bg)



According to the general procedures (reaction time = 24 h), 1-(4-fluorophenyl)vinyl acetate **2g** (45.0 mg, 0.250 mmol), **1b** (128 mg, 0.375 mmol), 2<sup>*t*</sup>Bu-BDN (7.2 mg, 12.5  $\mu$ mol), acetone (4.75 mL) and H<sub>2</sub>O (0.25 mL) afforded **3bg** as a pale yellow oil (33.7 mg, 0.183 mmol, 73%). Eluent: Pentane/diethyl ether = 1/0  $\rightarrow$  9/1.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt): δ 7.98 (dd, *J* = 8.7 Hz, 5.5 Hz, 2H; *Ar*), 7.14 (dd, *J* = 8.7 Hz, 8.7 Hz, 2H; *Ar*), 5.29 (dq, *J* = 47.6 Hz, 6.2 Hz, 1H; C*H*F), 3.47 (m, 1H; C*H*H), 3.04 (m, 1H; CH*H*), 1.47 (dd, *J* = 24.1 Hz, 6.2 Hz, 3H; C*H*<sub>3</sub>). <sup>13</sup>**C NMR** (126 MHz, CDCl<sub>3</sub>, rt): δ 195.4 (d, *J* = 6.3 Hz), 166.1 (d, *J* = 255.3 Hz), 133.5, 131.0 (d, *J* = 9.4 Hz), 115.9 (d, *J* = 21.9 Hz), 87.3 (d, *J* = 165.8 Hz), 45.5 (d, *J* = 23.1 Hz), 21.3 (d, *J* = 22.3 Hz). <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>, rt): δ -105.6 (m, 1F; C<sub>6</sub>H<sub>4</sub>F), -173.5 (m, 1F; CH*F*). **HRMS** (ESI-TOF) calcd m/z for [C<sub>10</sub>H<sub>10</sub>F<sub>2</sub>O+Na]<sup>+</sup> 207.0592, found 207.0593.

1-(4-Chlorophenyl)-3-fluorobutan-1-one (**3bh**)



According to the general procedures (reaction time = 24 h), 1-(4-chlorophenyl)vinyl acetate **2h** (49.2 mg, 0.250 mmol), **1b** (128 mg, 0.375 mmol), 2<sup>t</sup>Bu-BDN (7.2 mg, 12.5  $\mu$ mol), acetone (4.75 mL) and H<sub>2</sub>O (0.25 mL) afforded **3bh** as a pale yellow oil (35.5 mg, 0.177 mmol, 71%). Eluent: Pentane/diethyl ether = 1/0  $\rightarrow$  9/1.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, rt): δ 7.89 (d, J = 8.6 Hz, 2H; Ar), 7.44 (d, J = 8.6 Hz, 2H; Ar), 5.28 (dq, J = 47.5 Hz, 6.2 Hz, 1H; C*H*F), 3.46 (m, 1H; C*H*H), 3.04 (m, 1H; CH*H*), 1.47 (dd, J = 24.1 Hz, 6.2 Hz, 3H; C*H*<sub>3</sub>). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>, rt): δ 195.8 (d, J = 6.0 Hz), 140.1, 135.2, 129.7, 129.1, 87.2 (d, J = 165.8 Hz), 45.4 (d, J = 23.2 Hz), 21.3 (d, J = 22.1 Hz). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>, rt): δ -173.5 (m, 1F). HRMS (ESI-TOF)

calcd m/z for  $[C_{10}H_{10}CIFO+Na]^+$  223.0296, found 223.0298.

1-(4-Bromophenyl)-3-fluorobutan-1-one (3bi)



According to the general procedures (reaction time = 48 h), 1-(4-bromophenyl)vinyl acetate **2i** (60.3 mg, 0.250 mmol), **1b** (128 mg, 0.375 mmol), 2<sup>t</sup>Bu-BDN (7.2 mg, 12.5  $\mu$ mol), acetone (4.75 mL) and H<sub>2</sub>O (0.25 mL) afforded **3bi** as a pale yellow solid (40.6 mg, 0.166 mmol, 66%). Eluent: Pentane/diethyl ether = 1/0  $\rightarrow$  9/1.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt): δ 7.82 (d, J = 8.5 Hz, 2H; Ar), 7.62 (d, J = 8.5 Hz, 2H; Ar), 5.29 (dq, J = 47.4 Hz, 6.2 Hz, 1H; CHFCH<sub>3</sub>), 3.46 (m, 1H; CHH), 3.04 (m, 1H; CHH), 1.47 (dd, J = 24.1 Hz, 6.2 Hz, 3H; CHFCH<sub>3</sub>). <sup>13</sup>**C NMR** (126 MHz, CDCl<sub>3</sub>, rt): δ 196.0 (d, J = 6.1 Hz), 135.6, 132.1, 129.8, 128.8, 87.2 (d, J = 165.8 Hz), 45.4 (d, J = 23.1 Hz), 21.3 (d, J = 22.1 Hz). <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>, rt): δ -173.5 (m, 1F). H**RMS** (ESI-TOF) calcd m/z for [C<sub>10</sub>H<sub>10</sub>BrFO+Na]<sup>+</sup> 266.9791, found 266.9789.

3-Fluoro-1-(4-nitrophenyl)butan-1-one (3bj)



According to the general procedures (reaction time = 48 h), 1-(4-nitrophenyl)vinyl acetate **2j** (51.8 mg, 0.250 mmol), **1b** (128 mg, 0.375 mmol), 2<sup>t</sup>Bu-BDN (7.2 mg, 12.5  $\mu$ mol), acetone (4.75 mL) and H<sub>2</sub>O (0.25 mL) afforded **3bj** as a pale yellow oil (12.2 mg, 0.0578 mmol, 23%). Eluent: Pentane/diethyl ether = 9/1  $\rightarrow$  0/1.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, rt): δ 8.33 (d, J = 8.8 Hz, 2H; Ar), 8.11 (d, J = 8.8 Hz, 2H; Ar), 5.31 (dq, J = 47.5 Hz, J = 6.2 Hz, 1H; CHFCH<sub>3</sub>), 3.53 (m, 1H; CHH), 3.11 (m, 1H; CHH), 1.50 (dd, J = 24.2 Hz, 6.2 Hz, 3H; CHFCH<sub>3</sub>). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>, rt): δ 195.6 (d, J = 5.8 Hz), 150.6, 141.3, 129.4, 124.1, 87.0 (d, J = 166.5 Hz), 46.0 (d, J = 23.4 Hz), 21.2 (d, J = 22.3 Hz). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>, rt): δ -173.5 (m, 1F). HRMS (ESI-TOF) calcd m/z for [C<sub>10</sub>H<sub>10</sub>FNO<sub>3</sub>+Na]<sup>+</sup> 234.0537, found 234.0535.

4-(3-Fluorobutanoyl)benzonitrile (3bk)



According to the general procedures (reaction time = 48 h), 1-(4-cyanophenyl)vinyl acetate **2k** (46.8 mg, 0.250 mmol), **1b** (128 mg, 0.375 mmol), 2<sup>t</sup>Bu-BDN (7.2 mg, 12.5  $\mu$ mol), acetone (4.75 mL) and H<sub>2</sub>O (0.25 mL) afforded **3bk** as a pale yellow oil (23.5 mg, 0.123 mmol, 49%). Eluent: Pentane/diethyl ether = 9/1  $\rightarrow$  0/1.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt): δ 8.05 (d, J = 8.4 Hz, 2H; Ar), 7.79 (d, J = 8.4 Hz, 2H; Ar), 5.30 (dq, J = 47.4 Hz, 6.1 Hz, 1H; CHFCH<sub>3</sub>), 3.50 (m, 1 H; CHH), 3.08 (m, 1H; CHH), 1.49 (dd, J = 24.0 Hz, 6.1 Hz, 3H; CHFCH<sub>3</sub>). <sup>13</sup>**C NMR** (126 MHz, CDCl<sub>3</sub>, rt): δ 195.8 (d, J = 5.8 Hz), 139.8, 132.7, 128.7, 117.9, 116.8, 87.0 (d, J = 166.3 Hz), 45.7 (d, J = 23.0 Hz), 21.2 (d, J = 22.5 Hz). <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>, rt): δ -173.5 (m, 1F). **HRMS** (ESI-TOF) calcd m/z for [C<sub>11</sub>H<sub>10</sub>FNO+Na]<sup>+</sup> 214.0639, found 214.0640.

Methyl 4-(3-fluorobutanoyl)benzoate (3bl)



According to the general procedures (reaction time = 24 h), methyl 4-(1-acetoxyvinyl)benzoate **2I** (55.1 mg, 0.250 mmol), **1b** (128 mg, 0.375 mmol), 2<sup>*i*</sup>Bu-BDN (7.2 mg, 12.5  $\mu$ mol), acetone (4.75 mL) and H<sub>2</sub>O (0.25 mL) afforded **3bI** as a white solid (35.4 mg, 0.158 mmol, 63%). Eluent: Pentane/diethyl ether = 19/1  $\rightarrow$  1/1. Recrystallization from methanol afforded crystals, which are suitable for single-crystal X-ray structure analysis.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt): δ 8.14 (d, J = 8.4 Hz, 2H; Ar), 8.01 (d, J = 8.4 Hz, 2H; Ar), 5.31 (dq, J = 47.5 Hz, 6.1 Hz, 1H; C*H*FCH<sub>3</sub>), 3.96 (s, 3H, COOC*H*<sub>3</sub>), 3.53 (m, 1H; C*H*H), 3.10 (m, 1H; CH*H*), 1.49 (dd, J = 24.1 Hz, 6.1 Hz, 3H; CHFC*H*<sub>3</sub>). <sup>13</sup>**C NMR** (126 MHz, CDCl<sub>3</sub>, rt): δ 196.5 (d, J = 6.0 Hz), 166.2, 140.0, 134.3, 130.0, 128.2, 87.1 (d, J = 165.9 Hz), 52.6, 45.8 (d, J = 23.0 Hz), 21.3 (d, J = 22.4 Hz). <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>, rt): δ -173.6 (m, 1F); **HRMS** (ESI-TOF) calcd m/z for [C<sub>12</sub>H<sub>13</sub>FO<sub>3</sub>+Na]<sup>+</sup> 247.0741, found 247.0738.

3-Fluoro-1-(thiophen-2-yl)butan-1-one (**3bm**)



According to the general procedures (reaction time = 24 h), 1-(thiophen-2-yl)vinyl acetate **2m** (42.1 mg, 0.250 mmol), **1b** (128 mg, 0.375 mmol), 2<sup>*t*</sup>Bu-BDN (7.2 mg, 12.5  $\mu$ mol), acetone (4.75 mL) and H<sub>2</sub>O (0.25 mL) afforded **3bm** as a pale yellow oil (25.7 mg, 0.149 mmol, 60%). Eluent: Pentane/diethyl ether = 1/0  $\rightarrow$  4/1.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, rt): δ 7.74 (dd, *J* = 3.9 Hz, 0.7 Hz, 1H; *Ar*), 7.67 (dd, *J* = 4.8 Hz, 0.7 Hz, 1H; *Ar*),

7.15 (dd, J = 4.8, 3.9 Hz, 1H; Ar), 5.27 (dq, J = 47.6 Hz, 6.2 Hz, 1H;  $CHFCH_3$ ), 3.42 (m, 1H; CHH), 3.02 (m, 1H; CHH), 1.47 (dd, J = 24.0 Hz, 6.2 Hz, 3H;  $CHFCH_3$ ). <sup>13</sup>**C** NMR (126 MHz,  $CDCI_3$ , rt):  $\delta$  189.7 (d, J = 6.5 Hz), 144.4 (d, J = 1.3 Hz), 134.5, 132.7, 128.4, 87.3 (d, J = 166.7 Hz), 46.3 (d, J = 23.2 Hz), 21.3 (d, J = 22.4 Hz). <sup>19</sup>**F** NMR (376 MHz,  $CDCI_3$ , rt):  $\delta$  -173.0 (m, 1F). HRMS (ESI-TOF) calcd m/z for [C<sub>8</sub>H<sub>9</sub>FOS+Na]<sup>+</sup> 195.0250, found 195.0248.

2-(1-Fluoroethyl)-3,4-dihydronaphthalen-1(2*H*)-one (**3bn**)



According to the general procedures (reaction time = 72 h), 3,4-dihydronaphthalen-1-yl acetate **2n** (47.1 mg, 0.250 mmol), **1b** (128 mg, 0.375 mmol), 2<sup>*t*</sup>Bu-BDN (14.4 mg, 25.0  $\mu$ mol), acetone (4.75 mL) and H<sub>2</sub>O (0.25 mL) afforded **3bn** as a colorless oil (18.0 mg, 0.0936 mmol, 37%, diastereomer ratio = 53:47). Eluent: Pentane/diethyl ether = 1/0  $\rightarrow$  4/1.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt): δ 8.05–8.00 (1H; *Ar* of major and minor), 7.50–7.46 (1H; *Ar* of major and minor), 7.33–7.25 (2H; *Ar* of major and minor), 5.43 (m, 1H; C*H*FCH<sub>3</sub> of major and minor), 3.12-2.47 (2H; C*H*HCH<sub>2</sub>CH, CH*H*CH<sub>2</sub>CH of major and minor), 3.03 (m, 1H; CH<sub>2</sub>CH<sub>2</sub>CH of major and minor), 2.35 (m, 1H; CH<sub>2</sub>C*H*HCH of major and minor), 2.08 (m, 1H; CH<sub>2</sub>CH*H*CH of major and minor), 1.48 (dd, *J* = 24.5 Hz, 6.4 Hz, 3H; CHFCH<sub>3</sub> of major), 1.36 (dd, *J* = 24.7 Hz, 6.4 Hz, 3H; CHFCH<sub>3</sub> of minor). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>, rt): δ 197.2 (d, *J* = 11.3 Hz), 196.9 (d, *J* = 3.5 Hz), 89.8 (d, *J* = 161.3 Hz), 88.2 (d, *J* = 166.7 Hz), 53.0 (d, *J* = 21.4 Hz), 52.4 (d, *J* = 22.4 Hz), 28.9, 28.5, 23.1 (brs), 22.8 (d, *J* = 6.0 Hz), 19.4 (d, *J* = 22.6 Hz), 16.6 (d, *J* = 22.7 Hz). Aromatic signals of major and minor diastereomers were overlapped around (144.2, 144.1, 133.7, 132.8, 132.7, 128.9, 128.8, 127.7, 127.4, 126.8). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>, rt): δ – 184.2 (m, 1F; major), –184.8 (m, 1F; minor). **HRMS** (ESI-TOF) calcd m/z for [C<sub>12</sub>H<sub>13</sub>FO+Na]<sup>+</sup> 215.0843, found 215.0843.

3-Fluoro-1-(*p*-tolyl)propan-1-one (**3aa**)



According to the general procedures (reaction time = 24 h), **2a** (44.1 mg, 0.250 mmol), **1a** (123 mg, 0.375 mmol), 2<sup>*t*</sup>Bu-BDN (7.2 mg, 12.5  $\mu$ mol), acetone (4.75 mL) and H<sub>2</sub>O (0.25 mL) afforded **3aa** as a pale yellow oil (33.5 mg, 0.202 mmol, 81%). Eluent: Pentane/diethyl ether = 1/0  $\rightarrow$  4/1.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, rt): δ 7.87 (d, J = 8.1 Hz, 2H), 7.28 (d, J = 8.1 Hz, 2H), 4.90 (dt, J = 46.6 Hz, J

= 6.1 Hz, 2H), 3.36 (dt, J = 22.2 Hz, 6.1 Hz, 2H), 2.42 (s, 3H). <sup>13</sup>**C NMR** (126 MHz, CDCl<sub>3</sub>, rt):  $\delta$  196.4 (d, J = 5.5 Hz), 144.5, 134.3, 129.5, 128.4, 79.5 (d, J = 165.0 Hz), 38.9 (d, J = 21.5 Hz), 21.8. <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>, rt):  $\delta$  -222.1 (m, 1F). **HRMS** (ESI-TOF) calcd m/z for [C<sub>10</sub>H<sub>11</sub>FO+Na]<sup>+</sup> 189.0686, found 189.0687.

3-Fluoro-1-(*p*-tolyl)pentan-1-one (3ca)



According to the general procedures (reaction time = 24 h), **2a** (44.1 mg, 0.250 mmol), **1c** (133 mg, 0.375 mmol), 2<sup>t</sup>Bu-BDN (7.2 mg, 12.5  $\mu$ mol), acetone (4.75 mL) and H<sub>2</sub>O (0.25 mL) afforded **3ca** as a pale yellow oil (31.0 mg, 0.160 mmol, 64%). Eluent: Pentane/diethyl ether = 1/0  $\rightarrow$  4/1.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt): δ 7.86 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 8.4 Hz, 2H), 5.09 (dquin, J = 48.0 Hz, 6.0 Hz, 1H), 3.44 (m, 1H), 3.05 (m, 1H), 2.42 (s, 3H), 1.82-1.69 (2H), 1.04 (t, J = 7.4 Hz, 3H). <sup>13</sup>**C NMR** (126 MHz, CDCl<sub>3</sub>, rt): δ 196.8 (d, J = 5.4 Hz), 144.3, 134.7, 129.4, 128.4, 91.7 (d, J = 168.4 Hz), 43.4 (d, J = 23.0 Hz), 28.4 (d, J = 21.1 Hz), 21.7, 9.4 (d, J = 5.2 Hz). <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>, rt): δ -182.2 (m, 1F). **HRMS** (ESI-TOF) calcd m/z for [C<sub>12</sub>H<sub>15</sub>FO+Na]<sup>+</sup> 217.0999, found 217.1000.

3-Fluoro-4-phenyl-1-(*p*-tolyl)butan-1-one (**3da**)



According to the general procedures (reaction time = 24 h), **2a** (44.1 mg, 0.250 mmol), **1d** (157 mg, 0.375 mmol), 2<sup>t</sup>Bu-BDN (7.2 mg, 12.5  $\mu$ mol), acetone (4.75 mL) and H<sub>2</sub>O (0.25 mL) afforded **3da** as a pale yellow solid (49.4 mg, 0.193 mmol, 77%). Eluent: Pentane/diethyl ether = 1/0  $\rightarrow$  4/1.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt): δ 7.81 (d, J = 8.2 Hz, 2H), 7.33-7.25 (7H), 5.39 (dquin, J = 47.2 Hz, 6.0 Hz, 1H), 3.47-3.03 (2H), 3.14-3.07 (2H), 2.41 (s, 3H). <sup>13</sup>**C NMR** (126 MHz, CDCl<sub>3</sub>, rt): δ 196.6 (d, J = 6.0 Hz), 144.4, 136.7 (d, J = 4.1 Hz), 134.5, 129.7, 129.5, 128.6, 128.4, 126.9, 90.7 (d, J = 171.3 Hz), 42.8 (d, J = 23.1 Hz), 41.3 (d, J = 21.0 Hz), 21.8. <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>, rt): δ -179.6 (m, 1F). **HRMS** (ESI-TOF) calcd m/z for [C<sub>17</sub>H<sub>17</sub>FO+Na]<sup>+</sup> 279.1156, found 279.1154.

3-Fluoro-1-(*p*-tolyl)hex-5-en-1-one (**3ea**)



According to the general procedures (reaction time = 24 h), **2a** (44.1 mg, 0.250 mmol), **1e** (138 mg, 0.375 mmol), 2<sup>t</sup>Bu-BDN (7.2 mg, 12.5  $\mu$ mol), acetone (4.75 mL) and H<sub>2</sub>O (0.25 mL) afforded **3ea** as a colorless oil (31.6 mg, 0.153 mmol, 61%). Eluent: Pentane/diethyl ether = 1/0  $\rightarrow$  4/1.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt): δ 7.85 (d, *J* = 7.9 Hz, 2H), 7.27 (d, *J* = 7.9 Hz, 2H), 5.87 (m, 1H), 5.23 (m, 1H), 5.21-5.15 (2H), 3.43 (m, 1H), 3.10 (m, 1H), 2.58-2.48 (2H), 2.41 (s, 3H). <sup>13</sup>**C NMR** (126 MHz, CDCl<sub>3</sub>, rt): δ 196.4 (d, *J* = 5.8 Hz), 144.3, 134.4, 132.6 (d, *J* = 5.7 Hz), 129.4, 128.3, 118.7, 89.5 (d, *J* = 170.1 Hz), 42.8 (d, *J* = 23.2 Hz), 39.4 (d, *J* = 21.2 Hz), 21.7. <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>, rt): δ -180.9 (m, 1F). **HRMS** (ESI-TOF) calcd m/z for [C<sub>13</sub>H<sub>15</sub>FO+Na]<sup>+</sup> 229.0999, found 229.1001.

3-Fluoro-1-(p-tolyl)hept-5-yn-1-one (3fa)



According to the general procedures (reaction time = 24 h), **2a** (44.1 mg, 0.250 mmol), **1f** (142 mg, 0.375 mmol), 2<sup>t</sup>Bu-BDN (7.2 mg, 12.5  $\mu$ mol), acetone (4.75 mL) and H<sub>2</sub>O (0.25 mL) afforded **3fa** as a pale yellow oil (34.4 mg, 0.158 mmol, 63%). Eluent: Pentane/diethyl ether = 1/0  $\rightarrow$  4/1.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt): δ 7.88 (d, J = 8.2 Hz, 2H), 7.28 (d, J = 8.2 Hz, 2H), 5.24 (dquin, J = 47.0 Hz, 5.8 Hz, 1H), 3.53-3.29 (2H), 2.71-2.63 (2H), 2.42 (s, 3H), 1.79 (t, J = 2.5 Hz, 3H). <sup>13</sup>**C NMR** (126 MHz, CDCl<sub>3</sub>, rt): δ 196.3 (d, J = 5.4 Hz), 144.5, 134.4, 129.5, 128.4, 88.3 (d, J = 173.3 Hz), 79.1, 73.3 (d, J = 10.0 Hz), 42.4 (d, J = 22.6 Hz), 25.4 (d, J = 24.8 Hz), 21.8, 3.6. <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>, rt): δ -179.0 (m, 1F). **HRMS** (ESI-TOF) calcd m/z for [C<sub>14</sub>H<sub>15</sub>FO+Na]<sup>+</sup> 241.0999, found 241.1000.

3-(But-2-yn-1-yl)-3-fluoro-1-(*p*-tolyl)hept-5-yn-1-one (**3ga**)



According to the general procedures (reaction time = 24 h), **2a** (44.1 mg, 0.250 mmol), **1g** (162 mg, 0.375 mmol), 2<sup>t</sup>Bu-BDN (7.2 mg, 12.5  $\mu$ mol), acetone (4.75 mL) and H<sub>2</sub>O (0.25 mL) afforded **3ga** as a pale yellow solid (38.1 mg, 0.141 mmol, 56%). Eluent: Pentane/diethyl ether = 1/0  $\rightarrow$  4/1.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, rt): δ 7.89 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 3.56 (d, J = 14.5 Hz, 2H), 2.86-2.79 (4H), 2.42 (s, 3H), 1.77 (t, J = 2.5 Hz, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>, rt): δ 196.2 (d, J = 9.6 Hz), 144.2, 134.9 (d, J = 2.5 Hz), 129.3, 128.5, 95.4 (d, J = 180.7 Hz), 79.1, 73.5 (d, J = 5.8 Hz), 43.3 (d, J = 23.5 Hz), 28.4 (d, J = 24.2 Hz), 21.7, 3.6. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>, rt): δ -146.5 (m, 1F). HRMS (ESI-TOF) calcd m/z for [C<sub>18</sub>H<sub>19</sub>FO+Na]<sup>+</sup> 293.1312, found 293.1312.

3-Fluoro-5-(thiophen-2-yl)-1-(p-tolyl)pentan-1-one (**3ha**)



According to the general procedures (reaction time = 24 h), **2a** (44.1 mg, 0.250 mmol), **1h** (164 mg, 0.375 mmol),  $2^t$ Bu-BDN (7.2 mg, 12.5  $\mu$ mol), acetone (4.75 mL) and H<sub>2</sub>O (0.25 mL) afforded **3ha** as a white solid (46.3 mg, 0.168 mmol, 67%). Eluent: Pentane/diethyl ether =  $1/0 \rightarrow 4/1$ .

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt): δ 7.85 (d, J = 8.3 Hz, 2H), 7.27 (d, J = 8.3 Hz, 2H), 7.13 (d, J = 4.2 Hz, 2.2 Hz, 1H), 6.93 (d, J = 4.2 Hz, 2.2 Hz, 1H), 6.84 (d, J = 4.2 Hz, 2.2 Hz, 1H), 5.21 (dquin, J = 48.1 Hz, 6.1 Hz, 1H), 3.54-2.97 (2H), 3.14-2.97 (2H), 2.42 (s, 3H), 2.16-2.03 (2H). <sup>13</sup>**C NMR** (126 MHz, CDCl<sub>3</sub>, rt): δ 196.4 (d, J = 5.8 Hz), 144.5, 143.9, 134.4, 129.5, 128.4, 126.9, 124.7, 123.4, 89.6 (d, J = 168.9 Hz), 43.7 (d, J = 23.0 Hz), 37.4 (d, J = 20.8 Hz), 25.6 (d, J = 4.3 Hz), 21.8. <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>, rt): δ -183.2 (m, 1F). **HRMS** (ESI-TOF) calcd m/z for [C<sub>16</sub>H<sub>17</sub>FOS+Na]<sup>+</sup> 299.0876, found 299.0877.

3-Fluoro-1-(p-tolyl)-4-(5-(trifluoromethyl)furan-2-yl)butan-1-one (3ia)



According to the general procedures (reaction time = 24 h), **2a** (44.1 mg, 0.250 mmol), **1i** (178 mg, 0.375 mmol), 2<sup>*t*</sup>Bu-BDN (7.2 mg, 12.5 µmol), acetone (4.75 mL) and H<sub>2</sub>O (0.25 mL) afforded **3ia** as a white solid (56.3 mg, 0.179 mmol, 72%). Eluent: Pentane/diethyl ether =  $1/0 \rightarrow 4/1$ .

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, rt): δ 7.84 (d, J = 8.2 Hz, 2H), 7.28 (d, J = 8.2 Hz, 2H), 6.72 (d, J = 2.6 Hz, 1H), 6.27 (d, J = 2.6 Hz, 1H), 5.44 (dquin, J = 47.0 Hz, 5.9 Hz, 1H), 3.53-3.09 (2H), 3.26-3.09 (2H), 2.42 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>, rt): δ 195.9 (d, J = 6.6 Hz), 153.9, 144.7, 141.2 (q, J = 42.8 Hz), 134.2 (d, J = 1.3 Hz), 129.6, 128.4, 119.2 (q, J = 266.6 Hz), 112.7 (q, J = 2.7 Hz), 108.9, 88.0 (d, J = 172.7 Hz), 42.8 (d, J = 22.7 Hz), 33.7 (d, J = 22.7 Hz), 21.8. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>, rt): δ -65.0 (m, 3F), -180.6 (m, 1F). HRMS (ESI-TOF) calcd m/z for [C<sub>16</sub>H<sub>14</sub>F<sub>4</sub>O<sub>2</sub>+Na]<sup>+</sup> 337.0822, found 337.0824.

#### Photo- and electro-chemical measurements

The measurements of cyclic voltammetry (CV) and differential pulse voltammetry (DPV) of 2<sup>t</sup>Bu-BDN were performed in acetone ( $[2^tBu-BDN] = 1.0 \text{ mM}$ ,  $[(NBu_4)PF_6] = 0.10 \text{ M}$ ) with platinum disk(working electrode), wire electrodes (counter electrode) and a Ag/AgNO<sub>3</sub> reference electrode. The scan rates were 100 mV/s. Ferrocene was used as a reference.



The measurements of UV-vis spectra of naphthalene-based photoredox catalysts (2<sup>t</sup>Bu-BDN) were performed in acetone ([2<sup>t</sup>Bu-BDN] =  $1.0 \times 10^{-4}$  M) under air at room temperature.



Figure S2. UV-vis spectrum of 2<sup>t</sup>Bu-BDN.

The luminescence measurement (Ex: 370 nm) of naphthalene-based photoredox catalysts (2<sup>*t*</sup>Bu-BDN) was performed in acetone ([2<sup>*t*</sup>Bu-BDN] =  $1.0 \times 10^{-5}$  M) under N<sub>2</sub> at room temperature.





The measurements of cyclic voltammetry of  $CR^{1}FR^{2}$ -reagents (**1b**–**1k**) were performed in acetone ([**1**] = 5.0 mM, [(NBu<sub>4</sub>)PF<sub>6</sub>] = 0.10 M) with platinum disk (working electrode), wire electrodes (counter electrode) and a Ag/AgNO<sub>3</sub> reference electrode. The scan rates were 100 mV/s. Ferrocene was used as a reference.



Figure S4. CV of reagents.

# Luminescence quenching experiments

Luminescence quenching experiments of  $2^t$ Bu-BDN were performed in acetone ([ $2^t$ Bu-BDN] =  $1.0 \times 10^{-4}$  M) at room temperature. The solutions were degassed by three freeze-pump-thaw cycles before the measurements.



Figure S5. Stern-Volmer plots.

# **Radical trapping experiment with TEMPO**



An NMR tube was charged with **2a** (4.4 mg, 25.0  $\mu$ mol), **1b** (12.8 mg, 37.5  $\mu$ mol), 2<sup>t</sup>Bu-BDN (0.72 mg, 1.25  $\mu$ mol), 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) (11.7 mg, 74.9  $\mu$ mol) and tetraethylsilane (2  $\mu$ L) under N<sub>2</sub> atmosphere. Then, the mixed solvent (acetone-*d*<sub>6</sub>: 475  $\mu$ L, D<sub>2</sub>O: 25  $\mu$ L) was added and the mixture was degassed by three freeze-pump-thaw cycles. The NMR tube was placed at 2-3 cm away from blue LED lamps ( $\lambda$  = 425 nm) in a water bath. The reaction was carried out under visible light irradiation for 24 hours at room temperature and monitored by NMR spectroscopy.



Figure S6. NMR of GC-MS after the reaction.

# Light/dark experiment



Preparation of the sample was followed according to the procedures for the above-mentioned NMR experiment. Time profile for the reaction under light and dark conditions is shown below.



## Quantum yield for photocatalytic reaction

(Photon flux)

Photon flux was calculated according to the equation below. Power of light was measured with Ophir PD300-UV and Ophir StarLite.

Irradiation was carried out with HITACHI F-7000 ( $\lambda$  = 420 nm, emission slit width = 10.0 nm).

Power of light: 243.3  $\mu$ W (for  $\lambda$  = 420 nm)

 $photon flux = \frac{power of light (W) \times wavelength of irradiation light (m)}{Plank constant (J \cdot s) \times speed of light (m/s) \times Avogadro constant (1/mol)}$  $\therefore \frac{243.3 \times 10^{-6} \times 420 \times 10^{-9}}{6.626 \times 10^{-34} \times 2.998 \times 10^8 \times 6.022 \times 10^{23}} = 8.54 \times 10^{-10}$ 

Calculated photon flux: 8.54 ×  $10^{-10}$  einstein  $\cdot$  s<sup>-1</sup>

## (Quantum yield)

A cuvette was charged with a solution of **2a** (17.6 mg, 0.100 mmol), **1b** (51.2 mg, 0.150 mmol), 2<sup>t</sup>Bu-BDN (2.9 mg, 5.0 µmol),  $\alpha$ , $\alpha$ , $\alpha$ -trifluorotoluene (1.2 mg, 8.2 µmol) as an internal standared and the mixed solvent (acetone: 1.9 mL, H<sub>2</sub>O: 0.1 mL) under N<sub>2</sub> atmosphere. The solution was degassed by three freeze-pump-thaw cycles, and it was irradiated by F-7000 ( $\lambda$  = 420 nm, emission slit width = 10.0 nm). A small portion of the reaction solution was diluted with acetone-*d*<sub>6</sub>, and the reaction was monitored by <sup>19</sup>F NMR. The quantum yield ( $\phi$ ) was calculated by following formula. (A: Absorbance of catalysts)

$$\phi = \frac{mol \ product}{4.20 \times 10^{-10} \cdot 43200 \ \text{s} \cdot f} \qquad (f = 1 - 10^{-A})$$



yield of **3ba** (17 h): 4.4% NMR yield (4.41 x  $10^{-6}$  mol),  $\Phi = 8.4\%$ yield of **3ba** (27 h): 6.9% NMR yield (6.92 x  $10^{-6}$  mol),  $\Phi = 8.3\%$ yield of **3ba** (40 h): 11% NMR yield (1.06 x  $10^{-5}$  mol),  $\Phi = 8.6\%$ average  $\Phi = 8.4\%$ 

# LFP studies (Figure 1)

The fluorescence emission lifetime of 2<sup>t</sup>Bu-BDN at 458 nm under N<sub>2</sub> bubbled conditions was quenched at different concentration of quencher **1b** (Figure S8). The fluorescence emission lifetime at 458 nm was affected by increasing the concentration of **1b**. Equation 1, where Q is the quencher, was used to obtain the Stern-Volmer plot of  $\tau^0/\tau$  versus concentration of **1b** (Figure S9). This yielded a straight line with slope of 0.0235 and intercept of 1. From the slope, the rate of quenching,  $k_q$ , was determined to be 2.27 × 10<sup>9</sup> M<sup>-1</sup>s<sup>-1</sup>.

$$\tau^{0}/\tau = 1 + k_{q}\tau^{0}[Q]$$
 equation 1



**Figure S8.** Fluorescence emission decay (excitation wavelength = 390 nm nano-LED) observed at 458 nm under N<sub>2</sub> (10 min) conditions of 0.005 mM solution of  $2^{t}$ Bu-BDN in acetone at room temperature in presence of different concentration of quencher **1b** 



**Figure S9**. Stern-Volmer plot obtained from fluorescence emission lifetime observed at 458 nm under N<sub>2</sub> (10 min) conditions at different concentration of quencher **1b**.  $\tau^{0}$  is the lifetime in absence of **1**b and  $\tau$  is the lifetime at various concentrations of **1b**.

## **EPR** experiments

A solution of **1b** (25.6 mg, 15 mM) and 2<sup>*t*</sup>Bu-BDN (1.3 mg, 0.5 mM) was prepared in Ar-saturated acetone (4.75 mL) and H<sub>2</sub>O (0.25 mL). An EPR flat tube was charged with ~50  $\mu$ L of the solution. The EPR spectrum was measured under visible light irradiation (430 nm) at room temperature. During irradiation for 4 min (Figure S10b), a broad signal around 3500-3540 G was observed at the resonance frequency of 9.87 GHz, see the difference spectrum in Figure S10c (= Figure S10b – Figure S10a). When irradiation stopped, the signal disappeared. These results suggest that radical species appeared in the photoreaction of **1b** with 2<sup>*t*</sup>Bu-BDN, but it was difficult to be assigned due to the weak intensity and transiency.



**Figure 10**. EPR spectra obtained from the acetone/ $H_2O$  solution of **1b** and 2<sup>t</sup>Bu-BDN before (a), after irradiation (b) (430 nm visible light), and (c) a difference spectrum (b)–(a).

To confirm generation of the  $\alpha$ -monofluoroethyl radical under these conditions, EPR trapping experiments were conducted in the presence of a spin trapping agent, 5,5-dimethyl-1-pyrroline-*N*-oxide (DMPO) (23.6 mg, 104 mM). As a result, formation of the DMPO spin adduct of  $\alpha$ -monofluoroethyl radical was observed by EPR and HRMS (ESI<sup>+</sup>) (Figure S11). Calcd m/z for C<sub>6</sub>H<sub>15</sub>ONF 160.11322, found 160.11350.



**Figure 11**. An EPR spectrum obtained from the acetone/H<sub>2</sub>O solution of **1b** and 2<sup>t</sup>Bu-BDN in the presence of DMPO after irradiation (430 nm visible light).

# Crystallographic data

• Crystallographic data of 2<sup>t</sup>Bu-BDN



**Figure S12**. An ORTEP diagram of 2<sup>t</sup>Bu-BDN with ellipsoids shown at the 50% contour percent probability level.

| Table S | <b>51.</b> Crystal | data and | structure | refinement fo | r 2 <sup>t</sup> Bu-BDN. |
|---------|--------------------|----------|-----------|---------------|--------------------------|
|---------|--------------------|----------|-----------|---------------|--------------------------|

| Identification code          | RT064                 |
|------------------------------|-----------------------|
| Empirical formula            | $C_{42}H_{42}N_2$     |
| Formula weight               | 574.77                |
| Temperature/K                | 93                    |
| Crystal system               | monoclinic            |
| Space group                  | P2 <sub>1</sub> /n    |
| a/Å                          | 17.060(2)             |
| b/Å                          | 10.1206(8)            |
| c/Å                          | 19.139(2)             |
| α/°                          | 90                    |
| β/°                          | 98.606(11)            |
| γ/°                          | 90                    |
| Volume/Å <sup>3</sup>        | 3267.2(6)             |
| Z                            | 4                     |
| $ ho_{calc}g/cm^3$           | 1.169                 |
| µ/mm <sup>-1</sup>           | 0.508                 |
| F(000)                       | 1232.0                |
| Crystal size/mm <sup>3</sup> | 0.361 × 0.037 × 0.026 |
| Radiation                    | CuKα (λ = 1.54184)    |

| 20 range for data collection/°    | 6.476 to 152.72                                                |
|-----------------------------------|----------------------------------------------------------------|
| Index ranges                      | $-21 \leq h \leq 21,  -10 \leq k \leq 12,  -23 \leq l \leq 24$ |
| Reflections collected             | 22964                                                          |
| Independent reflections           | 6521 [ $R_{int}$ = 0.1195, $R_{sigma}$ = 0.1034]               |
| Data/restraints/parameters        | 6521/0/403                                                     |
| Goodness-of-fit on F <sup>2</sup> | 1.024                                                          |
| Final R indexes [I>=2σ (I)]       | R <sub>1</sub> = 0.0958, wR <sub>2</sub> = 0.2462              |
| Final R indexes [all data]        | R <sub>1</sub> = 0.1681, wR <sub>2</sub> = 0.2998              |
| Largest diff. peak/hole / e Å-3   | 0.52/-0.34                                                     |

Crystallographic data of 1b



Figure S13. An ORTEP diagram of 1b with ellipsoids shown at the 50% contour percent probability level.

| Identification code | RT052                        |
|---------------------|------------------------------|
| Empirical formula   | $C_{30}H_{32}F_2N_2O_6S_4\\$ |
| Formula weight      | 682.81                       |
| Temperature/K       | 93.0                         |
| Crystal system      | orthorhombic                 |
| Space group         | Pca2 <sub>1</sub>            |
| a/Å                 | 15.5254(2)                   |
| b/Å                 | 5.72610(10)                  |
|                     |                              |

Table S2. Crystal data and structure refinement for 1b.

| c/Å                               | 34.5954(5)                                           |
|-----------------------------------|------------------------------------------------------|
| α/°                               | 90                                                   |
| β/°                               | 90                                                   |
| γ/°                               | 90                                                   |
| Volume/Å <sup>3</sup>             | 3075.53(8)                                           |
| Z                                 | 4                                                    |
| $ ho_{calc}g/cm^3$                | 1.475                                                |
| µ/mm <sup>-1</sup>                | 3.351                                                |
| F(000)                            | 1424.0                                               |
| Crystal size/mm <sup>3</sup>      | 0.143 × 0.057 × 0.032                                |
| Radiation                         | CuKα (λ = 1.54184)                                   |
| 20 range for data collection/     | 10.228 to 152.482                                    |
| Index ranges                      | $-19 \le h \le 19, -7 \le k \le 6, -43 \le l \le 43$ |
| Reflections collected             | 75912                                                |
| Independent reflections           | 6261 [ $R_{int} = 0.0379, R_{sigma} = 0.0172$ ]      |
| Data/restraints/parameters        | 6261/1/401                                           |
| Goodness-of-fit on F <sup>2</sup> | 1.082                                                |
| Final R indexes [I>=2σ (I)]       | R <sub>1</sub> = 0.0303, wR <sub>2</sub> = 0.0842    |
| Final R indexes [all data]        | R <sub>1</sub> = 0.0307, wR <sub>2</sub> = 0.0845    |
| Largest diff. peak/hole / e Å-3   | 0.42/-0.38                                           |
| Flack parameter                   | 0.158(6)                                             |

Crystallographic data of 1d



Figure S14. An ORTEP diagram of 1d with ellipsoids shown at the 50% contour percent probability level.

| Identification code          | RT277                  |
|------------------------------|------------------------|
| Empirical formula            | $C_{21}H_{20}FNO_3S_2$ |
| Formula weight               | 417.50                 |
| Temperature/K                | 93.0                   |
| Crystal system               | monoclinic             |
| Space group                  | P2 <sub>1</sub> /c     |
| a/Å                          | 22.1286(7)             |
| b/Å                          | 5.7699(2)              |
| c/Å                          | 15.7586(5)             |
| α/°                          | 90                     |
| β/°                          | 106.416(3)             |
| γ/°                          | 90                     |
| Volume/Å <sup>3</sup>        | 1930.03(11)            |
| Z                            | 4                      |
| $ ho_{calc}g/cm^3$           | 1.437                  |
| µ/mm <sup>-1</sup>           | 2.782                  |
| F(000)                       | 872.0                  |
| Crystal size/mm <sup>3</sup> | 0.268 × 0.065 × 0.054  |
| Radiation                    | CuKα (λ = 1.54184)     |

| Table | S3. | Crystal | data | and | structure | refinement | for | 1d. |
|-------|-----|---------|------|-----|-----------|------------|-----|-----|
| TUDIC | 00. | oryotar | autu | unu | Structure | rennernern | 101 | 10. |

| 20 range for data collection/°    | 8.33 to 152.548                                      |
|-----------------------------------|------------------------------------------------------|
| Index ranges                      | $-27 \le h \le 27, -6 \le k \le 7, -19 \le l \le 19$ |
| Reflections collected             | 48671                                                |
| Independent reflections           | $3925 [R_{int} = 0.0528, R_{sigma} = 0.0200]$        |
| Data/restraints/parameters        | 3925/0/254                                           |
| Goodness-of-fit on F <sup>2</sup> | 1.066                                                |
| Final R indexes [I>=2σ (I)]       | R <sub>1</sub> = 0.0347, wR <sub>2</sub> = 0.0953    |
| Final R indexes [all data]        | R <sub>1</sub> = 0.0363, wR <sub>2</sub> = 0.0966    |
| Largest diff. peak/hole / e Å-3   | 0.48/-0.34                                           |

Crystallographic data of 1d



Figure S15. An ORTEP diagram of 3bl with ellipsoids shown at the 50% contour percent probability level.

Table S4. Crystal data and structure refinement for 3bl.

| Identification code | RT217/                                          |
|---------------------|-------------------------------------------------|
| Empirical formula   | C <sub>12</sub> H <sub>13</sub> FO <sub>3</sub> |
| Formula weight      | 224.22                                          |
| Temperature/K       | 93                                              |
| Crystal system      | monoclinic                                      |
| Space group         | P21/c                                           |
| a/Å                 | 26.0397(16)                                     |
| b/Å                 | 5.8337(3)                                       |
| c/Å                 | 7.1864(5)                                       |
| α/°                 | 90                                              |
| β/°                 | 95.629(6)                                       |
| γ/°                 | 90                                              |

| Volume/Å <sup>3</sup>             | 1086.41(12)                                                   |
|-----------------------------------|---------------------------------------------------------------|
| Z                                 | 4                                                             |
| $ ho_{calc}g/cm^3$                | 1.371                                                         |
| µ/mm⁻¹                            | 0.919                                                         |
| F(000)                            | 472.0                                                         |
| Crystal size/mm <sup>3</sup>      | 0.077 × 0.054 × 0.026                                         |
| Radiation                         | CuKα (λ = 1.54184)                                            |
| 20 range for data collection/     | ° 6.822 to 152.924                                            |
| Index ranges                      | -32 ≤ h ≤ 31, -7 ≤ k ≤ 7, -9 ≤ l ≤ 8                          |
| Reflections collected             | 23370                                                         |
| Independent reflections           | 2243 [R <sub>int</sub> = 0.0548, R <sub>sigma</sub> = 0.0234] |
| Data/restraints/parameters        | 2243/0/147                                                    |
| Goodness-of-fit on F <sup>2</sup> | 1.161                                                         |
| Final R indexes [I>=2σ (I)]       | R <sub>1</sub> = 0.0885, wR <sub>2</sub> = 0.2106             |
| Final R indexes [all data]        | R <sub>1</sub> = 0.0971, wR <sub>2</sub> = 0.2161             |
| Largest diff. peak/hole / e Å-3   | 0.59/-0.45                                                    |

#### References

[1] (a) D. Gärtner, A. L. Stein, S. Grupe, J. Arp and A. Wangelin, *Angew. Chem. Int. Ed.*, 2015, 54, 10545–10549; (b) C.-X. Song, G.-X. Cai, T. R. Farrell, Z.-P. Jiang, H. Li, L.-B. Gan and Z.-J. Shi, *Chem. Commun.*, 2009, 6002–6004; (c) S. Rozen and Y. Menahem, *J. Fluorine Chem.*, 1980, 16, 19–31; (d) D. Felipe-Blanco and J. C. Gonzalez-Gomez, *Adv. Synth. Catal.*, 2018, 360, 2773–2778; (e) J. S. Sharley, A. M. C. Pérez, E. E. Ferri, A. F. Miranda and I. R. Baxendale, *Tetrahedron*, 2016, 72, 2947–2954; (f) I. Geibel and J. Christoffers, *Eur. J. Org. Chem.* 2016, 918–920.

[2] (a) J. P. Wolfe and S. L. Buchwald, *J. Org. Chem.*, 2000, 65, 1144–1157; (b) N. Noto, T. Koike and M.
 Akita, ACS Catal., 2019, 9, 4382–4387.

[3] (a) T. Luo, R. Zhang, X. Shen, W. Zhang, C. Nia and J. Hu, *Dalton Trans.*, 2015, 44, 19636–19641; (b)
W. Zhang and J. Hu, *Adv. Synth. Catal.*, 2010, 352, 2799–2804.

# **NMR Spectra**

<sup>1</sup>H NMR




















<sup>1</sup>H NMR



























```
<sup>19</sup>F NMR
```













S47



















Me

















<sup>1</sup>H NMR









<sup>19</sup>F NMR













S59



<sup>19</sup>F NMR















<sup>19</sup>F NMR















S65



<sup>19</sup>F NMR













<sup>19</sup>F NMR















<sup>19</sup>F NMR

-178.86 -178.86 -178.86 -178.89 -178.91 -178.99 -178.99 -178.99 -178.99 -178.99 -178.99 -178.99 -178.99 -179.00 -179.00 -179.00 -179.00 -179.00 -179.00 -179.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779.00 -1779




S73



## <sup>1</sup>H NMR











## <sup>1</sup>H NMR



