Electronic Supplementary Information for

Chiral approach to investigate mechanism of highly efficient thermally activated delayed fluorescence \dagger

Kikuya Hayashi ${ }^{1}$, Arimasa Matsumoto ${ }^{2}$, Shuzo Hirata ${ }^{1 *}$,

\author{

1. Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
 2. Department of Chemistry, Biology, and Environmental Science, Nara Women's University, Kita-Uoya, Nishi-machi, Nara 630-8506, Japan
 *Corresponding author.
 E-mail: shuzohirata@uec.ac.jp
}

This PDF file includes:
Section 1. Synthesis of chromophores
Section 2. Other experimental procedures
Section 3. Supporting Figures

Section 1. Synthesis of chromophores

Enantiomers of 10,10'-bis[4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl]-2,2'-dimethyl$10 H, 10^{\prime} H-9,9^{\prime}$-spirobi[acridine] (1) consisting of a 2-2'-dimethyl-10H,10' $\mathrm{H}-9,9^{\prime}$ 'spirobi[acridine] moiety with chiral carbon as a donating unit and a 2-(4-bromophenyl)-4,6-diphenyl-1,3,5-triazine as an acceptor unit were synthesized. An achiral structure based on the conjugated back bone of $\mathbf{1}$ has been reported as a chromophore with a high external electroluminescence quantum yield of 35% in organic light emitting diodes. ${ }^{5}$ Hence, we selected this state-of the-art back bone to study the influence of vibrations on f_{f}. To synthesize 1, racemic 2-2'-dimethyl-10H,10'H-9, 9^{\prime}-spirobi[acridine] (1d) (Fig 1a) was first obtained by nucleophilic addition promoted by n-butyllithium (see Figs. S1-S10, ESI \dagger). ${ }^{14}$ Enantiomers of $\mathbf{1 d}$ were separated by chiral column chromatography (see Fig. S11, ESI \dagger). The enantiomers of 1 were synthesized by Buckwald-Hartwig amination with enantiomers of 1d and 2-(4-bromophenyl)-4,6-diphenyl-1,3,5-triazine (see Figs. S12-S15, ESI \dagger). Chromophores were identified using proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) and ${ }^{13} \mathrm{C}$ NMR (ECA-500, JEOL, Japan) spectroscopy and high-resolution electrospray (ESI) analysis (JMS-T100 AccuTOF, Jeol). Detailed information regarding synthesis and purification procedures are as follows.

2-(p-Tolyamino)benzonic acid:

p-Toluidine ($2.50 \mathrm{~g}, 23.4 \mathrm{mmol}$), 2-bromobenzonic acid ($4.67 \mathrm{~g}, 23.3 \mathrm{mmol}$), copper(I) oxide ($1.72 \mathrm{~g}, 12.0 \mathrm{mmol}$), N-methylmorpholine ($3.90 \mathrm{~mL}, 35.5 \mathrm{mmol}$) were dissolved in dioxane $(60 \mathrm{~mL})$ and stirred under nitrogen at reflux $\left(100^{\circ} \mathrm{C}\right)$ for 3 h . After the mixture cooled to room temperature (RT), 1 N sodium hydroxide ($\mathrm{NaOH}, 155 \mathrm{~mL}$) was added to the solution. The 1 N NaOH phase (155 mL) was extracted with dichloromethane (30 mL $\times 3)$. After addition of 1 N hydrochloric acid (HCl) the pH of the aqueous phase became 2 and a precipitate appeared on standing for 1 h , which was filtered to yield $2-(p-$ tolyamino)benzonic acid ($4.48 \mathrm{~g}, 84.4 \%$) as a pale yellow solid. ${ }^{1} \mathrm{H}$ NMR (DMSO-D ${ }_{6}$, $500 \mathrm{MHz}): \delta=9.57(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.19$ $(\mathrm{m}, 5 \mathrm{H}), 6.73(\mathrm{t}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO, 125 MHz): $\delta=170.53$, $148.25,138.23,134.72,133.07,132.38,130.48,122.72,117.41,113.84,112.45,20.97$; HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{1} \mathrm{O}_{2}$, 228.102; found, 228.101.

2-Methylacridin-9(10H)-one:

2-(p-Tolyamino) benzonic acid $(5.00 \mathrm{~g}, 22.0 \mathrm{mmol})$ and polyphosphoric acid $(45.7 \mathrm{~g})$ were stirred at $120^{\circ} \mathrm{C}$ for 3.5 h under ambient conditions. After the mixture cooled to RT, iced water $(100 \mathrm{~mL})$ was added followed by 1 N NaOH . The pH of the solution became 7, and a precipitate appeared on standing, which was filtered to yield 2-methylacridin$9(10 \mathrm{H})$-one ($3.61 \mathrm{~g}, 78.3 \%$) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR (DMSO-D $6,500 \mathrm{MHz}$): $\delta=11.67$ $(\mathrm{s}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.69-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.58(\mathrm{~m}, 3 \mathrm{H})$, 7.22-7.25 (m, 1H), $2.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO, 125 MHz): $\delta=177.08,141.32$, 139.52, 135.46, 133.76, 130.62, 126.54, 125.60, 121.26, 120.90, 120.88, 117.86, 117.81, 21.14; HRMS-ESI (m/z): [M+H] ${ }^{+}$calcd. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{1} \mathrm{O}_{1}, 210.092$; found, 210.091 .

10-[(2-Methoxyethoxy)methyl]-2-methylacridin-9(10H)-one:

Sodium hydride ($229.3 \mathrm{mg}, 9.56 \mathrm{mmol}$) and 2-methylacridin-9(10H)-one ($1.00 \mathrm{~g}, 4.80$ mmol) were taken in anhydrous N, N-dimethylformamide (DMF) (15 mL), stirred under nitrogen at RT for 45 min . After slow addition of 1-(chloromethoxy)-2-methoxyethane $(1.10 \mathrm{~mL}, 9.56 \mathrm{mmol})$ to the solution over 10 min , the solution was stirred at RT for 2 h . After addition of water to the solution, the aqueous phase was extracted with ethyl acetate $(30 \mathrm{~mL} \times 3)$ and the combined extracts were dried over sodium sulfate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and filtered. Evaporation of the solvent gave the crude product. The resulting crude material was purified by column chromatography (silica gel, acetone/hexane; 20:80 v / v as the eluent) to yield 10-[(2-methoxyethoxy)methyl]-2-methylacridin- $9(10 H)$-one as a pale yellow solid ($811 \mathrm{mg}, 56.8 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=8.53(\mathrm{~d}, J=8.0,1 \mathrm{H})$, $8.32(\mathrm{~s}, 1 \mathrm{H}), 7.69-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=9.0,1 \mathrm{H}), 7.54-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.33(\mathrm{~m}$, $1 \mathrm{H}), 5.81(\mathrm{~s}, 2 \mathrm{H}), 3.84-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.62-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=178.40,142.34,140.51,135.39,133.82$, 131.75, 127.63, 126.92, 122.34, 122.27, 121.83, 115.24, 115.17, 76.96, 72.20, 67.26, 59.20, 20.63; HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{1} \mathrm{O}_{3}$, 298.144; found, 298.143 .

tert-Butyl phenyl(p-tolyl)carbamate:

4-Methyl- N-phenylaniline ($2.01 \mathrm{~g}, 11.0 \mathrm{mmol}$) and di-tert-butyl dicarbonate $(4.88 \mathrm{~g}, 22.4$ mmol) were dissolved in anhydrous tetrahydrofuran (THF) (60 mL) and stirred under nitrogen at RT for 24 h . After addition of water to the solution, the aqueous phase was extracted with ethyl acetate $(30 \mathrm{~mL} \times 3)$ and the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. Evaporation of the solvent gave the crude product. The resulting
crude material was purified by column chromatography (silica gel, dichloromethane/hexane; $40: 60 \mathrm{v} / \mathrm{v}$ as an eluent) to yield tert-butyl phenyl(p tolyl)carbamate as a white solid ($2.07 \mathrm{~g}, 66.5 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.27-$ 7.31 (m, 2H), 7.20-7.22 (m, 2H), 7.08-7.16 (m, 5H), 2.32 (s, 3H), 1.44 (s, 9H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=153.95,143.21,140.48,135.41,129.35,128.62,126.92,126.78$, 125.41, 80.99, 28.25, 20.96; HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{1} \mathrm{Na}_{1} \mathrm{O}_{2}$, 306.147; found, 306.147.

2-2' - dimethyl-10H,10' $H-9,9^{\prime}$-spirobi[acridine] (1d):

tert-Butyl phenyl(p-tolyl)carbamate (700 mg, 2.35 mmol$), N, N, N^{\prime}, N^{\prime}$, tetramethylethylenediamine (TMEDA) ($0.56 \mathrm{~mL}, 3.77 \mathrm{mmol}$) were taken in anhydrous THF (5.5 mL) under nitrogen. n-Buthyllithium ($n-\mathrm{BuLi}$) $1.6 \mathrm{M}(3.53 \mathrm{mmol})$ in hexane (2.21 ml) was added to the solution at $-78^{\circ} \mathrm{C}$ under nitrogen and stirred for $3 \mathrm{~h} .10-[(2-$ methoxyethoxy)methyl]-2-methylacridin-9(10H)-one ($667 \mathrm{mg}, 2.35 \mathrm{mmol}$) in THF (14 mL) was added to the solution with stirring at $-78^{\circ} \mathrm{C}$ under nitrogen for 4 h . After heating the solution to room-temperature, $0.5 \mathrm{~N} \mathrm{HCl}(2.8 \mathrm{~mL})$ was added and the resulting mixture stirred for 1 h before a further addition of $0.5 \mathrm{~N} \mathrm{HCl}(14.0 \mathrm{~mL})$ to the solution with stirring for 48 h . An aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution was added to the mixture and the pH of the resulting solution became approximately 7 . The aqueous phase was extracted with dichloromethane, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. Evaporation of the solvent yielded the crude deuterated product. The resulting crude material was purified by column chromatography (silica gel, dichloromethane/hexane; $50: 50 \mathrm{v} / \mathrm{v}$ as the eluent) to give a white solid. The white solid was again purified by column chromatography (silica gel, ethyl acetate/hexane; $16: 84 \mathrm{v} / \mathrm{v}$ as the eluent) to yield $\mathbf{1 d}$ as a white solid ($186.3 \mathrm{mg}, 21.2$ \%). ${ }^{1} \mathrm{H}$ NMR (DMSO-D ${ }_{6}, 500 \mathrm{MHz}$): $\delta=8.90(\mathrm{~s}, 2 \mathrm{H}), 6.91-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.73-6.79(\mathrm{~m}$ 6H), 6.66-6.67 (m, 2H), 6.50-6.55 (m, 4H), 1.97 (s, 6H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$: $\delta=135.81,133.65,132.58,132.35,130.76,130.31,129.81,127.82,126.75,120.51$, 113.00, 47.08, 20.82; HRMS-ESI (m/Z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~N}_{2}, 375.186$; found, 375.190. Enantiomers of 1d were separated with a Shimadzu (Kyoto, Japan) HPLC system (an LC-10AT pump or an LC-6AD semi-preparative pump with a SPD-10A UVdetector) equipped with Chirakpak IA (Daicel, Japan) with hexane:isopropanol $=9: 1$. The chiral purities of the separated enantiomers 1 and 2 of $\mathbf{1 d}$ were 89% ee and 83% ee (Figure

S1), respectively.
Enantiomer 1 of $10,10^{\prime}$-bis[4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl]-2,2' -dimethyl-10H,10' H-9,9' -spirobi[acridine] (Enantiomer 1 of 1):

Enantiomer 1 of $\mathbf{1 d}$ ($31.0 \mathrm{mg}, 0.083 \mathrm{mmol}$), 2-(4-bromophenyl)-4,6-diphenyl-1,3,5triazine ($78.0 \mathrm{mg}, 0.20 \mathrm{mmol}$), sodium t-butoxide ($19.5 \mathrm{mg}, 0.20 \mathrm{mmol}$), tris(dibenzylideneaceton)dipalladium $(0)\left[\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right](1.6 \mathrm{mg}, 0.0017 \mathrm{mmol})$, tri- t butylphosphine ($0.010 \mathrm{~mL}, 0.0036 \mathrm{mmol}$) in dry toluene $(1.0 \mathrm{~mL})$ was heated at reflux $\left(110^{\circ} \mathrm{C}\right)$ under a nitrogen atmosphere for 24 h . After cooling, the solvent was evaporated to dryness, and dichloromethane was added. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ (3 $\times 20 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and purified by column chromatography (silica gel; dichloromethane/hexane; 20/80 as the eluent) to yield enantiomer 1 of $\mathbf{1}$ as a yellow powder ($26.7 \mathrm{mg}, 32.6 \%$). The powder was further purified by sublimation. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=9.12-9.09(\mathrm{~m}, 4 \mathrm{H}), 8.84-8.86(\mathrm{~m}, 8 \mathrm{H}), 7.69-7.72(\mathrm{~m}, 4 \mathrm{H}), 7.61-$ 7.68 (m, 12H), $7.21(\mathrm{dd}, J=7.5,1.5,2 \mathrm{H}), 7.02(\mathrm{~d}, J=2.0,2 \mathrm{H}), 6.91-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.78-$ $6.81(\mathrm{~m}, 2 \mathrm{H}), 6.74-6.78(\mathrm{~m}, 2 \mathrm{H}), 6.40(\mathrm{dd}, J=8.5,1.0,2 \mathrm{H}), 6.33(\mathrm{~d}, J=8.5,2 \mathrm{H}), 2.15$ (s, 6 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=171.91,171.12,145.55,138.25,136.46,136.32$, $136.09,133.02,132.75,132.72,131.93,131.85,131.80,131.50,130.14,129.06,128.76$, 127.64, 126.60, 120.83, 113.94, 113.81, 47.03, 20.74; HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{69} \mathrm{H}_{49} \mathrm{~N}_{8}, 989.408$; found, 989.406 ; Anal. Calcd. for $\mathrm{C}_{69} \mathrm{H}_{48} \mathrm{~N}_{8}$: C, 83.78; H, 4.89; N, 11.33. Found C, 84.01; H, 5.09; N, 11.59.

Enantiomer 2 of $\mathbf{1 0 , 1 0}{ }^{\prime}$-bis[4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl]-2,2 ${ }^{\prime}$ -dimethyl-10H,10' H-9,9' $\mathbf{9}^{\prime}$-spirobi[acridine] (Enantiomer 2 of 1):

Enantiomer 1 of 1d ($20.3 \mathrm{mg}, 0.054 \mathrm{mmol}$), 2-(4-bromophenyl)-4,6-diphenyl-1,3,5triazine ($53.2 \mathrm{mg}, 0.14 \mathrm{mmol}$), sodium t-butoxide $(15.7 \mathrm{mg}, 0.16 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(1.8$ $\mathrm{mg}, 0.0020 \mathrm{mmol})$, tri- t-butylphosphine ($0.010 \mathrm{ml}, 0.0036 \mathrm{mmol}$) in dry toluene (1.0 mL) was heated under reflux at approximately $110^{\circ} \mathrm{C}$ under a nitrogen atmosphere for 24 h . After cooling, the solvent was evaporated to dryness, and dichloromethane was added. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and purified by column chromatography (silica gel; dichloromethane/hexane; 20/80 as the eluent) to yield enantiomer 2 of $\mathbf{1}$ as a yellow powder ($25.0 \mathrm{mg}, 44.6 \%$). The powder was further purified by sublimation. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=9.12-9.09(\mathrm{~m}, 4 \mathrm{H}), 8.84-8.86$
(m, 8H), 7.70-7.72 (m, 4H), 7.61-7.68 (m, 12H), $7.21(\mathrm{dd}, J=6.5,1.5,2 \mathrm{H}), 7.02(\mathrm{~d}, J=$ $1.5,2 \mathrm{H}), 6.91-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.78-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.75-6.78(\mathrm{~m}, 2 \mathrm{H}), 6.40(\mathrm{dd}, J=7.0$, $1.0,2 \mathrm{H}), 6.33(\mathrm{~d}, J=8.5,2 \mathrm{H}), 2.15(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=171.89$, $171.10,145.52,138.21,136.44,136.30,136.06,133.02,132.75,132.72,131.92,131.84$, $131.80,131.48,130.13,129.05,128.76,127.63,126.59,120.83,113.92,113.80,47.00$, 20.74; HRMS-ESI (m/z): [M+H]+ calcd. for $\mathrm{C}_{69} \mathrm{H}_{49} \mathrm{~N}_{8}, 989.408$; found, 989.407.

Section 2. Other experimental procedures

2-1. Film preparation

A solution of chromophore $1(0.2 \mathrm{mg})$ and 1,3-bis(carbazol-9-yl)benzene (mCP) in chloroform (0.25 mL) was spin casted on to a quartz substrate in condition of 750 rpm for 60 s to prepare a $10 \mathrm{wt} \%$ chromophore 1-doped mCP film. The mCP film doped with $10 \mathrm{wt} \%$ enantiomer 1 of chromophore 1 and an mCP film doped with $10 \mathrm{wt} \%$ enantiomer 2 of chromophore 1 were prepared by the same procedure.

2-2. Measurements of photophysical properties

Absorption spectra were measured with an absorption spectrometer (V-630, Jasco, Ltd., Tokyo, Japan). Emission spectra and quantum yields were measured with an absolute luminescence quantum yield measurement system (C9920-02G, Hamamatsu Photonics, Shizuoka, Japan). The emission lifetime was determined using a compact fluorescence lifetime spectrometer (Quantaurus-Tau, Hamamatsu Photonics). Circular dichroism (CD) and circularly polarized luminescence (CPL) spectra were measured using a circular dichroism dispersion meter (J-720, JASCO International Co., Ltd.) and a spectrofluoropolarimeter (CPL-200, JASCO International Co., Ltd.), respectively.

2-3. Quantum chemical calculations

The structure of (S)-chromophore $\mathbf{1}$ was optimized at the lowest singlet excited state $\left(\mathrm{S}_{1}\right)$ with Gaussian09 based on time-dependent density functional theory (TD-DFT) using the B3LYP functional and $6-31 \mathrm{G}(\mathrm{d})$ basis set. The energy difference between S_{1} and T_{1} $\left(\Delta E_{\mathrm{ST}}\right)$ and the oscillator strength for fluorescence $\left(f_{\mathrm{f}}\right)$ was calculated based on the optimized S_{1} structure. To calculate physical parameters relating to the dihedral angle between the donor and acceptor units (θ) and fluorescence, a variety of coordinates were constructed by changing θ based on the coordinates optimized at S_{1}. The energy change from the optimized S_{1} coordinate (E), the probability of the chromophore based on the Boltzmann distribution at room-temperature (P), the optical rotation intensity for fluorescence $\left(R_{\mathrm{f}}\right)$, and f_{f} were calculated at each coordinate by TD-DFT [Gaussian09/B3LYP/6-31G(d)]. The average $f_{\mathrm{f}}\left(<f_{\mathrm{f}}>\right)$ was determined by integrating $f_{\mathrm{f}} P$ over θ. To calculate physical parameters relating θ to the absorbance of the first absorption band, the S_{0} geometry was optimized by DFT [Gaussian09/B3LYP/6-31G(d)]. After a variety of coordinates were constructed by changing θ based on the structure
optimized at S_{0}, the energy change $\left(E_{\mathrm{a}}\right)$ depending on θ was calculated by DFT [Gaussian09/B3LYP/6-31G(d)] and the probability of the chromophore existing at $\theta\left(P_{\mathrm{a}}\right)$ was determined based on the Boltzmann distribution at room-temperature. The oscillator strength for absorption $\left(f_{\mathrm{a}}\right)$ and the optical rotation intensity for absorption $\left(R_{\mathrm{a}}\right)$ for the transition between the donor and acceptor with θ were calculated at each coordinate depending on θ by TD-DFT [Gaussian09/B3LYP/6-31G(d)]. The average $f_{\mathrm{a}}\left(\left\langle f_{\mathrm{a}}>\right)\right.$ was determined by integrating $f_{\mathrm{a}} P_{\mathrm{a}}$ over θ.

Although the calculation of the transition dipole moment by TD-DFT based on the B3LYP functional may generally cause slightly different values because of different delocalization of HOMO and LUMO (E. R. Johnson, P. Mori-Sanchez, A. J. Cohen, W. T. Yang, J. Chem. Phys., 2008, 129, 204112), the estimated $\left\langle f_{\mathrm{p}}\right\rangle$ based on TD-DFT with the B3LYP functional without intermolecular interactions was comparable to that optically measured f_{f} in toluene solution, for which restriction of the conformation change was not considered.

2-4. Determination of theoretical dissymmetry factors of CPL and CD

The dissymmetry factor of CPL ($g_{\text {lum }}$) and the dissymmetry factor of CD ($g_{\text {abs }}$) are generally respectively expressed as ${ }^{17}$:

$$
\begin{align*}
& g_{l u m}=\frac{4\left|M_{f}\right|}{\left|\mu_{f}\right|} \cos \delta_{f} \tag{1}\\
& g_{a b s}=\frac{4\left|M_{a}\right|}{\left|\mu_{a}\right|} \cos \delta_{a} \tag{2}
\end{align*}
$$

where $\boldsymbol{M}_{\mathrm{f}(\mathbf{a})}$ is the magnetic transition dipole moment for fluorescence (absorption), $\boldsymbol{\mu}_{\mathrm{f}(\mathrm{a})}$ is the electric transition dipole moment for fluorescence (absorption), $\delta_{\mathrm{f}(\mathrm{a})}$ is the angle between $\boldsymbol{M}_{\mathbf{f}(\mathbf{a})}$ and $\boldsymbol{\mu}_{\mathbf{f (a)}}$. The optical rotation intensity for fluorescence (absorption) $\left[R_{\mathrm{f}(\mathrm{a})}\right]$ is expressed as ${ }^{17}$:

$$
\begin{equation*}
R_{f(a)}=\left|\mu_{f(a)}\right|\left|M_{f(a)}\right| \cos \delta_{f(a)} . \tag{3}
\end{equation*}
$$

Equations (1)-(2) convert into the following equation:

$$
\begin{equation*}
g_{l u m(a b s)}=4 \frac{R_{f(a)}}{\left|\mu_{f(a)}\right|^{2}} \tag{4}
\end{equation*}
$$

f_{f} and f_{a} are generally respectively expressed as ${ }^{15}$:

$$
\begin{align*}
& f_{f}=\left(\frac{8 \pi^{2} m_{e} c\left\langle v_{f}\right\rangle}{3 h e^{2}}\right)\left|\mu_{f}\right|^{2}, \tag{5}\\
& f_{a}=\left(\frac{8 \pi^{2} m_{e} c\left\langle v_{a}\right\rangle}{3 h e^{2}}\right)\left|\mu_{a}\right|^{2}, \tag{6}
\end{align*}
$$

where m_{e} is the quantity of electron, c is the velocity of light, $\left\langle v_{f}\right\rangle$ is the average of fluorescence energy, $\left\langle v_{f}\right\rangle$ is the average of absorption energy at first absorption band, h is Planck constant, and e is the elementary charge. Equations (1)-(6) convert into the following equation

$$
\begin{equation*}
g_{l u m(a b s)}=A \frac{R_{f(a)}}{\mu_{f(a)}} \tag{7}
\end{equation*}
$$

where A is a constant.
The f_{f} and R_{f} values of a reference chiral compound with a known $g_{\text {lum }}$ were calculated by TD-DFT [Gaussian09/B3LYP/6-31G(d)] with $A=4.11 \times 10^{-6} .{ }^{18}$ The calculated f_{f} and R_{f} values of (S)-chromophore 1 and $A=4.11 \times 10^{-6}$ values were used to determine the theoretical $g_{\text {lum }}$ of the (S)-chromophore $\mathbf{1}$. The determination procedures were performed for the (S)-chromophore $\mathbf{1}$ at a variety of θ values to construct the relationship between $g_{\text {lum }}$ and θ. The average $g_{\text {lum }}\left(<g_{\text {lum }}>\right)$ was determined by integrating $g_{\text {lum }} P$ as a function of θ. The calculated f_{a} and R_{a} values of the (S)-chromophore $\mathbf{1}$ and A $=4.11 \times 10^{-6}$ values were used to determine the theoretical $g_{\text {abs }}$ of (S)-chromophore 1 . The determination procedures were performed for the (S)-chromophore $\mathbf{1}$ with a range of θ values to construct the relationship between $g_{\text {abs }}$ and θ.

Section 3. Supporting Figures.

Figure S1. 1H and 13C NMR spectra of 2-(p-Tolyamino)benzonic acid.

Figure S2. HRMS-ESI spectra of 2-(p-tolyamino) benzonic acid. Reserpine was added as a reference to check accuracy of values in equipment.

Figure S3. 1H and 13C NMR spectra of 2-methylacridin-9(10H)-one.

Figure S4. HRMS-ESI spectra of 2-methylacridin-9(10H)-one. Reserpine was added as a reference to check accuracy of values in equipment.

Figure S5. 1H and 13C NMR spectra of 10-[(2-methoxyethoxy)methyl]-2-methylacridin- $9(10 \mathrm{H})$-one.

Figure S6. HRMS-ESI spectra of 10-[(2-methoxyethoxy)methyl]-2-methylacridin$9(10 H)$-one. Reserpine was added as a reference to check accuracy of values in equipment.

Figure S7. 1H and 13C NMR spectra of tert-Butyl phenyl(p-tolyl)carbamate.

Figure S8. HRMS-ESI spectra of tert-butyl phenyl(p-tolyl)carbamate. Reserpine was added as reference to check accuracy of values in equipment.

Figure S9. 1H and 13C NMR spectra of 2-2'-dimethyl- $10 H, 10^{\prime} H-9,9^{\prime}$-spirobi[acridine] (1d).

Figure S10. HRMS-ESI spectra of 2-2'-dimethyl-10H, $10^{\prime} H-9,9^{\prime}$-spirobi[acridine] (1d). Reserpine was added as a reference to check accuracy of values in equipment.

Figure S11. Profiles of high-performance liquid chromatography for the prepared enantiomers of $\mathbf{1 d}$. Chiral purities of the separated enantiomers 1 (left) and 2 (right) were 89% ee and $83 \mathrm{ee} \%$, respectively.

Figure S12. 1H and 13C NMR spectra of Enantiomer 1 of 10,10'-bis[4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl]-2,2'-dimethyl-10H,10' H-9,9'-spirobi[acridine] (Enantiomer 1 of $\mathbf{1}$).

Figure S13. HRMS-ESI spectra of enantiomer 1 of 10,10'-bis[4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl]-2,2'-dimethyl-10H,10'H-9, 9^{\prime}-spirobi[acridine] (enantiomer 1 of $\mathbf{1}$). Reserpine was added as a reference to check accuracy of values in equipment.

Figure S14. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of enantiomer 2 of 10,10 '-bis[4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl]-2,2'-dimethyl-10H,10'H-9,9'-spirobi[acridine] (enantiomer 2 of $\mathbf{1}$).

Figure S15. HRMS-ESI spectra of enantiomer 2 of 10,10'-bis[4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl]-2,2'-dimethyl-10H,10' H-9, ${ }^{\prime}$ '-spirobi[acridine] (enantiomer 2 of $\mathbf{1}$). Reserpine was added as reference to check accuracy of values in equipment.

Figure S16. Spectra of prompt fluorescence at RT and delayed emission spectra at 77 K of $10 \mathrm{wt} \%$ 1-doped mCP film.

Figure S17. Dependence of calculated photophysical parameters on θ for $\mathbf{1}$. The value of θ was changed from the optimized S_{0} geometry without changing other bond lengths or angles between atoms. a) E_{a} vs θ plots (blue), P_{a} vs θ plots (green), f_{a} vs θ plots (yellow), and $f_{\mathrm{a}} P_{\mathrm{a}}$ vs θ plots (red). b) $g_{\mathrm{abs}} P_{\mathrm{a}}$ vs θ plots. Calculated average value of f_{a} of chromophore 1 by integrating $f_{\mathrm{a}} P_{\mathrm{a}}$ was 0.028 . Optically measured f_{a} was determined to be 0.43 by substituting optically measured $\varepsilon(v)$ (in toluene) into $f_{\mathrm{a}}=4.32 \times 10^{-9} n^{-1} \int \varepsilon(v) d v$, where n is the refractive index of toluene. Thus, f_{a} was greater than f_{f} in both the calculation and optical measurements.

Figure S18. $g_{\text {lum }}$ (top), CPL (middle) and emission (bottom) spectra of mCP films doped with $10 \mathrm{wt} \%$ of the enantiomers of $\mathbf{1}$.

