Supporting information for

Asymmetric Syntheses of Spiro[benzofuro-cyclopenta[1,2-b]indole-indoline] Scaffolds *via* Consecutive Cyclization

Heng Zhang, Xu-Kai Guan, Dong-Yang Sun, Guo-Feng Liu, Ji-Gang Gao,

Guang-Liang Zhang, Suo-Qin Zhang*

College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.

Fax: (+86)-431-8515-5252; phone: (+86)-431-8515-5252; e-mail: suoqin@jlu.edu.cn

Table of contents

General Information	.3
General Procedure for Enantioselective Cyclization	.3
Table S1 . Optimization of the reaction conditions for the consecutive	
cyclization	.4
Characterization data for compounds 3aa-3am	.6
HPLC spectra of racemic and enantioenriched products	78
Intermediate data11	14
Control experiment data11	18
Figure 1. X-Ray Structure of 3ca:12	24

General Information

All reagents were used without purification. All solvents were purified and dried according to standard methods. The reaction products were purified by flash column chromatography on 200-300 mesh silica gel. The melting point was recorded on a melting point apparatus (MPA100, Stanford Research Systems, Inc.). Optical rotations were measured with a Jasco-P-2000 digital polarimeter at 20 or 25 $^{\circ}$ C and concentrations (c) are given in g×(100 mL)⁻¹. ¹H and ¹³C NMR spectra were recorded with Bruker 400 MHz spectrometers (400 MHz for ¹H NMR, 101 MHz for ¹³C NMR); chemical shifts (δ) are given in ppm. High-resolution mass spectral analysis (HRMS) data were measured on a Bruker ApexII mass spectrometer by means of the ESI technique. Analytical HPLC was recorded on a HPLC machine equipped with Elite P1201 series or Ichrom 5100 series quaternary pump with a UV diode array detector. Enantiomeric excess values were measured by analytical HPLC with Daicel ChiralPak AD-H column.

General Procedure for Enantioselective Cyclization

In a 10 mL tube, a mixture of **1** (0.12 mmol), BINOL-type imidodip-hosphoric acid **6b** (0.005 mmol), 4Å molecular sieves (50 mg) and chloroform (2 mL) was stirred at 20 °C for 10 min. Then (*E*)-1-styrylnaphthols **2** (0.1 mmol) was added. After the reaction completed, the mixture was purified by silicagel chromatography (petroleumether/ethyl acetate = 10:1) directly to afford the product **3**. (R_f =0.4 in petroleumether/ ethyl acetate=10:1).

Table S1. Optimization of the reaction conditions for the

consecutive cyclization

Table S1. Screening of catalysts and optimization of the reaction conditions for the consecutive cyclization.^a

Ph $rac{}{}$ $rac{}{}$ $rac{}$ $rac{}{}$ $rac{}$ $rac{}$ $rac{} rac{} rac$							
4a,R=1-Napt 4b,R=2-Napt 4c,R=3,5-(CF 4d,R=Phenvi	$ \begin{bmatrix} R \\ 0 \\ P \\ R \end{bmatrix} $	R R O H O O O P N P O Sa,R=1-Naphthyl 5c,R=2-Naphthyl 5d,R=Phenyl	Phenyl	R Ga,R=1-Naphtl 6c,R=3,5-(CF ₃	R R R nyl nyl nyl nyl nyl nyl nyl nyl nyl nyl		
Entry	Solvent	Catalyst ^e	Additive	Yield ^b	ee ^c		
		[mol %]		[%]	[%]		
1	Toluene	4a(5)	None	80	75		
2	Toluene	4b (5)	None	81	79		
3	Toluene	4c (5)	None	82	15		
4	Toluene	4d (5)	None	81	63		
5	Toluene	5a (5)	None	66	87		
6	Toluene	5b (5)	None	68	80		
7	Toluene	5c (5)	None	72	67		
8	Toluene	5d (5)	None	67	47		
9	Toluene	6a (5)	None	80	87		
10	Toluene	6b (5)	None	82	91		
11	Toluene	6c (5)	None	79	79		
12	DCE	6b (5)	None	81	93		
13	CH_2CI_2	6b (5)	None	86	93		
14	CHCl ₃	6b (5)	None	88	97		
15	THF	6b (5)	None	N.R.	-		
16	CHCl ₃	6b (5)	3Å MS	75	98		
17	CHCl ₃	6b (5)	4Å MS	92	99		
18	CHCl ₃	6b (5)	5Å MS	78	98		
19[d]	CHCl ₃	6b (2)	4Å MS	90	98		

^aReaction condition: **1a** (0.12 mmol), **2a** (0.1 mmol), catalyst (**4**, **5** or **6**) in solvent (2 mL), 20 °C, the amount of additive was 50 mg, reaction time was 24 h. ^bIsolated yields. ^cee value was determined by HPLC analysis on a Chiralcel AD-H column, and the d.r. was determined by ¹H NMR of isolated product, d.r. > 19:1. ^dthe reaction time was extended to 48 h. ^eBINOL is behalf of 1,1'-Bi-2-naphthol skeleton.

After product **3aa** structure was confirmed, various phosphoric acids were used to attempt to catalyze this reaction (Table 1). When H_8 -BINOL-type CPAs were used to catalyze the reaction, moderate yield (81% yield) and ee values (79% ee) were obtained (Entry 2, Table 1). Subsequently H_8 -BINOL-type imidodiphosphoric acids were screened, 1-naphthyl substituted H_8 -BINOL imidodiphosphoric acid catalyst (**5a**) gave the 87% ee value and 66% yield (Entry 5, Table 1). The ee value increased obviously

owing to stronger chiral control ability and the yield decreased because of weaker acidity compared with CPAs. Thus, BINOL-type imidodi-phosphoric acids possessing outstanding chiral control ability and stronger acidity meanwhile led to excellent results as expected. On this occasion, 2-naphthyl group substituted BINOL imidodiphosphoric acid catalyst (**6b**) afforded **3aa** with excellent enantioselectivity (91% ee), diastereoselectivity (d.r. > 19:1) and yield (82%) at 20 °C (Entry 10, Table 1). When the solvents were screened, alkyl halide solvent provided with better outcome than toluene in term of ee values (Entry 12-14, Table 1) and the reaction couldn't occur in THF (Entry 15, Table 1). The solvent CHCl₃ gave the best result (97% ee, 88% yield, Entry 14, Table 1). When 50 mg 4Å molecular sieves were added into the reaction, the yield and ee value (99% ee, 92% yield, Entry 17, Table 1) have increased slightly at the same time. When attempted to reduce the catalyst loading to 2 mol%, the reaction could still go on smoothly and there were no significant changes in yield and ee value despite prolonged reaction time (48 h, 98% ee, 90% yield, Entry 19, Table 1). Thus, the optimal reaction condition has been established as catalyst **6b** (5 mol %), **1a** (0.12 mmol), **2a** (0.10 mmol), 4Å molecular sieves (50 mg) in CHCl₃ (2 mL) at 20 °C.

Characterization data for compounds 3aa-3am.

3aa:

(3R, 6c'S, 7'S, 8a'R, 13a'R)-1-methyl-7'-phenyl-6c',7',8a',13'-tetrahydrospi ro[indoline-3,8'-naphtho[1",2":4',5']furo[2',3':1,5]cyclopenta[1,2-b]indol]-2-one: white solid, mp 198 - 200 °C, 46.6 mg, 92% yield, 99% ee, >19:1 d.r. [α]_D ²⁰ = +298.7 (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.73 (t, *J* = 8.9 Hz, 2H), 7.45 (d, *J* = 7.3 Hz, 1H), 7.25 - 7.05 (m, 10H), 6.93 (t, *J* = 7.6 Hz, 1H), 6.71 (dd, *J* = 16.7, 8.2 Hz, 2H), 6.62 - 6.54 (m, 2H), 6.45 (d, *J* = 7.3 Hz, 1H), 5.26 (d, *J* = 11.2 Hz, 1H), 4.42

(s, 1H), 3.68 (d, J = 11.2 Hz, 1H), 2.72 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.1, 155.3, 149.6, 143.9, 136.1, 130.6, 129.9, 129.4, 129.1, 129.0, 128.4, 128.4, 128.2, 127.6, 126.2, 125.1, 123.9, 122.9, 122.7, 122.5, 122.1, 121.0, 118.9, 115.3, 112.3, 109.1, 107.7, 66.7, 64.9, 63.4, 56.5, 25.5. HPLC analysis: Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 70/30, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: $t_{major} = 20.251$ min, $t_{minor} = 9.036$ min. HRMS (ESI): calcd for $C_{35}H_{26}N_2O_2$ [M + H]⁺, 507.2067; found, 507.2065.

3ba:

(3R,6c'S,7'S,8a'R,13a'R)-1,10'-dimethyl-7'-phenyl-6c',7',8a',13'-tetra hydrospiro[indoline-3,8'-naphtho[1",2":4',5']furo[2',3':1,5]cyclopenta [1,2-b]indol]-2-one: white solid, mp 186 - 188 °C, 47.0 mg, 90% yield, 95% ee, >19:1 d.r. [α]_D ²⁰ = +276.2 (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.73 (t, *J* = 8.8 Hz, 2H), 7.45 (d, *J* = 7.2 Hz, 1H), 7.25 - 7.07 (m, 9H), 6.92 (t, *J* = 7.1 Hz, 2H), 6.71 - 6.63 (m, 2H), 6.58 (d, *J* = 7.7 Hz, 1H), 6.27 (s, 1H), 5.24 (d, *J* = 11.2 Hz, 1H),

5.19 (s, 1H), 4.40 (s, 1H), 3.66 (d, J = 11.2 Hz, 1H), 2.73 (s, 3H), 2.11 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.1, 155.3, 147.4, 143.9, 136.1, 130.6, 129.9, 129.5, 129.4, 129.1, 128.9, 128.4, 128.3, 128.2, 127.6, 126.2, 125.5, 123.9, 123.5, 122.7, 122.5, 122.0, 121.0, 115.8, 112.3, 109.2, 107.7, 66.6, 65.1, 63.4, 56.4, 25.5, 20.7. HPLC analysis: Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 70/30, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: $t_{major} = 18.243$ min, $t_{minor} = 8.745$ min. HRMS (ESI): calcd for $C_{36}H_{28}N_2O_2$ [M + H]⁺, 521.2224; found, 521.2230.

(3R, 6c'S, 7'S, 8a'R, 13a'R)-10'-fluoro-1-methyl-7'-phenyl-6c', 7', 8a', 13'-t etrahydrospiro[indoline-3,8'-naphtho[1",2":4',5']furo[2',3':1,5]cyclope nta[1,2-b]indol]-2-one: white solid, mp 169 - 170 °C, 45.2 mg, 86% yield, 98% ee, >19:1 d.r. [α]_D ²⁰ = +302.1 (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.73 (t, *J* = 8.2 Hz, 2H), 7.43 (d, *J* = 7.3 Hz, 1H), 7.25 - 7.06 (m, 9H), 6.94 (t, *J* = 7.6 Hz, 1H), 6.86 - 6.78 (m, 1H), 6.69 (d, *J* = 8.4 Hz, 1H), 6.65 - 6.54 (m, 2H), 6.21 (dd, *J* = 8.0, 1.9

Hz, 1H), 5.23 (d, J = 11.1 Hz, 2H), 4.40 (s, 1H), 3.67 (d, J = 11.2 Hz, 1H), 2.75 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 175.0, 157.0 (d, J = 235 Hz), 155.2, 145.9, 143.7, 135.8, 130.5, 130.1, 129.4, 128.9, 128.7, 128.6, 128.4, 128.2, 127.7, 126.6 (d, J = 8 Hz), 126.3, 123.8, 122.8 (d, J = 10 Hz), 122.0, 120.9, 116.0, 115.3 (d, J = 23 Hz), 112.3, 110.3 (d, J = 24 Hz), 109.7 (d, J = 7 Hz), 108.0, 66.6, 65.0, 63.3, 56.5, 25.6. HPLC analysis: Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 70/30, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: t_{major} = 31.778 min, t_{minor} = 10.131 min. HRMS (ESI): calcd for C₃₅H₂₅FN₂O₂ [M + H]⁺, 525.1973; found, 525.1971.

3da:

((*3R*,6*c*'*S*,7'*S*,8*a*'*R*,13*a*'*R*)-10'-chloro-1-methyl-7'-phenyl-6c',7',8a', 13'-tetrahydrospiro[indoline-3,8'-naphtho[1",2":4',5']furo[2',3':1,5] cyclopenta[1,2-b]indol]-2-one: white solid, mp 188 - 190 °C, 46.0 mg, 85% yield, 98% ee, >19:1 d.r. $[\alpha]_D^{20} = +274.1$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.72 (t, *J* = 8.7 Hz, 2H), 7.43 (d, *J* = 7.4 Hz, 1H), 7.24 - 7.05 (m, 10H), 6.93 (t, *J* = 7.4 Hz, 1H), 6.67 (d, *J* = 8.4 Hz, 1H), 6.61 (dd, *J* = 9.9, 8.4 Hz, 2H), 6.43

(d, J = 1.4 Hz, 1H), 5.35 (s, 1H), 5.23 (d, J = 11.2 Hz, 1H), 4.39 (s, 1H), 3.64 (d, J = 11.2 Hz, 1H), 2.76 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.0, 155.1, 148.3, 143.7, 135.7, 130.5, 130.1, 129.4, 129.0, 128.8, 128.8, 128.6, 128.4, 128.2, 127.7, 126.9, 126.4, 123.9, 123.3, 123.0, 122.9, 122.8, 122.0, 120.9, 115.6, 112.2, 109.8, 108.1, 66.6, 65.0, 62.8, 56.3, 25.6. HPLC analysis: Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 70/30, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: $t_{major} = 39.671$ min, $t_{minor} = 8.362$ min. HRMS (ESI): calcd for $C_{35}H_{25}ClN_2O_2$ [M + H]⁺, 541.1677; found, 541.1680.

3ea:

(3R,6c'S,7'S,8a'R,13a'R)-10'-bromo-1-methyl-7'-phenyl-6c',7',8a', 13'-tetrahydrospiro[indoline-3,8'-naphtho[1",2":4',5']furo[2',3':1,5]cyclopenta[1,2-b]indol]-2-one: white solid, mp 156 - 158 °C, 49.2 mg, 84% yield, 98% ee, >19:1 d.r. $[\alpha]_D^{20} = +263.1$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.67 (m, 2H), 7.41 (d, *J* = 6.9 Hz, 1H), 7.23 – 7.04 (m, 10H), 6.91 (t, *J* = 8.0 Hz, 1H),

6.66 (d, J = 8.4 Hz, 1H), 6.61 – 6.49 (m, 3H), 5.32 (s, 1H), 5.21 (d, J = 11.2 Hz, 1H), 4.37 (s, 1H), 3.62 (d, J = 11.3 Hz, 1H), 2.74 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.0, 155.1, 148.7, 143.7, 135.7, 131.8, 130.5, 130.1, 129.4, 128.8, 128.8, 128.6, 128.4, 128.2, 127.7, 127.3, 126.4, 125.8, 123.9, 122.9, 122.8, 122.0, 120.8, 115.4, 112.2, 110.3, 108.1, 66.7, 65.0, 62.7, 56.29, 25.64. HPLC analysis: Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 70/30, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: $t_{major} = 42.040$ min, $t_{minor} = 8.626$ min. HRMS (ESI): calcd for $C_{35}H_{25}BrN_2O_2$ [M + H]⁺, 585.1172; found, 585.1171.

(1S,2R,3R)-3-(2-hydroxynaphthalen-1-yl)-1'-methyl-2'-oxo-2-p henyl-3,4-dihydro-2H-spiro[cyclopenta[b]indole-1,3'-indoline]-7-carbonitrile: white solid, mp 171 - 173 °C, 45.3 mg, 85% yield, 55% ee, >19:1 d.r. $[\alpha]_D^{20} = +256.6$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.73 (t, *J* = 7.8 Hz, 2H), 7.44 (t, *J* = 8.4 Hz, 2H), 7.31 – 7.25 (m, 1H), 7.21 – 7.07 (m, 8H), 6.96 (t, *J*)

= 7.2 Hz, 1H), 6.75 – 6.62 (m, 4H), 5.89 (s, 1H), 5.25 (d, J = 11.3 Hz, 1H), 4.40 (s, 1H), 3.66 (d, J = 11.3 Hz, 1H), 2.78 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.9, 155.0, 152.9, 143.5, 135.3, 134.6, 130.4, 130.3, 129.5, 129.0, 128.7, 128.5, 128.3, 128.1, 127.9, 126.6, 126.6, 125.6, 123.8, 123.1, 123.0, 122.0, 120.6, 120.3, 114.7, 112.0, 108.3, 108.1, 100.2, 66.6, 64.9, 61.6, 56.0, 25.6. HPLC analysis: Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 70/30, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: t_{major} = 53.480 min, t_{minor} = 6.760 min. HRMS (ESI): calcd for C₃₆H₂₅N₃O₂ [M + H]⁺, 532.2020; found, 532.2022

(3R,6c'S,7'S,8a'R,13a'R)-10'-methoxy-1-methyl-7'-phenyl-6c',7',8 a',13'-tetrahydrospiro[indoline-3,8'-naphtho[1",2":4',5']furo[2',3':1 ,5]cyclopenta[1,2-b]indol]-2-one: white solid, mp 169 - 171 °C, 48.4 mg, 90% yield, 55% ee, >19:1 d.r. [α]_D ²⁰ = +274.1 (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (t, *J* = 9.0 Hz, 2H), 7.46 (d, *J* = 7.0 Hz, 1H), 7.25 - 7.07 (m, 9H), 6.95 (t, *J* = 8.4 Hz, 2H), 6.76 - 6.67 (m, 3H), 6.58 (d, *J* = 7.7 Hz, 1H), 6.12 (s, 1H),

5.26 (d, J = 11.2 Hz, 1H), 5.12 (s, 1H), 4.42 (s, 1H), 3.69 (d, J = 11.2 Hz, 1H), 3.62 (s, 3H), 2.76 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.1, 155.3, 153.7, 143.9, 143.8, 136.0, 130.5, 129.9, 129.4, 128.9, 128.9, 128.5, 128.4, 128.2, 127.6, 127.0, 126.2, 123.9, 122.7, 122.6, 122.0, 121.0, 116.2, 113.8, 112.4, 110.2, 110.1, 107.8, 66.6, 65.1, 63.6, 56.5, 55.9, 25.6. HPLC analysis: Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 70/30, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: $t_{major} = 26.356$ min, $t_{minor} = 12.375$ min. HRMS (ESI): calcd for $C_{36}H_{28}N_2O_3$ [M + H]⁺, 537.2173; found, 537.2174.

3ha:

(3R,6c'S,7'S,8a'R,13a'R)-1,11'-dimethyl-7'-phenyl-6c',7',8a',13'-tetrahy drospiro[indoline-3,8'-naphtho[1",2":4',5']furo[2',3':1,5]cyclopenta[1,2 -b]indol]-2-one: white solid, mp 187 - 189 °C, 44.8 mg, 86% yield, 99% ee, >19:1 d.r. [α]_D ²⁰ = +278.6 (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.74 (t, J = 8.0 Hz, 2H), 7.46 (d, J = 7.3 Hz, 1H), 7.27 - 7.08 (m, 9H), 6.96 (t, J = 7.4 Hz, 1H), 6.72 (d, J = 8.4 Hz, 1H), 6.63

-6.55 (m, 2H), 6.41 (dd, J = 23.2, 7.3 Hz, 2H), 5.28 (d, J = 10.9 Hz, 1H), 4.43 (s, 1H), 3.70 (d, J = 11.2 Hz, 1H), 2.77 (s, 3H), 2.29 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.2, 155.3, 149.8, 149.8, 143.9, 139.0, 136.2, 130.6, 129.9, 129.4, 129.2, 129.0, 129.0, 128.4, 128.4, 128.2, 127.5, 126.2, 123.9, 122.7, 122.6, 122.5, 122.2, 122.1, 121.1, 119.7, 115.7, 112.3, 110.0, 107.7, 66.6, 64.9, 63.2, 56.4, 25.5, 21.8. HPLC analysis: Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 70/30, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: t_{major} = 32.002 min, t_{minor} = 11.986 min. HRMS (ESI): calcd for C₃₆H₂₈N₂O₂ [M + H]⁺, 521.2224; found, 521.2227.

3ia:

(*3R*, *6c* '*S*, *7*'*S*, *8a* '*R*, *13a* '*R*)-11'-fluoro-1-methyl-7'-phenyl-6c', 7', 8a', 13'-tetr ahydrospiro[indoline-3,8'-naphtho[1",2":4',5']furo[2',3':1,5]cyclopenta[1, 2-b]indol]-2-one: white solid, mp 183 - 185 °C, 47.7 mg, 91% yield, 98% ee, >19:1 d.r. [α]_D ²⁰ = +293.2 (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 8.8 Hz, 2H), 7.43 (d, *J* = 7.3 Hz, 1H), 7.24 – 7.06 (m, 9H), 6.94 (t, *J* = 7.5 Hz, 1H), 6.68 (d, *J* = 8.4 Hz, 1H), 6.58 (d,

J = 7.7 Hz, 1H), 6.40 – 6.33 (m, 2H), 6.29 – 6.21 (m, 1H), 5.46 (s, 1H), 5.26 (d, J = 11.2 Hz, 1H), 4.34 (d, J = 11.9 Hz, 1H), 3.66 (d, J = 11.2 Hz, 1H), 2.76 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.1, 164.2 (d, J = 242 Hz), 155.2, 151.0, 150.9, 143.8, 136.0, 130.5, 130.0, 129.4, 128.9, 128.8, 128.6, 128.4, 128.2, 127.6, 126.4, 123.9, 123.5 (d, J = 11 Hz), 122.8 (d, J = 21 Hz), 122.1, 120.9, 120.5 (d, J = 23 Hz), 115.8, 112.2, 107.8, 104.9 (d, J = 23 Hz), 96.8 (d, J = 27 Hz), 66.7, 64.7, 62.5, 56.3, 25.5. HPLC analysis: Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 70/30, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: $t_{major} = 30.519$ min, $t_{minor} = 10.231$ min. HRMS (ESI): calcd for $C_{35}H_{25}FN_2O_2$ [M + H]⁺, 525.1973; found, 525.1980.

3ja:

(*3R*,6*c*'*S*,7'*S*,8*a*'*R*,13*a*'*R*)-11'-chloro-1-methyl-7'-phenyl-6c',7',8a',1 3'-tetrahydrospiro[indoline-3,8'-naphtho[1",2":4',5']furo[2',3':1,5] cyclopenta[1,2-b]indol]-2-one: white solid, mp 175 - 177 °C, 43.3 mg, 80% yield, 99% ee, >19:1 d.r. [α]_D ²⁰ = +301.3 (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 8.9 Hz, 2H), 7.42 (d, *J* = 7.3 Hz, 1H), 7.25 - 7.05 (m, 9H), 6.94 (t, *J* = 7.6 Hz, 1H), 6.71 - 6.64 (m, 2H), 6.60 - 6.51 (m, 2H), 6.35 (d, *J* = 7.8 Hz, 1H), 5.39 (s, 1H),

5.24 (d, J = 11.2 Hz, 1H), 4.36 (s, 1H), 3.66 (d, J = 11.2 Hz, 1H), 2.76 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.9, 155.1, 150.6, 143.8, 135.8, 134.7, 130.5, 130.1, 129.4, 128.9, 128.7, 128.6, 128.4, 128.2, 127.7, 126.4, 123.9, 123.6, 123.5, 122.9, 122.7, 122.1, 120.9, 118.6, 115.5, 112.2, 109.1, 107.9, 66.6, 64.9, 62.5, 56.3, 25.6. HPLC analysis: Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 70/30, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: $t_{major} = 29.043$ min, $t_{minor} = 9.878$ min. HRMS (ESI): calcd for $C_{35}H_{25}ClN_2O_2$ [M + H]⁺, 541.1677; found, 541.1680.

3ka:

(*3R*,*6c*'*S*,*7*'*S*,*8a*'*R*,*13a*'*R*)-11'-bromo-1-methyl-7'-phenyl-6c',7',8a ',13'-tetrahydrospiro[indoline-3,8'-naphtho[1'',2'':4',5']furo[2',3 ':1,5]cyclopenta[1,2-b]indol]-2-one : white solid, mp 173 -175 °C, 50.3 mg, 86% yield, 99% ee, >19:1 d.r. $[\alpha]_D^{20} = +294.3$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 8.5 Hz, 2H), 7.42 (d, *J* = 7.3 Hz, 1H), 7.24 - 7.05 (m, 9H), 6.94 (t, *J* = 7.6

Hz, 1H), 6.79 (s, 1H), 6.69 (d, *J* = 8.0 Hz, 2H), 6.58 (d, *J* = 7.7 Hz, 1H), 6.30 (d, *J* = 7.8 Hz, 1H), 5.40 (s, 1H), 5.23 (d, *J* = 11.2 Hz, 1H), 4.35 (s, 1H), 3.66 (d, *J* = 11.2 Hz, 1H), 2.76 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.9, 155.1, 150.8, 143.8, 135.8, 130.5, 130.1, 129.4, 128.9, 128.7, 128.6, 128.4, 128.3, 127.7, 126.4, 124.0, 123.9, 122.9, 122.8, 122.7, 122.1, 121.4, 120.9, 115.4, 112.2, 111.9, 107.9, 66.5, 64.9, 62.5, 56.2, 25.6. Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 70/30, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 27.169 min, t_{minor} = 9.430 min. HRMS (ESI): calcd for C₃₅H₂₅BrN₂O₂ [M + H]⁺, 585.1172; found, 585.1170.

3la:

(3R,6c'S,7'S,8a'R,13a'R)-1,12'-dimethyl-7'-phenyl-6c',7',8a',13'-tetrah ydrospiro[indoline-3,8'-naphtho[1'',2'':4',5']furo[2',3':1,5]cyclopenta[1,2-b]indol]-2-one: white solid, mp 174 - 176 °C, 47.9 mg, 92% yield, 97% ee, >19:1 d.r. [α]_D²⁰ = +258.1 (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.74 (t, *J* = 9.4 Hz, 2H), 7.45 (d, *J* = 7.3 Hz, 1H), 7.26 - 7.06 (m, 9H), 6.95 (t, *J* = 8.7 Hz, 2H), 6.73 (d, *J* = 8.4 Hz, 1H), 6.55 (t, *J* = 7.9 Hz, 2H), 6.33 (d, *J* = 7.3 Hz, 1H), 5.31 (d, *J* = 11.2 Hz, 1H), 5.18 (s, 1H),

4.48 (s, 1H), 3.69 (d, J = 11.2 Hz, 1H), 2.73 (s, 3H), 2.21 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.2, 155.4, 148.5, 143.9, 136.2, 130.6, 130.0, 129.4, 129.1, 129.0, 128.4, 128.2, 127.6, 126.3, 124.5, 123.9, 122.7, 122.6, 122.1, 121.1, 120.3, 119.2, 118.5, 115.2, 112.4, 107.8, 66.8, 64.9, 63.7, 56.7, 25.5, 17.0. Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 90/10, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: $t_{major} = 17.915$ min, $t_{minor} = 6.015$ min. HRMS (ESI): calcd for $C_{36}H_{28}N_2O_2$ [M + H]⁺, 521.2224; found, 521.2226.

3ma:

(*3R*,*6c*'*S*,*7*'*S*,*8a*'*R*,*13a*'*R*)-12'-bromo-1-methyl-7'-phenyl-6c',7',8a',13'tetrahydrospiro[indoline-3,8'-naphtho[1'',2'':4',5']furo[2',3':1,5]cyclo penta[1,2-b]indol]-2-one: white solid, mp 152 - 154 °C, 50.9 mg, 87% yield, 97% ee, >19:1 d.r. [α]_D ²⁰ = +284.1 (c = 1.0, CHCl₃);¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 7.3 Hz, 1H), 7.29 (t, *J* = 3.7 Hz, 2H), 7.17 (m, 8H), 6.97 (t, *J* = 7.6 Hz, 1H), 6.74 (d, *J* = 8.4 Hz, 1H), 6.59 (d, *J* = 7.7 Hz, 1H), 6.48 (t, *J* = 7.6 Hz, 1H), 6.42 (d, *J* = 7.2 Hz, 1H), 5.59

(s, 1H), 5.35 (d, J = 11.3 Hz, 1H), 4.56 (s, 1H), 3.68 (d, J = 11.3 Hz, 1H), 2.76 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.9, 155.2, 148.2, 143.8, 135.7, 131.5, 130.5, 130.1, 129.5, 128.9, 128.7, 128.6, 128.4, 128.2, 127.7, 126.3, 126.1, 123.9, 122.9, 122.6, 122.1, 121.7, 120.8, 119.7, 114.2, 112.2, 107.8, 102.0, 66.7, 64.9, 63.9, 56.4, 25.6. Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 90/10, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: $t_{major} = 29.163$ min, $t_{minor} = 6.166$ min. HRMS (ESI): calcd for $C_{35}H_{25}BrN_2O_2$ [M + H]⁺, 585.1172; found, 585.1170.

3na:

(*3R*,*6c*'*S*,*7*'*S*,*8a*'*R*,*13a*'*R*)-1,5-dimethyl-7'-phenyl-6c',7',8a',13'-tetra hydrospiro[indoline-3,8'-naphtho[1'',2'':4',5']furo[2',3':1,5]cyclope nta[1,2-b]indol]-2-one: white solid, mp 188 - 190 °C, 46.9 mg, 90% yield, 98% ee, >19:1 d.r. $[\alpha]_D^{20} = +282.1$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.73 (t, *J* = 8.2 Hz, 2H), 7.28 (s, 1H), 7.18 (m, 8H), 7.00 (d, *J* = 7.7 Hz, 1H), 6.93 (t, *J* = 7.5 Hz, 1H), 6.70 (dd, *J* = 15.4, 8.2 Hz, 2H), 6.59 (t, *J* = 7.3 Hz, 1H), 6.50 - 6.47 (m, 2H), 5.33 (s,

0H), 5.26 (d, J = 11.2 Hz, 1H), 4.42 (s, 1H), 3.67 (d, J = 11.2 Hz, 1H), 2.70 (s, 3H), 2.36 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.1, 155.3, 149.6, 141.5, 136.3, 132.0, 130.6, 129.9, 129.4, 129.1, 129.0, 129.0, 128.7, 128.4, 128.2, 127.5, 126.2, 125.2, 123.9, 122.9, 122.9, 122.7, 121.1, 118.8, 115.3, 112.3, 109.1, 107.5, 66.7, 64.8, 63.5, 56.6, 25.5, 21.3. Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 70/30, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: $t_{major} = 14.796$ min, $t_{minor} = 7.902$ min. HRMS (ESI): calcd for $C_{36}H_{28}N_2O_2$ [M + H]⁺, 521.2224; found, 521.2227.

3oa:

(3R,6c'S,7'S,8a'R,13a'R)-5-fluoro-1-methyl-7'-phenyl-6c',7',8a',13'tetrahydrospiro[indoline-3,8'-naphtho[1'',2'':4',5']furo[2',3':1,5]cy clopenta[1,2-b]indol]-2-one: white solid, mp 168 - 170 °C, 48.3 mg, 92% yield, 98% ee, >19:1 d.r. [α]_D ²⁰ = +268.4 (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.72 (t, *J* = 7.9 Hz, 2H), 7.25 - 7.07 (m, 9H), 6.93 (dd, *J* = 16.1, 8.3 Hz, 2H), 6.69 (t, *J* = 8.9 Hz, 2H), 6.60 (t,

 $J = 7.3 \text{ Hz}, 1\text{H}, 6.48 \text{ (t, } J = 6.3 \text{ Hz}, 2\text{H}), 5.35 \text{ (s, 1H)}, 5.25 \text{ (d, } J = 11.2 \text{ Hz}, 1\text{H}), 4.40 \text{ (s, 1H)}, 3.64 \text{ (d, } J = 11.1 \text{ Hz}, 1\text{H}), 2.72 \text{ (s, 3H)}. ^{13}\text{C} \text{ NMR} (101 \text{ MHz}, \text{CDCl}_3) \delta 174.8, 159.3 \text{ (d, } J = 239 \text{ Hz}), 155.3, 149.6, 139.8, 135.9, 130.9 \text{ (d, } J = 8 \text{ Hz}), 130.5, 130.1, 129.4, 129.2, 128.9, 128.4, 128.3, 127.7, 126.3, 124.7, 123.8, 122.8 \text{ (d, } J = 5 \text{ Hz}), 120.9, 118.9, 115.2, 114.8 \text{ (d, } J = 23 \text{ Hz}), 112.3, 110.3 \text{ (d, } J = 25 \text{ Hz}), 109.2, 108.3 \text{ (d, } J = 7 \text{ Hz}), 67.0, 64.9, 63.5, 56.5, 25.6. Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 70/30, flow rate = 1.0 \text{ mL/min}, <math>\lambda = 254 \text{ nm}$, retention time: $t_{\text{major}} = 14.169 \text{ min}, t_{\text{minor}} = 10.485 \text{ min}$. HRMS (ESI): calcd for $C_{35}H_{25}FN_2O_2$ [M + H]⁺, 525.1973; found, 525.1981.

3pa:

(3R,6c'S,7'S,8a'R,13a'R)-5-chloro-1-methyl-7'-phenyl-6c',7',8a',13'tetrahydrospiro[indoline-3,8'-naphtho[1'',2'':4',5']furo[2',3':1,5]cyc lopenta[1,2-b]indol]-2-one: white solid, mp 176 - 178 °C, 48.2 mg, 89% yield, 99% ee, >19:1 d.r. [α]_D ²⁰ = +283.2 (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.73 (t, *J* = 9.4 Hz, 2H), 7.45 (d, *J* = 1.8 Hz, 1H), 7.24 - 7.09 (m, 9H), 6.92 (t, *J* = 7.6 Hz, 1H), 6.72 (d, *J* = 7.9

Hz, 1H), 6.68 – 6.56 (m, 2H), 6.48 (t, J = 8.2 Hz, 1H), 5.29 (s, 1H), 5.23 (d, J = 11.2 Hz, 1H), 4.40 (s, 1H), 3.64 (d, J = 11.2 Hz, 1H), 2.70 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.7, 155.3, 149.6, 142.5, 135.8, 131.0, 130.5, 130.1, 129.4, 129.3, 128.9, 128.5, 128.5, 128.4, 127.9, 127.8, 126.3, 124.6, 123.8, 122.8, 122.8, 122.6, 120.8, 118.9, 115.2, 112.3, 109.1, 108.8, 66.8, 64.9, 63.5, 56.5, 25.6. HPLC analysis: Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 70/30, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: $t_{major} = 13.730$ min, $t_{minor} = 8.310$ min. HRMS (ESI): calcd for $C_{35}H_{25}ClN_2O_2$ [M + H]⁺, 541.1677; found, 541.1678.

3qa:

(*3R*,*6c*'*5*,*7*'*5*,*8a*'*R*,*13a*'*R*)-5-bromo-1-methyl-7'-phenyl-6c',7',8a',13 '-tetrahydrospiro[indoline-3,8'-naphtho[1'',2'':4',5']furo[2',3':1,5] cyclopenta[1,2-b]indol]-2-one: white solid, mp 195 - 197 °C, 50.9 mg, 87% yield, 92% ee, >19:1 d.r. $[\alpha]_D^{20} = +283.2$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.73 (t, *J* = 9.4 Hz, 2H), 7.58 (d, *J* = 1.7 Hz, 1H), 7.33 (dd, *J* = 8.2, 1.8 Hz, 1H), 7.25 - 7.08 (m, 8H), 6.92

(t, *J* = 7.6 Hz, 1H), 6.72 (d, *J* = 7.9 Hz, 1H), 6.65 (d, *J* = 8.5 Hz, 1H), 6.60 (t, *J* = 7.4 Hz, 1H), 6.50 – 6.42 (m, 2H), 5.29 (s, 1H), 5.23 (d, *J* = 11.2 Hz, 1H), 4.40 (s, 1H), 3.63 (d, *J* = 11.2 Hz, 1H), 2.70 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.6, 155.3, 149.6, 142.9, 135.8, 131.4, 131.3, 130.5, 130.1, 129.4, 129.3, 128.9, 128.5, 128.4, 127.8, 126.3, 125.4, 124.6, 123.8, 122.9, 122.8, 120.8, 118.9, 115.2, 115.1, 112.3, 109.3, 109.1, 66.8, 64.9, 63.5, 56.5, 25.6. HPLC analysis: Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 70/30, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 15.097 min, t_{minor} = 8.741 min. HRMS (ESI): calcd for C₃₅H₂₅BrN₂O₂ [M + H]⁺, 585.1172; found, 585.1174.

3ra:

(*3R*,*6c*'*S*,*7*'*S*,*8a*'*R*,*13a*'*R*)-5-methoxy-1-methyl-7'-phenyl-6c',7',8 a',13'-tetrahydrospiro[indoline-3,8'-naphtho[1'',2'':4',5']furo[2', 3':1,5]cyclopenta[1,2-b]indol]-2-one: white solid, mp 182 -184 °C, 48.3 mg, 90% yield, 79% ee, 11:1 d.r. $[\alpha]_D^{20} = +274.5$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.76 (t, *J* = 8.2 Hz, 2H), 7.27 - 7.09 (m, 8H), 7.07 - 6.93 (m, 2H), 6.77 - 6.70 (m, 3H), 6.62 (t, *J* = 7.4 Hz, 1H), 6.50 (t, *J* = 7.6 Hz, 2H), 5.28 (d, *J* = 11.2

Hz, 1H), 4.43 (s, 1H), 3.82 (s, 3H), 3.68 (d, J = 11.2 Hz,1H), 2.83 (s, 0H), 2.71 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.8, 156.0, 155.3, 149.6, 137.4, 136.2, 130.6, 130.4, 130.0, 129.4, 129.1, 129.0, 128.4, 128.3, 127.6, 126.3, 125.0, 123.9, 122.9, 122.8, 121.1, 118.8, 115.3, 112.8, 112.3, 109.3, 109.2, 108.2, 67.1, 64.9, 63.7, 56.5, 55.8, 25.6. HPLC analysis: Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 70/30, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: $t_{major} = 63.727$ min, $t_{minor} = 13.385$ min. HRMS (ESI): calcd for $C_{36}H_{28}N_2O_3$ [M + H]⁺, 537.2173; found, 537.2175.

3sa:

(*3R*,*6c*'*S*,*7*'*S*,*8a*'*R*,*13a*'*R*)-6-fluoro-1-methyl-7'-phenyl-6c',7',8a',13 '-tetrahydrospiro[indoline-3,8'-naphtho[1",2":4',5']furo[2',3':1,5] cyclopenta[1,2-b]indol]-2-one: white solid, mp 136 - 138 °C, 45.1 mg, 86% yield, 99% ee, 10:1 d.r. $[\alpha]_D^{20} = +276.3$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.70 (t, *J* = 7.8 Hz, 2H), 7.37 - 6.31 (m, 1H), 7.21 - 7.06 (m, 8H), 6.95 - 6.86 (m, 1H), 6.79 -6.62 (m, 3H), 6.58 (t, *J* = 7.5, 1H), 6.46 (d, *J* = 7.3 Hz, 1H), 6.30 (dd,

 $J = 8.8, 2.3 \text{ Hz}, 1\text{H}, 5.27 \text{ (s, 1H)}, 5.21 \text{ (d, } J = 4.0, 1\text{H}), 4.37 \text{ (s, 1H)}, 3.62 \text{ (d, } J = 11.2 \text{ Hz}, 1\text{H}), 2.67 \text{ (s, 4H)}.^{13}\text{C} \text{ NMR} (101 \text{ MHz}, \text{CDCl}_3) \delta 175.4, 163.1 \text{ (d, } J = 243 \text{ Hz}), 155.2, 149.5, 145.4 \text{ (d, } J = 12 \text{ Hz}), 135.9, 130.5, 130.0, 129.4, 129.2, 128.9, 128.4, 128.3, 127.7, 126.3, 124.8, 124.3, 124.3, 123.8, 123.2 \text{ (d, } J = 10 \text{ Hz}), 122.8 \text{ (d, } J = 3 \text{ Hz}), 120.8, 119.0, 115.1, 112.3, 109.1, 108.6 \text{ (d, } J = 22 \text{ Hz}), 96.7 \text{ (d, } J = 28 \text{ Hz}), 66.4, 64.9, 63.3, 56.3, 25.6. \text{ HPLC} analysis: Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 70/30, flow rate = 1.0 \text{ mL/min}, <math>\lambda = 254 \text{ nm}$, retention time: $t_{\text{major}} = 20.451 \text{ min}, t_{\text{minor}} = 9.309 \text{ min}$. HRMS (ESI): calcd for $C_{35}H_{25}FN_2O_2$ [M + H]⁺, 525.1973; found, 525.1970.

(3R, 6c'S, 7'S, 8a'R, 13a'R)-6-chloro-1-methyl-7'-phenyl-6c',7',8a',1 3'-tetrahydrospiro[indoline-3,8'-naphtho[1'',2'':4',5']furo[2',3':1, 5]cyclopenta[1,2-b]indol]-2-one: white solid, mp 129 - 131 °C, 47.6 mg, 88% yield, 99% ee, >19:1 d.r. $[\alpha]_D^{20} = +284.2$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.73 (t, *J* = 9.2 Hz, 2H), 7.36 (t, *J* = 7.1 Hz, 1H), 7.22 - 7.05 (m, 9H), 6.92 (t, *J* = 7.2 Hz,

1H), 6.73 (d, J = 7.8 Hz, 1H), 6.68 – 6.56 (m, 3H), 6.47 (d, J = 7.3 Hz, 1H), 5.30 (s, 1H), 5.24 (d, J = 11.2 Hz, 1H), 4.38 (s, 1H), 3.63 (d, J = 11.2 Hz, 1H), 2.70 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.0, 155.2, 149.5, 145.0, 135.8, 134.2, 130.5, 130.0, 129.4, 129.2, 128.9, 128.4, 128.3, 127.8, 127.5, 126.3, 124.7, 123.8, 123.1, 122.8, 122.8, 122.4, 120.8, 119.0, 115.1, 112.3, 109.1, 108.61 66.4, 64.8, 63.4, 56.4, 25.6. HPLC analysis: Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 70/30, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: $t_{major} = 17.028$ min, $t_{minor} = 9.111$ min. HRMS (ESI): calcd for $C_{35}H_{25}CIN_2O_2$ [M + H]⁺, 541.1677; found, 541.1679.

3ua:

(*3R,6c'S,7'S,8a'R,13a'R*)-6-bromo-1-methyl-7'-phenyl-6c',7',8a', 13'-tetrahydrospiro[indoline-3,8'-naphtho[1'',2'':4',5']furo[2',3': 1,5]cyclopenta[1,2-b]indol]-2-one: white solid, mp 136 - 138 °C, 49.7 mg, 85% yield, 94% ee, >19:1 d.r. $[\alpha]_D^{20} = +264.3$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.73 (t, *J* = 8.8 Hz, 2H), 7.31 (d, *J* = 7.9 Hz, 1H), 7.26 - 7.09 (m, 9H), 6.93 (t, *J* = 7.3 Hz,

1H), 6.74 – 6.57 (m, 4H), 6.48 (d, J = 7.3 Hz, 1H), 5.29 (s, 1H), 5.23 (d, J = 11.2 Hz, 1H), 4.38 (s, 1H), 3.63 (d, J = 11.2 Hz, 1H), 2.70 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.9, 155.2, 149.5, 145.2, 135.8, 130.1, 129.4, 129.3, 128.9, 128.4, 128.4, 128.1, 127.8, 126.3, 125.3, 124.6, 123.8, 123.4, 122.8, 122.8, 122.0, 120.8, 119.0, 115.1, 112.3, 111.3, 109.1, 66.5, 64.7, 63.3, 56.4, 25.6. HPLC analysis: Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 70/30, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 16.470 min, t_{minor} =9.430 min. HRMS (ESI): calcd for C₃₅H₂₅BrN₂O₂ [M + H]⁺, 585.1172; found, 585.1170.

3va:

(3R,6c'S,7'S,8a'R,13a'R)-7-fluoro-1-methyl-7'-phenyl-6c',7',8a',13'-tet rahydrospiro[indoline-3,8'-naphtho[1'',2'':4',5']furo[2',3':1,5]cyclope nta[1,2-b]indol]-2-one: white solid, mp 185 - 187 °C, 45.6 mg, 87% yield, 98% ee, >19:1 d.r. [α]_D ²⁰ = +264.8 (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (t, *J* = 7.7 Hz, 2H), 7.28 - 7.13 (m, 9H), 7.09 - 7.01 (m, 1H), 7.00 - 6.93 (m, 2H), 6.78 - 6.63 (m, 3H), 6.54 (d, *J* = 7.3

Hz, 1H), 5.35 (s, 1H), 5.27 (d, J = 11.2 Hz, 1H), 4.43 (s, 1H), 3.68 (d, J = 11.2 Hz, 1H), 2.97 (d, J = 4.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.8, 155.3, 149.6, 147.1 (d, J = 243 Hz), 135.8, 132.1(d, J = 4 Hz), 130.5, 130.5, 130.4, 130.0, 129.4, 129.3, 128.9, 128.4, 128.3, 127.8, 126.3, 124.7, 123.8, 123.1 (d, J = 6 Hz), 122.8 (d, J = 6 Hz), 120.9, 119.0, 118.0 (d, J = 3 Hz), 116.5 (d, J = 19 Hz), 115.3, 112.3, 109.2, 67.0 (d, J = 2 Hz), 65.1, 63.6, 56.4, 28.0 (d, J = 6 Hz). HPLC analysis: Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 70/30, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: t_{major} = 26.095 min, t_{minor} = 9.002 min. HRMS (ESI): calcd for C₃₅H₂₅FN₂O₂ [M + H]⁺, 525.1973; found, 525.1977.

3wa:

(3R,6c'S,7'S,8a'R,13a'R)-7-chloro-1-methyl-7'-phenyl-6c',7',8a',13'-tetr ahydrospiro[indoline-3,8'-naphtho[1'',2'':4',5']furo[2',3':1,5]cyclopenta [1,2-b]indol]-2-one: white solid, mp 170 - 172 °C, 46.5 mg, 86% yield, 99% ee, >19:1 d.r. [α]_D ²⁰ = +272.1 (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.73 (t, *J* = 8.9 Hz, 2H), 7.35 (d, *J* = 7.3 Hz, 1H), 7.24 - 7.09 (m, 9H), 7.00 (t, *J* = 7.8 Hz, 1H), 6.93 (t, *J* = 7.6 Hz, 1H), 6.73 (d, *J* = 7.8 Hz, 1H), 6.64 (t, *J* = 8.3 Hz, 2H), 6.51 (d, *J* = 7.3 Hz, 1H), 5.30 (s, 1H), 5.24

(d, J = 11.2 Hz, 1H), 4.38 (s, 1H), 3.63 (d, J = 11.2 Hz, 1H), 3.08 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.4, 155.2, 149.5, 139.8, 135.7, 131.9, 130.8, 130.5, 130.0, 129.4, 129.3, 128.9, 128.4, 128., 127.9, 126.3, 124.6, 123.8, 123.3, 122.9, 122.8, 120.8, 120.7, 119.1, 115.1, 115.1, 112.3, 109.2, 66.4, 65.2, 63.8, 56.4, 28.8. HPLC analysis: Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 70/30, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 29.920 min, t_{minor} = 9.835 min. HRMS (ESI): calcd for C₃₅H₂₅ClN₂O₂ [M + H]⁺, 541.1677; found, 541.1682.

3xa:

(*3R*,*6c*'*S*,*7*'*S*,*8a*'*R*,*13a*'*R*)-7-bromo-1-methyl-7'-phenyl-6c',7',8a',13'-t etrahydrospiro[indoline-3,8'-naphtho[1'',2'':4',5']furo[2',3':1,5]cycl openta[1,2-b]indol]-2-one: white solid, mp 158 - 160 °C, 50.3 mg, 86% yield, 97% ee, >19:1 d.r. $[\alpha]_D^{20} = +281.3$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.73 (t, *J* = 9.4 Hz, 2H), 7.39 (d, *J* = 7.3 Hz, 1H), 7.32 (d, *J* = 8.1 Hz, 1H), 7.23 - 7.10 (m, 8H), 6.97 - 6.89 (m, 2H), 6.74 (d, *J* = 7.9 Hz, 1H), 6.66 - 6.61 (m, 2H), 6.50 (d, *J* = 7.3 Hz, 1H),

5.28 (s, 1H), 5.24 (d, J = 11.2 Hz, 1H), 4.37 (s, 1H), 3.62 (d, J = 11.2 Hz, 1H), 3.08 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.5, 155.2, 149.5, 141.2, 135.7, 134.1, 132.2, 130.5, 130.0, 129.4, 129.3, 128.8, 128.4, 127.9, 126.3, 124.6, 123.8, 123.7, 122.9, 122.8, 121.2, 120.8, 119.1, 115.1, 112.3, 109.2, 102.1, 66.4, 65.2, 63.8, 56.5, 29.0. HPLC analysis: Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 70/30, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: $t_{major} = 32.498$ min, $t_{minor} = 10.311$ min. HRMS (ESI): calcd for $C_{35}H_{25}BrN_2O_2$ [M + H]⁺, 585.1172; found, 585.1180.

3ab:

(*3R*, *6c*'*S*, *7*'*S*, *8a*'*R*, *13a*'*R*)-7-bromo-1-methyl-7'-(o-tolyl)-6c', 7', 8a', 13 '-tetrahydrospiro[indoline-3,8'-naphtho[1'',2'':4',5']furo[2',3':1,5]cy clopenta[1,2-b]indol]-2-one: white solid, mp 197- 199 °C, 45.8 mg, 88% yield, 99% ee, >19:1 d.r. $[\alpha]_D^{20} = +276.3$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 7.5 Hz, 1H), 7.72 (t, *J* = 8.0 Hz, 2H), 7.49 (d, *J* = 7.0 Hz, 1H), 7.24 – 7.01 (m, 7H), 6.87 (t, *J* = 7.2 Hz, 1H), 6.81 – 6.69 (m, 2H), 6.65 – 6.55 (m, 2H), 6.40 (dd, *J* = 19.7, 7.6

Hz, 2H), 5.33 (s, 1H), 5.13 (d, J = 11.1 Hz, 1H), 4.47 (s, 1H), 4.20 (d, J = 11.1 Hz, 1H), 2.83 (s, 3H), 1.58 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.7, 155.1, 149.7, 143.9, 137.2, 135.5, 130.4, 129.9, 129.3, 129.1, 129.0, 128.6, 128.2, 127.8, 127.1, 126.3, 126.1, 125.0, 123.4, 122.8, 122.7, 122.4, 122.2, 121.0, 118.9, 115.1, 112.2, 109.1, 107.9, 99.9, 66.2, 63.8, 58.3, 58.1, 25.6, 20.1. HPLC analysis: Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 70/30, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: $t_{major} = 19.540$ min, $t_{minor} = 7.400$ min. HRMS (ESI): calcd for $C_{36}H_{28}N_2O_2$ [M + H]⁺, 521.2224; found, 521.2225.

3ac:

(*3R*, *6c*'*S*, *7*'*S*, *8a*'*R*, *13a*'*R*)-1-methyl-7'-(m-tolyl)-6c', 7', 8a', 13'-tetrahyd rospiro[indoline-3,8'-naphtho[1'',2'':4',5']furo[2',3':1,5]cyclopenta[1,2-b]indol]-2-one: white solid, mp 157 - 159 °C, 45.4 mg, 87% yield, 99% ee, >19:1 d.r. $[\alpha]_D^{20} = +269.6$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.73 (t, *J* = 7.7 Hz, 2H), 7.44 (d, *J* = 7.0 Hz, 1H), 7.24 - 6.90 (m, 10H), 6.72 (t, *J* = 7.9 Hz, 2H), 6.58 (t, *J* = 7.4 Hz, 2H), 6.45 (d, *J* = 6.9 Hz, 1H), 5.32 (s, 1H), 5.25 (d, *J* = 11.1 Hz, 1H), 4.42 (s,

1H), 3.65 (d, J = 11.1 Hz, 1H), 2.73 (s, 3H), 2.15 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.1, 155.3, 149.6, 143.9, 137.6, 136.0, 130.6, 129.9, 129.8, 129.4, 129.1, 129.1, 128.4, 128.3, 128.2, 128.0, 126.2, 125.9, 125.1, 124.0, 122.9, 122.7, 122.5, 122.1, 121.1, 118.9, 115.3, 112.3, 109.1, 107.7, 66.7, 64.8, 63.4, 56.5, 25.4, 21.2. HPLC analysis: Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 70/30, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: $t_{major} = 13.736$ min, $t_{minor} = 6.495$ min. HRMS (ESI): calcd for C₃₆H₂₈N₂O₂ [M + H]⁺, 521.2224; found, 521.2221. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (t, J = 8.5 Hz, 2H), 7.44 (d, J = 7.3 Hz, 1H), 7.24 – 7.16 (m, 2H), 7.17 – 7.06 (m, 3H), 7.05 – 6.92 (m, 5H), 6.72 (dd, J = 10.4, 8.5 Hz, 2H), 6.58 (t, J = 7.4 Hz, 2H), 6.45 (d, J = 7.3 Hz, 1H), 5.24 (d, J = 11.2 Hz, 1H), 4.41 (s, 1H), 3.64 (d, J = 11.2 Hz, 1H), 2.72 (s, 3H), 2.14 (s, 3H).

3ad:

(3R,6c'S,7'S,8a'R,13a'R)-1-methyl-7'-(p-tolyl)-6c',7',8a',13'-tetrahydr ospiro[indoline-3,8'-naphtho[1'',2'':4',5']furo[2',3':1,5]cyclopenta[1, 2-b]indol]-2-one: white solid, mp 147 - 149 °C, 45.8 mg, 88% yield, 99% ee, >19:1 d.r. $[\alpha]_D^{20} = +295.1$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.73 (t, *J* = 7.5 Hz, 2H), 7.43 (d, *J* = 7.3 Hz, 1H), 7.24 – 7.05 (m, 7H), 6.98 – 6.86 (m, 3H), 6.72 (d, *J* = 8.0 Hz, 2H), 6.59 (t, *J* = 7.1 Hz, 2H), 6.45 (d, *J* = 7.3 Hz, 1H), 5.36 (s, 1H), 5.25 (d, *J* = 11.2 Hz,

1H), 4.41 (s, 1H), 3.66 (d, J = 11.1 Hz, 1H), 2.73 (s, 3H), 2.24 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.2, 155.3, 149.6, 143.9, 137.1, 133.0, 130.6, 129.9, 129.4, 129.2, 129.1, 128.9, 128.8, 128.4, 126.2, 125.1, 124.0, 122.9, 122.7, 122.5, 122.1, 121.2, 118.9, 115.2, 112.3, 109.2, 107.8, 66.7, 64.5, 63.5, 56.5, 25.5, 21.1. HPLC analysis: Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 70/30, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: $t_{major} = 11.801$ min, $t_{minor} = 7.610$ min. HRMS (ESI): calcd for $C_{36}H_{28}N_2O_2$ [M + H]⁺, 521.2224; found, 521.2222.

3ae:

(3R,6c'S,7'R,8a'R,13a'R)-7'-(2-chlorophenyl)-1-methyl-6c',7',8a',13'tetrahydrospiro[indoline-3,8'-naphtho[1'',2'':4',5']furo[2',3':1,5]cycl openta[1,2-b]indol]-2-one: white solid, mp 185 - 187 °C, 46.5 mg, 86% yield, 99% ee, >19:1 d.r. [α]_D ²⁰ = +286.3 (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, *J* = 7.9 Hz, 2H), 7.78 - 7.70 (m, 2H), 7.59 (d, *J* = 7.4 Hz, 1H), 7.31 - 7.27 (m, 1H), 7.24 - 7.05 (m, 6H), 7.00 (d, *J* = 7.9 Hz, 1H), 6.92 (t, *J* = 7.6 Hz, 1H), 6.71 (d, *J* = 7.9 Hz,

1H), 6.66 – 6.55 (m, 2H), 6.42 (t, J = 6.8 Hz, 2H), 5.17 (d, J = 11.3 Hz, 1H), 4.67 (d, J = 11.3 Hz, 1H), 4.47 (s, 1H), 2.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.4, 155.2, 149.7, 143.7, 135.3, 134.8, 130.5, 130.1, 129.7, 129.7, 129.4, 129.2, 128.6, 128.5, 128.5, 128.1, 127.1, 126.2, 124.7, 123.6, 123.1, 122.9, 122.7, 122.5, 120.5, 118.8, 114.9, 112.3, 109.1, 107.7, 66.4, 64.3, 57.7, 57.0, 25.6. HPLC analysis: Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 70/30, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: $t_{major} = 28.685$ min, $t_{minor} = 9.700$. HRMS (ESI): calcd for $C_{35}H_{25}ClN_2O_2$ [M + H]⁺, 541.1677; found, 541.1672.

((*3R*,*6c*'*S*,*7*'*S*,*8a*'*R*,*13a*'*R*)-7'-(3-chlorophenyl)-1-methyl-6c',7',8a',13' -tetrahydrospiro[indoline-3,8'-naphtho[1",2":4',5']furo[2',3':1,5]cy clopenta[1,2-b]indol]-2-one: white solid, mp 161 - 163 °C, 48.2 mg, 89% yield, 98% ee, >19:1 d.r. $[\alpha]_D^{20} = +276.5$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.73 (t, *J* = 7.8 Hz, 2H), 7.41 (d, *J* = 7.0 Hz, 0H), 7.23 - 6.94 (m, 11H), 6.73 - 6.64 (m, 2H), 6.62 - 6.53 (m, 2H), 6.42 (d, *J* = 7.3 Hz, 1H), 5.20 (d, *J* = 11.1 Hz, 1H), 4.40 (s, 1H), 3.61 (d, *J* = 11.2 Hz, 1H), 2.72 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ

174.9, 155.3, 149.6, 143.8, 138.5, 134.0, 130.5, 130.2, 129.5, 129.4, 129.2, 129.1, 128.7, 128.6, 128.6, 127.8, 127.1, 126.5, 124.8, 123.7, 122.9, 122.8, 122.1, 120.6, 118.9, 115.2, 112.4, 109.1, 107.9, 66.6, 64.2, 63.4, 56.4, 25.5. HPLC analysis: Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 70/30, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 15.241 min, t_{minor} = 7.690. HRMS (ESI): calcd for $C_{35}H_{25}ClN_2O_2$ [M + H]⁺, 541.1677; found, 541.1671.

(*3R*,*6c*'*S*,*7*'*S*,*8a*'*R*,*13a*'*R*)-7'-(4-chlorophenyl)-1-methyl-6c',7',8a',13' -tetrahydrospiro[indoline-3,8'-naphtho[1",2":4',5']furo[2',3':1,5]cy clopenta[1,2-b]indol]-2-one: white solid, mp 194 - 196 °C, 47.0 mg, 87% yield, 99% ee, >19:1 d.r. $[\alpha]_D^{20} = +267.3$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 8.4 Hz, 2H), 7.45 (d, *J* = 7.1 Hz, 1H), 7.27 - 7.00 (m, 10H), 6.73 (t, *J* = 8.8 Hz, 2H), 6.66 - 6.55 (m, 2H), 6.47 (d, *J* = 7.1 Hz, 1H), 5.38 (s, 1H), 5.25 (d, *J* = 11.1 Hz, 1H), 4.44 (s, 1H), 3.69 (d, *J* = 11.1 Hz, 1H), 2.78 (s, 3H). ¹³C NMR (101

MHz, CDCl₃) δ 175.0, 155.3, 149.5, 143.8, 134.9, 133.4, 130.5, 130.2, 130.1, 129.4, 129.2, 128.7, 128.7, 128.6, 128.4, 126.5, 124.8, 123.7, 122.9, 122.7, 122.0, 120.7, 118.9, 115.2, 112.4, 109.1, 108.0, 66.7, 64.0, 63.5, 56.4, 25.6. HPLC analysis: Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 40.441 min, t_{minor} = 37.019. HRMS (ESI): calcd for $C_{35}H_{25}ClN_2O_2$ [M + H]⁺, 541.1677; found, 541.1674.

3ag:

3ah:

(*3R*, *6c*'*S*, *7*'*S*, *8a*'*R*, *13a*'*R*)-7'-(4-fluorophenyl)-1-methyl-6c', 7', 8a', 13 '-tetrahydrospiro[indoline-3,8'-naphtho[1'',2'':4',5']furo[2',3':1,5] cyclopenta[1,2-b]indol]-2-one: white solid, mp 185- 187 °C, 45.2 mg, 86% yield, 98% ee, 12:1 d.r. $[\alpha]_D^{20} = +344.3$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 6.0 Hz, 2H), 7.43 (d, *J* = 6.8 Hz, 1H), 7.24 – 7.06 (m, 7H), 7.04 – 6.96 (m, 1H), 6.81 (t, *J* = 7.5 Hz, 2H), 6.70 (t, *J* = 8.0 Hz, 2H), 6.64 – 6.54 (m, 2H), 6.45 (d, *J* = 6.6 Hz, 1H), 5.35 (s, 1H), 5.20 (d, *J* = 11.2 Hz, 1H), 4.42 (s, 1H),

3.66 (d, J = 10.9 Hz, 1H), 2.74 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.1, 162.3 (d, J = 245 Hz), 155.3, 149.5, 143.8, 132.0 (d, J = 3 Hz), 130.5, 130.4, 130.1, 129.5, 129.1, 128.9, 128.6 (d, J = 7 Hz), 126.4, 124.9, 123.7, 122.8 (d, J = 6 Hz), 122.7, 122.0, 120.8, 118.9, 115.2, 115.0, 112.3, 109.1, 107.9, 66.7, 64.0, 63.3, 56.5, 25.57. HPLC analysis: Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: $t_{major} = 19.433$ min, $t_{minor} = 24.662$ min. HRMS (ESI): calcd for $C_{35}H_{25}FN_2O_2$ [M + H]⁺, 525.1973; found, 525.1970.

(*3R*,*6c*′*S*,*7*′*S*,*8a*′*R*,*13a*′*R*)-7'-(4-bromophenyl)-1-methyl-6c',7',8a',13'-t etrahydrospiro[indoline-3,8'-naphtho[1'',2'':4',5']furo[2',3':1,5]cyclo penta[1,2-b]indol]-2-one: white solid, mp 163 - 165 ℃, 49.7 mg, 85% yield, 98% ee, >19:1 d.r. [α]_D ²⁰ = +269.8 (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 7.9 Hz, 2H), 7.41 (d, *J* = 6.4 Hz, 1H), 7.25 - 6.97 (m, *J* = 33.2, 23.8, 7.4 Hz, 10H), 6.76 - 6.66 (m, 2H), 6.64 - 6.54 (m, 2H), 6.45 (d, *J* = 6.1 Hz, 1H), 5.37 (s, 1H), 5.22 (d, *J* = 10.7 Hz,

1H), 4.42 (s, 1H), 3.65 (d, J = 10.8 Hz, 1H), 2.75 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.0, 155.3, 149.5, 143.8, 135.4, 131.4, 130.6, 130.5, 130.2, 129.4, 129.2, 128.7, 128.7, 128.6, 126.6, 124.8, 123.7, 122.9, 122.7, 122.0, 121.7, 120.7, 118.9, 115.2, 112.4, 109.1, 108.0, 99.9, 66.6, 64.0, 63.6, 56.4, 25.6. HPLC analysis: Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, retention time: $t_{major} = 21.043$ min, $t_{minor} = 17.755$ min. HRMS (ESI): calcd for $C_{35}H_{25}BrN_2O_2$ [M + H]⁺, 585.1172; found, 585.1174.

3aj:

(*3R*,*6c*'*S*,*7*'*S*,*8a*'*R*,*13a*'*R*)-1-methyl-7'-(4-(trifluoromethyl)phenyl)-6c' ,7',8a',13'-tetrahydrospiro[indoline-3,8'-naphtho[1'',2'':4',5']furo[2' ,3':1,5]cyclopenta[1,2-b]indol]-2-one: white solid, mp 133 - 135 °C, 49.5 mg, 86% yield, 98% ee, >19:1 d.r. $[\alpha]_D^{20} = +351.7$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.80 - 7.68 (m, 2H), 7.45 (d, *J* = 7.0 Hz, 1H), 7.36 (s, 4H), 7.19 (m, 5H), 6.95 (t, *J* = 7.3 Hz, 1H), 6.69 (d, *J* = 7.7 Hz, 1H), 6.60 (t, *J* = 8.8 Hz, 3H), 6.45 (d, *J* = 7.0 Hz,

1H), 5.39 (s, 1H), 5.28 (d, J = 11.0 Hz, 1H), 4.45 (s, 1H), 3.75 (d, J = 11.0 Hz, 1H), 2.75 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.9, 155.3, 149.5, 143.7, 140.6, 130.4, 130.2, 129.4, 129.4, 129.3, 128.8, 128.6, 128.5, 126.5, 125.2 (q, J = 4.0 Hz), 124.6, 123.5, 122.9, 122.9, 122.8, 122.1, 120.5, 118.9, 115.2, 112.4, 109.2, 108.1, 66.7, 64.2, 63.8, 56.6, 25.6. HPLC analysis: Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: $t_{major} = 11.440$ min, $t_{minor} = 14.316$ min. HRMS (ESI): calcd for $C_{36}H_{25}F_3N_2O_2$ [M + H]⁺, 575.1941; found, 575.1947.

3ak:

methyl-4-((*3R*,*6c*'*S*,*7*'*S*,*8a*'*R*,*13a*'*R*)-1-methyl-2-oxo-6c',7',8a', 13'-tetrahydrospiro[indoline-3,8'-naphtho[1'',2'':4',5']furo[2', 3':1,5]cyclopenta[1,2-b]indol]-7'-yl)benzoate: white solid, mp 200 - 202 °C, 46.6 mg, 87% yield, 98% ee, >19:1 d.r. $[\alpha]_D^{20} =$ +287.3 (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 24.7 Hz, 4H), 7.43 (s, 1H), 7.29 (s, 2H), 7.24 - 7.03 (m, 5H), 6.94 (s, 1H), 6.70 (d, *J* = 6.1 Hz, 2H), 6.58 (s, 1H), 6.45 (s, 1H), 5.38 (s, 1H), 5.29 (d, *J* = 10.0 Hz, 1H), 4.44 (s, 1H), 3.86 (s, 3H),

3.74 (d, J = 10.0 Hz, 1H), 2.71 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.8, 166.9, 155.3, 149.6, 143.7, 141.6, 130.4, 130.4, 130.2, 129.5, 129.3, 129.0, 129.0, 128.7, 126.5, 124.8, 123.6, 122.9, 122.8, 122.7, 122.7, 122.1, 120.6, 118.9, 115.4, 112.3, 109.1, 107.9, 66.8, 64.6, 63.5, 56.2, 52.0, 25.5. HPLC analysis: Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, retention time: $t_{major} = 39.309$ min, $t_{minor} = 31.456$ min. HRMS (ESI): calcd for $C_{37}H_{28}BrN_2O_4$ [M + H]⁺, 565.2122; found, 565.2124.

(3R,6c'S,7'S,8a'R,13a'R)-1-methyl-7'-(4-nitrophenyl)-6c',7',8a',13' -tetrahydrospiro[indoline-3,8'-naphtho[1",2":4',5']furo[2',3':1,5] cyclopenta[1,2-b]indol]-2-one: white solid, mp 181 - 183 °C, 45.3 mg, 82% yield, 98% ee, >19:1 d.r. $[\alpha]_D^{20} = +275.3$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 8.5 Hz, 2H), 7.75 (t, *J* = 8.2 Hz, 2H), 7.46 (d, *J* = 7.3 Hz, 1H), 7.41 (d, *J* = 7.8 Hz, 2H), 7.26 (t, *J* = 7.6 Hz, 1H), 7.22 - 7.09 (m, 4H), 6.96 (t, *J* = 7.6 Hz, 1H), 6.71 (d, *J* = 7.8 Hz, 1H), 6.67 - 6.55 (m, 3H), 6.43 (d, *J* = 7.3 Hz,

1H), 5.39 – 5.27 (m, 1H), 4.44 (s, 2H), 3.78 (d, J = 11.1 Hz, 1H), 2.73 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.6, 155.4, 149.4, 147.4, 144.1, 143.6, 130.4, 130.3, 129.8, 129.5, 129.3, 129.0, 128.8, 128.1, 126.7, 124.4, 123.3, 123.1, 122.9, 122.9, 122.8, 122.0, 120.2, 119.0, 115.2, 112.4, 109.1, 108.1, 66.8, 64.1, 63.7, 56.4, 25.6. HPLC analysis: Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: $t_{major} = 39.309$ min, $t_{minor} = 31.456$ min. HRMS (ESI): calcd for $C_{35}H_{25}N_3O_4$ [M + H]⁺, 552.1918; found, 552.1920.

3al:

3am:

(4b*R*,5*R*,6*S*,6a*S*,11a*R*)-1'-methyl-6-phenyl-4b,6,6a,12-tetrahydrospir o[benzofuro[2',3':1,5]cyclopenta[1,2-b]indole-5,3'-indolin]-2'-one : white solid, mp 132 - 134 °C, 45.3 mg, 62% yield, 81% ee, >19:1 d.r. $[\alpha]_D^{20} = +212.3$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 7.5 Hz, 1H), 7.24 - 7.18 (m, 1H), 7.12 - 6.92 (m, 7H), 6.88 (d, J=8.1 Hz) 6.80 - 6.71 (m, 3H), 6.67 - 6.58 (m, 2H), 6.51 - 6.41 (m, 2H), 5.10 (s, 1H), 4.66 (s, 1H), 4.50 (d, J = 11.9 Hz, 1H), 3.88 (d, J = 11.9 Hz, 1H),

3.06 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.9, 157.9, 149.0, 143.1, 134.8, 129.0, 128.5, 128.2, 128.1, 128.0, 127.8, 127.3, 126.4, 125.3, 125.1, 123.9, 123.8, 121.8, 120.7, 119.4, 115.5, 109.9, 108.5, 107.6, 65.8, 64.0, 62.1, 55.3, 26.3. HPLC analysis: Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 16.285 min, t_{minor} = 14.066 min. HRMS (ESI): calcd for $C_{31}H_{24}N_2O_2$ [M + H]⁺, 457.1911; found, 457.1918.

HPLC spectra of racemic and enantioenriched products.

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	8.889	186.34	6513.02	49.1454
2	18.221	91.91	6739.54	50.8546

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	8.745	6.69	398.38	2.4036
2	18.243	215.44	16175.80	97.5964

3ba

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	10.159	125.48	5220.73	49.6572
2	31.914	41.10	5292.80	50.3428

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	10.131	1.86	63.94	0.5487
2	31.778	90.31	11587.19	99.4513

3ca

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	8.353	110.13 3	571.96	50.3733
2	39.573	20.51	3519.01	49.6267

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	8.362	2.97	96.21	0.6247
2	39.671	89.66	15304.80	99.3753

3da

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	8.621	310.21	10405.89	50.1242
2	42.065	57.29	10354.34	49.8758

2	RT [min]	Heigh[mV]	Area[mV*s]	Area%
	8.626	2.23	72.20	0.6069
	42.040	64.40	1824.47	99.3931

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	6.754	136.22	3677.95	50.0470
2	53.584	13.76	3671.05	49.9530

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	6.760	2.57	80.62	1.2047
2	53.480	24.30	6611.09	98.7953

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	12.911	52.42	2893.81	53.1788
2	26.376	24.89	2547.85	46.8212

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	12.375	25.65	2548.15	22.3551
2	26.356	85.18	8850.37	77.6449

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	12.050	37.71	1777.84	46.0623
2	32.120	15.03	2081.80	53.9377

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	11.986	1.35	61.04	0.4975
2	32.002	90.21	12208.70	99.5025

3ha

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	10.231	103.22	4468.30	53.8048
2	30.533	30.92	3836.35	46.1952

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	10.231	3.10	124.95	0.5776
2	30.519	173.34	21507.66	99.4224

3ia

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	9.866	119.83	5105.99	53.4557
2	29.046	39.27	4445.82	46.5443

29.043

18654.53

2

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	9.434	89.43	3347.49	50.4449
2	27.199	29.15	4288.45	49.5551

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	6.006	167.34	3283.07	49.1857
2	17.961	45.78	3391.78	50.8143

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	6.015	10.54	201.41	1.3112
2	17.915	201.07	15159.63	98.6888

3la

2

29.163

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	6.169	225.24	4722.60	48.2016
2	29.235	40.96	5075.00	51.7984

36.92

9	()
/	ľ	,

97.5992

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	7.984	29.90	904.10	48.2259
2	14.877	16.98	970.62	51.7741

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	7.902	2.67	131.10	0.7961
2	14.796	268.53	16337.20	99.2039

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	10.250	21.08	1028.18	48.1770
2	13.943	18.28	1106.00	51.8230

Peak RT [min]	Heigh[mV]	Area[mV*s]	Area%	
1 10.485	2.22	128.43	0.8412	
2 14.169	266.00	15139.67	99.1588	

92

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	8.961	35.08	1458.75	48.5139
2	13.797	27.01	1548.12	51.4861

Зра

2

13.730

99.6015

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	8.819	53.57	2277.63	51.7785
2	15.125	34.61	2121.17	48.2215

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	8.741	6.57	194.01	3.5765
2	15.097	87.23	5230.67	96.4235

3qa

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	11.580	42.45	2925.92	47.1511
2	63.961	11.75	3279.50	52.8489

3	r	а	

2

63.727

89.6780

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	9.332	43.00	1520.44	49.4090
2	20.545	20.28	1556.81	50.5910

20.451

99.5474

15300.13

2

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	9.120	85.41	3127.73	50.8006
2	17.079	46.32	3029.15	49.1994

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	9.111	1.56	46.86	0.3365
2	17.028	201.28	13879.49	99.6635

3ta

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	9.350	38.62	1520.47	50.0803
2	16.458	22.43	1515.59	49.9197

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	9.430	3.98	374.86	2.6164
2	16.470	205.69	13952.39	97.3836

3ua

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	9.051	114.53	3905.48	49.1986
2	26.285	38.92	4032.72	50.8014

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	9.002	3.33	103.49	0.5584
2	26.095	178.47	18430.61	99.4416

3va

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	9.855	128.35	4790.67	50.3296
2	30.086	41.32	4727.93	49.6704

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	10.355	64.68	2480.24	51.3317
2	32.580	19.39	2351.55	48.6683

14135.03

32.498

2

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	7.387	30.36	844.54	47.8134
2	19.516	11.90	921.78	52.1866

-	-	L
	а	n
_	•	~

2

19.540

99.5687

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	6.491	80.45	2020.74	50.2876
2	13.755	37.23	1997.63	49.7124

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	6.495	2.02	44.95	0.4098
2	13.736	194.11	10924.93	99.5902

3ad

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	7.609	99.59	3041.09	50.3489
2	11.828	65.54	2998.94	49.6511

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	7.610	3.02	79.15	0.4442
2	11.801	365.13	17739.29	99.5558

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	9.803	35.38	1397.55	50.5675
2	28.903	12.95	1366.18	49.4325

22066.89

2

28.685

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	7.675	79.03	2308.95	48.7049
2	15.257	41.03	2431.75	51.2951

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	7.690	3.68	98.92	0.6421
2	15.241	246.67	15306.26	99.3579

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	37.158	13.04	1667.63	47.8207
2	40.415	14.32	1819.62	52.1793

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	37.019	0.25	18.53	0.1499
2	40.441	84.96	12344.98	99.8501

3ag

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	19.519	24.77	1640.47	47.1652
2	21.607	20.30	1837.67	52.8348

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	19.433	91.70	6509.02	99.4742
2	24.662	0.30	34.40	0.5258

3ah

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	17.697	29.96	2275.84	49.8837
2	21.047	28.06	2286.45	50.1163

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	17.755	1.30	78.20	0.5409
2	21.043	175.70	14379.40	99.4591

3ai

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	11.457	53.83	2362.32	50.0952
2	14.310	38.03	2353.35	49.9048

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	11.440	264.49	11978.27	99.4303
2	14.316	1.30	68.63	0.5697

3aj

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	31.365	9.92	1322.65	49.0478
2	39.415	8.86	1374.01	50.9522

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	31.456	0.81	90.80	0.4541
2	39.309	121.69	19903.73	99.5459

3ak

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	38.721	15.99	2238.04	46.2329
2	42.195	17.50	2602.75	53.7671

3al

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	14.088	26.17	1155.94	50.7392
2	16.365	21.01	1122.26	49.2608

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	14.066	5.34	233.51	9.2661
2	16.285	40.73	2286.52	90.7339

Intermediate data

7an:

3-(5-fluoro-2-hydroxyphenyl)-1'-methyl-2-phenyl-3,4-dihydro-2H-spiro [cyclopenta[b]indole-1,3'-indolin]-2'-one: white solid, mp 113 - 115 °C, 30mg, 63% yield. 16:1 d.r., 1H NMR (400 MHz, CDCl₃) δ 8.30 (s, 1H), 7.16 (d, *J* = 8.1 Hz, 1H), 7.13 - 7.02 (m, 7H), 7.02 - 6.90 (m, 4H), 6.87 (d, *J* = 7.2 Hz, 1H), 6.80 (t, *J* = 7.4 Hz, 1H), 6.71 (d, *J* = 7.8 Hz, 1H), 6.62 (d, *J* = 5.6 Hz, 2H), 5.51 (d, *J* = 9.0 Hz, 1H), 4.87 (d, *J* = 9.0 Hz,

1H), 3.32 (s, 3H) ¹³C NMR (101 MHz, CDCl₃) δ 180.1, 155.5 (d, *J*= 236 Hz), 150.4, 145.7, 142.3, 140.5, 136.5, 130.4, 128.2, 127.8, 127.8 (d, *J*=7 Hz), 125.3, 122.5 (d, *J*=12 Hz), 121.6, 120.0, 117.7 (d, *J*=49 Hz), 117.5, 115.5 (d, *J*=23 Hz), 114.5 (d, *J*=23 Hz), 111.9, 107.8, 67.6, 60.3, 43.0, 26.7. HRMS (ESI): calcd for C₃₁H₂₃FN₂O₂ [M + H]⁺, 475.1816; found 475.1813.

7ao:

3-(5-chloro-2-hydroxyphenyl)-1'-methyl-2-phenyl-3,4-dihydro-2H-spir o[cyclopenta[b]indole-1,3'-indolin]-2'-one: white solid, mp 121 - 123 °C, 32mg, 65% yield. 15:1 d.r., ¹H NMR (400 MHz, CDCl₃) δ 8.30 (s, 1H), 7.16 (d, *J* = 8.1 Hz, 1H), 7.14 - 6.91 (m, 11H), 6.87 (d, *J* = 7.2 Hz, 1H), 6.80 (t, *J* = 7.4 Hz, 1H), 6.71 (d, *J* = 7.8 Hz, 1H), 6.62 (d, *J* = 5.6 Hz, 2H), 5.51 (d, *J* = 9.0 Hz, 1H), 4.87 (d, *J* = 9.0 Hz, 1H),

3.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 180.3, 153.2, 145.6, 142.4, 140.6, 136.6, 130.4, 129.1, 128.3, 128.2, 128.1, 127.9, 127.8, 127.1, 125.4, 125.4, 122.6, 122.4, 121.7, 120.0, 118.2, 117.9, 117.4, 112.0, 107.9, 67.6, 60.3, 43.5, 26.7. HRMS (ESI): calcd for C₃₁H₂₃ClN₂O₂ [M + H]⁺, 491.1521; found 491.1526.

Control experiment data

3wa

(3R,6c'S,7'S,8a'R,13a'R)-7'-phenyl-6c',7',8a',13'-tetrahydrospiro[indolin e-3,8'-naphtho[1",2":4',5']furo[2',3':1,5]cyclopenta[1,2-b]indol]-2-one : white solid, mp 99 - 101 °C, 35.0 mg, 71% yield, 93% ee, >19:1 d.r. $[\alpha]_D^{20} = +268.6$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.74 (t, J = 8.4 Hz, 2H), 7.57 (s, 1H), 7.43 (d, J = 7.3 Hz, 1H), 7.24 - 6.97 (m, 10H), 6.94 (t, J = 7.6 Hz, 1H), 6.68 (t, J = 7.6 Hz, 2H), 6.59 (d, J = 7.6 Hz, 1H), 6.56 - 6.49 (m, 2H), 5.38 (s, 1H), 5.19 (d, J = 11.1 Hz, 1H),

4.41 (s, 1H), 3.70 (d, J = 11.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 177.5, 155.2, 149.5, 141.00, 136.1, 130.6, 130.0, 129.8, 129.4, 129.1, 129.0, 128.4, 128.4, 128.3, 127.7, 126.3, 124.9, 124.0, 123.1, 122.8, 122.5, 122.4, 121.0, 119.0, 115.3, 112.3, 109.7, 109.0, 67.0, 64.9, 63.8, 56.3. HPLC analysis: Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 85/15, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: $t_{major} = 22.127$ min, $t_{minor} = 11.733$ min. HRMS (ESI): calcd for $C_{34}H_{24}N_2O_2$. [M + H]⁺, 493.1911; found, 493.1906.

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	13.704	52.89	2672.75	30.7834
2	22.137	35.99	2514.72	28.9633
3	24.879	19.80	1547.11	17.8189
4	39.145	13.24	1947.86	22.4345

(3R, 6c'S, 7'S, 8a'R, 13a'R)-1,13'-dimethyl-7'-phenyl-6c',7',8a',13'-tetrahyd rospiro[indoline-3,8'-naphtho[1",2":4',5']furo[2',3':1,5]cyclopenta[1,2-b] indol]-2-one: white solid, mp 141 - 143 °C, 13.0 mg, 25% yield, 21:1 d.r.; ¹H NMR (400 MHz, CDCl₃) δ 7.75 (t, *J* = 8.9 Hz, 2H), 7.44 (d, *J* = 7.2 Hz, 1H), 7.25 - 7.02 (m, 10H), 6.95 (t, *J* = 8.0, 3.9 Hz, 1H), 6.72 (d, *J* = 8.4 Hz, 1H), 6.57 (d, *J* = 4.0 Hz, 1H), 6.53 - 6.38 (m, 3H), 5.29 (d, *J* = 11.1 Hz, 1H), 4.37 (s, 1H), 3.71 (d, *J* = 11.1 Hz, 1H), 2.97 (s, 3H),

2.71 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.0, 156.1, 151.0, 144.0, 136.4, 130.5, 130.0, 129.3, 129.2, 129.0, 129.0, 128.4, 128.2, 127.6, 126.2, 124.2, 124.0, 122.6, 122.5, 122.1, 121.1, 117.7, 116.8, 112.0, 107.7, 104.8, 66.5, 64.8, 62.3, 53.2, 27.7, 25.4. HPLC analysis: Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t₁ = 5.346 min, t₂ = 9.795 min. HRMS (ESI): calcd for C₃₅H₂₆N₂O₂. [M + H]⁺, 521.2224; found,521.2216.

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	5.340	327.17	3927.61	52.4777
2	9.800	120.01	3556.73	47.5223

Peak	RT [min]	Heigh[mV]	Area[mV*s]	Area%
1	5.346	452.24	5534.27	49.5132
2	9.795	188.78	5643.09	50.4868

Figure 1. X-Ray Structure of 3ca:

X-ray crystallographic been established. The enantioenriched analysis has spiro[benzofuro-cyclopenta[1,2-b]indole-indoline] structure 3ca (32 mg, 98% ee) was dissolved by 3 mL prepared solvents (ethanol:n-hexane=2:1) and transferred into a test tube. The tube was placed in dry and avoid light position for 2 days. The crystals were separated out by filtrating. The absolute configuration of **3ca** was established by X-ray crystallographic analysis. In Figure 1, the C36, C37 and O3 come from solvent ethanol. The result of X-ray crystallographic analysis shows chiral spiro[benzofuro-cyclopenta[1,2-b]indole-indoline] structure 3ca is (7R, 8R, 9S, 20S, 27R) configuration as shown in Figure 1. These data can be obtained free of charge from The ambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

