Supplementary Information

A new class of anionic metallohelicates based on salicylic and terephthalic acid units, accessible in solution and by mechanochemistry

Jean-Louis Do, ${ }^{a b}$ Hatem M. Titi, ${ }^{b}$ Louis A. Cuccia, ${ }^{a *}$ and Tomislav Friščic ${ }^{b}$ *

a) Concordia University, Department of Chemistry and Biochemistry, 7141 Sherbrooke St. West, H4B 1R6, Montréal, Québec, Canada
b) McGill University, Department of Chemistry, 801 Sherbrooke St., H3A 0B8 Montréal, Québec, Canada
*Email: louis.cuccia@concordia.ca, tomislav.friscic@mcgill.ca

Table of Contents

1. Experimental 3
1.1 Synthesis of N, N^{\prime}-bis(3-carboxy-2-hydroxyphenyl)terephthalamide $\left(\mathrm{H}_{4} \mathrm{~L}\right)$ 3
1.2 Solution synthesis of $\mathrm{Fe}-\mathrm{H} 1$ 4
1.3 Solution synthesis of $\mathrm{Fe}-\mathrm{H} 2$ 4
1.4 Solution synthesis of $\mathrm{Fe}-\mathrm{H} 3$ 4
1.5 Solution synthesis of $\mathrm{Fe}-\mathrm{H} 4 \mathrm{~A}$ 4
1.6 Solution synthesis of $\mathrm{Fe}-\mathrm{H} 4 \mathrm{~B}$ 4
1.7 Solution synthesis of $\mathrm{Fe}-\mathrm{H} 4 \mathrm{C}$ 5
1.8 Solution synthesis of $\mathrm{Cu}-\mathrm{H} 1$ 5
1.9 Solution synthesis of $\mathrm{Cu}-\mathrm{H} 2$ 5
1.10 General procedure for the mechanochemical synthesis of helicates 5
1.11 Mechanochemical synthesis of $\mathrm{Fe}-\mathrm{H} 1$ 5
1.12 Mechanochemical synthesis of Fe-H2 6
1.13 Mechanochemical synthesis of Fe-H3 6
1.14 Mechanochemical synthesis of $\mathrm{Fe}-\mathrm{H} 4 \mathrm{~A}$ 6
1.15 Mechanochemical synthesis of $\mathrm{Fe}-\mathrm{H} 4 \mathrm{C}$ 6
1.16 Mechanochemical synthesis of $\mathrm{Cu}-\mathrm{H} 1$ 6
1.17 Mechanochemical synthesis of $\mathrm{Cu}-\mathrm{H} 2$ 6
2. Summary of IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and HR-MS Data 7
3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR Spectra 10
4. Fourier-Transform Attenuated Total Reflectance (FTIR-ATR) Spectra 12
5. Powder X-Ray Diffraction (PXRD) Patterns 20
6. HR-MS Spectra 26
7. Single Crystal X-ray Diffraction Data 40
8. Thermogravimetric analysis 49
9. References 52

1. Experimental

Unless otherwise specified, all reagents and solvents were purchased from commercial sources and used without further purification. Solution reactions were carried out in 6 dram borosicilicate glass vials using a pre-programmed thermostat oven for any reaction temperatures above room temperature. Solid-state mechanochemical milling reactions were carried out in a Retsch MM200 mill operating at a frequency of 25 Hz using a 5 mL FTS stainless steel milling jar charged with a single stainless-steel ball bearing (7 mm diameter, 0.7 g). PXRD spectra were obtained in the 2θ range from 5° to 40° using a Bruker D2 PHASER X-Ray Diffractometer equipped with a $\mathrm{Cu} K_{\alpha}(\lambda=1.54 \AA$) source, LinxEye detector, and a Ni filter. FTIRATR spectra were obtained in the $400 \mathrm{~cm}^{-1}$ to $4000 \mathrm{~cm}^{-1}$ range on a Bruker VERTEX 70/70v FTIR spectrometer equipped with a Platinum ATR module. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on a Varian MERCURY plus-300 spectrometer (300 MHz) and a Bruker AVIIIHD 500 spectrometer (500 MHz), respectively, with chemical shifts (δ) given in parts per million (ppm). Confirmation of helicate formation was obtained using high-resolution mass spectrometry in negative mode on a Bruker MaXis API QqTOF with multiple charging ESI and direct probing capabilities in the $50-3000 \mathrm{~m} / \mathrm{z}$ range. Thermogravimetric analysis and differential scanning calorimetry (TGA/DSC) data were measured on a TGA/DSC 1 (MettlerToledo, Columbus, Ohio, USA) instrument. All measurements were carried out under a $25 \mathrm{~mL} \mathrm{~min}{ }^{-1}$ stream of air, and the samples were heated from RT up to $700^{\circ} \mathrm{C}$ using a constant heating ramp of $10^{\circ} \mathrm{C}$ $\min ^{-1}$.

1.1 Synthesis of N, N^{\prime}-bis(3-carboxy-2-hydroxyphenyl)terephthalamide ($\mathrm{H}_{4} \mathrm{~L}$)

Tetrahydrofuran (THF) and dimethylformamide (DMF) were dried over molecular sieves for a minimum of 12 hours prior to use. In a 100 mL Erlenmeyer flask charged with a magnetic stir bar, 3-aminosalicylic acid ($1.50 \mathrm{~g}, 9.79 \mathrm{mmol}$) was suspended in THF (50 mL) and placed under magnetic stirring. Solid terephthaloyl chloride ($0.663 \mathrm{~g}, 3.26 \mathrm{mmol}$) was added to the mixture. Suspended solids rapidly dissolved, resulting in the formation of a dark brown solution and subsequent precipitation of a light pinkish-brown solid over the course of an hour. N-methylpyrrolidone (NMP, 10 mL) was added and the reaction mixture was allowed to stir overnight. The mixture was dispersed in a large volume of diethyl ether. The solid was filtered and washed several times with THF, diethyl ether, and methanol. The pinkish crude product was recrystallized from dimethylformamide (DMF), filtered, and washed with methanol to afford the pure product as a beige solid ($1.22 \mathrm{~g}, 2.80 \mathrm{mmol}, 86 \%$ isolated yield $)$.

Alternatively, a 100 mL Erlenmeyer flask charged with a magnetic stir bar, terephthalic acid (0.543 g , 3.26 mmol), N-hydroxysuccinimide (NHS, $0.827 \mathrm{~g}, 7.18 \mathrm{mmol}$), and N-(3-dimethylaminopropyl)- N^{\prime} ethylcarbodiimide hydrochloride (EDC, $1.376 \mathrm{~g}, 7.18 \mathrm{mmol}$) was evacuated and backfilled with argon. DMF (25 mL) was added by syringe and the reaction mixture was allowed to react at room temperature for 24 hrs under magnetic stirring. THF (25 mL) was added by syringe and 3 -aminosalicylic acid (1.50 g , 9.79 mmol) was added under positive argon pressure. Suspended solids rapidly dissolved, resulting in the formation of a dark brown solution and subsequent precipitation of a light pinkish-brown solid over the course of several hours. The reaction mixture was allowed to stir overnight. The mixture was dispersed in a large volume of diethyl ether. The solid was filtered and washed several times with THF, diethyl ether, water, and methanol. The pinkish crude product was recrystallized from dimethylformamide (DMF), filtered, and washed with methanol to afford the pure product as a beige solid ($1.01 \mathrm{~g}, 2.30 \mathrm{mmol}, 70 \%$ isolated yield).

1.2 Solution synthesis of $\mathrm{Fe}-\mathrm{H} 1$

$\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}(7.70 \mathrm{mg}, 19.0 \mu \mathrm{~mol})$ and ligand $\mathbf{H}_{4} \mathrm{~L}(12.5 \mathrm{mg}, 28.5 \mu \mathrm{~mol})$ were each dissolved in DMF $(1.50 \mathrm{~mL})$. An aqueous solution of $\mathrm{NaOH}(4 \mathrm{M}, 30.0 \mu \mathrm{~L})$ was added to the solution of the ligand, resulting in a color change from pinkish beige to bright yellow. The ligand solution was then added to the iron salt solution, resulting in formation of a deep red solution. The solution was allowed to sit at room temperature overnight. Formation of $\mathbf{F e}-\mathbf{H 1}$ was confirmed by HRMS and formation of single crystals suitable for XRD studies was achieved by slow diffusion of acetone into the helicate solution (63% isolated yield based on the formula: $\mathrm{Na}_{6} \mathrm{Fe}_{2} \mathrm{~L}_{3} \cdot 5 \mathrm{DMF} \cdot 3$ Acetone $\cdot 4 \mathrm{H}_{2} \mathrm{O}$).

1.3 Solution synthesis of $\mathrm{Fe}-\mathrm{H} 2$

$\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}(7.70 \mathrm{mg}, 19.0 \mu \mathrm{~mol})$ and ligand $\mathbf{H}_{4} \mathrm{~L}(12.5 \mathrm{mg}, 28.5 \mu \mathrm{~mol})$ were each dissolved or suspended in $2: 1 \mathrm{EtOH}: \mathrm{H}_{2} \mathrm{O}(1.25 \mathrm{~mL})$. Tetrabutylammonium bromide ($\mathrm{NEt} \mathrm{Br}, 36.8 \mathrm{mg}, 175 \mu \mathrm{~mol}$) was dissolved in DMF $(500 \mu \mathrm{~L})$ and added to the suspension of the ligand. An aqueous solution of $\mathrm{NaOH}(4 \mathrm{M}$, $30.0 \mu \mathrm{~L}$) was added to the suspension of the ligand, resulting in the immediate dissolution of the solid and formation of a bright yellow solution. The ligand solution was then added to the iron salt solution, resulting in the formation of a deep red solution. The solution was placed in a $120^{\circ} \mathrm{C}$ oven overnight, resulting in precipitation of single crystals suitable for XRD studies (16% isolated yield based on the formula: $\mathrm{Na}_{2}\left(\mathrm{NBut}_{4}\right)_{4} \mathrm{Fe}_{2} \mathrm{~L}_{3} \cdot \mathrm{DMF}$). The formation of $\mathbf{F e}-\mathbf{H} 2$ was confirmed by HRMS.

1.4 Solution synthesis of $\mathrm{Fe}-\mathrm{H} 3$

$\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}(7.70 \mathrm{mg}, 19.0 \mu \mathrm{~mol})$ and ligand $\mathbf{H}_{4} \mathrm{~L}(12.5 \mathrm{mg}, 28.5 \mu \mathrm{~mol})$ were each dissolved in DMF $(1.50 \mathrm{~mL})$. The ligand solution was then added to the iron salt solution, resulting in formation of a deep purple solution. An excess of $\mathrm{N}, \mathrm{N}, \mathrm{N}$ ', N '-tetramethylethylenediamine (TMEDA, $100 \mu \mathrm{~L}$) was added to the mixture, resulting in the solution going from deep purple to deep red. The solution was placed in a $120^{\circ} \mathrm{C}$ oven overnight. Formation of $\mathbf{F e}-\mathbf{H 3}$ was confirmed by HRMS and the formation of single crystals suitable for XRD studies was achieved by slow diffusion of isopropanol into the helicate solution (51\% isolated yield based on the formula: $\left.\left(\mathrm{H}_{2} \mathrm{TMEDA}\right)_{3} \mathrm{Fe}_{2} \mathrm{~L}_{3} \cdot \mathrm{DMF}\right)$.

1.5 Solution synthesis of $\mathrm{Fe}-\mathrm{H} 4 \mathrm{~A}$

$\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}(7.70 \mathrm{mg}, 19.0 \mu \mathrm{~mol})$, ligand $\mathbf{H}_{4} \mathrm{~L}(12.5 \mathrm{mg}, 28.5 \mu \mathrm{~mol})$ and guanidinium carbonate (15.0 $\mathrm{mg}, 166 \mu \mathrm{~mol})$ were each dissolved or suspended in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$. The aqueous base solution was added to the suspension of the ligand, resulting in immediate dissolution of the solid and subsequent formation of a bright yellow suspension. The iron salt solution was then added to the ligand suspension and sonicated for 5 minutes, resulting in the formation of a deep red suspension. The reaction mixture was placed in an $70^{\circ} \mathrm{C}$ oven overnight, resulting in precipitation of single crystals suitable for XRD studies (89% isolated yield based on the formula: (guanidinium) ${ }_{6} \mathrm{Fe}_{2} \mathrm{~L}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$). Formation of $\mathbf{F e}-\mathrm{H} 4$ was confirmed by HRMS.

1.6 Solution synthesis of $\mathrm{Fe}-\mathrm{H} 4 \mathrm{~B}$

$\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}(7.70 \mathrm{mg}, 19.0 \mu \mathrm{~mol})$, ligand $\mathbf{H}_{4} \mathrm{~L}(12.5 \mathrm{mg}, 28.5 \mu \mathrm{~mol})$ and guanidinium carbonate $(15.0$ $\mathrm{mg}, 166 \mu \mathrm{~mol})$ were each dissolved or suspended in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$. The aqueous base solution was added to the suspension of the ligand, resulting in immediate dissolution of the solid and subsequent formation of a bright yellow suspension. The iron salt solution was then added to the ligand suspension and sonicated for 5 minutes, resulting in the formation of a deep red suspension. The reaction mixture was placed in an
$85^{\circ} \mathrm{C}$ oven overnight, resulting in the precipitation of single crystals suitable for XRD studies (89% isolated yield based on the formula: (guanidinium) ${ }_{6} \mathrm{Fe}_{2} \mathrm{~L}_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}$).

1.7 Solution synthesis of $\mathrm{Fe}-\mathrm{H} 4 \mathrm{C}$

$\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}(7.70 \mathrm{mg}, 19.0 \mu \mathrm{~mol})$, ligand $\mathbf{1}(12.5 \mathrm{mg}, 28.5 \mu \mathrm{~mol})$ and guanidinium carbonate $(15.0$ $\mathrm{mg}, 166 \mu \mathrm{~mol})$ were each dissolved or suspended in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$. The aqueous base solution was added to the suspension of the ligand, resulting in immediate dissolution of the solid and subsequent formation of a bright yellow suspension. The iron salt solution was then added to the ligand suspension and manually stirred for 15 min , resulting in the formation of a deep red suspension. The reaction mixture was filtered and $\mathbf{F e}-\mathbf{H 4 C}$ characterized by PXRD. Upon standing in solution or as a filtered solid, $\mathbf{F e}-\mathbf{H 4 C}$ converts to $\mathbf{F e}-\mathbf{H 4 A}$ (see Fig. S18).

1.8 Solution synthesis of $\mathbf{C u}-\mathrm{H} 1$

$\mathrm{Cu}(\mathrm{OTf})_{2}(10.2 \mathrm{mg}, 28.5 \mu \mathrm{~mol})$ and ligand $\mathbf{H}_{4} \mathbf{L}(12.5 \mathrm{mg}, 28.5 \mu \mathrm{~mol})$ were each dissolved or suspended in 9:1 $\mathrm{iPrOH} / \mathrm{DMF}(1.50 \mathrm{~mL})$. An aqueous solution of $\mathrm{NaOH}(4 \mathrm{M}, 30.0 \mu \mathrm{~L})$ was added to the suspension of the ligand, resulting in immediate dissolution of the solid and formation of a bright yellow solution. The ligand solution was then added to the copper salt solution, resulting in the formation of a deep green solution. The solution was placed in a $120^{\circ} \mathrm{C}$ oven overnight, resulting in the precipitation of single crystals suitable for XRD studies (34% isolated yield based on the formula: $\mathrm{Na}_{4} \mathrm{Cu}_{2} \mathrm{~L}_{2} \cdot 3 \mathrm{DMF}$). Formation of $\mathbf{C u}-\mathrm{H} 1$ was confirmed by HRMS.

1.9 Solution synthesis of $\mathbf{C u}-\mathrm{H}_{2}$

$\mathrm{Cu}(\mathrm{OTf})_{2}(10.2 \mathrm{mg}, 28.5 \mu \mathrm{~mol})$ and $\mathbf{H}_{4} \mathrm{~L}(12.5 \mathrm{mg}, 28.5 \mu \mathrm{~mol})$ were each dissolved or suspended in $i \operatorname{PrOH}$ $(1.50 \mathrm{~mL})$. Guanidinium carbonate $(15.0 \mathrm{mg}, 166 \mu \mathrm{~mol})$ was dissolved in $\mathrm{H}_{2} \mathrm{O}(250 \mu \mathrm{~L})$. The aqueous base solution was added to the suspension of the ligand, resulting in immediate dissolution of the solid and formation of a bright yellow solution. The ligand solution was then added to the copper salt solution, resulting in formation of a deep green solution and formation of a precipitate within a few minutes. The solution was placed in an $80^{\circ} \mathrm{C}$ oven overnight, resulting in the appearance of single crystals suitable for single crystal X-ray diffraction studies (93% isolated yield based on the formula: (guanidinium) ${ }_{4} \mathrm{Cu}_{2} \mathrm{~L}_{2} \cdot \mathrm{H}_{2} \mathrm{O} \cdot i \mathrm{PrOH}$). Formation of $\mathbf{C u}-\mathbf{H} 2$ was confirmed by HRMS.

1.10 General procedure for the mechanochemical synthesis of helicates

All milling procedures were conducted in a 5 mL volume stainless steel milling jar charged with a single stainless steel ball bearing (7 mm diameter, 0.7 g). Materials were loaded into the milling jar and liquid additive was added. The jar was then loaded onto a Retsch MM200 mill operating at a frequency of 25 Hz for 30 min . Liquid additives were chosen based on the solvent initially used to conduct solution reactions or from which the helicates were crystallized.

1.11 Mechanochemical synthesis of Fe -H1

$\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}(31.0 \mathrm{mg}, 76.0 \mu \mathrm{~mol})$, ligand $\mathbf{H} 4 \mathrm{~L}(50.0 \mathrm{mg}, 114 \mu \mathrm{~mol})$, and $\mathrm{Na}_{2} \mathrm{CO}_{3}(50.0 \mathrm{mg}, 471 \mu \mathrm{~mol})$ were loaded into the milling jar. DMF ($50 \mu \mathrm{~L}, \eta=0.38 \mu \mathrm{~L} / \mathrm{mg}$) was added as a liquid additive and the reaction mixture was milled for 30 min Formation of $\mathbf{F e}-\mathbf{H 1}$ was confirmed by HRMS and PXRD.

1.12 Mechanochemical synthesis of $\mathrm{Fe}-\mathrm{H} 2$

$\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}(20.7 \mathrm{mg}, 50.7 \mu \mathrm{~mol})$, ligand $\mathbf{H}_{4} \mathrm{~L}(33.3 \mathrm{mg}, 76.0 \mu \mathrm{~mol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(33.3 \mathrm{mg}, 314 \mu \mathrm{~mol})$, and ($\mathrm{NEt}_{4} \mathrm{Br}, 61.7 \mathrm{mg}, 293 \mu \mathrm{~mol}$) were loaded into the milling jar. DMF ($56 \mu \mathrm{~L}, \eta=0.38 \mu \mathrm{~L} / \mathrm{mg}$) was added as a liquid additive and the reaction mixture was milled for 30 min . Formation of $\mathbf{F e}-\mathbf{H} \mathbf{2}$ was confirmed by HRMS and PXRD.

1.13 Mechanochemical synthesis of $\mathrm{Fe}-\mathrm{H} 3$

$\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}(46.5 \mathrm{mg}, 114 \mu \mathrm{~mol})$, ligand $\mathbf{H}_{4} \mathrm{~L}(75.0 \mathrm{mg}, 171 \mu \mathrm{~mol})$, and TMEDA $(51 \mu \mathrm{~L}, 342 \mu \mathrm{~mol})$ were loaded into the milling jar. DMF ($70.0 \mu \mathrm{~L}, \eta=0.38 \mu \mathrm{~L} / \mathrm{mg}$) was added as a liquid additive and the reaction mixture was milled for 30 min . Formation of $\mathbf{F e}-\mathbf{H} 3$ was confirmed by HRMS and PXRD.

1.14 Mechanochemical synthesis of $\mathrm{Fe}-\mathrm{H} 4 \mathrm{~A}$

$\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}(31.0 \mathrm{mg}, 76.0 \mu \mathrm{~mol})$, ligand $\mathbf{H}_{4} \mathrm{~L}(50.0 \mathrm{mg}, 114 \mu \mathrm{~mol})$, and guanidinium carbonate $(41.0$ $\mathrm{mg}, 456 \mu \mathrm{~mol})$ were loaded into the milling jar. MeNO_{2} or $\mathrm{MeCN}(61 \mu \mathrm{~L}, \eta=0.50 \mu \mathrm{~L} / \mathrm{mg})$ was added as a liquid additive and the reaction mixture was milled for 30 min . Formation of $\mathbf{F e}-\mathrm{H} 4$ was confirmed by HRMS and PXRD.

1.15 Mechanochemical synthesis of $\mathrm{Fe}-\mathrm{H} 4 \mathrm{C}$

$\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}(31.0 \mathrm{mg}, 76.0 \mu \mathrm{~mol})$, ligand $\mathbf{H}_{4} \mathbf{L}(50.0 \mathrm{mg}, 114 \mu \mathrm{~mol})$, and guanidinium carbonate (41.0 $\mathrm{mg}, 456 \mu \mathrm{~mol})$ were loaded into the milling jar. $\mathrm{H}_{2} \mathrm{O}(45 \mu \mathrm{~L}, \eta=0.38 \mu \mathrm{~L} / \mathrm{mg})$ was added as a liquid additive and the reaction mixture was milled for 30 min . Formation of $\mathbf{F e}-\mathbf{H} 4 \mathrm{C}$ was confirmed by PXRD.

1.16 Mechanochemical synthesis of $\mathrm{Cu}-\mathrm{H} 1$

$\mathrm{Cu}(\mathrm{OTf})_{2}(41.0 \mathrm{mg}, 114 \mu \mathrm{~mol})$, ligand $\mathbf{H}_{4} \mathrm{~L}(50.0 \mathrm{mg}, \mu \mathrm{mol})$, and $\mathrm{Na}_{2} \mathrm{CO}_{3}(50.0 \mathrm{mg}, 431 \mu \mathrm{~mol})$ were loaded into the milling jar. DMF ($50 \mu \mathrm{~L}, \eta=0.35 \mu \mathrm{~L} / \mathrm{mg}$) was added as a liquid additive and the reaction mixture was milled for 30 min . Formation of $\mathbf{C u}-\mathbf{H 1}$ was confirmed by HRMS.

1.17 Mechanochemical synthesis of $\mathrm{Cu}-\mathrm{H}_{2}$

$\mathrm{Cu}(\mathrm{OTf})_{2}(41.0 \mathrm{mg}, 114 \mu \mathrm{~mol})$, ligand $\mathbf{H}_{4} \mathbf{L}(50.0 \mathrm{mg}, \mu \mathrm{mol})$, and guanidinium carbonate $(30.0 \mathrm{mg}, 333$ $\mu \mathrm{mol})$ were loaded into the milling jar. An optimized mixture of 9:1 $i \operatorname{PrOH} / \mathrm{H}_{2} \mathrm{O}(50 \mu \mathrm{~L}, \eta=0.41 \mu \mathrm{~L} / \mathrm{mg})$ was added as a liquid additive and the reaction mixture was milled for 30 min . Formation of $\mathbf{C u - H 2}$ was confirmed by HRMS and PXRD. For the synthesis of $\mathbf{C u}-\mathbf{H 2}$ from CuO, $\mathrm{CuO}(20.0 \mathrm{mg}, 250 \mu \mathrm{~mol})$, ligand $\mathbf{1}(110.0 \mathrm{mg}, 250 \mu \mathrm{~mol})$, and $\mathrm{NH}_{4} \mathrm{OAc}(2.0 \mathrm{mg}, 25 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$ were loaded into the milling jar and the reaction mixture was milled for 90 min . Guanidinium carbonate $(55.0 \mathrm{mg}, 611 \mu \mathrm{~mol})$ and a mixture of $9: 1 \mathrm{iPrOH} / \mathrm{H}_{2} \mathrm{O}(75 \mu \mathrm{~L}, \eta=0.42 \mu \mathrm{~L} / \mathrm{mg})$ was added as a liquid additive and the reaction mixture was milled. Formation of $\mathbf{C u}-\mathbf{H} 2$ was confirmed by HRMS and PXRD.

2. Summary of IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and HR-MS Data

N, N^{\prime}-bis(3-carboxy-2-hydroxyphenyl)terephthalamide ($\mathrm{H}_{4} \mathrm{~L}$)

Beige to pinkish-brown solid (86% yield); IR ($\mathrm{V}, \mathrm{cm}^{-1}$) 557, 627, 654, 721, 755, 843, 859, 895, 1079, $1123,1185,1245,1314,1339,1435,1460,1505,1538,1612,1643,3314,2600-3200$ (broad) ${ }^{\mathbf{1}} \mathbf{H}$-NMR (300 MHz, DMSO-d σ) $\delta 6.90-7.00(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}$), $\delta 7.64-7.73$ (dd, $J=8,1.6 \mathrm{~Hz}, 2 \mathrm{H}$), $\delta 7.86-7.97$ (dd, $J=8,1.5 \mathrm{~Hz}, 2 \mathrm{H}), \delta 8.10(\mathrm{~s}, 4 \mathrm{H}), \delta 9.82(\mathrm{~s}, 2 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}(500 \mathrm{MHz}$, DMSO-d σ) $\delta 113.65, \delta 118.91, \delta$ $126.76, \delta 127.33, \delta 128.24, \delta 131.48, \delta 137.34, \delta 155.13, \delta 165.08, \delta 172.66$ HR-MS: calculated for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{8}$ [M]: 436.09; measured m/z C $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{8}[\mathrm{M}-\mathrm{H}]: 435.08$

Fe-H1

 1389, 1432, 1496, 1524, 1647, 3046-3720

HR-MS for Fe-H1			
Formula	Calculated m/z	Measured m / z (solution)	Measure m / z (solid-state)
$\mathrm{C}_{66} \mathrm{H}_{36} \mathrm{Fe}_{2} \mathrm{~N}_{6} \mathrm{O}_{24} \mathrm{Na}_{6}[\mathrm{M}]$	1545.99	-	-
$\mathrm{C}_{66} \mathrm{H}_{46} \mathrm{Fe}_{2} \mathrm{~N}_{6} \mathrm{O}_{24}[\mathrm{M}-6 \mathrm{Na}+4 \mathrm{H}]$	706.04	706.04	-
$\mathrm{C}_{66} \mathrm{H}_{38} \mathrm{Fe}_{2} \mathrm{~N}_{6} \mathrm{O}_{24}[\mathrm{M}-6 \mathrm{Na}+2 \mathrm{H}]$	352.52	-	352.52

$\mathrm{Fe}-\mathrm{H} 2$

Bright red solid and dark red crystals; IR ($v, \mathrm{~cm}^{-1}$) 558, 590, 638, 714, 731, 751, 795, 841, 860, 892, 940, $1068,1128,1190,1284,1349,1392,1435,1485,1503,1539,1602,1632,1658,3397$

HR-MS for Fe-H2			
Formula	Calculated m / z	Measured m / z (solution)	Measure m / z (solid-state)
$\mathrm{C}_{130} \mathrm{H}_{180} \mathrm{Fe}_{2} \mathrm{~N}_{10} \mathrm{O}_{24} \mathrm{Na}_{2}[\mathrm{M}]$	2423.17	-	-
$\mathrm{C}_{130} \mathrm{H}_{180} \mathrm{Fe}_{2} \mathrm{~N}_{10} \mathrm{O}_{24}[\mathrm{M}-2 \mathrm{Na}]$	1188.60	1189.10	-
$\mathrm{C}_{114} \mathrm{H}_{144} \mathrm{Fe}_{2} \mathrm{~N}_{9} \mathrm{O}_{24}[\mathrm{M}-2 \mathrm{Na}-\mathrm{NBut}]$	711.63	711.97	-
$\mathrm{C}_{114} \mathrm{H}_{145} \mathrm{Fe}_{2} \mathrm{~N}_{9} \mathrm{O}_{24}\left[\mathrm{M}-2 \mathrm{Na}-\mathrm{NBut}_{4}+1 \mathrm{H}\right]$	1067.96	1068.46	-
$\mathrm{C}_{66} \mathrm{H}_{38} \mathrm{Fe}_{2} \mathrm{~N}_{6} \mathrm{O}_{24}[\mathrm{M}-2 \mathrm{Na}-4 \mathrm{NBut} 4+2 \mathrm{H}]$	352.52	-	352.52

Fe-H3

 1191, 1226, 1254, 1349, 1386, 1428, 1471, 1490, 1520, 1602, 1652, 2969, 3140-3670 (broad)

HR-MS for $\mathbf{F e}-\mathbf{H 3}$			
Formula	Calculated m / z	Measured m / z (solution)	Measure m / z (solid-state)
$\mathrm{C}_{84} \mathrm{H}_{90} \mathrm{Fe}_{2} \mathrm{~N}_{12} \mathrm{O}_{24}[\mathrm{M}]$	1762.49	-	-
$\mathrm{C}_{66} \mathrm{H}_{40} \mathrm{Fe}_{2} \mathrm{~N}_{6} \mathrm{O}_{24}[\mathrm{M}-3 \mathrm{TMEDA}+4 \mathrm{H}]$	706.04	706.04	706.04

$\mathrm{Fe}-\mathrm{H} 4$

Bright red solid and dark red crystals; IR ($\mathrm{v}, \mathrm{cm}^{-1}$) Fe-H4A 583, 641, 722, 761, 812, 860, 893, 949, 1017, 1081, 1155, 1191, 1233, 1343, 1426, 1468, 1515, 1600, 1645, $2874-3707$ (broad) Fe-H4B 553, 584, 639, $661,722,760,803,862,892,950,1013,1075,1150,1194,1235,1342,1424,1467,1496,1515,1600$, 1649, 2887-3220 (broad), 3220-3497 (broad)

HR-MS for Fe-H4			
Formula	Calculated m/z	Measured m/z (solution)	Measure m / z (solid-state)
$\mathrm{C}_{72} \mathrm{H}_{72} \mathrm{Fe}_{2} \mathrm{~N}_{24} \mathrm{O}_{24}[\mathrm{M}]$	1769.14	-	-
$\mathrm{C}_{67} \mathrm{H}_{44} \mathrm{Fe}_{2} \mathrm{~N}_{9} \mathrm{O}_{24}[\mathrm{M}-5 \mathrm{Gua}+2 \mathrm{H}]$	490.04	488.00	-
$\mathrm{C}_{66} \mathrm{H}_{38} \mathrm{Fe}_{2} \mathrm{~N}_{6} \mathrm{O}_{24}[\mathrm{M}-6 \mathrm{Gua}+2 \mathrm{H}]$	352.52	352.52	353.20
$\mathrm{C}_{66} \mathrm{H}_{40} \mathrm{Fe}_{2} \mathrm{~N}_{6} \mathrm{O}_{24}[\mathrm{M}-6 \mathrm{Gua}+4 \mathrm{H}]$	706.04	-	706.04

$\mathrm{Cu}-\mathrm{H} 1$

Dark green solid and dark green crystals; IR $\left(v, \mathrm{~cm}^{-1}\right) 517,584,639,660,707,757,865,895,953,1032$, 1063, 1096, 1156, 1225, 1255, 1353, 1388, 1412, 1436, 1495, 1652, 2831-2900 (broad), 2900-3037 (broad), 3108-3690 (broad)

HR-MS for Cu-H1			
Formula	Calculated m / z	Measured m / z (solution)	Measure m / z (solid-state)
$\mathrm{C}_{44} \mathrm{H}_{24} \mathrm{Cu}_{2} \mathrm{~N}_{4} \mathrm{O}_{16} \mathrm{Na}_{4}[\mathrm{M}]$	1081.94	-	-
$\mathrm{C}_{44} \mathrm{H}_{24} \mathrm{Cu}_{2} \mathrm{~N}_{4} \mathrm{O}_{16} \mathrm{Na}_{2}[\mathrm{M}-2 \mathrm{Na}]$	517.98	517.98	517.98
$\mathrm{C}_{44} \mathrm{H}_{24} \mathrm{Cu}_{2} \mathrm{~N}_{4} \mathrm{O}_{16} \mathrm{Na}_{1}[\mathrm{M}-3 \mathrm{Na}]$	337.66	-	338.32

$\mathrm{Cu}-\mathrm{H} 2$

Dark green solid and dark green crystals; IR ($v \mathrm{~cm}^{-1}$) 581, 635, 680, 747, 816, 861, 896, 955, 1008, 1072, $1155,1186,1256,1349,1398,1428,1468,1495,1520,1601,1652,2870-3242$ (broad), 3242-3515 (broad)

HR-MS for Cu-H1			
Formula	Calculated m / z	Measured m/z (solution)	Measure m / z (solid-state)
$\mathrm{C}_{48} \mathrm{H}_{48} \mathrm{Cu}_{2} \mathrm{~N}_{16} \mathrm{O}_{16}[\mathrm{M}]$	1230.20	-	-
$\mathrm{C}_{44} \mathrm{H}_{26} \mathrm{Cu}_{2} \mathrm{~N}_{4} \mathrm{O}_{16}[\mathrm{M}-4 \mathrm{Gua}+2 \mathrm{H}]$	496.00	496.00	496.00 (triflate) 496.00 (oxide)

3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR Spectra

Figure S1. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{H}_{4} \mathbf{L}$ made from terephthaloyl chloride

Figure S2. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{H}_{\mathbf{4}} \mathbf{L}$ made from terephthalic acid

Figure S3. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of $\mathrm{H}_{4} \mathrm{~L}$ made from terephthaloyl chloride

Figure S4. ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{H}_{4} \mathrm{~L}$ made from terephthalic acid

4. Fourier-Transform Attenuated Total Reflectance (FTIR-ATR) Spectra

Figure S5. FTIR-ATR spectrum of $\mathbf{H}_{4} \mathbf{L}$.

Figure S6. FTIR-ATR spectra of Fe-H1 (top) and stacked for comparison with ligand (bottom)

Figure S7. FTIR-ATR spectrum of $\mathbf{F e}-\mathbf{H} 2$ and stacked for comparison with ligand (bottom)

Figure S8. FTIR-ATR spectrum of $\mathbf{F e}-\mathbf{H 3}$ and stacked for comparison with ligand (bottom)

Figure S9. FTIR-ATR spectrum of $\mathbf{F e}-\mathbf{H 4 A}$ and stacked for comparison with ligand (bottom)

Figure S10. FTIR-ATR spectrum of $\mathbf{F e}-\mathbf{H} 4 \mathrm{~B}$ and stacked for comparison with ligand (bottom)

Experimental for $\mathrm{Cu}-\mathrm{H} 1$

Figure S11. FTIR-ATR spectrum of $\mathbf{C u}-\mathbf{H 1}$ and stacked for comparison with ligand (bottom)

Figure S12. FTIR-ATR spectrum of $\mathbf{C u}-\mathbf{H} 2$ and stacked for comparison with ligand (bottom)

5. Powder X-Ray Diffraction (PXRD) Patterns

Simulated PXRD patterns from single crystal data are shown as red colored patterns. The PXRD patterns of materials obtained from solution are shown in black, orange, and gold. The PXRD patterns of mechanochemically obtained materials are shown in blue, green, and purple.

Figure S13. Experimentally acquired PXRD pattern of $\mathbf{H}_{4} \mathbf{L}$.

Figure S14. Simulated and experimentally acquired PXRD pattern of $\mathbf{F e}-\mathbf{H 1}$.

Figure S15. Simulated and experimentally acquired PXRD pattern of $\mathbf{F e} \mathbf{- H 2}$.

Figure S16. Simulated and experimentally acquired PXRD pattern of $\mathbf{F e}-\mathbf{H 3}$.

Figure S17. Simulated and experimentally acquired PXRD pattern of $\mathbf{F e}-\mathbf{H 4 A}$.

Figure S18. Simulated and experimentally acquired PXRD pattern of Fe-H4B, demonstrating conversion of $\mathrm{Fe}-\mathrm{H} 4 \mathrm{~A}$ to $\mathrm{Fe}-\mathrm{H} 4 \mathrm{~B}$ upon standing in solution.

Figure S19. Comparison of simulated PXRD pattern of $\mathbf{F e}-\mathbf{H 4 A}, \mathbf{F e}-\mathbf{H 4 B}$, and experimental PXRD patterns of $\mathbf{F e}-\mathrm{H} 4 \mathrm{C}$ acquired mechanochemically and from solution.

Figure S20. Comparison of simulated PXRD pattern of $\mathbf{F e}-\mathbf{H 4 A}$, experimental PXRD patterns of $\mathbf{F e}$ H4C acquired mechanochemically, and $\mathrm{Fe}-\mathrm{H} 4 \mathrm{C}$ upon standing at room temperature, showing conversion to $\mathrm{Fe}-\mathrm{H} 4 \mathrm{~A}$.

Figure S21. Simulated and experimentally acquired PXRD pattern of $\mathbf{C u}-\mathbf{H} \mathbf{1}$

Experimental for product mixture,

Figure S22. Simulated and experimentally acquired PXRD pattern of $\mathbf{C u}-\mathbf{H} \mathbf{2}$ using $\mathrm{Cu}(\mathrm{OTf})_{2}$.

Figure S23. Simulated and experimentally acquired PXRD pattern of $\mathbf{C u}-\mathbf{H} \mathbf{2}$ using CuO .

6. HR-MS Spectra

Mass Spectrum SmartFormula Report								
Analysis Info Analysis Name Method Sample Name Comment				Acquisition	Date $8 / 18 / 202$	2:43:47 PM		
	D:IDatalFriscicl2020-08-18 Friscic-Do JLD-H-Ligand ESI +ve.d							
	Tune_neg_Low_Na_Formate_100-1000.m 2020-08-18 Friscic-Do JLD-H-Ligand ESI +ve			Operator	Alex			
			2020-08-18 Friscic-Do JLD-H-Ligand ESI +ve			Instrument	maXis impact	282001.00044
Acquisition Parameter								
Source Type	ESI	Ion Polarity	Negative		Set Nebulizer	1.0 Bar		
Focus	Not active	Set Capillary	4500 V		Set Dry Heater	$180^{\circ} \mathrm{C}$		
Scan Begin	$100 \mathrm{~m} / \mathrm{z}$	Set End Plate Offset	-500 V		Set Dry Gas	$4.01 / \mathrm{min}$		
Scan End	$1000 \mathrm{~m} / \mathrm{z}$	Set Charging Voltage Set Corona	$\begin{aligned} & 2000 \mathrm{~V} \\ & 0 \mathrm{nA} \end{aligned}$		Set Divert Valve Set APCI Heater	Source $0^{\circ} \mathrm{C}$		

Figure S24. HR-MS spectrum for $\mathbf{H}_{4} \mathbf{L}$.

Figure S25. HR-MS spectrum for $\mathbf{F e}-\mathbf{H} 1$ made in solution.

Mass Spectrum SmartFormula Report

Figure S26. HR-MS spectrum for $\mathbf{F e}-\mathbf{H} 2$ made in solution.

Mass Spectrum SmartFormula Report

Analysis Info				uisition Date $\quad 7 / 16 / 2020$ 12:44:13 PM		
Analysis Name	D:IDatalFriscicl2020-07-16 Friscic-Do JLD-Fe-H3-TMEDA ESI			-ve.d		
Method	Tune_neg_Mid_AW.m			Operator	Alex	
Sample Name	2020-07-16 Friscic-Do JLD-Fe-H3-TMEDA ESI -ve			Instrument	maXis impact	282001.00044
Comment						
Acquisition Parameter						
Source Type	ESI	Ion Polarity	Negative		Set Nebulizer	0.4 Bar
Focus	Not active	Set Capillary	3500 V		Set Dry Heater	$180^{\circ} \mathrm{C}$
Scan Begin	$50 \mathrm{~m} / \mathrm{z}$	Set End Plate Offset	-500 V		Set Dry Gas	$4.01 / \mathrm{min}$
Scan End	$3000 \mathrm{~m} / \mathrm{z}$	Set Charging Voltage	2000 V		Set Divert Valve	Source
		Set Corona	0 nA		Set APCI Heater	$0^{\circ} \mathrm{C}$

Figure S27. HR-MS spectrum for $\mathbf{F e}-\mathbf{H} 3$ made in solution.

Figure S28. HR-MS spectrum for $\mathbf{F e}-\mathbf{H} 4 \mathrm{~A}$ made in solution.

Figure S29. HR-MS spectrum for $\mathbf{C u}-\mathbf{H 1}$ made in solution.

Figure S30. HR-MS spectrum for $\mathbf{C u}-\mathbf{H} 2$ made in solution.

Figure S31. HR-MS spectrum for $\mathbf{F e}-\mathbf{H} 1$ made mechanochemically.

Mass Spectrum SmartFormula Report

Analysis Info				Acquisition Date 7/27/2020 5:17:48 PM		
Analysis Name	D:IDatalFriscicl2020-07-27 Friscic-Do JLD-Fe-H2-MC ESI -ve.d					
Method	Tune_neg_Mid_AW.m			OperatorInstrument	Alex	
Sample Name	2020-07-27 Friscic-Do JLD-Fe-H2-MC ESI -ve				maXis impact	282001.00044
Comment						
Acquisition Parameter						
Source Type	ESI	Ion Polarity	Negative		Set Nebulizer	0.4 Bar
Focus	Not active	Set Capillary	3500 V		Set Dry Heater	$180^{\circ} \mathrm{C}$
Scan Begin	$50 \mathrm{~m} / \mathrm{z}$	Set End Plate Offset	-500 V		Set Dry Gas	$4.0 \mathrm{~V} / \mathrm{min}$
Scan End	3000 m/z	Set Charging Voltage	2000 V		Set Divert Valve	Source
		Set Corona	0 nA		Set APCI Heater	$0^{\circ} \mathrm{C}$

Figure S32. HR-MS spectrum for $\mathbf{F e}-\mathbf{H} \mathbf{2}$ made mechanochemically.

Mass Spectrum SmartFormula Report

Analysis Info				Acquisition Date	7/27/2020 5:31:23 PM	
Analysis Name	D:\Data\Friscic\2020-07-27 Friscic-Do JLD-Fe-H3-MC ESI -ve.d					
Method	Tune_neg_Mid_AW.m			Operator	Alex	
Sample Name	2020-07-27 Friscic-Do JLD-Fe-H3-MC ESI -ve			Instrument	maXis impact	282001.00044
Comment						
Acquisition Parameter						
Source Type	ESI	Ion Polarity	Negative		Set Nebulizer	0.4 Bar
Focus	Not active	Set Capillary	3500 V		Set Dry Heater	$180{ }^{\circ} \mathrm{C}$
Scan Begin	$50 \mathrm{~m} / \mathrm{z}$	Set End Plate Offset	-500 V		Set Dry Gas	$4.0 \mathrm{l} / \mathrm{min}$
Scan End	$3000 \mathrm{~m} / \mathrm{z}$	Set Charging Voltage Set Corona	$2000 \mathrm{~V}$		Set Divert Valve Set APCI Heater	Source $0^{\circ} \mathrm{C}$

Figure S33. HR-MS spectrum for $\mathbf{F e}-\mathbf{H 3}$ made mechanochemically.

Mass Spectrum SmartFormula Report

Analysis Info				Acquisition Date	Date 7/27/2020	7/27/2020 6:01:11 PM
Analysis Name	D:IDatalFriscicl2020-07-27 Friscic-Do JLD-Fe-H4-MC ESI -ve.d					
Method	Tune_neg_Mid_AW.m			Operator Alex		
Sample Name	2020-07-27 Friscic-Do JLD-Fe-H4-MC ESI -ve			Instrument	maXis impact	282001.00044
Comment						
Acquisition Parameter						
Source Type	ESI	Ion Polarity	Negative		Set Nebulizer	0.4 Bar
Focus	Not active	Set Capillary	3500 V		Set Dry Heater	$180^{\circ} \mathrm{C}$
Scan Begin	$50 \mathrm{~m} / \mathrm{z}$	Set End Plate Offset	-500 V		Set Dry Gas	$4.01 / \mathrm{min}$
Scan End	$3000 \mathrm{~m} / \mathrm{z}$	Set Charging Voltage	2000 V		Set Divert Valve	Source
		Set Corona	0 nA		Set APCI Heater	$0^{\circ} \mathrm{C}$

Figure S34. HR-MS spectrum for $\mathbf{F e}-\mathbf{H} 4 \mathrm{~A}$ made mechanochemically.

Mass Spectrum SmartFormula Report

Analysis Info		Acquisition Date		7/27/2020 6:14:23 PM
Analysis Name	D:IDatalFriscicl2020-07-27 Friscic-Do JLD-Cu-H1-MC ESI-ve.d			
Method	Tune_neg_Mid_AW.m	Operator	Alex	
Sample Name	2020-07-27 Friscic-Do JLD-Cu-H1-MC ESI-ve	Instrument	maXis impact	282001.00044
Comment				

Acquisition Parameter					
Source Type	ESI	lon Polarity	Negative	Set Nebulizer	0.4 Bar
Focus	Not active	Set Capillary	3500 V	Set Dry Heater	$180{ }^{\circ} \mathrm{C}$
Scan Begin	$50 \mathrm{~m} / \mathrm{z}$	Set End Plate Offset	-500 V	Set Dry Gas	4.0 V/min
Scan End	$3000 \mathrm{~m} / \mathrm{z}$	Set Charging Voltage	2000 V	Set Divert Valve	Source
		Set Corona	0 nA	Set APCI Heater	$0^{\circ} \mathrm{C}$

Figure S35. HR-MS spectrum for $\mathbf{C u} \mathbf{- H 1}$ made mechanochemically.

Mass Spectrum SmartFormula Report

Analysis Info				Acquisition	Date 7/27/202	6:22:25 PM
Analysis Name	D:IDatalFriscicl2020-07-27 Friscic-Do JLD-Cu-H2-MC ESI -ve.d					
Method	Tune_neg_Mid_AW.m			Operator	Alex	
Sample Name	2020-07-27 Friscic-Do JLD-Cu-H2-MC ESI -ve			Instrument	maXis impact	282001.00044
Comment						
Acquisition Parameter						
Source Type	ESI	Ion Polarity	Negative		Set Nebulizer	0.4 Bar
Focus	Not active	Set Capillary	3500 V		Set Dry Heater	$180{ }^{\circ} \mathrm{C}$
Scan Begin	$50 \mathrm{~m} / \mathrm{z}$	Set End Plate Offset	-500 V		Set Dry Gas	$4.0 \mathrm{~V} / \mathrm{min}$
Scan End	$3000 \mathrm{~m} / \mathrm{z}$	Set Charging Voltage	2000 V		Set Divert Valve	Source
		Set Corona	0 nA		Set APCI Heater	$0^{\circ} \mathrm{C}$

Figure S36. HR-MS spectrum for $\mathbf{C u}-\mathbf{H} 2$ made mechanochemically from $\mathrm{Cu}(\mathrm{OTf})_{2}$.

Figure S37. HR-MS spectrum for $\mathbf{C u}-\mathbf{H} \mathbf{2}$ made mechanochemically from CuO .

7. Single Crystal X-ray Diffraction Data

Single crystal X-ray diffraction (SCXRD) data were measured on a Bruker D8 Venture diffractometer equipped with a Photon 200 area detector, and $\mathrm{I} \mu \mathrm{S}$ microfocus X-ray source (Bruker AXS, CuK α source). Crystals of $\mathbf{F e}-\mathbf{H 1}$ were isolated on glass slides precooled using dry ice. It should be noted, except for the case of $\mathbf{F e}-\mathbf{H 4 B}$, that all crystals when isolated from the solution had to be placed immediately under a stream of cold nitrogen to avoid loss of solvent of crystallization. All measurements were carried out at 150(2)K, except $\mathbf{F e}-\mathbf{H 4 A}$ at $180(2) \mathrm{K}$ and $\mathbf{F e}-\mathrm{H} 4 \mathrm{~B}$ at RT, on coated crystal samples with thin layer of amorphous paratone oil, which decreases the thermal motion effects, deterioration and structural disorder to improve the accuracy of the structural results. Structure solution was carried out using the SHELXTL package from Bruker. ${ }^{1}$ The parameters were refined for all data by full-matrix-least-squares or F2 using SHELXL. ${ }^{2}$ All structures exhibit low stability in both RT and low temperature and the contribution of disordered solvate and cation moieties that could not be reliably modeled by discrete atoms were subtracted by SQUEEZE procedure, using the PLATON software. ${ }^{3}$ For instance $\mathbf{F e}-\mathbf{H 3}$ is twinned by inversion and also exhibits half cation, DMF and two water molecules, which were unsuccessfully resolved. Structures $\mathbf{F e}-\mathbf{H 1}, \mathbf{F e}-\mathbf{H 2}$, and $\mathbf{C u}-\mathbf{H 1}$ contain disordered water molecules, while $\mathbf{C u} \mathbf{- H 2}$ contains disordered half $i \mathrm{PrOH}$. All of the non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were placed in calculated positions and allowed to ride on the carrier atoms. All hydrogen atom thermal parameters were constrained to ride on the carrier atom.

Table S1. Crystal data for the prepared Fe (III) and $\mathrm{Cu}($ II) helicate solids.

	Fe-H1	$\mathrm{Fe}-\mathrm{H} 2$	Fe-H3	Fe-H4A	Fe-H4B	Cu-H1	Cu-H2
Empirical formula	$\underset{\mathrm{C}_{90} \mathrm{H}_{97} \mathrm{Fe}_{2} \mathrm{~N}_{11} \mathrm{~N}}{\mathrm{a}_{6} \mathrm{O}_{36}}$	$\begin{gathered} \mathrm{C}_{266} \mathrm{H}_{388} \mathrm{Fe}_{4} \mathrm{~N}_{22} \\ \mathrm{Na}_{4} \mathrm{O}_{57} \end{gathered}$	${ }_{26} \mathrm{C}_{84} \mathrm{H}_{86} \mathrm{Fe}_{2} \mathrm{~N}_{12} \mathrm{O}$	$\begin{gathered} \mathrm{C}_{144} \mathrm{H}_{170} \mathrm{Fe}_{4} \mathrm{~N}_{48} \\ \mathrm{O}_{61} \end{gathered}$	$\left\lvert\, \begin{gathered} \mathrm{C}_{144} \mathrm{H}_{162} \mathrm{Fe}_{4} \mathrm{~N}_{48} \\ \mathrm{O}_{57} \end{gathered}\right.$	$\underset{\mathrm{a}_{4} \mathrm{O}_{20}}{\mathrm{C}_{53} \mathrm{H}_{47} \mathrm{Cu}_{2} \mathrm{~N}_{7} \mathrm{~N}}$	$\begin{gathered} \mathrm{C}_{54} \mathrm{H}_{65} \mathrm{Cu}_{2} \mathrm{~N}_{16} \\ \mathrm{O}_{19} \end{gathered}$
Formula weight $/ \mathrm{g} \mathrm{mol}^{-1}$	2158.42	5121.32	1791.34	3772.67	3700.61	1321.01	1369.30
Temperature/K	150(2)	150(2)	150(2)	180(2)	298(2)	150(2)	150(2)
Crystal system	monoclinic	monoclinic	orthorhombic	triclinic	monoclinic	monoclinic	monoclinic
Space group	$P 2_{1} / \mathrm{c}$	$P 2_{1} / \mathrm{n}$	$P \mathrm{nn} 2$	$P-1$	C2/c	$P 2_{1} / \mathrm{n}$	C2/c
a / \AA	19.9223(9)	26.1720(7)	23.0817(5)	14.1272(12)	43.027(4)	13.5168(4)	26.6408(15)
b / \AA	28.8141(14)	17.3890(5)	23.3506(5)	14.8356(14)	9.8262(8)	30.7906(11)	12.2924(7)
c / \AA	17.4931(7)	31.5009(8)	10.0089(2)	20.7950(18)	20.9293(18)	14.0219(5)	22.7172(12)
$\alpha{ }^{\circ}$	90	90	90	89.584(4)	90	90	90
$\beta{ }^{\circ}$	97.020(3)	95.918(2)	90	74.544(3)	107.536(4)	94.730(2)	110.066(2)
$\gamma{ }^{\prime}$	90	90	90	77.368(4)	90	90	90
Volume $/ \AA^{3}$	9966.5(8)	14259.8(7)	5394.5(2)	4093.0(6)	8437.5(12)	5815.9(3)	6987.8(7)
Z	4	2	2	1	2	4	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.438	1.193	1.103	1.531	1.457	1.509	1.302
μ / mm^{-1}	3.365	2.270	2.728	3.711	3.572	1.897	1.396
$\mathrm{F}(000)$	4480.0	5484.0	1868.0	1972.0	3844.0	2704.0	2844.0
2θ range for data collection $/{ }^{\circ}$	$\begin{gathered} 4.468 \text { to } \\ 144.76 \end{gathered}$	$\begin{aligned} & 4.632 \text { to } \\ & 145.138 \end{aligned}$	$\begin{aligned} & 5.384 \text { to } \\ & 144.794 \end{aligned}$	$\begin{gathered} 6.114 \text { to } \\ 144.71 \end{gathered}$	$\begin{gathered} 8.608 \text { to } \\ 144.53 \end{gathered}$	$\begin{aligned} & 6.946 \text { to } \\ & 145.632 \end{aligned}$	$\begin{aligned} & 8.856 \text { to } \\ & 146.156 \end{aligned}$
Reflections collected	183477	1518319	81953	125279	42656	56134	55069
Independent reflections	$\begin{gathered} 19672\left[\mathrm{R}_{\text {int }}=\right. \\ 0.1499, \mathrm{R}_{\text {sigma }} \\ =0.0842] \end{gathered}$	$\begin{gathered} 28059\left[\mathrm{R}_{\text {int }}=\right. \\ 0.1092, \\ \mathrm{R}_{\text {sigma }}= \\ 0.0725] \\ \hline \end{gathered}$	$\begin{gathered} \hline 10327\left[\mathrm{R}_{\text {int }}=\right. \\ 0.0962, \\ \mathrm{R}_{\text {sigma }}= \\ 0.0637] \\ \hline \end{gathered}$	$\begin{gathered} \hline 16141\left[\mathrm{R}_{\text {int }}=\right. \\ 0.1771, \\ \mathrm{R}_{\text {sigma }}= \\ 0.0908] \\ \hline \end{gathered}$	$\begin{gathered} 8023\left[\mathrm{R}_{\text {int }}=\right. \\ 0.0951, \\ \mathrm{R}_{\text {sigma }}= \\ 0.0664] \\ \hline \end{gathered}$	$\begin{gathered} \hline 11419\left[\mathrm{R}_{\text {int }}=\right. \\ 0.0435, \\ \mathrm{R}_{\text {sigma }}= \\ 0.0358] \end{gathered}$	$\begin{gathered} 6868\left[\mathrm{R}_{\text {int }}=\right. \\ 0.0438, \\ \mathrm{R}_{\text {sigma }}= \\ 0.0247] \\ \hline \end{gathered}$
Data/restraints/ parameters	$\begin{gathered} 19672 / 1620 / 13 \\ 48 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 28059 / 2857 / 17 \\ 79 \\ \hline \end{array}$	10327/488/566	$\begin{array}{\|c\|} \hline 16141 / 1056 / 11 \\ 1214 \\ \hline \end{array}$	8023/571/659	11416/921/777	6868/9/416
Goodness-offit on F^{2}	1.051	1.056	1.012	1.014	1.076	1.073	1.080
Final R indexes [IP=2 (I) $]$ (I)]	$\left\{\begin{array}{c} \mathrm{R} 1=0.1296, \\ \mathrm{wR} 2=0.3298 \end{array}\right.$	$\begin{aligned} \mathrm{R}_{1} & =0.0905, \\ \mathrm{wR}_{2} & =0.2115 \end{aligned}$	$\begin{aligned} \mathrm{R}_{1} & =0.0526, \\ \mathrm{wR}_{2} & =0.1399 \end{aligned}$	$\begin{aligned} \mathrm{R}_{1} & =0.0804, \\ \mathrm{wR}_{2} & =0.1596 \end{aligned}$	$\begin{gathered} \mathrm{R}_{1}=0.0783 \\ \mathrm{wR}_{2}=0.1909 \end{gathered}$	$\begin{aligned} \mathrm{R}_{1} & =0.0705, \\ \mathrm{wR}_{2} & =0.2059 \end{aligned}$	$\begin{aligned} \mathrm{R}_{1} & =0.0435, \\ \mathrm{wR}_{2} & =0.1078 \end{aligned}$
$\begin{gathered} \text { Final R } \\ \text { indexes [all } \\ \text { data] } \end{gathered}$	$\begin{gathered} \mathrm{R} 1=0.1577, \\ \mathrm{wR} 2=0.3502 \end{gathered}$	$\begin{aligned} \mathrm{R}_{1} & =0.1264, \\ \mathrm{wR}_{2} & =0.2296 \end{aligned}$	$\begin{aligned} \mathrm{R}_{1} & =0.0797, \\ \mathrm{wR}_{2} & =0.1593 \end{aligned}$	$\begin{gathered} \mathrm{R}_{1}=0.1383 \\ \mathrm{wR}_{2}=0.1952 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0992, \\ \mathrm{wR}_{2}=0.2041 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0841, \\ \mathrm{wR}_{2}=0.22202 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0464, \\ \mathrm{wR}_{2}=0.1098 \end{gathered}$
Largest diff. peak/hole / e \AA^{-3}	1.29/-2.20	1.50/-0.92	0.25/-0.28	1.03/-1.15	0.60/-0.65	0.97/-1.17	0.30/-0.42

Table S2. Hydrogen Bonds for Fe-H1

D	H	A	d(D-H)/ \AA	d(H-A)/̇̇	d(D-A)/®	D-H-A/ ${ }^{\circ}$
C1V	H1V	O18A	0.95	2.63	3.35(2)	133.6
O1	H1B	O31B ${ }^{1}$	0.84	2.46	3.064(7)	129.5
O2S	H2SA	O18B ${ }^{2}$	0.82	2.52	3.099(10)	128.6
O2S	H2SA	O19B ${ }^{2}$	0.82	2.43	$3.250(10)$	178.6
O2S	H2SB	O17A	0.90	2.33	2.881(9)	119.6
O2S	H2SB	O30C	0.90	2.50	3.394(10)	171.7
C11A	H11A	O8A	0.95	2.42	2.970 (12)	116.9
C24A	H24A	O21A	0.95	2.33	2.902(11)	118.0
N9B	H9B	O16B	0.88	2.10	$2.535(8)$	110.0
C11B	H11B	O8B	0.95	2.35	2.911(12)	117.2
C11B	H11B	O1K	0.95	2.58	3.49(3)	159.7
C24B	H24B	O21B	0.95	2.40	2.922(10)	114.3
C11C	H11C	O8C	0.95	2.32	2.896(11)	118.6
C24C	H24C	O21C	0.95	2.27	2.881(10)	120.9
C2D	H2D	O32A	0.95	2.47	3.192(9)	133.0
C5D	H5DC	O29A ${ }^{3}$	0.98	2.50	3.367(11)	147.9
C2F	H2F	O31B ${ }^{1}$	0.95	2.39	3.161(9)	138.0
C5F	H5FC	O29B ${ }^{4}$	0.98	2.59	$3.500(10)$	155.4
O1T	H1TA	O19C ${ }^{2}$	0.92	2.14	3.061(14)	175.7
O2T	H2TA	O1R	0.78	2.23	$2.925(12)$	149.7
O2T	H2TB	$\mathrm{O}^{21 B^{3}}$	0.89	2.01	2.908(9)	178.8
C4V	H4VA	O8C ${ }^{5}$	0.98	2.46	3.37(2)	154.1
C4V	H4VC	O21B ${ }^{6}$	0.98	2.39	3.34(2)	163.1
C4L	H4LB	O1T ${ }^{7}$	0.98	2.61	3.48(3)	147.3
C3L	H3LA	$\mathrm{O}^{\text {1 }}{ }^{8}$	0.98	2.39	3.37 (5)	174.4
C3L	H3LB	O2S ${ }^{7}$	0.98	2.39	3.29(4)	152.3
C5U	H5U1	O21C ${ }^{8}$	0.98	2.09	3.02(10)	157.4
C5I	H5I1	O1I	0.98	2.01	2.52(3)	110.3
C5I	H5I2	O21C ${ }^{8}$	0.98	2.32	3.28(3)	166.2

Symmetry codes: (1) 1+X,+Y,+Z;(2)-1+X,+Y,+Z; (3)+X,1/2-Y,1/2+Z; (4) 1+X,1/2-Y,-1/2+Z; (5) 1-X,1-Y,-Z; (6) 1-X,1/2+Y,1/2-Z; (7) $1-$ $\mathrm{X}, 1-\mathrm{Y}, 1-\mathrm{Z} ;$ (8) $2-\mathrm{X}, 1-\mathrm{Y}, 1-\mathrm{Z}$

Table S3. Hydrogen Bonds for $\mathrm{Fe}-\mathrm{H} 2$.

D	H	A				
O12	H04R	O31C ${ }^{1}$	0.87	1.88	2.722(5)	161.4
N9A	H9A	O16A	0.88	2.14	$2.578(4)$	110.2
C11A	H11A	08A	0.95	2.32	$2.905(6)$	119.0
N22A	H22A	O29A	0.88	2.11	$2.550(4)$	110.5
C24A	H24A	O21A	0.95	2.33	$2.915(6)$	119.4
N9B	H9B	O16B	0.78(5)	2.11(5)	$2.530(4)$	114(4)
C11B	H11B	O8B	0.95	2.45	$3.006(5)$	117.0
C24B	H24B	O21B	0.95	2.32	2.907(6)	119.5
C11C	H11C	O8C	0.95	2.30	2.896(5)	120.2
C24C	H24C	O21C	0.95	2.24	$2.849(6)$	120.8
C7D	H7DB	O18A	0.99	2.30	$3.196(9)$	150.6
C10D	H10A	O18C ${ }^{2}$	0.99	2.53	$3.523(6)$	178.3
C2E	H2EA	O8C ${ }^{3}$	0.99	2.45	$3.335(6)$	148.8
C2E	H2EB	O8B ${ }^{3}$	0.99	2.41	$3.274(6)$	146.0
C10E	H10C	O32B	0.99	2.51	$3.392(6)$	148.7
C10E	H10D	O18B ${ }^{1}$	0.99	2.64	3.533(6)	149.7
C14E	H14C	O8B ${ }^{3}$	0.99	2.45	$3.328(5)$	147.0
C14E	H14D	O8C ${ }^{3}$	0.99	2.48	3.347(6)	145.9
C6F	H6F1	O4T	0.99	2.34	$3.313(8)$	169.2
C6F	H6F2	O31C ${ }^{1}$	0.99	2.59	$3.510(9)$	154.3
C11F	H11H	O32B	0.99	2.49	$3.298(7)$	138.1
O5T	H1A	O18B	0.94	1.92	2.817(4)	158.2
O5T	H1A	O19B	0.94	2.65	$3.119(4)$	111.1
O5T	H1	O18C ${ }^{2}$	0.94	1.79	2.704(4)	162.5
O5T	H1	O19C ${ }^{2}$	0.94	2.47	$3.165(4)$	130.2
O4T	H4TB	O32B	0.92	1.88	$2.745(5)$	155.6
C5P	H5PA	O21A	0.99	2.52	3.328(15)	139.0
C5P	H5PB	O21C	0.99	2.34	3.248(14)	152.5
C10P	H10G	O21C	0.99	2.26	3.22(4)	164.2
C13P	H13M	O21C	0.99	2.62	3.491(13)	146.3
C13P	H13N	O21A	0.99	2.57	3.318(15)	132.4
C14P	H14G	O31C ${ }^{4}$	0.99	2.55	3.420 (14)	145.9
C1G	H1GA	O21A	0.99	2.50	3.349 (18)	144.0
C1G	H1GB	O21C	0.99	2.49	3.325(17)	141.9

C2G	H2GA	O31C ${ }^{4}$	0.99	2.46	3.44(2)	169.6
C5G	H5GA	O32C ${ }^{4}$	0.99	2.53	3.37(2)	142.0
C9G	H9GA	O21A	0.99	2.33	3.150(19)	139.6
C9G	H9GB	O21C	0.99	2.45	3.34(2)	149.3
C13G	H13P	O3T ${ }^{4}$	0.99	2.51	3.17(2)	124.1

Symmetry codes: (1) 1/2+X,3/2-Y,-1/2+Z; (2) -1/2+X,3/2-Y,1/2+Z; (3) 3/2-X,-1/2+Y,1/2-Z; (4) 1/2-X,1/2+Y,1/2-Z

Table 6 Hydrogen Bonds for r3.

D	H	A	d(D-H)/ \AA	d(H-A)/ \AA	d(D-A)/ \AA	D-H-A/ ${ }^{\circ}$
O12	H04R	O31C ${ }^{1}$	0.87	1.88	2.722(5)	161.4
N9A	H9A	O16A	0.88	2.14	$2.578(4)$	110.2
C11A	H11A	O8A	0.95	2.32	$2.905(6)$	119.0
N22A	H22A	O29A	0.88	2.11	$2.550(4)$	110.5
C24A	H24A	O21A	0.95	2.33	$2.915(6)$	119.4
N9B	H9B	O16B	0.78(5)	2.11(5)	$2.530(4)$	114(4)
C11B	H11B	O8B	0.95	2.45	$3.006(5)$	117.0
C24B	H24B	O21B	0.95	2.32	2.907(6)	119.5
C11C	H11C	O8C	0.95	2.30	$2.896(5)$	120.2
C24C	H24C	O21C	0.95	2.24	2.849(6)	120.8
C7D	H7DB	O18A	0.99	2.30	$3.196(9)$	150.6
C10D	H10A	O18C ${ }^{2}$	0.99	2.53	3.523(6)	178.3
C2E	H2EA	O8C ${ }^{3}$	0.99	2.45	$3.335(6)$	148.8
C2E	H2EB	OBB^{3}	0.99	2.41	3.274(6)	146.0
C10E	H10C	O32B	0.99	2.51	3.392(6)	148.7
C10E	H10D	O18B ${ }^{1}$	0.99	2.64	3.533(6)	149.7
C14E	H14C	OBB^{3}	0.99	2.45	$3.328(5)$	147.0
C14E	H14D	$\mathrm{O}^{\text {8 }}{ }^{3}$	0.99	2.48	3.347(6)	145.9
C6F	H6F1	O4T	0.99	2.34	$3.313(8)$	169.2
C6F	H6F2	O31C ${ }^{1}$	0.99	2.59	3.510(9)	154.3
C11F	H11H	O32B	0.99	2.49	3.298(7)	138.1
O5T	H1A	O18B	0.94	1.92	2.817(4)	158.2
O5T	H1A	O19B	0.94	2.65	3.119(4)	111.1
O5T	H1	O18C ${ }^{2}$	0.94	1.79	2.704(4)	162.5
O5T	H1	O19C ${ }^{2}$	0.94	2.47	$3.165(4)$	130.2
O4T	H4TB	O32B	0.92	1.88	2.745(5)	155.6
C5P	H5PA	O21A	0.99	2.52	3.328(15)	139.0
C5P	H5PB	O21C	0.99	2.34	3.248(14)	152.5
C10P	H10G	O21C	0.99	2.26	3.22(4)	164.2
C13P	H13M	O21C	0.99	2.62	3.491(13)	146.3
C13P	H13N	O21A	0.99	2.57	3.318(15)	132.4
C14P	H14G	O31C ${ }^{4}$	0.99	2.55	3.420(14)	145.9
C1G	H1GA	O21A	0.99	2.50	3.349(18)	144.0
C1G	H1GB	O21C	0.99	2.49	$3.325(17)$	141.9
C2G	H2GA	O31C ${ }^{4}$	0.99	2.46	3.44(2)	169.6
C5G	H5GA	O32C ${ }^{4}$	0.99	2.53	3.37(2)	142.0
C9G	H9GA	O21A	0.99	2.33	3.150(19)	139.6

C9G	H9GB	O21C	0.99	2.45	$3.34(2)$	149.3
C13G	H13P	O3T 4	0.99	2.51	$3.17(2)$	124.1

Table S4. Hydrogen Bonds for Fe-H3.

D	H	A	$\mathbf{d}(\mathbf{D}-\mathbf{H}) / \mathbf{\AA} \mathbf{d}(\mathbf{H}-\mathbf{A}) / \mathbf{\AA} \mathbf{d}(\mathbf{D}-\mathbf{A}) / \mathbf{\AA} \mathbf{D}-\mathbf{H}-\mathbf{A} /{ }^{\circ}$			
N7A	H7A	O13A	0.88	2.11	2.553(6)	110.7
N18	H18	O25	0.88	2.13	$2.577(5)$	111.1
N2B	H2B	O28 ${ }^{1}$	1.00	1.76	2.687(7)	151.7
N2B	H2B	O27 ${ }^{1}$	1.00	2.28	3.099(8)	138.7
N5B	H5B	O14A ${ }^{2}$	1.00	2.28	$3.000(6)$	127.9
5B	H5B	O16A ${ }^{2}$	1.00	1.73	$2.719(7)$	167.7
C5A	H5A	08A	0.95	2.36	2.938(8)	118.6
20	H20	O17	0.95	2.34	2.930(9)	119.6
C7B	H7BC	O17 ${ }^{3}$	0.98	2.54	3.458(12)	156.4
C6B	H6BC	O8A ${ }^{3}$	0.98	2.49	3.161(11)	125.1
C1B	H1BC	O5D	0.98	2.53	3.370 (18)	143.3
C4B	H4BA	O27 ${ }^{1}$	0.99	2.65	3.411(9)	133.8
C4B	H4BB	O5D	0.99	2.35	$3.332(12)$	169.8
C5	H5	O9	0.95	2.24	$2.859(10)$	122.0
C8B	H8B1	O17	0.98	2.52	3.500 (12)	175.1
C8B	H8B2	$\mathrm{O} 30^{4}$	0.98	2.64	$3.622(14)$	175.1

Symmetry codes: (1) 1/2-X,-1/2+Y,-1/2+Z; (2) -1/2+X,1/2-Y,-1/2+Z; (3) +X,+Y,-1+Z; (4) -1/2+X,1/2-Y,1/2+Z

Table S5. Hydrogen Bonds for $\mathrm{Fe}-\mathrm{H} 4 \mathrm{~A}$.

D	H	A	$\mathbf{d}(\mathbf{D}-\mathbf{H}) / \mathbf{\AA} \mathbf{d}(\mathbf{H}-\mathbf{A}) / \AA$		d(D-A)/	-H-A/0
O2W	H2WA	O16C ${ }^{1}$	0.85	2.34	3.069(6)	144.4
O2W	H2WB	O3W	0.85	1.94	2.758(6)	161.8
O3W	H3WA	O29C ${ }^{2}$	0.85	2.18	2.855(6)	136.7
O3W	H3WB	O19A ${ }^{1}$	0.85	2.16	2.908(6)	147.4
O6W	H6WA	O19A ${ }^{3}$	0.85	1.99	2.806(6)	161.0
O6W	H6WB	O32B	0.85	1.95	$2.795(6)$	177.4
C11A	H11A	O8A	0.95	2.46	2.991(8)	115.5
C11A	H11A	$\mathrm{N} 2 \mathrm{E}^{4}$	0.95	2.68	3.416(8)	134.6
C24A	H24A	O21A	0.95	2.37	2.908(7)	115.8
N9B	H9B	O16B	0.88	2.04	2.505(6)	112.1
C15B	H15B	O8B	0.95	2.42	2.985(7)	117.5
C28B	H28B	O21B	0.95	2.40	2.929(7)	115.2
C15C	H15C	O8C	0.95	2.22	2.836(7)	121.4
O1W	H1WA	O19B ${ }^{5}$	0.85	2.44	3.089(6)	133.2
O1W	H1WA	O32C ${ }^{6}$	0.85	2.52	3.136(6)	130.5

O1W	H1WB	O19B	0.85	1.95	2.787(6)	169.3
C28C	H28C	O21C	0.95	2.26	2.866(7)	121.0
N2D	H2DA	O18C ${ }^{7}$	0.88	2.55	3.323(6)	146.9
N2D	H2DA	O19C ${ }^{7}$	0.88	2.25	3.054(7)	152.6
N2D	H2DB	$\mathrm{O}^{1} \mathrm{~W}^{7}$	0.88	2.50	3.206(7)	137.2
N3D	H3DA	O32B	0.88	2.04	2.904(7)	166.1
N3D	H3DB	O19C ${ }^{7}$	0.88	2.41	3.182(7)	146.2
N4D	H4DA	O31B	0.88	2.04	2.920(6)	176.9
N4D	H4DB	$\mathrm{O}^{\text {W }}{ }^{7}$	0.88	2.55	3.245(7)	136.3
N4D	H4DB	O32C	0.88	2.42	3.152(7)	141.0
N2E	H2EA	O8B ${ }^{1}$	0.88	2.42	3.140(6)	139.1
N2E	H2EB	O8C	0.88	2.01	2.802(6)	149.5
N3E	H3EA	O8B ${ }^{1}$	0.88	2.01	2.833(6)	155.5
N3E	H3EB	O21A ${ }^{8}$	0.88	2.04	2.867(6)	156.4
N4E	H4EA	O21A ${ }^{8}$	0.88	2.38	3.117(6)	141.6
N4E	H4EB	O8C	0.88	2.16	2.915(6)	142.9
N4E	H4EB	O21C ${ }^{4}$	0.88	2.32	2.800(6)	114.0
N2F	H2FA	O31A	0.81	2.24	3.020(7)	161.5
N2F	H2FB	O6W	0.81	2.22	2.896(7)	141.4
N3F	H3FA	O19B ${ }^{3}$	0.88	2.11	2.982(6)	169.2
N3F	H3FB	O32A	0.88	2.14	2.948(7)	153.0
N4F	H4FA	O18B ${ }^{3}$	0.88	2.30	3.026(6)	139.2
N4F	H4FB	N2BB	0.88	2.58	3.33(2)	143.9
N2G	H2GA	O2W	0.88	1.97	2.852(8)	174.3
N3G	H3GA	$\mathrm{O}^{1} \mathrm{~W}^{3}$	0.88	2.10	2.934(7)	158.4
N3G	H3GB	O3W	0.88	2.09	2.939(7)	162.1
N4G	H4GA	O1W ${ }^{3}$	0.88	2.46	3.200(7)	142.5
N4G	H4GB	O32A	0.88	2.05	2.846 (6)	149.7
N2H	H2HA	O18A ${ }^{9}$	0.88	2.21	2.997(6)	148.2
N2H	H2HB	O7W ${ }^{10}$	0.88	2.23	2.986(7)	144.1
N3H	H3HA	O18A ${ }^{9}$	0.88	2.66	3.340(6)	135.2
N3H	H3HA	O19A ${ }^{9}$	0.88	2.09	2.938(7)	162.9
N3H	H3HB	O19C	0.88	2.01	2.865(6)	163.1
N4H	H4HA	O7W ${ }^{10}$	0.91	2.14	2.933(7)	145.1
N4H	H4HB	O18C	0.91	2.11	$2.978(6)$	159.0
N2AA	H2A2	O5W	0.88	1.90	2.769(13)	169.0
N3AA	H3AA	O31A ${ }^{11}$	0.88	2.58	3.280(10)	137.0
N3AA	H3AA	O31C ${ }^{11}$	0.88	2.12	2.925(9)	151.9
N3AA	H3AB	O4W	0.88	2.35	3.18(3)	157.9
N4AA	H4AB	O29A ${ }^{11}$	0.88	2.13	2.857(9)	139.8
N3BB	H3BA	O31A ${ }^{11}$	0.88	2.49	3.22(4)	141.2
N3BB	H3BA	O31C ${ }^{11}$	0.88	2.17	2.91(4)	141.9

N3BB	H3BB	O4X 2	0.88	1.90	$2.74(8)$	160.3
N4BB	H4BA	O29A				
N11	0.88	2.38	$3.14(3)$	145.0		
N4BB	H4BA	O31C				
O7W	H7WA	0.88	2.46	$3.15(3)$	135.4	
O7W	H7WB	0.91	2.08	$2.872(6)$	145.5	

Symmetry codes: (1) 1-X,1-Y,1-Z; (2) 1+X,+Y,+Z; (3) 1-X,2-Y,-Z; (4) 1+X,+Y,-1+Z; (5) -X,1-Y,1-Z; (6) -X,2-Y,2-Z; (7) +X,+Y,1+Z; (8)
$+X,+Y,-1+Z ;(9)+X,-1+Y,+Z ;(10)-X, 1-Y, 2-Z ;(11)-1+X,+Y, 1+Z$

Table S6. Hydrogen Bonds for Fe-H4B.

D	H	A	d(D-H)/Å	d(H-A)/ $\mathbf{\AA}$	d(D-A)/̇̇	D-H-A/ ${ }^{\circ}$
O4W	H4WA	O2W	0.90	2.39	3.294(14)	179.1
O4W	H4WB	N4C ${ }^{1}$	0.90	2.42	3.114(13)	133.9
N9B	H9B	${\mathrm{O} 21 \mathrm{~B}^{2}}$	0.85(5)	2.05(5)	2.851(5)	156(5)
N22B	H22B	Ol^{3}	1.03	2.63	3.251(13)	118.5
N22B	H22B	O29B	1.03	2.07	$2.623(4)$	111.0
N22B	H22B	O2W ${ }^{3}$	1.03	2.16	3.083(8)	147.7
O1	H1A	O8B	0.89	2.14	2.895(13)	142.4
O1	H1B	O29B ${ }^{3}$	0.89	1.93	2.796(13)	163.9
O1	H1B	N3Z	0.89	2.46	2.95 (3)	115.3
O1	H1B	N3Q	0.89	2.70	3.20 (3)	116.7
C28B	H28B	O21B	0.93	2.46	2.920 (6)	110.8
N6A	H6A	O1	0.87(5)	2.41(5)	3.183(14)	148(4)
C12A	H12A	O9V	0.93	2.56	3.04(3)	112.6
C12A	H12A	$\mathrm{Ol}^{\text {O }}{ }^{3}$	0.93	2.26	2.83(4)	118.9
N2Z	H2ZA	O1W ${ }^{3}$	0.86	2.00	2.823(17)	158.8
N2Z	H2ZB	O2W ${ }^{4}$	0.86	1.99	$2.835(16)$	168.0
O2W	H2WA	O8B	0.99	2.12	$3.019(8)$	149.9
O2W	H2WA	O1	0.99	2.57	3.336(16)	134.2
O2W	H2WB	O29B ${ }^{3}$	1.00	2.14	3.097(7)	160.4
N3Z	H3Z1	O1W ${ }^{3}$	0.86	2.56	3.24(2)	137.2
N3Z	H3Z2	O1	0.86	2.29	2.95 (3)	134.6
N3Z	H3Z2	O29B ${ }^{3}$	0.86	2.29	2.85(3)	123.1
N4Z	H4Z1	O13A	0.86	2.21	3.02(3)	157.8
N2C	H2CA	O4W	0.86	2.20	2.889(13)	136.7
N2C	H2CA	O16A ${ }^{5}$	0.86	2.30	$2.983(8)$	136.2
N2C	H2CB	O19B ${ }^{1}$	0.86	1.85	$2.685(8)$	162.6
N3C	H3CA	O32 ${ }^{6}$	0.86	2.14	$2.945(10)$	155.1
N3C	H3CB	O4W	0.86	2.26	2.946(13)	137.0
N4C	H4CA	O32B ${ }^{6}$	0.86	2.41	3.141(8)	142.7
N4C	H4CB	O18B ${ }^{1}$	0.86	2.37	3.134(8)	148.2

N2D	H2DA	O31B ${ }^{7}$	0.86	2.02	2.881(6)	176.0
N2D	H2DB	O16A ${ }^{8}$	0.86	2.36	3.134(7)	150.5
N3D	H3DA	O32 ${ }^{7}$	0.86	2.06	2.919(6)	172.2
N3D	H3DB	O16A	0.86	2.09	2.935(6)	169.7
N4D	H4DA	O15A	0.86	2.05	2.875(6)	161.7
O1W	H1WA	O21B	0.90	2.30	3.199(9)	179.6
O1W	H1WB	O9V	0.90	2.05	2.94(4)	172.8
O1W	H1WB	O10V ${ }^{3}$	0.90	1.86	2.75(4)	173.0
N2Q	H2QA	$\mathrm{O}^{4}{ }^{4}$	0.86	2.20	$2.929(18)$	142.1
N2Q	H2QA	O2W ${ }^{4}$	0.86	2.13	$2.762(13)$	129.6
N2Q	H2QB	$\mathrm{O}^{\text {W }}{ }^{3}$	0.86	2.27	3.046(15)	150.7
N3Q	H3Q1	O1	0.86	2.53	3.20 (3)	134.9
N3Q	H3Q1	O29B ${ }^{3}$	0.86	2.21	3.01(3)	153.3
N3Q	H3Q2	O1W ${ }^{3}$	0.86	2.13	2.93(3)	154.7
N4Q	H4Q2	O13A	0.86	2.17	2.97(2)	154.8

Symmetry codes: (1) 1/2-X,1/2-Y,-Z; (2) 1-X,1-Y,1-Z; (3) 1-X, +Y,1/2-Z; (4) +X,1+Y,+Z; (5) +X,1-Y,-1/2+Z; (6) 1-X,-1+Y,1/2-Z; (7) $1 / 2+X,-1 / 2+Y,+Z$; (8) 1/2-X,-1/2+Y,1/2-Z

Table S7. Hydrogen Bonds for Cu-H1.

D	H	A	$\mathbf{d}(\mathbf{D}-\mathrm{H}) / \mathbf{\AA} \mathbf{d}(\mathbf{H}-\mathbf{A}) / \mathbf{\lambda} \mathbf{d}(\mathbf{D}-\mathbf{A}) / \mathbf{\AA} \mathbf{D}-\mathbf{H}-\mathbf{A} /{ }^{\circ}$			
N9B	H9B	O16B	0.88	2.07	2.521(4)	110.9
2 B	H22B	O29B	0.88	2.08	(4)	111.0
	H22A	O29A	0.88	2.0	$2.539(5)$	11
C11B	1 B	O8B	0.95	2.37	2.946 (5)	118.6
	H24A	021A	0.95	2.40	$2.968(6)$	118.2
24B	H24B	O21B	0.95	2.39	$2.969(6)$	119.
C11A	11A	08A	0.95	2.40	$2.970(5)$	118.4
O1	H1	O19B ${ }^{1}$	0.95	1.91	2.803(6)	154.7

Symmetry codes: (1) 1-X,1-Y,1-Z

Table S8. Hydrogen Bonds for $\mathrm{Cu}-\mathrm{H} 2$.

D	H	A				
N11	H11	O6	0.82(3)	2.15(3)	2.567(2)	112(2)
C28	H28	O21	0.95	2.38	2.904(3)	114.4
N2A	H2A1	O4 ${ }^{1}$	0.88	2.23	3.091(3)	164.6
N2A	H2A2	$\mathrm{O} 21^{2}$	0.88	2.02	2.880(3)	165.7
N3A	H3A1	$\mathrm{O} 13^{3}$	0.88	2.07	2.864(3)	149.5
N3A	H3A2	O^{1}	0.88	2.14	2.999(3)	165.5
N4A	H4A1	O13 ${ }^{3}$	0.88	2.19	2.951(3)	144.4
N4A	H4A2	O1W	0.88	2.02	2.894(4)	171.9
N2B	H2B1	$\mathrm{O3}^{3}$	0.88	2.27	3.024(3)	144.0
N2B	H2B2	O32	0.88	2.20	2.963(3)	144.7

N3B	H 3 B 1	$\mathrm{O} 31^{4}$	0.88	2.05	$2.928(2)$	174.7
N3B	H3B1	$\mathrm{O} 2^{4}$	0.88	2.50	$3.048(3)$	120.8
N3B	H3B2	O3 3	0.88	2.11	$2.911(3)$	150.3
N4B	H4B1	O3 5	0.88	2.64	$3.159(3)$	119.0
N4B	H4B1	O4 5	0.88	2.11	$2.986(2)$	171.1
N4B	H4B2	O32	0.88	2.06	$2.863(3)$	150.8
O4C	H4C	O6	0.89	1.94	$2.834(3)$	179.1
O1W	H1W	O21	0.90	1.95	$2.854(3)$	179.8

Symmetry codes: (1) 1-X,1-Y,-Z; ; (2) 1-X, $\mathrm{Y}, 1 / 2-Z$; (3) 1-X,1+Y,1/2-Z; (4) 3/2-X, $1 / 2+\mathrm{Y}, 3 / 2-Z ;(5) 1 / 2+X, 1 / 2+Y, 1+Z$

8. Thermogravimetric analysis

Table S9. Summary of Theoretical and Experimental Residues

Compound	Theoretical Residue (\%)	Experimental Residue (\%)
Fe-H1 ${ }^{\text {a }}$	22.1 (30.9) ${ }^{\text {b }}$	24.3 (29.2) ${ }^{\text {c }}$
Fe-H2	10.3	9.7
Fe-H3	8.3	7.7
Fe-H4A	8.4	8.6
Fe-H4B	8.7	9.2
$\mathrm{Cu}-\mathrm{H1}$	28.1	29.3
$\mathrm{Cu}-\mathrm{H} 2$	11.6	11.3

${ }^{a}$ Material rapidly loses solvent of crystallisation; ${ }^{\text {b }}$ calculated for material without any included solvent molecules; ${ }^{c}$ calculated by scaling the measured final residue (24.3%) by the approximate residue after desolvation (83.3\%).

Figure S38. TGA thermogram of $\mathbf{F e}-\mathbf{H} 1$

Figure S39. TGA thermogram of $\mathbf{F e}-\mathbf{H} 2$

Figure S40. TGA thermogram of $\mathbf{F e}-\mathbf{H} 3$

Figure S41. TGA thermogram of $\mathbf{F e}-\mathbf{H 4 A}$

Figure S42. TGA thermogram of $\mathbf{F e}-\mathbf{H 4 B}$

Figure S43. TGA thermogram of $\mathbf{C u} \mathbf{- H 1}$

Figure S44. TGA thermogram of $\mathbf{C u} \mathbf{- H 2}$

9. References

[1] G. M. Sheldrick, Acta Cryst. 2015, A71, 3-8.
[2] G. M. Sheldrick, Acta Cryst. 2015, C71, 3-8.
[3] A. L. Spek, Acta Cryst., 2015, C71, 9-18

