Supporting Information

Rapid and scalable synthesis of fluoroketones via

Cerium-mediated C–C bond cleavage

Yen-Chu Lu, Helen Jordan, Julian G. West*

Department of Chemistry, Rice University, 6500 Main St, Houston, TX, USA. Email: jgwest@rice.edu. Web: westchem.org

Table of Contents

General Information	S1
Experimental Section	S2
Characterization of γ-Fluorinated Ketones	S3
NMR Spectra of γ-Fluorinated Ketones	S9
References	S27

General Information

All reagents were purchased from the commercially available sources and used without further purification. All reactions were carried out in a vial under an open atmosphere with magnetic stirring. All reactions were monitored by either ¹H NMR or thin layer chromatography (TLC) carried out on 0.25 mm pre-coated silia plates (F-254) purchased from Silicycle, Quebec, Canada, using shortwave UV light as visualizing agent and KMnO4 or phosphomolybdic acid (PMA) as developing agents. Flash column chromatography was performed using SiliaFlash-P60 silica gel (40 - 63)μm) purchased from Silicycle, Quebec, Canada. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on a Bruker DRX-600 spectrometers operating at 600 MHz for proton nuclei, 151 MHz for carbon nuclei and 565 MHz for fluorine nuclei were calibrated using residual undeuterated solvent as an internal reference (CDCl₃: 7.26 ppm ¹H NMR and 77.20 ppm ¹³C NMR). For reporting NMR peak multiplicities, the following abbreviations were used: s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, hept = heptet, m = multiplet. High-resolution mass spectra (HRMS) were recorded on an Agilent UHPLC TOF mass spectrometer using electrospray ionization time-of-flight (ESI-TOF) or chemical ionization time-of-flight (CI-TOF) reflectron experiments.

Experimental Section

Substrate Synthesis

1-(4-bromophenyl)cyclobutanol (1a) was directly purchased from Fisher scientific company. Other tertiary cyclobutanol substrates 1b - 1o (except 1k) were prepared by the addition of cyclobutanone to the corresponding Grignard reagent according to the literature procedure.^[1] Cyclobutanol 1k was prepared by the addition of cyclobutanol to the corresponding organolithium according to the literature procedure.^[2] Cyclobutanol 1k was prepared by the addition of valerophenone under irradiation according to the literature procedure.^[3]

General procedure for the ring-opening fluorination

1-(4-bromophenyl)cyclobutanol (1a) (68.1 mg, 0.3 mmol, 1.0 equiv), Selectfluor (425.1 mg, 1.2 mmol, 4.0 equiv) and CH₃CN/H₂O (0.75/0.75 mL, 0.2 M) solvent were loaded to a vial (open flask). The mixture was stirred at 0 °C (ice bath) for 5 min followed by the addition of Cerium ammonium nitrate (180.9 mg, 0.33 mmol, 1.1 equiv), then warmed up to RT. Upon completion, the mixture was extracted with CH₂Cl₂ (3× 10 mL), dried over Na₂SO₄, filtered and concentrated in vacuo. The crude mixture was then purified by flash chromatography (Ethyl acetate/Hexanes = 1:16) to give γ-fluoroketone **2a** (42.6 mg, 58%).

Characterization of y-Fluorinated Ketones

1-(4-bromophenyl)-4-fluorobutan-1-one (2a)^[4]

2a; colorless oil; **Yield**: 58%; **R**_f = 0.43 (EtOAc/Hexanes = 1:8); ¹**H NMR (600 MHz, CDCl₃):** δ 7.85 – 7.79 (m, 2H), 7.62 – 7.56 (m, 2H), 4.54 (dt, *J* = 5.7, 47.3 Hz, 2H), 3.10 (t, *J* = 7.1 Hz, 2H), 2.19 – 2.07 (m, 2H). ¹³**C NMR (150 MHz, CDCl₃):** δ 198.2, 135.6, 132.1, 129.7, 128.5, 83.3 (d, *J*_{CF} = 163.5 Hz), 34.1 (d, *J*_{CF} = 4.0 Hz), 24.9 (d, *J*_{CF} = 19.8 Hz). ¹⁹**F NMR (565 Hz, CDCl₃):** δ -220.05 – -220.35 (m, 1F). **HRMS (CI-TOF):** calc'd for C₁₀H₁₁BrFO [M+H]⁺ 244.9977; Found 244.9983.

4-fluoro-1-phenylbutan-1-one (2b)^[4]

2b; colorless oil; **Yield** = 63%; **R**_f = 0.43 (EtOAc/Hexanes = 1:8); ¹**H NMR** (600 **MHz, CDCl₃):** δ 8.00 – 7.94 (m, 2H), 7.59 – 7.54 (m, 1H), 7.49 – 7.44 (m, 2H), 4.56 (dt, J = 5.8, 47.3 Hz, 2H), 3.15 (t, J = 7.1 Hz, 2H), 2.21 – 2.10 (m, 2H). ¹³**C NMR** (150 MHz, CDCl₃): δ 199.1, 136.8, 133.2, 128.6, 128.0, 83.3 (d, $J_{CF} = 163.7$ Hz), 34.0 (d, $J_{CF} = 4.3$ Hz), 24.9 (d, $J_{CF} = 20.0$ Hz). ¹⁹**F NMR** (565 Hz, CDCl₃): -219.89 – -220.17 (m, 1F). HRMS (CI-TOF): calc'd for C₁₀H₁₂FO [M+H]⁺ 167.0872; Found 167.0868.

1-(4-chlorophenyl)-4-fluorobutan-1-one (2c)^[4]

2c; colorless oil; **Yield**: 65%; **R**_f = 0.4 (EtOAc/Hexanes = 1:8); ¹**H NMR (600 MHz, CDCl₃):** δ 7.92 - 7.88 (m, 2H), 7.45 - 7.41 (m, 2H), 4.54 (dt, *J* = 5.8, 47.2 Hz, 2H), 3.10 (t, *J* = 7.1 Hz, 2H), 2.18 - 2.08 (m, 2H). ¹³**C NMR (150 MHz, CDCl₃):** δ 198.0,

139.8, 135.2, 129.6, 129.1, 83.3 (d, $J_{CF} = 163.4 \text{ Hz}$), 34.1 (d, $J_{CF} = 3.6 \text{ Hz}$), 24.9 (d, $J_{CF} = 19.8 \text{ Hz}$). ¹⁹F NMR (565 Hz, CDCl₃): -220.02 - -220.30 (m, 1F). HRMS (CI-TOF): calc'd for C₁₀H₁₁ClFO [M+H]⁺ 201.0482; Found 201.0488.

1-(4-fluorophenyl)-4-fluorobutan-1-one (2d)^[4]

2d; colorless oil; **Yield**: 69%; **R**_f = 0.33 (EtOAc/Hexanes = 1:8); ¹**H NMR (600 MHz, CDCl₃):** δ 8.03 – 7.97 (m, 2H), 7.16 – 7.10 (m, 2H), 4.55 (dt, J = 5.7, 47.3 Hz, 2H), 3.11 (t, J = 7.6 Hz, 2H), 2.19 – 2.09 (m, 2H). ¹³**C NMR (150 MHz, CDCl₃):** δ 197.7, 165.9 (d, $J_{CF} = 253.1$ Hz), 133.3 (d, $J_{CF} = 2.9$ Hz), 130.8 (d, $J_{CF} = 9.3$ Hz), 115.9 (d, $J_{CF} = 21.8$ Hz), 83.4 (d, $J_{CF} = 163.2$ Hz), 34.1 (d, $J_{CF} = 3.9$ Hz), 25.0 (d, $J_{CF} = 19.9$ Hz). ¹⁹**F NMR (565 Hz, CDCl₃):** -105.11 – -105.17 (m, 1F), -220.06 – -220.36 (m, 1F). **HRMS (CI-TOF):** calc'd for C₁₀H₁₁F₂O [M+H]⁺ 185.0778; Found 185.0782.

4-fluoro-1-(3-methoxyphenyl)butan-1-one (2e)^[4]

2e; colorless oil; **Yield:** 65%; **R**_f = 0.3 (EtOAc/Hexanes = 1:8); ¹**H NMR (600 MHz, CDCl₃):** δ 7.54 (d, J = 7.6 Hz, 1H), 7.49 (t, J = 2.3 Hz, 1H), 7.37 (t, J = 8.0 Hz, 1H), 7.11 (dd, J = 2.2, 8.2 Hz, 1H), 4.55 (dt, J = 5.8, 47.3 Hz, 2H), 3.85 (s, 3H), 3.12 (t, J = 7.1 Hz, 2H), 2.19 – 2.09 (m, 2H). ¹³**C NMR (150 MHz, CDCl₃):** δ 199.1, 160.0, 138.3, 129.8, 120.8, 119.8, 112.4, 83.5 (d, J_{CF} = 163.2 Hz), 55.6, 34.3 (d, J_{CF} = 4.1 Hz), 25.0 (d, J_{CF} = 19.9 Hz). ¹⁹**F NMR (565 Hz, CDCl₃):** -219.86 – -220.16 (m, 1F). **HRMS (CI-TOF):** calc'd for C₁₁H₁₄FO₂ [M+H]⁺ 197.0978; Found 197.0976.

4-fluoro-1-(2-methoxyphenyl)butan-1-one (2f)^[4]

2f; colorless oil; **Yield:** 65%; **R**_f = 0.33 (EtOAc/Hexanes = 1:8); ¹**H NMR (600 MHz, CDCl₃):** δ 7.70 (dd, J = 1.7, 7.7 Hz, 1H), 7.48 – 7.43 (m, 1H), 7.00 (t, J = 7.4 Hz, 1H),

6.96 (d, J = 8.3 Hz, 1H), 4.52 (dt, J = 5.9, 47.3 Hz, 2H), 3.90 (s, 3H), 3.12 (t, J = 7.1 Hz, 2H), 2.15 – 2.05 (m, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 201.6, 158.8, 133.7, 130.4, 128.2, 120.8, 111.7, 83.8 (d, $J_{CF} = 163.4$ Hz), 55.6, 39.4 (d, $J_{CF} = 4.8$ Hz), 25.3 (d, $J_{CF} = 19.8$ Hz). ¹⁹F NMR (565 Hz, CDCl₃): -219.13 – -219.42 (m, 1F). HRMS (CI-TOF): calc'd for C₁₁H₁₄FO₂ [M+H]⁺ 197.0978; Found 197.0984.

4-fluoro-1-(4-methoxyphenyl)butan-1-one (2g)^[4]

2g; colorless oil; **Yield**: 60%; **R**_f = 0.2 (EtOAc/Hexanes = 1:8); ¹**H NMR (600 MHz, CDCl₃):** δ 7.97 – 7.93 (m, 2H), 6.96 – 6.88 (m, 2H), 4.54 (dt, *J* = 5.8, 47.3 Hz, 2H), 3.86 (s, 3H), 3.08 (t, *J* = 7.1 Hz, 2H), 2.19 – 2.08 (m, 2H). ¹³**C NMR (150 MHz, CDCl₃):** δ 197.8, 163.7, 130.4, 130.1, 113.9, 83.6 (d, *J*_{CF} = 163.5 Hz), 55.6, 33.7 (d, *J*_{CF} = 4.2 Hz), 25.2 (d, *J*_{CF} = 19.8 Hz). ¹⁹**F NMR (565 Hz, CDCl₃):** -219.75 – -220.08 (m, 1F). **HRMS (CI-TOF):** calc'd for C₁₁H₁₄FO₂ [M+H]⁺ 197.0978; Found 197.0971.

4-fluoro-1-(o-tolyl)butan-1-one (2h)

2h; colorless oil; **Yield**: 56%; **R**_f = 0.43 (EtOAc/Hexanes = 1:8); ¹**H NMR (600 MHz, CDCl₃):** δ 7.68 – 7.65 (m, 1H), 7.38 (td, J = 1.3, 7.5 Hz, 1H), 7.29 – 7.23 (m, 2H), 4.55 (dt, J = 5.8, 47.2 Hz, 2H), 3.06 (t, J = 7.1 Hz, 2H), 2.50 (s, 3H), 2.18 – 2.08 (m, 2H). ¹³**C NMR (150 MHz, CDCl₃):** δ 203.3, 138.3, 137.9, 132.2, 131.6, 128.6, 125.9, 83.5 (d, J_{CF} = 163.7 Hz), 37.0 (d, J_{CF} = 3.7 Hz), 25.2 (d, J_{CF} = 19.9 Hz), 21.5. ¹⁹**F NMR (565 Hz, CDCl₃):** -219.82 – -220.10 (m, 1F). **HRMS (CI-TOF):** calc'd for C₁₁H₁₄FO [M+H]⁺ 181.1029; Found 181.1026.

1-(3,5-dimethylphenyl)-4-fluorobutan-1-one (2i)

2i; colorless oil; **Yield**: 57%; **R**_f = 0.5 (EtOAc/Hexanes = 1:8); ¹**H NMR (600 MHz, CDCl₃)**: δ 7.57 (s, 2H), 7.20 (s, 1H), 4.55 (dt, J = 5.8, 47.3 Hz, 2H), 3.11 (t, J = 7.1 Hz, 2H), 2.37 (d, J = 0.5 Hz, 6H), 2.19 – 2.09 (m, 2H). ¹³**C NMR (150 MHz, CDCl₃)**: δ 199.7, 138.4, 137.1, 135.0, 126.0, 83.6 (d, J_{CF} = 163.0 Hz), 34.2 (d, J_{CF} = 3.9 Hz), 25.1 (d, J_{CF} = 19.9 Hz), 21.4. ¹⁹**F NMR (565 Hz, CDCl₃)**: -219.75 – -220.05 (m, 1F). **HRMS (CI-TOF)**: calc'd for C₁₂H₁₆FO [M+H]⁺ 195.1180; Found 195.1174.

1-(4-ethylphenyl)-4-fluorobutan-1-one (2j)

2j; colorless oil; **Yield**: 66%; **R**_f = 0.43 (EtOAc/Hexanes = 1:8); ¹**H NMR (600 MHz, CDCl₃):** δ 7.92 – 7.88 (m, 2H), 7.29 (d, *J* = 8.3 Hz, 2H), 4.55 (dt, *J* = 5.8, 47.3 Hz, 2H), 3.12 (t, *J* = 7.1 Hz, 2H), 2.70 (q, *J* = 7.62 Hz, 2H), 2.20 – 2.09 (m, 2H), 1.26 (t, *J* = 7.6 Hz, 3H). ¹³**C NMR (150 MHz, CDCl₃):** δ 198.9, 150.3, 134.7, 128.4, 128.3, 83.6 (d, *J*_{CF} = 163.3 Hz), 34.0 (d, *J*_{CF} = 4.3 Hz), 29.1, 25.0 (d, *J*_{CF} = 20.2 Hz), 15.4. ¹⁹**F NMR (565 Hz, CDCl₃):** -219.75 – -220.05 (m, 1F). **HRMS (CI-TOF):** calc'd for C₁₂H₁₆FO [M+H]⁺ 195.1185; Found 195.1183.

4-fluoro-1-(4-(trifluoromethyl)phenyl)butan-1-one (2k)^[4]

2k; colorless oil; **Yield**: 52%; **R**_f = 0.43 (EtOAc/Hexanes = 1:8); ¹H NMR (600 MHz, **CDCl₃)**: δ 8.07 (d, J = 8.1 Hz, 2H), 7.73 (d, J = 8.2 Hz, 2H), 4.56 (dt, J = 5.7, 47.2 Hz, 2H), 3.17 (t, J = 7.1 Hz, 2H), 2.22 – 2.11 (m, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 198.3, 139.5, 134.6 (q, J_{CF} = 32.2 Hz), 128.5, 125.9 (q, J_{CF} = 3.5 Hz), 123.7 (q, J_{CF} = 271.3 Hz), 83.3 (d, J_{CF} = 163.7 Hz), 34.5 (d, J_{CF} = 3.7 Hz), 24.8 (d, J_{CF} = 19.8 Hz). ¹⁹F NMR (565 Hz, CDCl₃): -63.15 (s, 3F), -220.23 – -220.55 (m, 1F). HRMS (CI-TOF): calc'd for C₁₁H₁₁F₄O [M+H]⁺ 235.0746; Found 235.0750.

4-fluoro-1-(4-(trifluoromethoxy)phenyl)butan-1-one (21)^[4]

2l; colorless oil; **Yield**: 66%; **R**_{*f*} = 0.33 (EtOAc/Hexanes = 1:8); ¹**H NMR (600 MHz, CDCl₃):** δ 8.05 – 8.00 (m, 2H) 7.32 – 7.26 (m, 2H), 4.56 (dt, *J* = 5.7, 47.3 Hz, 2H), 3.13 (t, *J* = 7.1 Hz, 2H), 2.20 – 2.10 (m, 2H). ¹³**C NMR (150 MHz, CDCl₃):** δ 197.7, 152.8, 135.1, 130.2, 120.5 (q, *J*_{CF} = 257.2 Hz), 83.3 (d, *J*_{CF} = 163.6 Hz), 34.2 (d, *J*_{CF} = 4.2 Hz), 24.9 (d, *J*_{CF} = 19.8 Hz). ¹⁹**F NMR (565 Hz, CDCl₃):** -57.62 (s, 3F), -220.21 – -220.49 (m, 1F). **HRMS (CI-TOF):** calc'd for C₁₁H₁₁F₄O₂ [M+H]⁺ 251.0695; Found 251.0703.

1-([1,1'-biphenyl]-4-yl)-4-fluorobutan-1-one (2m)^[4]

2m; white solid; **Yield:** 62%; **R**_f = 0.37 (EtOAc/Hexanes = 1:8); ¹**H NMR (600 MHz, CDCl₃):** δ 8.07 – 8.02 (m, 2H), 7.72 – 7.66 (m, 2H), 7.65 – 7.60 (m, 2H), 7.50 – 7.45 (m, 2H), 7.43 – 7.38 (m, 1H), 4.58 (dt, *J* = 5.8, 47.3 Hz, 2H), 3.18 (t, *J* = 7.1 Hz, 2H), 2.23 – 2.13 (m, 2H). ¹³**C NMR (150 MHz, CDCl₃):** δ 198.8, 146.0, 140.0, 135.6, 129.1, 128.7, 128.4, 127.4, 83.5 (d, *J*_{CF} = 163.2 Hz), 34.2 (d, *J*_{CF} = 4.3 Hz), 25.0 (d, *J*_{CF} = 19.9 Hz). ¹⁹**F NMR (565 Hz, CDCl₃):** -219.81 – -220.10 (m, 1F). **HRMS (CI-TOF):** calc'd for C₁₆H₁₆FO [M+H]⁺ 243.1185; Found 243.1189.

5-fluoro-1-phenylpentan-2-one (2n)^[4]

2n; colorless oil; **Yield**: 41%; **R**_f = 0.3 (EtOAc/Hexanes = 1:8); ¹H NMR (600 MHz, **CDCl₃)**: δ 7.36 – 7.31 (m, 2H), 7.29 – 7.25 (m, 1H), 7.23 – 7.19 (m, 2H), 4.41 (dt, J = 5.8, 47.2 Hz, 2H), 3.71 (s, 2H), 2.61 (t, J = 7.1 Hz, 2H), 1.99 – 1.89 (m, 2H). ¹³C **NMR (150 MHz, CDCl₃)**: δ 207.5, 134.2, 129.5, 129.0, 127.3, 83.3 (d, J_{CF} = 163.7 Hz), 50.4, 37.5 (d, J_{CF} = 4.3 Hz), 24.6 (d, J_{CF} = 20.1 Hz). ¹⁹F NMR (565 Hz, CDCl₃):

-220.03 – -220.32 (m, 1F). **HRMS (CI-TOF):** calc'd for C₁₁H₁₄FO [M+H]⁺ 181.1029; Found 181.1032.

6-fluoro-1-phenylhexan-3-one (20)^[5]

20; colorless oil; **Yield**: 43%; **R**_f = 0.33 (EtOAc/Hexanes = 1:8); ¹**H NMR (600 MHz, CDCl₃):** δ 7.31 – 7.26 (m, 2H), 7.22 – 7.16 (m, 3H), 4.44 (dt, *J* = 5.8, 47.3 Hz, 2H), 2.91 (t, *J* = 7.5 Hz, 2H), 2.76 (t, *J* = 7.9 Hz, 2H), 2.55 (t, *J* = 7.1 Hz, 2H), 2.01 – 1.91 (m, 2H). ¹³**C NMR (150 MHz, CDCl₃):** δ 209.1, 141.1, 128.7, 128.5, 126.3, 83.3 (d, *J*_{CF} = 163.4 Hz), 44.5, 38.4 (d, *J*_{CF} = 4.2 Hz), 29.9, 24.5 (d, *J*_{CF} = 19.7 Hz). ¹⁹**F NMR (565 Hz, CDCl₃):** -220.02 – -220.32 (m, 1F). **HRMS (CI-TOF):** calc'd for C₁₂H₁₆FO [M+H]⁺ 195.1185; Found 195.1183.

4-fluoro-1-phenylpentan-1-one (2p)^[6]

2p; yellow oil; **Yield:** 64%; **R**_f = 0.43 (EtOAc/Hexanes = 1:8); ¹**H NMR (600 MHz, CDCl₃):** δ 7.98 (d, J = 7.3 Hz, 2H), 7.56 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.8 Hz, 2H), 4.84 – 4.69 (m, 1H), 3.21 – 3.08 (m, 2H), 2.15 – 1.93 (m, 2H), 1.39 (dd, J = 6.1, 23.9 Hz, 3H). ¹³**C NMR (150 MHz, CDCl₃):** δ 199.6, 136.9, 133.3, 128.8, 128.2, 90.5 (d, J_{CF} = 164.0 Hz), 34.1 (d, J_{CF} = 3.3 Hz), 31.2 (d, J_{CF} = 20.6 Hz), 21.3 (d, J_{CF} = 22.6 Hz). ¹⁹**F NMR (565 Hz, CDCl₃):** -175.00 – -175.33 (m, 1F). The spectra match the literature.

NMR Spectra of γ-Fluorinated Ketones

¹H NMR spectrum of **2a** (600 MHz, CDCl₃)

¹H NMR spectrum of **2b** (600 MHz, CDCl₃)

¹H NMR spectrum of **2c** (600 MHz, CDCl₃)

¹H NMR spectrum of **2d** (600 MHz, CDCl₃)

¹H NMR spectrum of **2e** (600 MHz, CDCl₃)

S14

S15

¹H NMR spectrum of **2h** (600 MHz, CDCl₃)

¹⁹F NMR spectrum of **2h** (565 MHz, CDCl₃)

		1
		1

	· I	· I							· · · ·	. 1	· I
-40	-60	-80	-100	-120	-140	-160	-180	-200	-220	-240	ppm

¹H NMR spectrum of **2i** (600 MHz, CDCl₃)

¹⁹F NMR spectrum of **2i** (565 MHz, CDCl₃)

		_									
-40	-60	-80	-100	-120	-140	-160	-180	-200	-220	-240	ppm

¹H NMR spectrum of **2j** (600 MHz, CDCl₃)

¹⁹F NMR spectrum of **2j** (565 MHz, CDCl₃)

	· · · · ·		· · · ·	· · · ·	· · ·	· · ·	· · ·	· · ·	· · ·	· · · ·	
-40	-60	-80	-100	-120	-140	-160	-180	-200	-220	-240	ppm

¹H NMR spectrum of **2k** (600 MHz, CDCl₃)

¹H NMR spectrum of **2l** (600 MHz, CDCl₃)

¹H NMR spectrum of **2m** (600 MHz, CDCl₃)

¹H NMR spectrum of **2n** (600 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 ppm

¹H NMR spectrum of **20** (600 MHz, CDCl₃)

¹H NMR spectrum of **2p** (600 MHz, CDCl₃)

References

[1] B. D. W. Allen, M. D. Hareram, A. C. Seastram, T. McBride, T. Wirth, D. L.
Browne, L. C. Morill, *Org. Lett.* 2019, 21, 9241 – 9246.

[2] R. A. Croft, M. A. Dubois, A. J. Boddy, C. Denis, A. Lazaridou, A. S.

Voisin-Chiret, R. Bureau, C. Choi, J. J. Mousseau, J. A. Bull, *Eur. J. Org. Chem.* 2019, 5385 – 5395.

[3] J. –B. Xia, C. Zhu, C. Chen, Chem. Comm. 2014, 50, 11701 – 11704.

[4] H. Zhao, X. Fan, J. Yu, C. Zhu, J. Am. Chem. Soc. 2015, 137, 3490 - 3493.

[5] N. Ishida, S. Okumura, Y. Nakanishi, M. Murakami, *Chem. Lett.* 2015, **44**, 821 – 823.

[6] F. Yin, Z. Wang, Z. Li, C. Li, J. Am. Chem. Soc. 2012, 134, 10401 - 10404.