Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

# **Supporting Information for**

# Helically chiral Pd(II) complexes containing intramolecular Pd...Pd

### metallophilicity as circularly polarized molecular phosphors

Jinqiang Lin, Mo Xie, Xiaobao Zhang, Qin Gao, Xiaoyong Chang, Chao Zou\*, and Wei Lu\*

Department of Chemistry, South University of Science and Technology of China Shenzhen, Guangdong 518055, P. R. China

*E-mail: <u>zouc@sustech.edu.cn</u>, <u>luw@sustech.edu.cn</u>* 

#### **Experimental Section**

**Materials.** All reagents were purchased from commercial sources and used as received. The solvents used for synthesis were of analytical grade unless stated otherwise. The chiral ligands 7,7-dimethyl-3-(6-phenylpyridin-2-yl)-5,6,7,8-tetrahydro-6,8-methanoisoquinoline (**HC^N^N\*(S)** and **HC^N^N\*(R)**), <sup>1</sup> 1,2-bis(2-ethynylphenyl)ethyne, <sup>2</sup> and 1,2-bis(2,6-diethynylphenyl)ethyne <sup>3</sup> were prepared according to literature methods.

**Characterization.** <sup>1</sup>H, <sup>13</sup>C, <sup>19</sup>F, NMR spectra were recorded with Bruker Avance 400 FT-NMR or 500 FT-NMR spectrometers. Infrared spectra were recorded on a Bruker V80 spectrometer. UV-Vis absorption spectra were recorded on a Thermo Scientific Evolution 201 UV-Visible Spectrophotometer. HR-MS (high resolution mass spectra) were obtained on a Thermo Scientific Q Exative mass spectrometer, operated in heated electrospray ionization (HESI) mode, coupled with Thermo Scientific Ultimate 3000 system. Photo-luminescent properties (solution and solid) were recorded via Edinburg spectrometer FLS-980 equipped with MCP-PMT and NIR-PMT detectors. Emission lifetime measurements were performed with Hamamatsu compact fluorescence lifetime spectrometer C11367. Absolute luminescent quantum yields were recorded with Hamamatsu absolute PL quantum yield spectrometer C11347. Circular dichroism (CD) spectra were recorded with Applied Photophysics Chirascan circular dichroism spectrometers. Circularly polarized luminescence (CPL) spectra were performed on a JASCO CPL-200 spectrometer at National Center for Nanoscience and Technology, China and a JASCO CPL-300 spectrometer at SUSTech, China. The solvent CH<sub>2</sub>Cl<sub>2</sub> used for spectroscopic measurements was freshly distilled over CaH<sub>2</sub>.

Single crystals of **3P** and **3M** suitable for X-ray diffraction analysis were obtained by diffusion of Et<sub>2</sub>O into their CHCl<sub>3</sub> solution. The diffraction data were collected by

<sup>(1)</sup> P. G. Bomben, K. C. D. Robson, P. A. Sedach, C. P. Berlinguette. Inorg. Chem. 2009, 48, 9631.

<sup>(2)</sup> J. Lin, C. Zou, X. Zhang, Q. Gao, S. Suo, Q. Zhuo, X. Chang, M. Xie, W. Lu, *Dalton Trans.*, 2019, 48, 10417.

<sup>(3)</sup> J. D. Bradshaw, L. Guo, C. A. Tessier, W. J. Youngs, Organometallics. 1996, 15, 2582.

a 'Bruker APEX-II CCD' diffractometer. The crystal was kept at 100 K during data collection. Using Olex2, the structure was solved with the XT structure solution program using Direct Methods and refined with the XL refinement package using Least Squares minimization.

### Synthesis and characterization.



**Synthesis of 1R**. To a suspension of Na<sub>2</sub>PdCl<sub>4</sub> (882 mg, 3 mmol) and **HC^N^N\*(R)** (980 mg, 3 mmol) in 40 mL water was added concentrated hydrochloric acid (3 mL).

The mixture was heated to 95 °C and stirred overnight. Yellow solid product was obtained by filtration and washed with H<sub>2</sub>O, MeOH and Et<sub>2</sub>O successively. Yield: 90%. <sup>1</sup>H NMR (400 MHz, DMSO)  $\delta$  8.38 (s, 1H), 8.27–8.10 (m, 3H), 8.00 (dd, J = 7.0, 2.0 Hz, 1H), 7.65 (dd, J = 7.2, 1.9 Hz, 1H), 7.53 (dd, J = 7.1, 1.8 Hz, 1H), 7.19–7.01 (m, 2H), 3.25–3.06 (m, 2H), 3.03 (t, J = 5.4 Hz, 1H), 2.81–2.69 (m, 1H), 2.40–2.26 (m, 1H), 1.42 (s, 3H), 1.20 (d, J = 9.8 Hz, 1H), 0.65 (s, 3H). HR-MS (ESI): m/z = 472.1003, [M–Cl+CH<sub>3</sub>CN]<sup>+</sup>, calc. for [C<sub>23</sub>H<sub>21</sub>ClN<sub>2</sub>Pd–Cl+CH<sub>3</sub>CN]<sup>+</sup> m/z = 472.1005.

Synthesis of 1S. The complex was prepared by the same method as that used for 1R except that HC^N^N\*(S) was used as the precursor. Yield: 88%. <sup>1</sup>H NMR (500 MHz, DMSO)  $\delta$  8.37 (s, 1H), 8.29–8.11 (m, 3H), 8.00 (d, *J* = 6.9 Hz, 1H), 7.65 (d, *J* = 7.6 Hz, 1H), 7.53 (d, *J* = 6.8 Hz, 1H), 7.09 (dt, *J* = 14.5, 7.1 Hz, 2H), 3.22–3.07 (m, 2H), 3.02 (t, *J* = 5.0 Hz, 1H), 2.81–2.71 (m, 1H), 2.40–2.25 (m, 2H), 1.42 (s, 3H), 1.20 (d, *J* = 9.8 Hz, 1H), 0.65 (s, 3H). HR-MS (ESI): m/z = 472.1005, [M–Cl+CH<sub>3</sub>CN]<sup>+</sup>, calc. for [C<sub>23</sub>H<sub>21</sub>ClN<sub>2</sub>Pd–Cl+CH<sub>3</sub>CN]<sup>+</sup> m/z = 472.1005.

**Synthesis of 2R.** To a suspension of **1R** (47 mg, 0.1 mmol) and CuI (ca. 1 mg) in 8 mL dichloromethane under N<sub>2</sub> was added ethynylbenzene (24 mg, 0.24 mmol) and diisopropylamine (2.5 mL). The mixture was stirred at room temperature overnight, and then the solvent was evaporated to dryness. The residue was washed thoroughly with MeOH and Et<sub>2</sub>O, and recrystallized from CHCl<sub>3</sub> and Et<sub>2</sub>O to give the pure product. Yield: 55%. <sup>1</sup>H NMR (500 MHz, DMSO)  $\delta$  8.38 (s, 1H), 8.35 (s, 1H), 8.23–8.10 (m, 2H), 8.00 (d, *J* = 7.9 Hz, 1H), 7.87–7.79 (m, 1H), 7.69 (dd, *J* = 7.1, 2.0 Hz, 1H), 7.42–7.33 (m, 2H), 7.27 (t, *J* = 7.7 Hz, 2H), 7.16 (t, *J* = 7.4 Hz, 1H), 7.15–7.06 (m, 2H), 3.15 (dd, J = 37.1, 16.2 Hz, 3H), 3.05 (t, *J* = 5.4 Hz, 1H), 2.80–2.71 (m, 1H), 2.35 (t, *J* = 5.6 Hz, 2H), 2.08–1.91 (m, 2H), 1.42 (s, 3H), 0.67 (s, 3H). HR-MS (ESI): m/z = 555.1023, [M+Na]<sup>+</sup>, calc. for [C<sub>31</sub>H<sub>26</sub>N<sub>2</sub>Pd+Na]<sup>+</sup> m/z = 555.1044. IR: 2095 cm<sup>-1</sup> v(C=C).

Synthesis of 2S. The complex was prepared using the same procedure as that used for 2R except that 1S was used as the precursor. Yield: 49%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.57 (s, 1H), 8.08 (d, *J* = 7.5 Hz, 1H), 7.82 (t, *J* = 8.0 Hz, 1H), 7.69 (s, 1H), 7.57 (dd,

J = 11.0, 4.6 Hz, 3H), 7.44 (d, J = 7.6 Hz, 1H), 7.28–7.24 (m, 3H), 7.20–7.12 (m, 2H), 7.07 (dd, J = 7.4, 6.3 Hz, 1H), 3.10 (s, 2H), 2.98 (t, J = 5.5 Hz, 2H), 2.85–2.67 (m, 2H), 2.50–2.30 (m, 2H), 2.01 (dd, J = 12.1, 6.0 Hz, 2H), 1.44 (s, 3H), 0.68 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  163.72, 155.66, 154.31, 153.75, 148.31, 148.21, 140.50, 138.69, 131.64, 130.60, 128.49, 127.85, 125.06, 124.14, 123.97, 121.21, 118.03, 117.03, 44.51, 39.68, 39.16, 33.32, 31.29, 25.75, 21.44. HR-MS (ESI): m/z = 555.1026, [M+Na]<sup>+</sup>, calc. for [C<sub>31</sub>H<sub>26</sub>N<sub>2</sub>Pd+Na]<sup>+</sup> m/z = 555.1044. IR: 2095 cm<sup>-1</sup> v(C=C).

Synthesis of 3P. To a suspension of 1R (94 mg, 0.2 mmol) and CuI (ca. 1 mg) in 12 mL dichloromethane under N<sub>2</sub> was added 1,2-bis(2-ethynylphenyl)ethyne (23 mg, 0.1 mmol) and diisopropylamine (3 mL). The mixture was stirred at room temperature overnight, and then the solvent was evaporated to dryness. The residue was washed thoroughly with MeOH and Et<sub>2</sub>O, and recrystallized from CHCl<sub>3</sub> and Et<sub>2</sub>O to give the pure product. Yield: 65%. <sup>1</sup>H NMR (400 MHz, DMSO)  $\delta$  8.88 (s, 2H), 7.71 (t, J = 8.0 Hz, 2H), 7.64–7.48 (m, 4H), 7.41 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H), 7.34– 7.09 (m, 8H), 7.06 (d, J = 7.2 Hz, 2H), 6.87 (t, J = 7.4 Hz, 2H), 6.74 (t, J = 7.1 Hz, 2H), 2.99 (dd, J = 31.1, 17.1 Hz, 4H), 2.30–2.13 (m, 4H), 2.12–1.94 (m, 4H), 1.10 (s, 6H), 0.54 (s, 6H). <sup>1</sup>H NMR (500 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  9.03 (s, 1H), 7.61 (dd, J = 7.5, 1.5 Hz, 1H), 7.50 (t, J = 7.9 Hz, 1H), 7.35 (dd, J = 7.5, 1.3 Hz, 1H), 7.23–7.11 (m, 1H), 7.10–7.05 (m, 1H), 6.97 (d, J = 7.6 Hz, 1H), 6.93 (d, J = 7.9 Hz, 1H), 6.87 (td, J = 7.4, 1.1 Hz, 1H), 6.76 (td, J = 7.3, 1.1 Hz, 1H), 3.02–2.88 (m, 1H), 2.29–2.21 (m, 1H), 2.21–2.15 (m, 1H), 2.12 (t, J = 5.3 Hz, 1H), 1.16 (dd, J = 12.3, 5.4 Hz, 1H), 1.12 (s, 1H), 0.54 (s, 1H). <sup>13</sup>C NMR (126 MHz, CD<sub>2</sub>Cl<sub>2</sub>) δ 162.33, 158.59, 154.83, 154.13, 151.59, 148.58, 146.67, 139.54, 137.90, 132.91, 132.84, 131.19, 129.20, 127.80, 127.54, 125.68, 124.54, 123.61, 123.27, 121.06, 117.32, 117.27, 102.39, 93.25, 45.12, 40.03, 38.73, 33.72, 33.05, 25.67, 21.31. HR-MS (ESI): m/z = 1089.2197,  $[M+H]^+$ , calc. for  $[C_{64}H_{50}N_4Pd_2+H]^+$  m/z = 1089.2182. IR: 2096 cm<sup>-1</sup> v(C=C).

**Synthesis of 3M**. The complex was prepared using the same procedure as that used for **3P** except that **1S** was used as the precursor. Yield: 71%. <sup>1</sup>H NMR (500 MHz, DMSO)

δ 8.87 (s, 2H), 7.71 (t, J = 7.9 Hz, 2H), 7.63–7.50 (m, 4H), 7.41 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H), 7.32–7.11 (m, 8H), 7.06 (d, J = 7.4 Hz, 2H), 6.87 (t, J = 7.4 Hz, 2H), 6.74 (t, J = 7.2 Hz, 2H), 2.99 (dd, J = 36.8, 16.8 Hz, 5H), 2.33–2.23 (m, 1H), 2.23–2.15 (m, 1H), 2.08–1.93 (m, 4H), 1.10 (s, 6H), 0.54 (s, 6H). HR-MS (ESI): m/z = 1089.2185, [M+H]<sup>+</sup>, calc. for [C<sub>64</sub>H<sub>50</sub>N<sub>4</sub>Pd<sub>2</sub>+H]<sup>+</sup> m/z = 1089.2182. IR: 2096 cm<sup>-1</sup> v(C=C).

Synthesis of 4P. To a suspension of 1R (47 mg, 0.1 mmol) and CuI (ca. 1 mg) in 12 mL dichloromethane under N<sub>2</sub> was added 1,2-bis(2,6-diethynylphenyl)ethyne (13 mg, 0.05 mmol) and diisopropylamine (3 mL). The mixture was stirred at room temperature overnight, and then the solvent was evaporated to dryness. The residue was washed thoroughly with MeOH and Et<sub>2</sub>O, and recrystallized from CHCl<sub>3</sub> and Et<sub>2</sub>O to give the pure product. Yield: 7%. <sup>1</sup>H NMR (500 MHz, DMSO)  $\delta$  8.78 (s, 4H), 7.72 (t, *J* = 7.8 Hz, 4H), 7.42 (s, 4H), 7.36 (dd, *J* = 12.8, 8.1 Hz, 8H), 7.24–7.19 (m, 2H), 7.16 (dt, *J* = 51.1, 8.2 Hz, 12H), 6.86 (t, *J* = 7.1 Hz, 4H), 6.68 (t, *J* = 6.9 Hz, 4H), 2.98 (dd, *J* = 56.5, 17.0 Hz, 8H), 2.24 (s, 6H), 2.08–1.91 (m, 4H), 1.76 (s, 4H), 1.33 (d, *J* = 9.7 Hz, 4H), 1.16 (s, 12H), 0.52 (s, 12H). HR-MS (ESI): m/z = 1997.3593, [M+H]<sup>+</sup>, calc. for [C<sub>114</sub>H<sub>90</sub>N<sub>8</sub>Pd<sub>4</sub>+H]<sup>+</sup> m/z = 1997.3554. IR: 2089 cm<sup>-1</sup> v(C=C).

**Synthesis of 4M**. The complex was prepared using the same procedure as that used for **4P** except that **1S** was used as the precursor. Yield: 5%. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  9.08 (s, 4H), 7.49 (t, *J* = 7.9 Hz, 4H), 7.41 (d, *J* = 7.1 Hz, 4H), 7.35 (d, *J* = 7.6 Hz, 4H), 7.08–7.05 (m, 2H), 7.01 (d, *J* = 8.0 Hz, 4H), 6.97 (d, *J* = 7.9 Hz, 8H), 6.93 (s, 4H), 6.85 (t, *J* = 7.4 Hz, 4H), 6.73 (t, *J* = 7.0 Hz, 4H), 2.94 (d, *J* = 27.0 Hz, 8H), 2.58–2.54 (m, 4H), 2.26–2.17 (m, 8H), 2.05–2.01 (m, 4H), 1.16 (s, 12H), 0.50 (s, 12H). HR-MS (ESI): m/z = 1997.3580, [M+H]<sup>+</sup>, calc. for [C<sub>114</sub>H<sub>90</sub>N<sub>8</sub>Pd<sub>4</sub>+H]<sup>+</sup> m/z = 1997.3554. IR: 2089 cm<sup>-1</sup> v(C=C).

|                                    | $3M \cdot CHCl_3 \cdot Et_2O$                | <b>3P</b> ·CHCl <sub>3</sub> ·Et <sub>2</sub> O |
|------------------------------------|----------------------------------------------|-------------------------------------------------|
| formula                            | $C_{68.22}H_{58.66}C_{13.78}N_4O_{0.74}Pd_2$ | $C_{68.02}H_{58.06}Cl_{3.98}N_4O_{0.67}Pd_2$    |
| fw                                 | 1293.13                                      | 1296.14                                         |
| colour                             | orange                                       | orange                                          |
| crystal size                       | 0.32×0.2×0.09                                | 0.39×0.16×0.14                                  |
| crystal system                     | hexagonal                                    | trigonal                                        |
| space group                        | P6 <sub>2</sub>                              | P31                                             |
| <i>a</i> , Å                       | 20.5184(11)                                  | 20.5118(14)                                     |
| <i>b</i> , Å                       | 20.5184(11)                                  | 20.5118(14)                                     |
| <i>c</i> , Å                       | 13.0844(7)                                   | 13.0966(10)                                     |
| α, deg                             | 90                                           | 90                                              |
| $\beta$ , deg                      | 90                                           | 90                                              |
| γ, deg                             | 120                                          | 120                                             |
| <i>V</i> , Å <sup>3</sup>          | 4770.6(6)                                    | 4772.0(7)                                       |
| Ζ                                  | 3                                            | 3                                               |
| $D_{\rm c}$ , g cm <sup>-3</sup>   | 1.350                                        | 1.353                                           |
| $\mu$ , mm <sup>-1</sup>           | 0.768                                        | 0.776                                           |
| <i>F</i> (000)                     | 1974.0                                       | 1978.0                                          |
| $2\theta_{\rm max}$ , deg          | 50.78                                        | 46.53                                           |
| no. reflections                    | 38611                                        | 32825                                           |
| no. independent reflections        | 5835 [ <i>R</i> (int) = 0.0609]              | 8818 [ <i>R</i> (int) = 0.0782]                 |
| no. variables                      | 477                                          | 974                                             |
| $GOF$ on $F^2$                     | 1.090                                        | 1.047                                           |
| Flack parameter                    | 0.02(4)                                      | 0.09(3)                                         |
| $R_1^a[I>2\sigma(I)]$              | 0.0818                                       | 0.0591                                          |
| $wR_2^{b}$                         | 0.2120                                       | 0.1480                                          |
| residual $\rho$ , eÅ <sup>-3</sup> | +1.66, -1.02                                 | +0.65, -0.45                                    |

<sup>*a*</sup>  $R = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$ . <sup>*b*</sup>  $Rw = \{\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2]\}^{1/2}$ 

|            | Medium                          | T / K | $\lambda_{em,max}$ / nm ( $\tau_{em}$ / $\mu s$ ) | φem | kr / s <sup>-1</sup> | glum                |
|------------|---------------------------------|-------|---------------------------------------------------|-----|----------------------|---------------------|
|            | Crystalline                     | 298   | 417; 625 (1.2)                                    | <1% |                      |                     |
|            | 5                               | 77    | 546 (420)                                         |     |                      |                     |
| 2R         | CH <sub>2</sub> Cl <sub>2</sub> | 298   | Non-emissive                                      |     |                      |                     |
|            | 2-MeTHF                         | 77    | 477 (65.0)                                        |     |                      |                     |
|            | Crystalline                     | 298   | 417; 625 (1.2)                                    | <1% |                      |                     |
|            |                                 | 77    | 556 (398)                                         |     |                      |                     |
| 28         | CH <sub>2</sub> Cl <sub>2</sub> | 298   | Non-emissive                                      |     |                      |                     |
|            | 2-MeTHF                         | 77    | 477 (65.0)                                        |     |                      |                     |
|            | Crystalline                     | 298   | 652 (1.2)                                         | 10% |                      |                     |
|            |                                 | 77    | 673 (11.7)                                        |     |                      |                     |
| 3M         | CH <sub>2</sub> Cl <sub>2</sub> | 298   | 642 (3.4)                                         | 50% | $1.5 \times 10^{5}$  | 1×10 <sup>-3</sup>  |
|            | 2-MeTHF                         | 77    | 510 (939.4); 640 (11.7)                           |     |                      |                     |
| 3Р         | Crystalline                     | 298   | 652 (1.3)                                         | 15% |                      |                     |
|            |                                 | 77    | 673 (14.3)                                        |     |                      |                     |
|            | CH <sub>2</sub> Cl <sub>2</sub> | 298   | 642 (3.6)                                         | 54% | 1.3×10 <sup>5</sup>  | -1×10 <sup>-3</sup> |
|            | 2-MeTHF                         | 77    | 510 (928.6); 640 (15.2)                           |     |                      |                     |
|            | Crystalline                     | 298   | 656 (0.02)                                        | <1% |                      |                     |
|            |                                 | 77    | 670 (9.9)                                         |     |                      |                     |
| 4M         | CH <sub>2</sub> Cl <sub>2</sub> | 298   | 647 (3.4)                                         | 41% | $1.2 \times 10^{5}$  | 2×10 <sup>-3</sup>  |
|            | 2-MeTHF                         | 77    | 536 (105.2); 630 (13.7)                           |     |                      |                     |
|            | Crystalline                     | 298   | 670 (0.02)                                        | <1% |                      |                     |
|            |                                 | 77    | 665 (6.3)                                         |     |                      |                     |
| 4 <b>ľ</b> | CH <sub>2</sub> Cl <sub>2</sub> | 298   | 647 (3.5)                                         | 43% | 1.2×10 <sup>5</sup>  | -2×10 <sup>-3</sup> |
|            | 2-MeTHF                         | 77    | 536 (101.6); 630 (13.6)                           |     |                      |                     |

Table S2Photoluminescence data of complexes 2S/2R, 3M/3P and 4M/4P.







Figure S2. <sup>1</sup>H NMR spectrum of 1S in DMSO.



Figure S3. <sup>1</sup>H NMR spectrum of **2R** in DMSO.



Figure S4. <sup>1</sup>H NMR spectrum of 2S in CDCl<sub>3</sub>.





Figure S8. DEPT 135 NMR spectrum of 3P in CD<sub>2</sub>Cl<sub>2</sub>.







**Figure S10.** Partial <sup>1</sup>H-<sup>1</sup>H COSY NMR spectrum of **3P** in CD<sub>2</sub>Cl<sub>2</sub>. 13



Figure S11. <sup>13</sup>C-<sup>1</sup>H HSQC NMR spectrum of **3P** in CD<sub>2</sub>Cl<sub>2</sub>.



Figure S12. Partial <sup>13</sup>C-<sup>1</sup>H HSQC NMR spectrum of **3P** in CD<sub>2</sub>Cl<sub>2</sub>.







Figure S14. <sup>13</sup>C-<sup>1</sup>H HMBC NMR spectrum of **3P** in CD<sub>2</sub>Cl<sub>2</sub>.



Figure S15. Partial <sup>13</sup>C-<sup>1</sup>H HMBC NMR spectrum of **3P** in CD<sub>2</sub>Cl<sub>2</sub>.



**Figure S16.** <sup>1</sup>H-<sup>1</sup>H NOESY NMR spectrum of **3P** in CD<sub>2</sub>Cl<sub>2</sub>. 16



Figure S17. Partial <sup>1</sup>H-<sup>1</sup>H NOESY NMR spectrum of **3P** in CD<sub>2</sub>Cl<sub>2</sub>.



Figure S18. Partial <sup>1</sup>H-<sup>1</sup>H NOESY NMR spectrum of **3P** in CD<sub>2</sub>Cl<sub>2</sub>.



**Figure S19.** The spatial proximities between protons (*a*) and (*n* and *r*) in the crystal structure of  $\mathbf{3P}$ ·CHCl<sub>3</sub>·Et<sub>2</sub>O.



Figure S20. <sup>1</sup>H NMR spectrum of **3P** in DMSO.



Figure S21. <sup>1</sup>H-<sup>1</sup>H COSY NMR spectrum of **3P** in DMSO.



Figure S22. Partial <sup>1</sup>H-<sup>1</sup>H COSY NMR spectrum of **3P** in DMSO.



Figure S23. <sup>1</sup>H-<sup>1</sup>H NOESY NMR spectrum of **3P** in DMSO.



Figure S24. Partial <sup>1</sup>H-<sup>1</sup>H NOESY NMR spectrum of **3P** in DMSO.



Figure S25. <sup>1</sup>H NMR spectrum of 3M in DMSO.



Figure S26. <sup>1</sup>H NMR spectrum of 4P in DMSO.



Figure S27. <sup>1</sup>H NMR spectrum of 4M in CDCl<sub>3</sub>.



Figure S28. HR-MS spectrum of 1R.



Figure S29. HR-MS spectrum of 1S.



Figure S30. HR-MS spectrum of 2R.





Figure S31. HR-MS spectrum of 2S.



Figure S32. HR-MS spectrum of 3P.







Figure S34. HR-MS spectrum of 4P.



Figure S35. HR-MS spectrum of 4M.



**Figure S36.** (left) UV-vis absorption spectra of **2S/2R** and **3M/3P** in CH<sub>2</sub>Cl<sub>2</sub> at 298 K. (right) The mathematic difference  $\Delta \varepsilon$  between **3P** and **2R** ( $\varepsilon$  values multiplied by 2).



**Figure S37.** (left) UV-vis absorption spectra of **2S/2R** and **4M/4P** in CH<sub>2</sub>Cl<sub>2</sub> at 298 K. (right) The mathematic difference  $\Delta \varepsilon$  between **4P** and **2R** ( $\varepsilon$  values multiplied by 4).



Figure S38. Emission and excitation spectra of (left) 3M/3P and (right) 4M/4P  $(1 \times 10^{-5} \text{ M in CH}_2\text{Cl}_2)$  at 298 K.



Figure S39. Solid emission spectra of 2S and 2R at 298 K ( $\lambda_{ex} = 350$  nm).



Figure S40. Solid emission spectra of 2S and 2R at 77 K ( $\lambda_{ex} = 350$  nm).



Figure S41. Glassy emission spectra of 2S and 2R ( $1 \times 10^{-5}$  M in 2-MeTHF) at 77 K ( $\lambda_{ex} = 400$  nm).



Figure S42. Emission and excitation spectra of 2R  $(1 \times 10^{-5} \text{ M in 2-MeTHF})$  at 77 K.



Figure S43. Solid emission spectra of 3M and 3P at 298 K ( $\lambda_{ex} = 500$  nm).



Figure S44. Solid emission spectra of **3M** and **3P** at 77 K ( $\lambda_{ex} = 480$  nm).



Figure S45. Glassy emission spectra of 3M and 3P ( $1 \times 10^{-5}$  M in 2-MeTHF) at 77 K ( $\lambda_{ex}$  = 400 nm).



Figure S46. Emission and excitation spectra of **3P**  $(1 \times 10^{-5} \text{ M in 2-MeTHF})$  at 77 K.



Figure S47. Solid emission spectra of 4M and 4P at 298 K ( $\lambda_{ex} = 450$  nm).



Figure S48. Solid emission spectra of 4M and 4P at 77 K ( $\lambda_{ex} = 450$  nm).



Figure S49. Glassy emission spectra of 4M and 4P ( $1 \times 10^{-5}$  M in 2-MeTHF) at 77 K ( $\lambda_{ex}$  = 430 nm).



**Figure S50.** Emission and excitation spectra of **4P**  $(1 \times 10^{-5} \text{ M in 2-MeTHF})$  at 77 K.



**Figure S51.** Cyclic voltammogram of **3P** in deoxygenated CH<sub>2</sub>Cl<sub>2</sub> solutions at 298 K (supporting electrolyte: 0.1 mol dm<sup>-3</sup>  ${}^{n}$ Bu<sub>4</sub>NPF<sub>6</sub>; scan rate: 50 mVs<sup>-1</sup>).



**Figure S52.** Nanosecond transient absorption spectra of (left) **3P** and (right) **4P** in a deoxygenated CH<sub>2</sub>Cl<sub>2</sub> solution at 298 K (concentration  $\sim 1 \times 10^{-4}$  mol dm<sup>-3</sup>).

#### **Computational Results**

All calculations were performed with Gaussian 09 suit of program<sup>4</sup> employing density functional theory (DFT) and time-dependent density functional theory (TDDFT). The hybrid functional B3LYP<sup>5</sup> and double zeta basis set (LanL2DZ<sup>6</sup> for Pd and 6-31G(d)<sup>7</sup> for other atoms) was applied here. The geometries of ground state folded structure were full optimized based on the X-ray crystal structures. Solvent effects were considered using the Polarizable Continuum Model (PCM)<sup>8</sup> of SCRF procedure for dichloromethane and DMSO in both optimizations and TD calculations, which was also employed experimentally. The singlet vertical excitation energy and corresponding electron transitions as well as the frontier molecular orbital analysis was based on the ground state geometry. Based on the excitation energy ( $E_{n-m}$ ), and oscillator strengths (*f*), the rotatory strength, absorption spectra and ECD spectra were simulated using Gaussian functions. According to the experimental results and the corresponding calculated absorption results, we suggest that the HOMO-1–LUMO transition which can be assigned as MMLCT will cause strong absorption and emission.

(8) V. Barone and M. Cossi, J. Phys. Chem. A, 1998, 102, 1995-2001.

<sup>(&</sup>lt;sup>4</sup>) G. W. T. M. J. Frisch, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, *Gaussian, Inc. Wallingford CT*, 2009.

<sup>(&</sup>lt;sup>5</sup>) A. D. Becke, J. Chem. Phy., 1993, 98, 5648-5652.

<sup>(&</sup>lt;sup>6</sup>) C. E. Check, T. O. Faust, J. M. Bailey, B. J. Wright, T. M. Gilbert and L. S. Sunderlin, J. Phys. Chem. A, 2001, 105, 8111-8116.

<sup>(&</sup>lt;sup>7</sup>) P. C. Hariharan and J. A. Pople, *Theor. Chim. Acta*, 1973, **28**, 213-222.

| МО   | Energy / eV | Assignment                                                                              |
|------|-------------|-----------------------------------------------------------------------------------------|
| L+9  | -0.005      | 7% dπ+dπ*, 82% pπ+pπ*                                                                   |
| L+8  | -0.233      | 5% dπ+dπ*, 86% pπ+pπ*                                                                   |
| L+7  | -0.292      | 4% dπ+dπ*, 91% pπ+pπ*                                                                   |
| L+6  | -0.86       | 2% dπ+dπ*, 92% pπ+pπ*                                                                   |
| L+5  | -0.919      | 98% p\pprox + p\pprox *                                                                 |
| L+4  | -0.988      | 97% p\pprox + p\pprox *                                                                 |
| L+3  | -1.29       | 98% pπ+pπ*                                                                              |
| L+2  | -1.478      | 98% p\pprox + p\pprox *                                                                 |
| L+1  | -1.772      | 4% dπ+dπ*, 90% pπ+pπ*                                                                   |
| LUMO | -2.123      | 3% dπ+dπ*, 89% pπ+pπ*                                                                   |
| HOMO | -5.135      | 27% Pd-dz <sup>2</sup> , 15% dπ+dπ*, 68% pπ+pπ*                                         |
| H-1  | -5.342      | 37% Pd-dz <sup>2</sup> , 17% Pd-dx <sup>2</sup> -y <sup>2</sup> , 50% pπ+dπ             |
| H-2  | -5.362      | 19% Pd-dz <sup>2</sup> , 17% Pd-dx <sup>2</sup> -y <sup>2</sup> , 61% p $\pi$ +d $\pi$  |
| H-3  | -5.649      | 18% Pd-dx <sup>2</sup> -y <sup>2</sup> , 30% dπ+dπ*, 56% pπ+pπ*                         |
| H-4  | -5.682      | 29% Pd-dx <sup>2</sup> -y <sup>2</sup> , 24% dπ+dπ*, 42% pπ+pπ*                         |
| H–5  | -5.792      | 14% Pd-dx <sup>2</sup> -y <sup>2</sup> , 43% d $\pi$ +d $\pi$ *, 48% p $\pi$ +p $\pi$ * |
| Н–6  | -5.831      | 15% Pd-dx <sup>2</sup> -y <sup>2</sup> , 50% dπ+dπ*, 33% pπ+pπ*                         |
| H-7  | -5.994      | 13% dπ+dπ*, 84% pπ+pπ*                                                                  |
| H-8  | -6.078      | 19% dπ+dπ*, 78% pπ+pπ*                                                                  |
| H–9  | -6.378      | 92% p\pprox +p\pprox *                                                                  |

Table S3. Calculated molecular orbitals of complex 3P in  $CH_2Cl_2$ .

| МО   | Energy / eV | Assignment                                                                   |
|------|-------------|------------------------------------------------------------------------------|
| L+9  | -0.386      | 37% dπ+dπ*, 55% pπ+pπ*                                                       |
| L+8  | -0.484      | 19% Pd-dx <sup>2</sup> -y <sup>2</sup> , 31% dπ+dπ*, 46%pπ+pπ*               |
| L+7  | -0.563      | 21% dπ+dπ*, 72% pπ+pπ*                                                       |
| L+6  | -0.965      | 5% dπ+dπ*, 92% pπ+pπ*                                                        |
| L+5  | -0.986      | 5% Pd-dx <sup>2</sup> -y <sup>2</sup> , 92%pπ+pπ*                            |
| L+4  | -1.33       | 5% Pd-dz <sup>2</sup> , 90%pπ+pπ*                                            |
| L+3  | -1.561      | 5% dπ+dπ*, 91% pπ+pπ*                                                        |
| L+2  | -1.671      | 96% pπ+pπ*                                                                   |
| L+1  | -2.085      | 97% p\pprox +p\pprox*                                                        |
| LUMO | -2.171      | 98% pπ+pπ*                                                                   |
| HOMO | -5.321      | 13% Pd-dx <sup>2</sup> -y <sup>2</sup> , 12% dπ+dπ*, 71% pπ+pπ*              |
| H-1  | -5.623      | 19% Pd-dx <sup>2</sup> -y <sup>2</sup> , 14% dπ+dπ*, 61% pπ+pπ*              |
| H-2  | -5.908      | 36% Pd-dz <sup>2</sup> , 17% Pd-dx <sup>2</sup> -y <sup>2</sup> , 42% pπ+pπ* |
| H-3  | -5.983      | 20% Pd-dx <sup>2</sup> -y <sup>2</sup> , 24% dπ+dπ*, 47%p π+pπ*              |
| H-4  | -6.016      | 14% Pd-dx <sup>2</sup> -y <sup>2</sup> , 23% dπ+dπ*, 58% pπ+pπ*              |
| H–5  | -6.062      | 15% Pd-dz <sup>2</sup> , 25% dπ+dπ*, 57% pπ+pπ*                              |
| H–6  | -6.165      | 24% Pd-dz <sup>2</sup> , 37% dπ+dπ*, 43% pπ+pπ*                              |
| H–7  | -6.193      | 13% dπ+dπ*, 83%pπ+pπ*                                                        |
| H-8  | -6.47       | 21% Pd-dz <sup>2</sup> , 26% dπ+dπ*, 49% pπ+pπ*                              |
| H–9  | -6.547      | 35% Pd-dz <sup>2</sup> , 10% dπ+dπ*, 51% pπ+pπ*                              |

**Table S4.** Calculated molecular orbitals of complex **3P** in DMSO.



Figure S45. Calculated molecular orbitals of complex 3P in  $CH_2Cl_2$  (left) and in DMSO (right).

**Table S5.** Calculated transition oscillation strength and rotatory strength of complex**3P** in CH<sub>2</sub>Cl<sub>2</sub>.

| Energy / | Energy / | Oscillation | Rotatory | Transition Configuration                                                    |  |
|----------|----------|-------------|----------|-----------------------------------------------------------------------------|--|
| eV       | nm       | Strength    | Strength |                                                                             |  |
| 2.4013   | 516.32   | 0.0095      | -8.4018  | H→L 74.2%, H-1→L 21.2%                                                      |  |
| 2.5908   | 478.55   | 0.0209      | 75.1811  | H-1→L 69.5%, H→L 23.5%                                                      |  |
| 2.6938   | 460.25   | 0.0176      | -44.59   | H-2→L 89.1%, H-1→L 7.3%                                                     |  |
| 2.7349   | 453.34   | 0.008       | -8.3014  | H→L+1 74.3%, H-1→L+1 18.8%                                                  |  |
| 2.8709   | 431.87   | 0.0044      | 24.3521  | H-3→L 64.3%, H-4→L 31.7%                                                    |  |
| 2.8982   | 427.8    | 0.0026      | -16.7408 | H-4→L 59.4%, H-3→L 31.8%                                                    |  |
| 2.938    | 422      | 0.0106      | 26.4529  | H-1→L+1 56.7%, H→L+1 22.7%, H-2→L+1 17.0%                                   |  |
| 3.0113   | 411.73   | 0.0199      | -50.2639 | H-5→L 79.7%, H-6→L 7.7%                                                     |  |
| 3.0357   | 408.42   | 0.0294      | -3.3924  | H-2→L+1 70.8%, H-1→L+1 20.6%                                                |  |
| 3.0654   | 404.47   | 0.0067      | -5.4589  | H→L+2 77.9%, H-1→L+2 15.3%                                                  |  |
| 3.0999   | 399.96   | 0.009       | -27.1242 | H-6→L 83.5%, H-5→L 7.9%                                                     |  |
| 3.1987   | 387.6    | 0.005       | 56.6294  | H-3→L+1 85.4%                                                               |  |
| 2 2524   | 291.00   | 0.0242      | 75 2005  | $H-1\rightarrow L+253.0\%, H\rightarrow L+316.7\%, H\rightarrow L+213.5\%,$ |  |
| 3.2534   | 381.09   | 0.0242      | /5.3985  | H-1→L+3 8.4%                                                                |  |
| 3.2611   | 380.19   | 0.0106      | 7.8522   | H→L+3 53.1%, H-1→L+2 18.1%, H-1→L+3 14.4%                                   |  |
| 3.2877   | 377.12   | 0.003       | 17.7962  | H-4→L+1 84.7%, H-3→L+1 5.6%                                                 |  |
| 3.3389   | 371.33   | 0.0186      | -39.7861 | H-2→L+2 80.2%, H-1→L+2 5.2%                                                 |  |
| 3.3684   | 368.08   | 0.063       | -21.9279 | H-7→L 62.7%, H-8→L 13.2%, H-6→L+1 10.1%                                     |  |
| 3.3878   | 365.98   | 0.0284      | 28.0655  | H-6→L+1 46.8%, H-5→L+1 34.2%                                                |  |
| 3.4044   | 364.19   | 0.0068      | 13.3055  | H-5→L+1 58.0%, H-6→L+1 25.3%                                                |  |
| 2 4592   | 259 57   | 0.0172      | 15 2661  | H-1→L+3 47.5%, H→L+3 20.4%, H→L+4 9.2%, H-                                  |  |
| 5.4562   | 556.52   | 0.0172      | 13.2001  | 2→L+3 8.5%                                                                  |  |
| 3.4946   | 354.79   | 0.0196      | 73.803   | H-8→L 53.9%, H-7→L 18.5%, H→L+4 13.5%                                       |  |
| 3 5786   | 351 37   | 0.051       | 150 669  | H→L+4 40.2%, H-8→L 20.5%, H-2→L+3 18.8%, H-                                 |  |
| 5.5280   | 551.57   | 0.051       | -130.008 | 1→L+3 10.1%                                                                 |  |
| 3.5436   | 349.89   | 0.0346      | -68.1509 | H-3→L+2 70.2%, H-9→L 6.9%, H-4→L+2 5.4%                                     |  |
| 3.5474   | 349.51   | 0.0147      | 5.0389   | H-2→L+3 39.2%, H-4→L+2 23.7%, H→L+4 17.1%                                   |  |
| 3.5892   | 345.44   | 0.0085      | 21.9658  | H→L+5 37.1%, H-4→L+2 32.2%, H-2→L+3 5.4%                                    |  |
| 3 6106   | 343 30   | 0.0323      | 37 4000  | H→L+5 33.7%, H-4→L+2 22.4%, H-2→L+3 14.0%,                                  |  |
| 5.0100   | 545.57   | 0.0323      | 57.4009  | H→L+4 7.6%, H-5→L+2 5.6%                                                    |  |
| 3.65     | 339.68   | 0.0022      | -3.6443  | H→L+6 50.7%, H-10→L 21.1%, H-1→L+6 11.0%                                    |  |
| 3 6511   | 330 27   | 0.000       | 31 8582  | H-10→L 25.5%, H-5→L+2 24.9%, H→L+6 18.9%,                                   |  |
| 5.0544   | 559.21   | 0.009       | 51.6562  | H-3→L+3 8.1%                                                                |  |
| 2 606    | 225 15   | 0.0179      | 6 0060   | H-10  L 28.5%, H-5  L+2 25.2%, H-7  L+1 21.1%,                              |  |
| 3.090    | 333.43   | 0.0178      | -0.9969  | H-8→L+1 5.3%, H-4→L+3 5.1%                                                  |  |
| 3.7024   | 334.88   | 0.0549      | 65.1491  | H-3→L+3 24.2%, H-7→L+1 20.8%, H-10→L 14.0%,                                 |  |

| 3.7202 | 333.27 | 0.0384 | 0.5551  | H-6→L+2 30.0%, H-7→L+1 20.5%, H-3→L+3<br>13.4%                           |
|--------|--------|--------|---------|--------------------------------------------------------------------------|
| 3.7315 | 332.27 | 0.0097 | 19.7001 | H-1→L+4 30.9%, H-3→L+3 19.3%, H-9→L 12.4%,<br>H-1→L+5 7.2%, H→L+5 6.0%   |
| 3.7439 | 331.16 | 0.0068 | 13.6678 | H-6→L+2 26.9%, H-3→L+3 22.0%, H-1→L+4<br>20.1%, H-1→L+5 7.0%, H→L+5 5.5% |
| 3.78   | 328    | 0.0206 | -2.8078 | H-2→L+4 40.0%, H-9→L 21.9%, H-4→L+3 12.9%,<br>H-6→L+2 8.7%               |

**Table S6.** Calculated transition oscillation strength and rotatory strength of complex**3P** in DMSO.

| Energy /   | Energy /      | Oscillation | Rotatory        | Transition Configuration                    |
|------------|---------------|-------------|-----------------|---------------------------------------------|
| eV         | nm            | Strength    | Strength        |                                             |
| 2.6318     | 471.42682     | 0.0193      | 143.0829        | H→L97.2%                                    |
| 2.7382     | 453.10828     | 0.0231      | -54.7265        | H→L+1 96.7%                                 |
| 2.9173     | 425.29089     | 0.0344      | -47.3934        | H-1→L 89.3%                                 |
| 2.9976     | 413.89815     | 0.0195      | 20.0274         | H-1→L+1 69.1%, H-2→L 20.9%                  |
| 3.0637     | 404.96821     | 0.0046      | 84.5735         | H-2→L 64.4%, H-1→L+1 20.8%                  |
| 2 1205     | 207 50 600    | 0.00.62     | 14 5501         | H-3→L 34.1%, H-2→L+1 26.6%, H-4→L+1 8.9%,   |
| 3.1205     | 397.39689     | 0.0063      | -14.5591        | H-4→L 8.9%, H-3→L+1 7.0%, H-5→L 6.4%        |
| 0.10.55    | 00 4 00 1 1 0 | 0.00.60     | <b>2</b> 0 60 6 | H-4→L 32.5%, H-3→L 26.2%, H-4→L+1 13.2%, H- |
| 3.1266     | 396.82118     | 0.0063      | 2.9606          | 2→L+1 9.2%, H-3→L+1 7.6%                    |
| 3.1476     | 394.17369     | 0.0069      | -12.0171        | H-2→L+1 36.9%, H-4→L 20.5%, H-3→L+1 17.4%   |
| 3.1782     | 390.37855     | 0.0181      | -26.9567        | H→L+2 88.1%                                 |
| 2 2705     | 270.0(100     |             | 1.0281          | H-5→L 37.4%, H-6→L 22.1%, H-5→L+1 12.4%, H- |
| 3.2705     | 379.36129     | 0.019       |                 | 6→L+1 8.7%                                  |
| 2 2700     | 270 27404     | 0.0221      | 26.6043         | H-6→L 38.1%, H-5→L 27.4%, H-5→L+1 9.0%, H-  |
| 3.2799     | 378.27406     | 0.0231      |                 | 6→L+1 7.6%                                  |
| 3.3089     | 374.95878     | 0.0267      | -19.3939        | H→L+3 91.0%                                 |
| 2.2624     | 2 (0,00071    | 0.0020      | 1 0 1 1 1       | H-3→L+1 53.4%, H-4→L 23.3%, H-4→L+1 10.1%,  |
| 3.3624     | 368.99271     | 0.0029      | -1.2111         | H-3→L 9.5%                                  |
|            | 0.000         | 0.002       |                 | H-4→L+1 61.9%, H-3→L 13.8%, H-4→L 10.8%, H- |
| 3.3888     | 366.11812     | 0.002       | 2.3902          | 3→L+1 8.6%                                  |
| 3.4209     | 362.68266     | 0.048       | 142.7123        | H→L+4 51.1%, H-5→L+1 24.5%, H-6→L 13.6%     |
| 3.4424     | 360.41747     | 0.0479      | 158.5829        | H-5→L+1 45.1%, H→L+4 36.4%, H-6→L 5.2%      |
| 3.4436 360 |               | 0.0004      | 0.0601          | H-6→L+1 54.8%, H-5→L 15.4%, H-2→L+1 13.5%,  |
|            | 360.29187     |             |                 | H-8→L 5.4%                                  |
| 3.464      | 358.17006     | 0.0335      | -36.9951        | H-1→L+2 88.0%                               |

| 3.5634           | 348.17901 | 0.0115   | -5.1105                                     | H-1→L+3 49.4%, H-2→L+2 31.8%, H-7→L 5.6%    |
|------------------|-----------|----------|---------------------------------------------|---------------------------------------------|
| 3.5838           | 346.19708 | 0.0302   | 52.7119                                     | H-7→L 81.7%, H-2→L+2 5.5%                   |
| 3.612            | 343.49421 | 0.0052   | 24.629                                      | H-2→L+2 48.5%, H-1→L+3 40.0%                |
| 3.6636           | 338.65627 | 0.0031   | -6.6391                                     | H-7→L+1 83.5%, H-1→L+4 5.3%                 |
| 3.6852           | 336.67131 | 0.0014   | -0.0018                                     | H-2→L+3 60.6%, H-5→L+2 7.2%                 |
| 2 7114           | 224 20462 | 0.0242   | 26 7525                                     | H-8→L 58.9%, H-6→L+1 12.9%, H-9→L 6.3%, H-  |
| 5./114           | 554.29405 | 0.0342   | 20.7555                                     | 5→L+2 5.5%                                  |
| 3.7219           | 333.35154 | 0.0554   | -143.6553                                   | H-1→L+4 67.5%, H-4→L+2 6.0%, H-8→L 6.0%     |
| 3.7462           | 331.18923 | 0.0266   | 72.4596                                     | H-3→L+2 70.4%                               |
| 2 7721           | 220 02005 | 0.05.00  | 102 4251                                    | H-8→L+1 43.3%, H-4→L+2 11.7%, H-9→L+1 7.6%, |
| 5.7751           | 526.62605 | 0.0309   | -102.4231                                   | H-6→L 5.8%                                  |
| 3.7785           | 328.35811 | 0.0918   | -96.8753                                    | H-4→L+2 42.4%, H-8→L+1 13.7%, H-3→L+3 5.2%  |
| 2 7040 226 02000 | 0.0072    | 51 (275  | H-9→L 34.4%, H-5→L+2 16.8%, H-10→L 14.8%,   |                                             |
| 5.7949           | 520.95908 | 0.0072   | 31.0273                                     | H-2→L+3 10.5%                               |
| 3 8039 326 16554 | 0.0271    | _25 0232 | H-6→L+2 25.1%, H-10→L 19.5%, H-9→L+1 15.3%, |                                             |
| 5.8039           | 520.10554 | 0.0271   | -25.0232                                    | H-9→L 10.7%, H-5→L+3 7.1%                   |
| 3.8132           | 325.37006 | 0.0061   | -24.201                                     | H→L+5 77.6%, H-5→L+2 7.8%                   |
| 2,9251 224,25792 | 0 1121    | 105 0192 | H-5→L+2 34.9%, H-9→L 16.4%, H-8→L 10.3%,    |                                             |
| 5.8251           | 524.55762 | 0.1121   | 105.0185                                    | H→L+5 8.6%, H-3→L+3 7.5%                    |
| 3.8378           | 323.28446 | 0.0076   | 12.1361                                     | H→L+6 87.2%, H→L+5 5.9%                     |
| 2.9524 221.05570 | 0.1204    | 110 4102 | H-6→L+2 24.6%, H-10→L 24.6%, H-2→L+4 14.8%, |                                             |
| 5.6554           | 521.97508 | 0.1364   | -119.4103                                   | H-9→L+1 8.6%                                |
| 3.8658 320.94291 | 0.0017    | 5.8854   | H-3→L+3 57.7%, H-4→L+2 17.1%, H-4→L+3 5.5%, |                                             |
|                  |           |          | H-6→L+3 5.3%                                |                                             |