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I. SCREENING FUNCTION

Here we demonstrate a derivation of the screening function of the dipolar polymer gel

within the random phase approximation (RPA)1. The screening function within such ap-

proach can be calculated as follows1

κ2(k) =
4π

εkBT
C(k), (1)

where C(k) is the Fourier-image of the charge density correlation function

C(r− r′) = 〈ρ̂(r)ρ̂(r′)〉 , (2)

where 〈(...)〉 means averaging over statistics of the polymer subchains without dipoles. Tak-

ing into account that the microscopic charge density is determined by the following expres-

sion
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′
, (4)

where indices (i, j) enumerate the subchains, while (αi, γj) – their monomer units. We have

also used the Fourier-representation of the Dirac delta-function

δ(x) =

∫
dk

(2π)3
eikx. (5)

Using the identity1
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we arrive at
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q2

V
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∫
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′)
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〉
r
|1− ω(k)|2, (7)

where we extracted averaging over the monomer units coordinates rαii and displacements ξαii
of the grafted charged centers and took into account that ω(k) =

〈
eikξ

αi
i

〉
ξ
. Further, using

the definition of the structure factor2

S(k) = 1 +
1

nm

∑
i,j

∑
αi 6=γi,γj

〈
e−ik(r

αi
i −r

γj
j )
〉
r
, (8)

we obtain

C(r− r′) =

∫
dk

(2π)3
eik(r−r

′)C(k), (9)

where

C(k) = 2q2c

(
1−Re(ω(k)) +

1

2
(S(k)− 1) |1− ω(k)|2

)
(10)

with the monomer unit concentration c = mn/V . Therefore, according to eq. (1), the

screening function takes the following form

κ2(k) =
8πq2c

εkBT

(
1−Re(ω(k)) +

1

2
(S(k)− 1) |1− ω(k)|2

)
, (11)

where Re(ω(k)) is the real part of the complex function, ω(k). In the case of a spherically

symmetric distribution function, for which ω(−k) = ω(k) and Re(ω(k)) = ω(k), we obtain

eq. (5), written in the main text. In the absence of chain connectivity, when S(k) = 1, the

screening function transforms into the expression for the solution of low-molecular weight

dipolar molecules obtained earlier1. For the case of the unbound charged sites (ω(k) = 0),

the screening function transforms into the expression for salt-free polyelectrolyte solutions

obtained for the first time in paper3.

II. ELECTROSTATIC FREE ENERGY

In this section, we derive the electrostatic free energy of the dipolar gel within the RPA1,3.

Using the approximation of independent subchains, the electrostatic (corrrelation) free en-

ergy can be written as follows3

Fcor =
V kBT

2

∫
dk

(2π)3

(
ln

(
1 +

κ2(k)

k2

)
− κ2(k)

k2

)
, (12)
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where the screening for spherically symmetric probability distribution function ω(r) takes

the form

κ2(k) = κ2D(1− ω(k))

(
1 +

1

2
(S(k)− 1) (1− ω(k))

)
. (13)

The reference structure factor of the subchain for m� 1 is approximated by the well-known

Debye structure factor S(k) ≈ 1 + 12/(k2b2) of the Gaussian chain, where b is the Kuhn’s

length. Using the ansatz for the characteristic function ω(k) = (1 + k2l2/6)−1, where l is

the dipole length, we arrive at

Fcor = F (d)
cor + F (ch)

cor , (14)

where the first term is the electrostatic free energy of the unbound dipolar monomers,

determined by the expression1

F (d)
cor = −V kBT

l3
σ(y), (15)

with the strength of the electrostatic interactions y = 4πp2c/(3kBTε) (p = ql is the dipole

moment) and auxiliary function

σ(y) =

√
6

4π

(
2(1 + y)3/2 − 2− 3y

)
. (16)

The second term determines the effect of the chain connectivity on the electrostatic free

energy and can be written in the following form

F (ch)
cor = −V kBT

l3
δ(y, γ), (17)

with a geometric parameter γ = l2/b2 and the auxiliary functions

δ(y, γ) = δ1(y, γ) + δ2(y, γ), (18)

δ1(y, γ) =
3
√

6

4π

(
1 +

y

2
−
√

1 + y
)
γ, (19)

δ2(y, γ) =

√
6γ2y2

4π(y − γ(1 + y))2

[
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√
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√
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y
+

1√
2

((
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√
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+
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√
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. (20)
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III. DISCUSSION OF THE DIPOLE NONLOCALITY EFFECT

We would like to note that the condition γ ≈ 1 can be realized for zwitterionic polymers,

such as polyesters, polyphosphazenes, and polyphosphobetaines4. For the polyelectrolyte

chains, immersed in the low-polar solvents5,6, where the monomer units and counterions

usually form solvent-separated ionic pairs with a fluctuating mutual distance, γ can be

greater than unity. It is also worth noting that at sufficiently small γ (l� b), the contribu-

tion of the electrostatic interactions between the dipolar monomer units can be described

with good accuracy by the electrostatic free energy of the freely moving dipolar particles

(see, eq.(15)). Note that we have discussed this limiting regime earlier in the context of

the conformational behavior of a single dipolar polymer chain with point-like dipoles on

its monomer units7. However, for the subchains with γ ∼ 1, the contribution (17) to the

electrostatic free energy becomes considerable. In other words, when the dipole length is

comparable with the Kunh length, the approximation of disconnected monomers, used for

different condensed polymer systems with the short-range volume interactions8,9, gives a

large discrepancy.

Now we would like to discuss the parameters of the real polymers, for which one can

expect to observe experimentally the discussed above transition. For instance, the dipole

moment of monomer units of the polybetaines can reach ≈ 24− 34 D (see10 and references

therein). Thus, the dipole length, l = p/e, where e is the elementary charge, for these

polymers is in range ≈ 0.5− 0.7 nm. For the polymer chains with dipole moment p = 24 D,

immersed in water at T = 300 K (ε ≈ 78) we obtain the coupling parameter λ ≈ 6 which

is in the region of the collapsed gel, depicted on Fig. 3 in the main text for Φ0 = 10−3. In

order to avoid the collapse, in this case, it is necessary to enhance significantly the reference

volume fraction, Φ0, of the monomer units.
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