<Supplementary information>

A cyclic manipulation of cage isomers via anion exchange and unique isomerism

Seonghyeon Park,¹ Dongwon Kim,¹ Doheon Kim,¹ Dongwook Kim² and Ok-Sang Jung^{1,*}

¹ Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea

² Center for Hydrocarbon Functionalizations, IBS, Daejon 34141, Republic of Korea Fax: (+82) 51-5163522; Tel: (+82) 51-5103240; E-mail: oksjung@pusan.ac.kr

Experimental Procedures

Materials and Physicochemical Measurements.

All chemicals including palladium(II) nitrate were purchased from Sigma-Aldrich and used without further purification. PdX_2 (X⁻ = BF₄⁻ and ClO₄⁻) was prepared by anion exchange of PdCl₂ with AgX. Elemental microanalyses (C, H, N) were performed on crystalline samples at the KBSI Busan Center using a Vario-EL III analyzer. Infrared spectra were obtained on a Nicolet 380 FT-IR spectrophotometer using samples prepared as KBr pellets. ¹H and ¹³C NMR spectra were recorded on a Varian Mercury Plus 300 or an Agilent Superconducting FT-NMR 600 MHz Spectrometer, ¹¹B and ¹⁹F NMR spectra on an Agilent Superconducting FT-NMR 600 MHz Spectrometer while the ¹¹B and ¹⁹F chemical shifts were automatically determined. Thermal analyses were performed under N₂ at a scan rate of 10 °C/min using a Perkin Elmer-TGA-DSC 4000. Electrospray time of flight ionization mass spectrometry (ESI-TOF-MS) was recorded on a Synapt G2 mass spectrometer (WATERS) at Ochang center, KBSI.

Synthesis of Cyclohexyl(methyl)bis(3-pyridyl)silane (L).

To a solution of 3-bromopyridine (6.32 g, 40 mmol) in dry diethyl ether (70 mL) under a nitrogen gas atmosphere, n-butyllithium (18 mL of 2.5 M solution in n-hexane, 45 mmol) was added dropwise at -78 °C. The resulting mixture was allowed to warm to 0 °C, after which it was stirred for 1 h. Then, (cyclohexyl)(methyl)dichlorosilane (3.61 mL, 20 mmol) was slowly added to the yellow suspension at -78 °C, and then the reaction mixture was stirred at room temperature for 12 h. Distilled water (40 mL) subsequently was added, and the organic layer was separated. The organic solution was washed with distilled water several times, and then was dried over anhydrous magnesium sulfate. The crude product was then purified by column chromatography using ethyl acetate and n-hexane as eluents. The solvent was evaporated to obtain a yellowish-brown viscous liquid in a 70.0% yield (3.95 g). Anal. Calcd for C, 72.29; H, 7.85; N, 9.92%. Found: C, 71.60; H, 7.71; N, 9.78. ¹H NMR (300 MHz, Me₂SO-*d*₆, δ): 8.65 (s, 2H), 8.59 (d, *J* = 4.70 Hz, 2H), 7.88 (d, *J* = 7.63 Hz, 2H), 7.39 (t, *J* = 12.33 Hz, 2H), 1.68-1.10 (m, 11H), 0.59 (s, 3H). IR (KBr pellet, cm-1): 1577 (m), 1573 (s), 1565 (m), 1473 (w), 1446 (w), 1400 (m), 1396 (s), 1330 (m), 1253 (m), 1222 (w), 1195 (m), 1122 (m), 1029 (m), 887 (m), 783 (s), 713 (s), 474 (m).

endo-Me₈-[(NO₃)₂@Pd₄L₈](NO₃)₆·5Me₂SO (via Self-Assembly).

The reaction of Pd(NO₃)₂ (0.1 mmol, 23 mg) with L (0.2 mmol, 56 mg) in Me₂SO at 70 °C was stirred for 12 h. Then, ethyl acetate was slowly diffused into the solution, which resulted in colorless crystals after 7 days in a 67% yield. m.p. 258 °C (dec). Anal. Calcd for C, 51.61; H, 5.71; N, 10.47. Found: C, 50.90; H, 5.66; N, 10.40. ¹H NMR (300 MHz, Me₂SO-*d*₆, δ): 9.68 (s, 1H), 9.60 (s, 1H), 9.36 (d, *J* = 4.70 Hz, 1H), 9.29 (d, *J* = 5.28 Hz, 1H), 8.60 (d, *J* = 7.04 Hz, 1H), 8.22 (d, *J* = 6.46 Hz, 1H), 7.71 (t, *J* = 12.33 Hz, 2H), 1.77-1.15 (m, 11H), 0.93 (s, 3H). IR (KBr pellet, cm⁻¹): 1591 (m), 1483 (w), 1384 (s, NO₃⁻), 1263 (w), 1197 (w), 1124 (w), 1029 (w), 956 (w), 887 (w), 792 (m), 703 (m), 532 (w), 499 (w).

exo-Me₄,endo-Me₄-[(NO₃)₂@Pd₄L₈](NO₃)₆·5Me₂SO (via Anion Exchange).

An aqueous solution of NaNO₃ (42.0 mg, 0.5 mmol) was added to a suspension of microcrystalline *exo*-Me₄,*endo*-Me₄-[(ClO₄)₂@Pd₄L₈](ClO₄)₆·5Me₂SO (19.4 mg, 0.005 mmol; synthesized as described below) in water (8 mL) at room temperature. The reaction mixture was stirred for 5 days, filtered, and washed with several aliquots of water and ethyl acetate. The exchanged product was recrystallized in a mixture of Me₂SO and ethyl acetate for 7 days to obtain single crystals in a 59% yield. m.p. 265 °C. Anal. Calcd for C, 51.34; H, 5.58; N, 10.57. Found: C, 50.90; H, 5.64; N, 10.51. ¹H NMR (300 MHz, Me₂SO-*d*₆, δ): 8.86 (t, *J* = 11.74 Hz, 1H), 8.72-8.58 (m, 3H), 8.51-8.43 (m, 3H), 8.36 (s, 2H), 8.07 (t, *J* = 14.67 Hz, 1H), 8.00 (d, *J* = 5.87 Hz, 1H), 7.96 (d, *J* = 4.70 Hz, 1H), 7.86 (t, *J* = 11.74 Hz, 11H), 7.66 (t, *J* = 12.91 Hz, 3H), 7.47 (q, *J* = 19.96 Hz, 1H), 7.36 (t, *J* = 8.80 Hz, 1H), 7.11-7.04 (m, 1H), 1.60-0.09 (m, 11H), 0.69 (s, 3H), 0.59 (s, 3H). IR (KBr pellet, cm⁻¹): 1591 (m), 1483 (w), 1384 (s, NO₃⁻), 1344 (w), 1207 (w), 1135 (w), 1083 (w), 956 (w), 887 (w), 844 (w), 819 (w), 790 (m), 757 (w), 700 (w), 422 (w).

exo-Me₄,endo-Me₄-[(BF₄)₂@Pd₄L₈](BF₄)₆·4Me₂SO (via Self-Assembly).

The self-assembly reaction of Pd(BF₄)₂ (0.1 mmol, 28 mg) with L (0.2 mmol, 56 mg) in Me₂SO at 70 °C for 12 h gave rise to the crude product. Ethyl acetate was slowly diffused to the reaction solution to obtain single crystals after 10 days in a 59% yield. m.p. 267 °C (dec). Anal. Calcd for C, 48.33; H, 5.25; N, 6.63. Found: C, 48.10; H, 5.34; N, 6.50. ¹H NMR (600 MHz, Me₂SO-*d*₆, δ): 8.74 (d, *J* = 5.65 Hz, 1H), 8.53 (d, *J* = 5.65 Hz, 1H), 8.50 (s, 1H), 8.39 (d, *J* = 9.00 Hz, 2H), 8.34 (d, *J* = 7.48 Hz, 1H), 8.29(s, 1H), 7.96 (d, *J* = 7.48 Hz, 1H), 7.92 (d, *J* = 5.49 Hz, 1H), 7.89 (d, *J* = 5.34 Hz, 1H), 7.76 (t, *J* = 13.12 Hz, 1H), 7.55 (t, *J* = 13.28 Hz, 1H), 7.47 (br, 1H), 7.37 (t, *J* = 13.43 Hz, 1H), 7.26 (t, *J* = 13.28 Hz, 1H), 6.97 (d, *J* = 7.48 Hz, 1H), 1.55-0.00 (m, 22H), 0.53 (d, *J* = 28.99 Hz, 6H). ¹³C NMR (Me₂SO-*d*₆, δ): 157.08, 156.90, 156.47, 154.54, 153.57, 152.22, 148.15, 147.44, 146.69, 135.22, 134.60, 133.78, 131.07, 127.83, 127.24, 126.76, 28.95-20.99, -8.20, 9.08. IR (KBr pellet, cm⁻¹): 1643 (br, m), 1593 (s), 1479 (w), 1444 (w), 1406 (m), 1342 (m), 1263 (w), 1203 (w), 1035 (br, BF₄⁻), 953 (w), 887 (w), 793 (s), 761 (m), 700 (m), 522 (w), 457 (w).

endo-Me₈-[(BF₄)₂@Pd₄L₈](BF₄)₈·5Me₂SO (via Anion Exchange).

An aqueous solution of NH₄BF₄ (52.4 mg, 0.5 mmol) was added to a suspension of microcrystalline *endo*-Me₈-[(NO₃)₂@Pd₄L₈](NO₃)₆·5Me₂SO (17.9 mg, 0.005 mmol) in water (8 mL) at room temperature. The reaction mixture was stirred for 24 h, filtered, and washed with several aliquots of water and ethyl acetate. Recrystallization in a mixture of Me₂SO and ethyl acetate resulted in the formation of crystals after 7 days in a 60% yield. m.p. 266 °C (dec). Anal. Calcd for C, 46.51; H, 5.51; N, 5.94. Found: C, 46.70; H, 5.60; N, 5.80. ¹H NMR (600 MHz, Me₂SO-*d*₆, δ): 9.67 (d, *J* = 7.78 Hz, 1H), 9.61 (d, *J* = 10.07 Hz, 1H), 9.48 (s, 1H), 9.37 (d, *J* = 5.65 Hz, 1H), 9.34 (t, *J* = 15.11 Hz, 2H), 9.28 (t, *J* = 11.60 Hz, 2H), 8.59 (d, *J* = 5.49 Hz, 2H), 8.21 (d, *J* = 5.19 Hz, 2H), 7.72 (q, *J* = 16.63 Hz, 4H), 1.91-0.50 (m, 22H), 0.94 (d, *J* = 10.83 Hz, 3H), 0.80 (d, *J* = 12.82 Hz, 3H). IR (KBr pellet, cm⁻¹): 1592 (m), 1477 (w), 1446 (w), 1408 (m), 1342 (w), 1261 (w), 1203 (w), 1083 (br, BF₄⁻), 953 (w), 887 (w), 793 (s), 705 (m), 605 (w), 566 (w), 532 (m), 499 (w), 460 (w), 432 (w).

exo-Me₄,endo-Me₄-[(ClO₄)₂@Pd₄L₈](ClO₄)₆·5Me₂SO (via Self-Assembly).

The reaction of PdCl₂ (0.1 mmol, 18 mg) with AgClO₄ (0.2 mmol, 41 mg) in Me₂SO at 50 °C for 1h produced Pd(ClO₄)₂. Then, self-assembly of Pd(ClO₄)₂ (0.1 mmol, 31 mg) with L (0.2 mmol, 56 mg) in Me₂SO at 70 °C for 12 h was accomplished. Ethyl acetate was slowly diffused into the reaction solution to obtain colorless crystals after 10 days in 62% yields. m.p. 319 °C (dec). Anal. Calcd for C, 46.93; H, 5.10; N, 6.44. Found: C, 46.30; H, 5.21; N, 6.30. ¹H NMR (600 MHz, Me₂SO-*d*₆, δ): 8.81 (d, *J* = 5.87 Hz, 1H), 8.59 (s, 1H), 8.58 (s, 1H), 8.46 (s, 1H), 8.43 (d, *J* = 4.70 Hz, 2H), 8.39 (d, *J* = 7.63 Hz, 1H), 7.82 (s, 1H), 8.01 (d, *J* = 7.63 Hz 1H), 7.95 (d, *J* = 5.87 Hz, 1H), 7.91 (d, *J* = 5.28 Hz, 1H), 7.82 (t, *J* = 12.91 Hz, 1H), 7.61 (t, *J* = 13.50 Hz 1H), 7.42 (t, *J* = 13.50 Hz, 1H), 7.32 (t, *J* = 13.50 Hz, 1H), 7.04 (d, *J* = 7.63 Hz, 1H), 1.62-0.08 (m, 22H), 0.65 (s, 1H), 0.55 (s, 1H). IR (KBr pellet, cm⁻¹): 1592 (m), 1477 (w), 1466 (w), 1404 (m), 1338 (m), 1265 (w), 1207 (w), 1087 (br, ClO₄⁻), 1025 (w), 790 (s), 698 (s), 625 (s), 524 (w), 455 (m).

endo-Me₈-[(ClO₄)₂@Pd₄L₈](ClO₄)₆·5Me₂SO (via Anion Exchange).

An aqueous solution of NH₄ClO₄ (52.4 mg, 0.5 mmol) was added to a suspension of microcrystalline *endo*-Me₈-[(NO₃)₂@Pd₄L₈](NO₃)₆·5Me₂SO (17.9 mg, 0.005 mmol) in water (8 mL) at room temperature. The reaction mixture was stirred for 24 h, filtered, and washed with several aliquots of water and ethyl acetate. Recrystallization in a mixture of Me₂SO and ethyl acetate resulted in the formation of crystals after 7 days in a 70% yield. m.p. 266 °C (dec). Anal. Calcd for C, 46.23; H, 5.21; N, 6.16. Found: C, 46.20; H, 5.34; N, 6.20. ¹H NMR (600 MHz, Me₂SO-*d*₆, δ): 9.63 (t, *J* = 30.52 Hz 1H), 9.61 (t, *J* = 31.69 Hz, 1H), 9.45 (s, 1H), 9.43 (s, 1H), 9.35 (d, *J* = 5.28 Hz, 1H), 9.32 (t, *J* = 11.15 Hz, 2H), 9.26 (d, *J* = 5.84 Hz, 1H), 8.56 (d, *J* = 7.63 Hz, 2H), 8.19 (d, *J* = 8.22 Hz, 2H), 7.71 (t, *J* = 12.91 Hz, 2H), 7.68 (t, *J* = 12.91 Hz, 2H), 1.75-0.75 (m, 22H), 0.79 (s, 3H), 0.75 (s, 3H). IR (KBr pellet, cm⁻¹): 1592 (m), 1481 (w), 1446 (w), 1407 (m), 1342 (m), 1261 (w), 1203 (w), 1087 (br, ClO₄⁻), 1026 (m), 952 (w), 887 (w), 794 (s), 705 (m), 624 (s), 524 (m), 450 (m), 416 (w)

endo-Me₈-[(NO₃)₂@Pd₄L₈](PF₆)₆·4Me₂SO (via Anion Exchange).

An aqueous solution of NaPF₆ (83.9 mg, 0.5 mmol) was added to a suspension of microcrystalline *endo*-Me₈-[(NO₃)₂@Pd₄L₈](NO₃)₆·5Me₂SO (17.9 mg, 0.005 mmol) in water (8 mL) at room temperature. The reaction mixture was stirred for 24 h, filtered, and washed with several aliquots of water and ethyl acetate. The exchanged product was recrystallized in a mixture of Me₂SO and ethyl acetate for 7 days to obtain single crystals in a high, 62% yield. Anal. Calcd for C, 53.83; H, 6.27; N, 7.85. Found: C, 53.60; H, 6.64; N, 7.74. ¹H NMR (300 MHz, Me₂SO-*d*₆, δ): 9.68 (s, 1H), 9.60 (s, 1H), 9.36 (d, *J* = 4.70 Hz 1H), 9.29 (d, *J* = 5.28 Hz 1H), 8.60 (d, *J* = 7.04 Hz, 1H), 8.22(d, *J* = 6.46 Hz, 1H), 7.71 (t, *J* = 12.33 Hz, 2H), 1.77-1.15 (m, 11H), 0.93 (s, 3H). IR (KBr pellet, cm⁻¹): 1592 (m), 1446 (w), 1384 (s, NO₃⁻), 1345 (m), 1265 (w), 1029 (w), 845 (s, PF₆⁻), 790 (m), 705 (w), 667 (w), 559 (m), 463 (br).

endo-Me₈-[(NO₃)₂@Pd₄L₈](CF₃SO₃)₆·2Me₂SO (via Anion Exchange).

An aqueous solution of NaCF₃SO₃ (86.0 mg, 0.5 mmol) was added to a suspension of microcrystalline *endo*-Me₈-[(NO₃)₂@Pd₄L₈](NO₃)₆·5Me₂SO (17.9 mg, 0.005 mmol) in water (8 mL) at room temperature. The reaction mixture was stirred for 24 h, filtered, and washed with several aliquots of water and ethyl acetate. The exchanged species was recrystallized in a mixture of Me₂SO and ethyl acetate, affording single crystals after 7 days in a 70% yield. Anal. Calcd for C, 46.05; H, 4.79; N, 6.81. Found: C, 46.50; H, 4.71; N, 6.74. ¹H NMR (300 MHz, Me₂SO-*d*₆, δ): 9.68 (s, 1H), 9.60 (s, 1H), 9.36 (d, *J* = 4.70 Hz, 1H), 9.29 (d, *J* = 5.28 Hz, 1H), 8.60 (d, *J* = 7.04 Hz, 1H), 8.22(d, *J* = 6.46 Hz, 1H), 7.71 (t, *J* = 12.33 Hz, 2H), 1.77-1.15 (m, 11H), 0.93 (s, 3H). IR (KBr pellet, cm⁻¹): 1592 (m), 1384 (s, NO₃⁻), 1257 (br, CF₃SO₃⁻), 1226 (w), 1161 (m, CF₃SO₃⁻), 1029 (s), 887 (w), 790 (m), 706 (w), 640 (m), 451 (br).

X-ray Single Crystallography.

All of the diffraction data were measured at 100 K, respectively, with synchrotron radiation ($\lambda = 0.6500 - 0.8000$ Å, respectively) on a Rayonix MX225HS detector at 2D SMC with a silicon (111) double-crystal monochromator (DCM) at the Pohang Accelerator Laboratory (PAL), Korea. The PAL BL2D-SMDC program¹ was used for data collection (detector distance: 66 mm, omega scan $\Delta \omega = 1^{\circ}$, exposure time: 1 s per frame), and HKL3000sm (ver. 703r)² was employed for cell refinement, reduction, and absorption correction. The structures were solved by the direct method and refined by full-matrix least squares techniques (SHELXL 2018/03).³ The non-hydrogen atoms were refined anisotropically, and the hydrogen atoms were placed in calculated positions and refined using a riding model. The crystal parameters and procedural information corresponding to the data collection and structural refinement are listed in Table S2.

Cages	Pd…Pd Distances (Å)	Py…Si…Py Angles (°)
$exo-Me_4, endo-Me_4-[(NO_3)_2@Pd_4L_8](NO_3)_6\cdot 5Me_2SO$	7.361(2) x 8.935(3)	102.5(6) ~ 113.3(7)
$endo-Me_8\text{-}[(\mathrm{NO}_3)_2@\mathrm{Pd}_4\mathrm{L}_8](\mathrm{NO}_3)_6\text{-}5\mathrm{Me}_2\mathrm{SO}$	8.082(1) x 9.339(1)	104.7(5) ~ 108.1(7)
$\textit{exo-Me}_4, \textit{endo-Me}_4\text{-}[(BF_4)_2 @Pd_4L_8](BF_4)_6 \cdot 4Me_2SO$	7.303(2) x 8.913(3)	103.9(4) ~ 110.7(3)
$endo-Me_{8}\text{-}[(BF_{4})_{2}@Pd_{4}L_{8}](BF_{4})_{8}\text{-}5Me_{2}SO$	7.851(2) x 9.394(5)	106.4(3) ~ 107.5(2)
$exo-Me_4, endo-Me_4-[(ClO_4)_2@Pd_4L_8](ClO_4)_6\cdot 5Me_2SO$	7.256(2) x 8.966(2)	104.6(5) ~ 109.9(6)
$endo\text{-}Me_8\text{-}[(ClO_4)_2@Pd_4L_8](ClO_4)_6\text{-}5Me_2SO$	7.812(2) x 9.398(5)	106.4(2) ~ 107.7(2)
$endo-Me_{8}-[(NO_{3})_{2}@Pd_{4}L_{8}](PF_{6})_{6}\cdot 4Me_{2}SO$	7.894(2) x 9.280(2)	104.8(2) ~ 107.5(2)
$endo-Me_{8}\text{-}[(NO_{3})_{2}@Pd_{4}L_{8}](CF_{3}SO_{3})_{6}\text{-}2Me_{2}SO$	7.980(2) x 9.490(4)	106.0(2) ~ 108.0(2)

 Table S1. Relevant Crystallographic Distances and Angles.

Table S2. Crystal Data and Refinement Parameters for (a) *endo*-Me₈- $[(NO_3)_2@Pd_4L_8](NO_3)_6 \cdot 5Me_2SO$, (b) *exo*-Me_4-*endo*-Me_4- $[(NO_3)_2@Pd_4L_8](NO_3)_6 \cdot 4Me_2SO$,(c) *exo*-Me_4,*endo*-Me_4- $[(BF_4)_2@Pd_4L_8](BF_4)_6 \cdot 4Me_2SO$, (d) *endo*-Me_8- $[(BF_4)_2@Pd_4L_8](BF_4)_8 \cdot 5Me_2SO$, (e) *exo*-Me_4,*endo*-Me_4- $[(ClO_4)_2@Pd_4L_8](ClO_4)_6 \cdot 5Me_2SO$,(f) *endo*-Me_8- $[(ClO_4)_2@Pd_4L_8](ClO_4)_6 \cdot 5Me_2SO$, (g) *endo*-Me_8- $[(NO_3)_2@Pd_4L_8](PF_6)_6 \cdot 4Me_2SO$, (h) *endo*-Me_8- $[(NO_3)_2@Pd_4L_8](CF_3SO_3)_6 \cdot 2Me_2SO$.

	<i>endo</i> -Me ₈ - [(NO ₃) ₂ @Pd ₄ L ₈](NO ₃) ₆ ·5 Me ₂ SO	exo-Me ₄ -endo-Me ₄ - [(NO ₃) ₂ @Pd ₄ L ₈](NO ₃) ₆ ·4 Me ₂ SO	$\begin{array}{c} exo-Me_{4}, endo-Me_{4}-\\ [(BF_{4})_2 @Pd_4 L_8](BF_4)_6 \cdot 4M\\ e_2 SO\end{array}$	$\begin{array}{c} \textit{endo-Me}_8\text{-}\\ [(BF_4)_2@Pd_4L_8](BF_4)_8\text{-}5M\\ e_2SO \end{array}$
Formula	$C_{138}H_{182}N_{24}O_{25}Pd_4SSi_8\\$	$C_{136}H_{176}N_{24}O_{24}Pd_4Si_8\\$	$C_{136}H_{176}B_8F_{32}N_{16}Pd_4Si_8\\$	$\underset{8}{C_{146}H_{206}B_8F_{32}N_{16}O_5Pd_4S_5Si}$
$M_{ m w}$	3259.45	3181.32	3379.72	3770.36
Cryst. sys.	Monoclinic	Orthorhombic	Triclinic	Triclinic
Space group	C2/m	P21212	<i>P</i> -1	<i>P</i> -1
a/Å	29.5695(7)	33.763(7)	18.542(4)	17.968(4)
b/Å	20.0007(7)	25.417(5)	22.252(4)	18.783(4)
$c/\text{\AA}$	16.8654(4)	25.901(5)	27.335(5)	20.866(4)
$V/Å^3$	9677.3(5)	22227(8)	10288(4)	5919(3)
Ζ	2	4	2	1
$ ho/{ m g~cm^{-3}}$	1.531	0.951	1.091	1.058
μ/mm^{-1}	0.484	0.557	0.523	0.425
R _{int}	0.0550	0.0629	0.0418	0.0506
GoF on F^2	1.076	0.846	1.988	1.075
$R_1 \left[I \ge 2\sigma(I)\right]^a$	0.1120	0.0732	0.1402	0.0906
wR_2 (all data) ^b	0.3258	0.2309	0.4087	0.2966

 ${}^{a}R1 = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|, \ {}^{b}wR_{2} = (\Sigma [w(F_{o}{}^{2} - F_{c}{}^{2})^{2}] / \Sigma [w(F_{o}{}^{2})^{2}])^{1/2}$

	$\begin{array}{c} exo-\mathrm{Me_4-}endo-\mathrm{Me_4-}\\ [(\mathrm{ClO_4})_2 @\mathrm{Pd_4L_8}](\mathrm{ClO_4})_8^{\cdot} 5\\ \mathrm{Me_2SO} \end{array}$	$\begin{array}{c} \textit{endo-Me}_8-\\ [(ClO_4)_2 @Pd_4L_8](ClO_4)_6\cdot\\ 5Me_2SO\end{array}$	$endo-Me_{8}-$ [(NO ₃) ₂ @Pd ₄ L ₈](PF ₆) ₆ · 4Me ₂ SO	$\begin{array}{c} \textit{endo-}Me_8-\\ [(NO_3)_2@Pd_4L_8](CF_3SO_3)_6\\ \cdot 2Me_2SO \end{array}$
Formula	$C_{136}H_{176}Cl_8N_{16}O_{32}Pd_4Si_8\\$	$C_{140}H_{188}Cl_8N_{16}O_{34}Pd_4S_2\ Si_8$	$\begin{array}{c} C_{144}H_{200}F_{36}N_{18}O_{10}P_6Pd_4S_4S\\ i_8 \end{array}$	$C_{142}H_{176}F_{18}N_{18}O_{24}Pd_4S_6Si_8\\$
$M_{ m w}$	3480.84	3637.09	3991.59	3703.68
Cryst. sys.	Rhombohedral	Triclinic	Monoclinic	Triclinic
Space group	$P2_1/c$	<i>P</i> -1	<i>P</i> 2 ₁ / <i>n</i>	<i>P</i> -1
a/Å	33.458(7)	18.335(4)	18.260(4)	18.072(4)
b/Å	17.790(4)	19.458(4)	18.337(4)	18.561(4)
c/Å	35.572(7)	20.980(4)	33.391(7)	18.661(4)
V/Å3	20930(7)	6257(3)	12866.1(7)	4758(2)
Ζ	4	1	2	1
$ ho/{ m g~cm^{-3}}$	1.105	0.965	1.186	1.293
μ/mm^{-1}	0.738	0.447	0.488	0.439
$R_{\rm int}$	0.1598	0.0372	0.1347	0.0371
GoF on F^2	1.159	1.395	0.934	1.140
$R_1 [I > 2\sigma(I)]^a$	0.0988	0.1030	0.0767	0.0674
wR_2 (all data) ^b	0.2898	0.3446	0.2355	0.1998

 ${}^{a}R1 = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|, \ {}^{b}wR_{2} = (\Sigma [w(F_{o}{}^{2} - F_{c}{}^{2})^{2}] / \Sigma [w(F_{o}{}^{2})^{2}])^{1/2}$

Table S3. Crystal Data and Refinement Parameters for (a) *endo*-Me₈- $[(NO_3)_2@Pd_4L_8](NO_3)_6 \cdot 5Me_2SO$, (b) *exo*-Me_4-*endo*-Me_4- $[(NO_3)_2@Pd_4L_8](NO_3)_6 \cdot 4Me_2SO$,(c) *exo*-Me_4,*endo*-Me_4- $[(BF_4)_2@Pd_4L_8](BF_4)_6 \cdot 4Me_2SO$, (d) *endo*-Me_8- $[(BF_4)_2@Pd_4L_8](BF_4)_8 \cdot 5Me_2SO$, (e) *exo*-Me_4,*endo*-Me_4- $[(CIO_4)_2@Pd_4L_8]$ (CIO_4)_6 $\cdot 5Me_2SO$,(f) *endo*-Me_8- $[(CIO_4)_2@Pd_4L_8](CIO_4)_6 \cdot 5Me_2SO$, (g) *endo*-Me_8- $[(NO_3)_2@$ $Pd_4L_8](PF_6)_6 \cdot 4Me_2SO$, (h) *endo*-Me_8- $[(NO_3)_2@Pd_4L_8](CF_3SO_3)_6 \cdot 2Me_2SO$.

endo-Me ₈ -[(NO ₃) ₂ @Pd ₄ L ₈](NO ₃) ₆ ·5Me ₂ SO	exo-Me ₄ -e	ndo-Me ₄ -	exo-Me ₄ ,end	do-Me ₄ -	endo-N	Me ₈ -
	570 -20	$[(\mathrm{NO}_3)_2(a)\mathrm{Pd}_4\mathrm{L}_8]$	(NO ₃) ₆ ·4Me ₂ SO	[(BF ₄) ₂ @Pd ₄ L ₈](E	sr ₄) ₆ ·4Me ₂ SO	[(BF ₄) ₂ @Pd ₄ L ₈](BF ₄) ₈ ·5Me ₂ SO
Pd(1)-N(8A)#1	2.005(4)	Pd(1)-N(2C)	2.001(13)	Pd(1)-N(1A)	2.013(4)	Pd(1)-N(1C)	2.018(4)
Pd(1)-N(1A)	2.005(4)	Pd(1)-N(2A)	2.030(11)	Pd(1)-N(1C)	2.016(4)	Pd(1)-N(1A)	2.026(4)
Pd(1)-N(41A)	2.008(7)	Pd(1)-N(2B)	2.034(12)	Pd(1)-N(1B)	2.018(5)	Pd(1)-N(1B)	2.032(4)
Pd(1)-N(21A)	2.014(4)	Pd(1)-N(9C) ^{#1}	2.037(12)	Pd(1)-N(1D)	2.031(5)	Pd(1)-N(1D)	2.049(4)
		Pd(2)-N(9D)#1	1.994(11)	Pd(2)-N(1H)	2.019(5)	Pd(2)-N(8D)	2.027(4)
N(8A)#1-Pd(1)-N(1A)	91.6(3)	Pd(2)-N(9A)	2.013(11)	Pd(2)-N(1G)	2.020(5)	Pd(2)-N(8C)	2.027(4)
N(8A)#1-Pd(1)-N(41A)	89.9(3)	Pd(2)-N(9B)	2.042(10)	Pd(2)-N(8A)	2.028(5)	Pd(2)-N(8B)#1	2.033(4)
N(1A)-Pd(1)-N(41A)	177.3(2)	Pd(2)-N(2D)	2.067(10)	Pd(2)-N(8B)	2.071(5)	Pd(2)-N(8A)#1	2.037(4)
N(8A)#1-Pd(1)-N(21A)	177.1(2)	Pd(3)-N(2E)	2.012(12)	Pd(3)-N(8D)	1.971(6)		
N(1A)-Pd(1)-N(21A)	89.3(3)	Pd(3)-N(9G)#2	2.013(12)	Pd(3)-N(8C)	1.965(6)	N(1C)-Pd(1)- N(1A)	90.38(17)
N(41A)-Pd(1)-N(21A)	89.1(3)	Pd(3)-N(2G)	2.038(12)	Pd(3)-N(1F)	1.993(6)	N(1C)-Pd(1)- N(1B)	178.25(16)
		Pd(3)-N(2F)	2.043(12)	Pd(3)-N(1E)	2.072(7)	N(1A)-Pd(1)- N(1B)	90.81(19)
				Pd(4)-N(8E)	1.973(6)	N(1D) N(1C)-Pd(1)- N(1D)	91.01(16)
		Pd(1)-N(2C)	2.001(13)	Pd(4)-N(8F)	2.016(6)	N(1A)-Pd(1)-	178.58(16)
		Pd(1)-N(2A)	2.030(11)	Pd(4)-N(8G)	2.018(6)	N(1D) N(1B)-Pd(1)- N(1D)	87.80(18)
		Pd(1)-N(2B)	2.034(12)	Pd(4)-N(8H)	2.019(6)	N(8D)-Pd(2)- N(8C)	89.42(18)
		Pd(1)-N(9C) ^{#1}	2.037(12)			N(8D)-Pd(2)- N(8B) ^{#1}	178.38(16)
		Pd(2)-N(9D)#1	1.994(11)	Pd(1)-N(1A)	2.013(4)	N(8C)-Pd(2)- N(8B)#1	89.52(17)
		Pd(2)-N(9A)	2.013(11)	Pd(1)-N(1C)	2.016(4)	N(8D)-Pd(2)- N(8A) ^{#1}	89.13(18)
		Pd(2)-N(9B)	2.042(10)	Pd(1)-N(1B)	2.018(5)	N(8C)-Pd(2)- N(8A) ^{#1}	178.27(18)
		Pd(2)-N(2D)	2.067(10)	Pd(1)-N(1D)	2.031(5)	N(8B) ^{#1} -Pd(2)- N(8A) ^{#1}	91.95(17)
		Pd(3)-N(2E)	2.012(12)	Pd(2)-N(1H)	2.019(5)		
		Pd(3)-N(9G)#2	2.013(12)	Pd(2)-N(1G)	2.020(5)		
		Pd(3)-N(2G)	2.038(12)	Pd(2)-N(8A)	2.028(5)		
		Pd(3)-N(2F)	2.043(12)	Pd(2)-N(8B)	2.071(5)		
		Pd(1)-N(2C)	2.001(13)	Pd(3)-N(8D)	1.971(6)		
		Pd(1)-N(2A)	2.030(11)	Pd(3)-N(8C)	1.965(6)		
		Pd(1)-N(2B)	2.034(12)	Pd(3)-N(1F)	1.993(6)		
		Pd(1)-N(9C)#1	2.037(12)	Pd(3)-N(1E)	2.072(7)		
		Pd(2)-N(9D)#1	1.994(11)	Pd(4)-N(8E)	1.973(6)		
		Pd(2)-N(9A)	2.013(11)	Pd(4)-N(8F)	2.016(6)		
				Pd(4)-N(8G)	2.018(6)		
				Pd(4)-N(8H)	2.019(6)		
				Pd(1)-N(1A)	2.013(4)		
				Pd(1)-N(1C)	2.016(4)		
				Pd(1)-N(1B)	2.018(5)		
				Pd(1)-N(1D)	2.031(5)		
				Pd(2)-N(1H)	2.019(5)		
				Pd(2)-N(1G)	2.020(5)		
				Pd(2)-N(8A)	2.028(5)		
				Pd(2)-N(8B)	2.071(5)		
#1 -x+1,y,-z		^{#1} - <i>x</i> +1,- <i>y</i> +1, <i>z</i> ^{#2} - <i>x</i> +1,- <i>y</i> , <i>z</i>				#1 -x+1,-y+2,-z	+1

exo-Me ₄ -endo- [(ClO ₄) ₂ @Pd ₄ L ₈](ClO	$\begin{array}{c} exo-Me_4-endo-Me_4-\\ \hline endo-Me_4-\\ ClO_4)_2@Pd_4L_8](ClO_4)_8\cdot 5Me_2SO\\ \hline @Pd_4L_8](ClO_4)_8\cdot 5Me_2SO\\ \hline @Pd_4L_8](ClO_4)_8\cdot 5Me_3SO\\ \hline @Pd_4L_8)$ \hline @Pd_4C\\ \hline @Pd_4L_8) \hline @Pd_4C\\ \hline @Pd_4C\\ \hline @Pd_4C\\ \hline @Pd_4C\\		$\begin{array}{c} \textit{endo-Me_8-[(ClO_4)_2 } \\ \text{Pd}_4L_8](ClO_4)_6\cdot 5Me_2SO \end{array} \qquad \begin{array}{c} \textit{exo-Me_4,end} \\ \textit{[(BF_4)_2@Pd_4L_8](Flow)_6} \\ \end{array}$		$-Me_4-$ $_4)_6 \cdot 4Me_2SO$	<i>endo</i> -Me ₈ - [(NO ₃) ₂ @Pd ₄ L ₈](CF ₃ SO ₃) ₆ ·2Me ₂ SO	
Pd(1)-N(1A)	2.009(9)	Pd(1)-N(3)	2.021(5)	N(4)-Pd(1)#1	2.018(4)	Pd(1)-N(6)#1	2.017(3)
Pd(1)-N(1D)	2.035(9)	Pd(1)-N(5)	2.027(5)	N(8)-Pd(1)	2.029(3)	Pd(1)-N(7)	2.019(3)
Pd(1)-N(1B)	2.040(10)	Pd(1)-N(1)	2.028(5)	N(7)-Pd(2)	2.036(3)	Pd(1)-N(3)	2.027(3)
Pd(1)-N(1C)	2.048(10)	Pd(1)-N(8)#1	2.041(5)	N(6)-Pd(1)#1	2.030(3)	Pd(1)-N(1)	2.030(3)
Pd(2)-N(8A)	1.972(10)	Pd(3)-N(6)	2.019(4)	N(5)-Pd(2)	2.024(4)	N(5)-Pd(2)	2.021(3)
Pd(2)-N(1E)	2.015(10)	Pd(3)-N(2)#1	2.029(4)	Pd(1)-N(1)	2.022(4)		
Pd(2)-N(1F)	2.022(9)	Pd(3)-N(7)	2.047(5)	Pd(2)-Br(3)	2.421(2)	N(6)#1-Pd(1)-N(7)	88.31(14)
Pd(2)-N(8B)	2.046(9)	Pd(3)-N(4)	2.050(4)	Pd(2)-Br(4)	2.437(2)	N(6)#1-Pd(1)-N(3)	177.43(12)
Pd(3)-N(1H)	2.022(11)					N(7)-Pd(1)-N(3)	90.75(13)
Pd(3)-N(1G)	2.025(10)	N(3)-Pd(1)-N(5)	89.35(19)	N(4)#1-Pd(1)-N(1)	177.57(14)	N(6)#1-Pd(1)-N(1)	93.17(14)
Pd(3)-N(8F)	2.026(10)	N(3)-Pd(1)-N(1)	178.64(16)	N(4)#1-Pd(1)-N(8)	86.28(15)	N(7)-Pd(1)-N(1)	177.28(12)
Pd(3)-N(8E)	2.027(9)	N(5)-Pd(1)-N(1)	89.53(18)	N(1)-Pd(1)-N(8)	94.88(15)	N(3)-Pd(1)-N(1)	87.68(13)
Pd(4)-N(8D)	2.013(11)	N(3)-Pd(1)-N(8)#1	89.6(2)	N(4)#1-Pd(1)-N(6)#1	90.25(15)	N(4)-Pd(2)-N(5)	89.55(12)
Pd(4)-N(8H)	2.030(10)	N(5)-Pd(1)-N(8)#1	178.68(18)	N(1)-Pd(1)-N(6)#1	88.58(15)	N(4)-Pd(2)-N(8)	87.26(11)
Pd(4)-N(8C)	2.029(9)	N(1)-Pd(1)-N(8)#1	91.57(19)	N(8)-Pd(1)-N(6)#1	176.51(16)	N(5)-Pd(2)-N(8)	175.92(12)
Pd(4)-N(8G)	2.040(11)	N(6)-Pd(3)-N(2)#1	178.57(16)	N(2)-Pd(2)-N(5)	177.59(14)	N(4)-Pd(2)-N(2)#1	177.69(11)
		N(6)-Pd(3)-N(7)	90.43(18)	N(2)-Pd(2)-N(3)	90.27(15)	N(5)-Pd(2)-N(2)#1	90.90(12)
(1A)-Pd(1)-N(1D)	175.9(4)	N(2)#1-Pd(3)-N(7)	90.43(19)	N(5)-Pd(2)-N(3)	87.67(15)	N(8)-Pd(2)-N(2)#1	92.19(12)
(1A)-Pd(1)-N(1B)	92.4(4)	N(6)-Pd(3)-N(4)	90.14(18)	N(2)-Pd(2)-N(7)	91.10(15)	N(7)-Pd(2)-Br(3)	90(4)
(1D)-Pd(1)-N(1B)	91.6(4)	N(2)#1-Pd(3)-N(4)	89.01(19)	N(5)-Pd(2)-N(7)	90.91(15)	N(7)-Pd(2)-Br(4)	90(4)
(1A)-Pd(1)-N(1C)	87.3(4)	N(7)-Pd(3)-N(4)	179.36(17)	N(3)-Pd(2)-N(7)	177.58(15)	Br(3)-Pd(2)-Br(4)	175.6(9)
(1D)-Pd(1)-N(1C)	88.8(4)						
(1B)-Pd(1)-N(1C)	179.1(4)						
(8A)-Pd(2)-N(1E)	177.8(4)						
(8A)-Pd(2)-N(1F)	91.1(4)						
(1E)-Pd(2)-N(1F)	88.9(4)						
(8A)-Pd(2)-N(8B)	91.5(4)						
(1E)-Pd(2)-N(8B)	88.7(4)						
(1F)-Pd(2)-N(8B)	175.1(4)						
(1H)-Pd(3)-N(1G)	92.1(4)						
(1H)-Pd(3)-N(8F)	178.0(4)						
l(1G)-Pd(3)-N(8F)	87.8(4)						
(1H)-Pd(3)-N(8E)	91.8(4)						
(1G)-Pd(3)-N(8E)	175.3(4)						
l(8F)-Pd(3)-N(8E)	88.4(4)						
(8D)-Pd(4)-N(8H)	89.2(4)						
(8D)-Pd(4)-N(8C)	87.1(4)						
(8H)-Pd(4)-N(8C)	175.9(4)						
(8D)-Pd(4)-N(8G)	177.1(5)						
(8H)-Pd(4)-N(8G)	91.0(4)						
(8C)-Pd(4)-N(8G)	92.8(4)						
		$x^{\#1} - x + 1 - v + 1 - z + 1$		$^{\#1}-x+1,-v+1,-z+1$		$x^{\#1} - x + 1 - v - z + 1$	

#1 -*x*+1,-*y*+1,-*z*+1

Fig. S1 FT-IR Spectra of (a) $endo-Me_8$ -[(NO₃)₂@Pd₄L₈](NO₃)₆·5Me₂SO, (b) $exo-Me_4$ - $endo-Me_4$ -[(NO₃)₂@Pd₄L₈](NO₃)₆·4Me₂SO, (c) $exo-Me_4$, $endo-Me_4$ -[(BF₄)₂@Pd₄L₈](BF₄)₆·4Me₂SO, (d) $endo-Me_8$ -[(BF₄)₂@Pd₄L₈](BF₄)₈·5Me₂SO, (e) $exo-Me_4$, $endo-Me_4$ -[(ClO₄)₂@Pd₄L₈] (ClO₄)₆·5Me₂SO, (f) $endo-Me_8$ -[(ClO₄)₂@Pd₄L₈](ClO₄)₆·5Me₂SO, (g) $endo-Me_8$ -[(NO₃)₂@Pd₄L₈](PF₆)₆·4Me₂SO, (h) $endo-Me_8$ -[(NO₃)₂@Pd₄L₈](ClO₄)₆·5Me₂SO.

Fig. S2 ESI-Mass data of (a) *endo*-Me₈-[(NO₃)₂@Pd₄L₈](NO₃)₆·5Me₂SO, (b) *exo*-Me₄,*endo*-Me₄-[(BF₄)₂@Pd₄L₈](BF₄)₆·4Me₂SO, (c) *endo*-Me₈-[(BF₄)₂@Pd₄L₈] (BF₄)₈·5Me₂SO.

Fig. S3 TGA curves for (a) *endo*-Me₈-[(NO₃)₂@Pd₄L₈](NO₃)₆·5Me₂SO, (b) *exo*-Me₄-*endo*-Me₄-[(NO₃)₂@Pd₄L₈](NO₃)₆·4Me₂SO, (c) *exo*-Me₄,*endo*-Me₄-[(BF₄)₂@Pd₄L₈](BF₄)₆·4Me₂SO, (d) *endo*-Me₈-[(BF₄)₂@Pd₄L₈](BF₄)₈·5Me₂SO.

Fig. S4 Interaction distances between inner anion and cage of (a) *endo*-Me₈-[(NO₃)₂@Pd₄L₈](NO₃)₆·5Me₂SO, (b) *exo*-Me₄-*endo*-Me₄-[(NO₃)₂@Pd₄L₈](NO₃)₆·4Me₂SO, (c) *exo*-Me₄,*endo*-Me₄-[(BF₄)₂@Pd₄L₈](BF₄)₂@Pd₄L₈](BF₄)₂@Pd₄L₈](BF₄)₈·5Me₂SO, (e) *exo*-Me₄,*endo*-Me₄-[(ClO₄)₂@Pd₄L₈](ClO₄)₆·5Me₂SO, (f) *endo*-Me₈-[(ClO₄)₂@Pd₄L₈](ClO₄)₆·5Me₂SO.

Fig. S5 Crystal structures of (a) *exo*-Me₄,*endo*-Me₄-[(ClO₄)₂@Pd₄L₈](ClO₄)₆·5Me₂SO, (b) *endo*-Me₈-[(ClO₄)₂@Pd₄L₈](ClO₄)₆·5Me₂SO, (c, left) *endo*-Me₈-[(NO₃)₂@Pd₄L₈] (PF₆)₆·4Me₂SO, and (c, right) its packing, (d, left) *endo*-Me₈-[(NO₃)₂@Pd₄L₈](CF₃SO₃)₆ ·2Me₂SO, (d, right).

Fig. S6 ¹H NMR spectra of (a) L, (b) *endo*-Me₈-[(NO₃)₂@Pd₄L₈](NO₃)₆·5Me₂SO, (c) *exo*-Me₄-*endo*-Me₄-[(NO₃)₂@Pd₄L₈](NO₃)₆·4Me₂SO, (d) *exo*-Me₄,*endo*-Me₄-[(BF₄)₂@Pd₄L₈] (BF₄)₆·4Me₂SO, (e) *endo*-Me₈-[(BF₄)₂@Pd₄L₈](BF₄)₈·5Me₂SO, (f) *exo*-Me₄,*endo*-Me₄-[(ClO₄)₂@Pd₄L₈](ClO₄)₆·5Me₂SO, (g) *endo*-Me₈-[(ClO₄)₂@Pd₄L₈](ClO₄)₆·5Me₂SO, (h) *endo*-Me₈-[(NO₃)₂@Pd₄L₈](PF₆)₆·4Me₂SO, (i) *endo*-Me₈-[(NO₃)₂@Pd₄L₈] (CF₃SO₃)₆·2Me₂SO.

Fig. S7 ¹H (aromatic region), ¹¹B, and ¹⁹F NMR spectra of *endo*-Me₈- $[(BF_4)_2@Pd_4L_8](BF_4)_6$ ·5Me₂SO (a, top) and *exo*-Me₄,*endo*-Me₄- $[(BF_4)_2@Pd_4L_8](BF_4)_6$ ·4Me₂SO (b, bottom) in Me₂SO-*d*₆, showing that the two cage isomers are stably retained in Me₂SO.

Fig. S8 COSY NMR spectra of (a) *exo*-Me₄,*endo*-Me₄-[(BF₄)₂@Pd₄L₈] (BF₄)₆·4Me₂SO, (b) *exo*-Me₄,*endo*-Me₄-[(ClO₄)₂@Pd₄L₈](ClO₄)₆·5Me₂SO.

Fig. S9 ¹³C NMR spectra of *endo*-Me₈-[(NO₃)₂@Pd₄L₈](NO₃)₆·5Me₂SO.

References

- 1 J. W. Shin, K. Eom, D. J. Moon, Synchrotron Radiat., 2016, 23, 369–373.
- 2 Z. Otwinowski, W. Minor, C. W. Carter, R. M. Sweet, R. M. Methods in Enzymology, Academic Press : New York. **1997**; pp 307.
- 3 G. M. Sheldrick, Acta Crystallogr. Sect. C: Struct. Chem., 2015, 71, 3-8.