From a P₄ Butterfly Scaffold to cyclo- and catena-P₄ Units.

Julian Müller, Gábor Balázs, and Manfred Scheer*

Table of content

1.	Synthesis and Characterization	2
1.1.	Synthesis of [{Cp'''Fe(CO) ₂ } ₂ (µ ₃ ,η ^{4:1:1} -P ₄){CymRu}][PF ₆] ₂ (2)	2
1.2.	Synthesis of [{Cp'''Fe(CO) ₂ } ₂ (µ ₃ ,η ^{4:1:1} -P ₄)(Cp*Rh)][PF ₆] ₂ (3)	3
1.3.	Synthesis of [{Cp'''Fe(CO) ₂ } ₂ (µ ₃ ,η ^{4:1:1} -P ₄)(Cp*Ir)][PF ₆] ₂ (4)	4
1.4.	Synthesis of [{Cp'''Fe(CO) ₂ } ₂ (µ ₃ ,η ^{4:1:1} -P ₄)(Cp*Ru)][PF ₆] (5)	4
1.5.	Synthesis of [{Cp'''Fe(CO) ₂ }{Cp'''Fe(CO)}($\mu_3, \eta^{4:2:1}$ -P ₄)(Cp*Ru)][PF ₆] (6).	5
2.	Crystallographic Details	6
3.	¹ H NMR and ³¹ P NMR Spectroscopy	11
4.	Computational Details	25
5.	Literature:	27

1. Synthesis and Characterization

General Remarks:

All manipulations were performed with rigorous exclusion of oxygen and moisture using Schlenk-type glassware on a dual manifold Schlenk line with Argon inert gas or glove box filled with N₂ or Ar containing a high-capacity recirculator (<0.1 ppm O₂). All solvents except were dried using a MB SPS-800 device of company MBRAUN, degassed and saturated with argon. Mass spectrometry was performed using a Waters Micromass LCT (ESI-MS) and a Jeol AccuTOF GCX (LIFDI-MS), respectively. Elemental analysis (CHN) was determined using a Vario micro cube. Infrared spectroscopy was performed using a Thermo Scientific Nicolet iS5. spectrometer.

TI[PF₆] (97%) was purchased by abcr and was used without further purification. Compound $[{Cp'''Fe(CO)_2}_2(\mu,\eta^{1:1}-P_4)]^{[1]}$ (1) and $[Cp^*Ru(NCCH_3)_3][PF_6]^{[2]}$ were synthesized according to literature known procedures.

1.1. Synthesis of $[{Cp'''Fe(CO)_2}_2(\mu_3, \eta^{4:1:1}-P_4){CymRu}][PF_6]_2$ (2)

The reaction is best performed in the absence of light. Although the ³¹P NMR spectra of the reaction mixtures (with light and without light) are comparable, crystallization works much better when light is excluded.

0.100 g of compound **1** (0.123 mmol, 1eq), 0.038 g of $[CymRuCl_2]_2$ (0.061 mmol, 0.5eq) and 0.129 g TI[PF₆] (0.368 mmol, 3eq) are suspended in 20 ml CH₂Cl₂. The mixture is stirred for 16 h at room temperature during which an off-white precipitate is formed. The suspension is filtered over diatomaceous earth to give a dark yellow solution. Crystals of **2** can be obtained by layering a CH₂Cl₂ solution under pentane.

Yield: 0.080 g (0,060 mmol, 49%)

Analytical data of 2:

NMR (CD ₂ Cl ₂ , 298 K)	¹ H: δ [ppm] = 1.33 (s,18, -(C ₄ <u>H</u> ₉)), 1.35 (d, ³ J _{HH} = 6.93 Hz, 6H, MeC ₆ H ₄ CH(C <u>H</u> ₃) ₂) 1.45 (s, 36H, -(C ₄ <u>H</u> ₉) ₂), 2.59 (s, 3H, C <u>H</u> ₃ C ₆ H ₄ ⁱ Pr), 2.84 (sept, ³ J _{HH} = 6.90 Hz, 1H, MeC ₆ H ₄ C <u>H</u> (CH ₃) ₂), 5.66 (m, 4H, C ₅ <u>H</u> ₂ ^t Bu ₃). 6.71 (m, 4H, MeC ₆ <u>H</u> ₄ ⁱ Pr).			
	³¹ P{ ¹ H}: δ [ppm] = 148.9 (m, 2P), 102.9 (m, 2P), -143.7 (sept. 2P, ${}^{1}J_{PF}$ = 710 Hz).			
	Coupling constants of the cation are summarized in Table S2.			
IR (CH ₂ Cl ₂)	ν̃ [cm ⁻¹] = 2037.4 (s), 1997.3 (vs)			
Elemental analysis	Calculated: C 43.46, H 5.54			
$(C_{48}H_{72}F_{12}Fe_2O_4P_6Ru \cdot (C_5H_{12})_{0.2})$	Found: C 43.38, H 5.24.			

Mass spectrometry (ESI, CH₃CN)

m/z: 1208.2 (< 1%) [M +PF₆ - CO + NCCH₃]⁺, 1195.2 (3%) [M + PF₆]⁺, 705.1 (22%) [M – Cp^{'''}Fe(CO)₂]⁺, 525.1 (100%) [M]²⁺, 399.2 (6%) [Cp^{'''}Fe(CO)(NCCH₃)₂]⁺, 386.2 (46%) [Cp'''Fe(CO)₂(NCCH₃)]⁺, 373.1 (8%) [Cp'"Fe(CO)₃]⁺, 358.2 (20%) $[Cp'''Fe(CO)(NCCH_3)]^+$, 345.1 (6%) [Cp'''Fe(CO)₂]⁺, 330.2 (60%) [Cp'''Fe(NCCH₃)]⁺, (2%) 317.2 [Cp'''Fe(CO)]⁺, 289.2 (2%) [Cp'''Fe]⁺, 144.8 [PF₆]⁻.

1.2. Synthesis of $[{Cp'''Fe(CO)_2}_2(\mu_3,\eta^{4:1:1}-P_4)(Cp^*Rh)][PF_6]_2$ (3)

0.100 g of compound 1 (0.123 mmol, 1eq), 0.054 g of $[Cp^*RhBr_2]_2$ (0.068 mmol, 0.55eq) and 0.129 mg TI[PF₆] (0.368 mg, 3eq) are suspended in 10 ml of CH₂Cl₂ and stirred for 16 h at room temperature. The mixture is filtered over diatomaceous earth and the solvent of the filtrate is removed in vacuum to give **3** as a dark orange powder. Crystals of **3** are obtained by layering a CH₂Cl₂ solution under hexane.

Yield: 0.086g (0,064 mmol, 52%)

Analytical data of 3:

NMR (CD ₂ Cl ₂ , 298 K)	¹ H: δ [ppm] = 1.36 (s,18H, -(C ₄ <u>H</u> ₉)), 1.48 (s, 36H, -(C ₄ <u>H</u> ₉) ₂), 2.46 (s, 15H, C ₅ (C <u>H</u> ₃) ₅) 5.73 (m, 4H, C ₅ <u>H</u> ₂ ^t Bu ₃).
	³¹ P{ ¹ H}: δ [ppm] = 129.8 (m, 2P), 121.1 (m, 2P), -143.7 (sept. 2P, ${}^{1}J_{PF}$ = 711 Hz).
	Coupling constants of the cation are summarized in Table S3.
IR (CH ₂ Cl ₂)	\tilde{v} [cm ⁻¹] = 2004 (vs), 2042 (vs)
Elemental analysis	Calculated: C 39.71, H 5.13
$(C_{48}H_{73}F_{12}Fe_2O_4P_6Rh \cdot (CH_2CI_2)_2)$	Found: C 40.27, H 4.99.
Mass spectrometry (ESI, CH ₃ CN)	$\begin{array}{l} \text{m/z: 1197.2 (5\%) [M + PF_6]^+, 707.1 (100\%)} \\ [\text{M} - \text{Cp'''Fe}(\text{CO})_2]^+, 526.1 (51\%) [\text{M}]^{2+}, \\ 386.2 (86\%) [\text{Cp'''Fe}(\text{CO})_2(\text{NCCH}_3)]^+, \\ 358.2 (11\%) [\text{Cp'''Fe}(\text{CO})(\text{NCCH}_3)]^+, \\ 345.1 (7\%) [\text{Cp'''Fe}(\text{CO})_2]^+, 330.2 (23\%) \\ [\text{Cp'''Fe}(\text{NCCH}_3)]^+, & 317.2 (1\%) \\ [\text{Cp'''Fe}(\text{CO})]^+, 144.8 [\text{PF}_6]^ \end{array}$
Analytical data of the side product:	
NMR (CD ₂ Cl ₂ , 298 K)	³¹ P{ ¹ H}: δ [ppm] = 201.7 (m, 2P), 157.7 (m, 1P), 125.7 (m, 1P,).
	Coupling constants are summarized in Table S4.

1.3. Synthesis of $[{Cp'''Fe(CO)_2}_2(\mu_3, \eta^{4:1:1}-P_4)(Cp^*lr)][PF_6]_2$ (4)

0.100 g of compound **1** (0.123 mmol, 1eq), 0.049 g of $[Cp^*IrCl_2]_2$ (0.061 mmol, 0.5eq) and 0.129 g TI[PF₆] (0.368 mmol, 3eq) are transferred to a Young-tube and suspended in 20 ml CH₃CN. The mixture is treated in the ultrasonic bath for 16 h during which an off-white precipitate is formed. After evaporating the solvent, the residue is washed several times with thf which was rejected afterwards. The remaining residue is taken up in CH₂Cl₂ and filtered over diatomaceous earth. Evaporation of the solvent gives analytically pure **4** as a dark yellow powder. Crystals of **4** can be obtained by layering a CH₂Cl₂ solution under hexane.

Yield: 0.093g (0,065 mmol, 53%)

Analytical data of 4:

NMR (CD₃CN, 298 K)	¹ H: δ [ppm] = 1.35 (s,18H, -(C ₄ <u>H</u> ₉)), 1.46 (s, 36H, -(C ₄ <u>H</u> ₉) ₂), 2.64 (s, 15H, C ₅ (C <u>H</u> ₃) ₅) 5.79 (m br, 4H, C ₅ <u>H</u> ₂ ^t Bu ₃).				
	³¹ P{ ¹ H}: δ [ppm] = 62.2 (m, 2P), 102.3 (m, 2P), –143.7 (sept. 2P, ¹ <i>J</i> _{PF} = 706 Hz).				
	Coupling constants of the cation are summarized in Table S5.				
NMR (CD ₂ Cl ₂ , 298 K)	³¹ P{ ¹ H}: δ [ppm] = 60.5 (m, 2P), 107.1 (m, 2P), -143.6 (sept. 2P, ${}^{1}J_{PF}$ = 706 Hz).				
IR (CH ₂ Cl ₂)	ν̃ [cm ⁻¹] = 2003 (vs), 2041 (vs)				
Elemental analysis	Calculated: C 36.89, H 4.78				
$(C_{48}H_{73}F_{12}Fe_2O_4P_6Ir \cdot (CH_2CI_2)_{2.5})$	Found: C 37.23, H 4.54.				
Mass spectrometry (ESI, CH ₃ CN)	$\begin{array}{ll} m/z: \ 1287.3 \ (1\%) \ [M+PF_6]^+, 797.2 \ (22\%) \\ [M-(Cp'''Fe(CO)_2)]^+, \ 571.1 \ (100\%) \ [M]^{2+}, \\ 399.4 \ (15\%) \ \ [Cp'''Fe(CO)(NCCH_3)_2]^+, \\ 387.4 \ (21\%) \ \ \ [Cp'''Fe(CO)_2(NCCH_3)]^+, \\ 358.4 \ (14\%) \ \ \ [Cp'''Fe(CO)(NCCH_3)]^+ \end{array}$				

1.4. Synthesis of $[{Cp'''Fe(CO)_2}_2(\mu_3, \eta^{4:1:1}-P_4)(Cp^*Ru)][PF_6]$ (5)

In the absence of light are 0.200 g of compound **1** (0.246 mmol, 1eq) and 0.260 g of $[Cp^*Ru(NCCH_3)_3][PF_6]$ (0.516 mmol, 2.1eq) suspended in 15 ml of CH_2Cl_2 and stirred for 16 h at room temperature. The solvent is removed in vacuum and the residue is first washed with hexane and then taken up in CH_2Cl_2 and filtered over diatomaceous earth. Drying the CH_2Cl_2 solution in vacuum gives **5** as a red powder.

Yield: 0.241 g (0,201 mmol, 82%)

Analytical data of 5:

NMR (CD₂Cl₂, 298 K)

¹H: δ [ppm] = 1.34 (s br,18, -(C₄<u>H</u>₉)), 1.47 (s, 36H, -(C₄<u>H</u>₉)₂), 2.27(s, 15H, C₅(C<u>H</u>₃)₅), 5.34 (m, br, 4H, C₅<u>H</u>₂^tBu₃).

	³¹ P{ ¹ H}: δ [ppm] = 51.6 (m, 2P), 82.0 (2P), -143.7 (sept. 2P, ${}^{1}J_{PF}$ = 710 Hz).			
	Coupling constants of the cation are summarized in Table S6.			
IR (CH ₂ Cl ₂)	\tilde{v} [cm ⁻¹] = 1990 (s), 2030 (s)			
Elemental analysis	Calculated: C 50.32, H 6.28			
$(C_{48}H_{73}F_6Fe_2O_4P_5Ru_1 \cdot (C_7H_8)_{0.66})$	Found: C 50.77, H 6.09.			
Mass spectrometry (ESI, CH ₃ CN)	m/z: 1051.2 (100%) [M]⁺, 1023.2 (10%) [M − CO]⁺			

1.5. Synthesis of [{Cp'''Fe(CO)₂}{Cp'''Fe(CO)}(µ₃,η^{4:2:1}-P₄)(Cp*Ru)][PF₆] (6)

0.200 g of compound **1** (0.246 mmol, 1eq) and 0.260 g of $[Cp^*Ru(NCCH_3)_3][PF_6]$ (0.516 mmol, 2.1eq) are suspended in 15 ml of CH_2Cl_2 and stirred for 3 days at room temperature. The solvent is removed in vacuum and the residue is first washed with toluene and then taken up in ortho-difluorobenzene and filtered over diatomaceous earth. Drying the solution in vacuum gives a red powder. Crystals of **6** are obtained by layering a thf solution under hexane.

Yield: 0.063g (0,054 mmol, 22%)

Analytical data of 6:

NMR (CD ₂ Cl ₂ , 298 K)	¹ H: δ [ppm] = 1.37 (s, 9H, -(C ₄ <u>H</u> ₉)), 1.46 (s, 9H, -(C ₄ <u>H</u> ₉)), 1.49 (s, 9H, -(C ₄ <u>H</u> ₉)), 1.5 (very broad, $\omega_{\frac{1}{2}} \approx 80$ Hz, 18H, -(C ₄ <u>H</u> ₉) ₂), 1.52 (s, 9H, -(C ₄ <u>H</u> ₉)), 1.79 (s, 15H, - (C ₅ (C <u>H</u> ₃) ₅), 5.1 (very broad, $\omega_{\frac{1}{2}} \approx 80$ Hz, 2H, C ₅ <u>H</u> ₂ ^t Bu ₃) 5.16 (m broad, 1H, C ₅ <u>H</u> ₂ ^t Bu ₃), 5.20 (m broad, 1H, C ₅ <u>H</u> ₂ ^t Bu ₃). ³¹ P{ ¹ H}: two isomers present in solution			
	Isomer 1: δ [ppm] = 126.0 (m, 1P), 144.1 (m, 1P), 465.5 (m. 1P), 501.1 (m, 1P).			
	Isomer 2: δ [ppm] = 126.5 (m, 1P), 145.2 (m, 1P), 457.0 (m. 1P), 500.9 (m, 1P).			
	Coupling constants of the cation are summarized in Table S7.			
IR (CH ₂ Cl ₂)	ν̃ [cm ⁻¹] = 1957 (m), 1985 (s), 2026 (s)			
Elemental analysis	Calculated: C 48.34, H 6.30			
$(C_{47}H_{73}F_6Fe_2O_3P_5Ru_1)$	Found: C 45.18, H 5.77.			
	The large deviation is probably caused by excess $[Cp^*Ru(solv)_x][PF_6]$, which adsorbs on crystals of 6 . Due to its similar solubility to 6 , it cannot be removed by washing.			
Mass spectrometry (ESL CH_CNI)	(-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,			

2. Crystallographic Details

General remarks:

Single crystal structure analyses were performed using either Rigaku (formerly Agilent Technologies) diffractometer GV50, TitanS2 diffractometer (**6**) or a Gemini Ultra diffractometer (Oxford diffraction) with an AtlasS2 detector (**2**, **3**, **4**). Frames integration and data reduction were performed with the CrysAlisPro^[3] software package. All structures were solved ether by ShelXT^[4] (**2**, **3**, **4**) or ShelXS^[5] (**6**) using the software Olex2^[6] and refined by full-matrix least-squares method against F^2 in anisotropic approximation using ShelXL.^[4] Hydrogen atoms were refined in calculated positions using riding on pivot atom model. Further details are given in Table S1.

CCDC-2051733 (**2**), CCDC-2051734 (**3**), CCDC-2051735 (**4**), and CCDC-2051736 (**6**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge at <u>www.ccdc.cam.ac.uk/conts/retrieving.html</u> (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: + 44-1223-336-033; e-mail: <u>deposit@ccdc.cam.ac.uk</u>).

Compound	2	3 · 2(CH ₂ Cl ₂)	4 · 2(CH ₂ Cl ₂)	6 · 0.7(C ₄ H ₈ O)
Formula	C48H72F12Fe2O4	C ₅₀ H ₇₇ Cl ₄ F ₁₂ Fe ₂ O ₄	C ₅₀ H ₇₇ Cl ₄ F ₁₂ Fe ₂ Ir	C49.8H78.6F6Fe2O3.7
	P ₆ Ru	P₀Rh	O ₄ P ₆	P₅Ru
D _{calc.} / g cm ⁻³	1.520	1.555	1.648	1.347
µ/mm ⁻¹	0.986	9.179	2.890	7.558
Formula Weight	1339.64	1512.34	1601.63	1218.14
Color	clear dark yellow	clear orange	clear orange	dark red
Shape	plate	block	block	plate
Size/mm ³	0.46×0.31×0.25	0.17×0.13×0.09	0.38×0.25×0.12	0.32×0.16×0.11
T/K	123(1)	123(1)	123(1)	123.(1)
Crystal System	monoclinic	triclinic	triclinic	monoclinic
Space Group	P21/n	<i>P</i> -1	<i>P</i> -1	P21/c
a/Å	10.0919(2)	12.9624(4)	12.9537(2)	18.66252(20)
b/Å	14.4515(2)	14.8814(4)	14.8742(2)	16.39571(14)
c/Å	40.1739(6)	18.4164(4)	18.4134(2)	20.2876(3)
α/°	90	73.521(2)	73.4890(10)	90
β/°	92.7650(10)	72.266(3)	72.3460(10)	104.5480(11)
ý/°	90	80.180(2)	80.0700(10)	90
V/Å ³	5852.26(17)	3230.90(16)	3226.85(8)	6008.68(11)
Ζ	4	2	2	4
Ζ'	1	1	1	1
Wavelength/Å	0.71073	1.54184	0.71073	1.54184
Radiation type	MoKa	Cu Ka	Mo Ka	Cu Ka
$\Theta_{min}/^{\circ}$	3.357	3.527	3.208	2.446
Θ_{max}	32.463	71.928	32.890	74.387
Measured	79434	34376	124329	63495
Refl's.				
Ind't Refl's	19438	12257	22599	12096
Refl's with I >	16675	11123	20785	11464
2(I)				
Rint	0.0374	0.0322	0.0305	0.0421
Parameters	744	825	772	645
Restraints	297	54	92	0
Largest Peak	0.688	0.519	1.068	0.622
Deepest Hole	-0.874	-0.554	-0.862	-0.982
GooF	1.080	1.014	1.028	1.042
wR2 (all data)	0.0924	0.0671	0.0519	0.0887
wR ₂	0.0880	0.0648	0.0503	0.0873
R₁ (all data)	0.0481	0.0328	0.0267	0.0349
R1	0.0386	0.0283	0.0222	0.0332

X-ray diffraction on Crystals of 2

In the crystal structure of $[{Cp'''Fe(CO)_2}_2(\mu_3,\eta^{4:1:1}-P_4){CymRu}][PF_6]_2$ (2) a methyl group of the cymene ligand as well as one PF₆ anion is disordered over tow position and was refined to an occupancy of 56.459:43.541 and 65.893:34.107, respectively.

Figure S1. Molecular structure of 2 in the crystal. Hydrogen atoms are omitted for clarity. ADPs are drawn at 50% probability level. Selected bond length [Å] and angles [°] are: P1-P4 2.1410(7), P1-P2 2.1434(7), P4-P3 2.1481(7), P3-P2 2.1356(7), Fe1-P1 2.1800(5), Fe2-P3 2.1813(5), Ru1-P_{4,cent}. 1.8890(2), Ru1-C_{6,cent}. 1.7433(8), P4-P1-P2 97.34(3), P1-P4-P3 82.50(2), P2-P3-P4 97.37(3), P3-P2-P1 82.74(2).

X-ray diffraction on Crystals of 3

In the crystal structure of $[{Cp'''Fe(CO)_2}_2(\mu_3, \eta^{4:1:1}-P_4){Cp^*Rh}][PF_6]_2 \cdot 2(CH_2CI_2)$ (3) the two CH_2CI_2 molecules as well as one PF_6 anion is disordered over tow position and was refined to an occupancy of 70:30, 55:45 and 90:10, respectively.

Figure S2. Molecular structure of **3** in the crystal. Hydrogen atoms are omitted for clarity. ADPs are drawn at 50% probability level. Selected bond length [Å] and angles [°] are: P1-P4 2.1456(8), P1-P2 2.1447(8), P4-P3 2.1459(8), P3-P2 2.1433(8), Fe1-P1 2.2100(6), Fe2-P3 2.2091(6), Rh1-P_{4,cent} 1.8938(3), Rh1-Cp*_{cent} 1.8531(10), P4-P1-P2 97.34(3), P1-P4-P3 83.02(3), P2-P3-P4 96.91(3), P3-P2-P1 83.10(3).

X-ray diffraction on Crystals of 4

In the crystal structure of $[{Cp'''Fe(CO)_2}_2(\mu_3, \eta^{4:1:1}-P_4){Cp^*Ir}][PF_6]_2 \cdot 2(CH_2CI_2)$ (4) a chlorine atom of a CH_2CI_2 molecule as well as the second CH_2CI_2 molecule is disordered over tow position and was refined to an occupancy of 60:40 and 70.563:29.437, respectively.

Figure S3. Molecular structure of 4 in the crystal. Hydrogen atoms are omitted for clarity. ADPs are drawn at 50% probability level. Selected bond length [Å] and angles [°] are: P1-P4 2.1488(6), P1-P2 2.1512(6), P4-P3 2.1501(6), P3-P2 2.1518(6), Fe1-P1 2.2073(4), Fe2-P3 2.2074(4), Ir1-P_{4,cent}. 1.8915(2), Ir1-Cp*_{cent}. 1.8542(7), P4-P1-P2 96.82(2), P1-P4-P3 83.10(2), P2-P3-P4 96.76(2), P3-P2-P1 83.20(2).

X-ray diffraction on Crystals of 6

In the crystal structure of $[{Cp'''Fe(CO)_2}{Cp'''Fe(CO)}(\mu_3,\eta^{4:2:1}-P_4)(Cp^*Ru)][PF_6] \cdot 0.7(C_4H_8O)$ (6) only one of the two enantiomers (Figure **S4**: 1S-2R-3R-4R-5S enantiomer, Figure S5: 1R-2S-3S-4S-5R enantiomer) is present in the asymmetric unit. The second enantiomer is obtained by symmetry generation. The position of thf molecule is occupied by 70%.

Figure S4. Molecular structure of the 1S-2R-3R-4R-5S enantiomer of **6** in the crystal. Hydrogen atoms are omitted for clarity. ADPs are drawn at 50% probability level. Selected bond length [Å] and angles [°] are: P1-P2 2.1360(8), P2-P3 2.1335(8), P3-P4 2.1446(8), Ru1-P1 2.3592(5), Ru1-P2 2.4454(5), Ru1-P3 2.4469(6), Ru1-P4 2.3513(6), Ru1-...Fe1 2.9052(4), Fe1-P1 2.2539(6), Fe1-P4 2.2498(7), Fe2-P2 2.2413(6), Ru1-...Fe1 2.9052(4), Fe1-P1 102.26(3), P3-P2-P1 111.67(3), P3-P4-Fe1 108.53(3).

Figure S5. Molecular structure of the cationic part of the 1R-2S-3S-4S-5R enantiomer of **6** in the crystal. Hydrogen atoms are omitted for clarity. ADPs are drawn at 50% probability level.

3. ¹H NMR and ³¹P NMR Spectroscopy

General remarks:

¹H and ³¹P NMR spectra were recorded on a Bruker Avance III HD 400 (¹H: 400.130 MHz, ³¹P: 161.976 MHz) at 298 K. The chemical shifts are reported in ppm relative to external TMS (¹H) and H_3PO_4 (³¹P). The ³¹P NMR simulation was performed with the simulation tool of Bruker TopSpin (Version 4.0.8.).

153 152 151 150 149 148 147 146 ppm 107 106 105 104 103 102 101 100 ppm Figure S8. Experimental (top) and simulated (bottom) ³¹P{¹H} NMR spectrum of 2 (AA'XX' spin system).

Table S2. Calculated coupling constants of the cation of 2 (AA'XX' spin system) with a R-factor of 1.66%.

Figure S10. ³¹P{¹H} NMR spectrum of the reaction solution of **3** in CD₂Cl₂. The signals marked with a circle (\circ) can be assigned to **3**, while the signals marked with a diamond (\diamond) indicate the formation of a side products with an AA'MNX spin system (see Figure S13, Table S4 and Scheme S1).

corresponds to Rh).

Table S3. Calculated coupling constants of the cation of 3 (AA'MM'X spin system) with a R-factor of 1.15%.

Figure S13. Experimental (top) and simulated (bottom) ${}^{31}P{}^{1}H$ NMR spectrum of the side product with an AA'MNX spin system (X corresponds to Rh) of the synthesis of **3** (see Figure S10).

Table S4. Calculated coupling constants of the side product in the synthesis of 3 (AA'MNX spin system) with a R-factor of 3.67%.

Chemical	shift [ppm]	Coupling constants [Hz]						
А	201.7	JAM	359.4	J _{NM}	118.8	J _{MX}	35.1	
A'	201.7	J_{AN}	315.9	J _{AA'}	12.8	J NX	24.8	
Μ	157.7	J _{A'M}	356.8	JAX	15.7			
Ν	125.7	J _{A'N}	314.7	J _{A'X}	15.7			

Scheme S1. Postulated structure of the byproduct based on the coupling constants obtained by the simulation. R and L are possible pattern for substitution.

 Table S5. Calculated coupling constants of the cation of 4 (AA'XX' spin system) with a R-factor of 1.08%.

Figure S17. ¹H NMR spectrum of 5 in CD₂Cl₂. Signals marked with a star (*) are assigned to toluene.

Figure S18. ³¹P{¹H} NMR spectrum of 5 in CD₂Cl₂.

 Table S6. Calculated coupling constants of the cation of 5 (AA'XX' spin system) with a R-factor of 2.74%.

Chemica	al shift [ppm]	Cou	pling cor	nstants	s [Hz]
А	82.0	JAX	352.6	J _{AA'}	25.9
Х	82.0	J _{AX} ,	361.5	J _{XX}	31.4
Х	51.7	$J_{A'X}$	359.4		
X'	51.7	J _{A'X'}	352.3		
	P _{X/X}			+	
	[Fe] PA//	4' F	´X/X'		

Figure S20. ³¹P{¹H} NMR spectrum of the reaction mixture of **6** in CD₂Cl₂. The signals marked with the circle (\circ) can be assigned to **5**, while the signals marked with a diamond (\diamond) indicate the formation of side or degradation products.

Figure S21. ¹H NMR spectrum a crystalline sample of **6** in CD₂Cl₂. The aliphatic region (approx. $\delta = 1.3 - 1.7$ ppm) shows four singlets with an integral of approx. 9 each. Additionally, a broad signal lays underneath the four singlets with an integral of 18 (56-(4*9)≈18).

Figure S23. Experimental (top) and simulated (bottom) ³¹P{¹H} NMR spectrum of 6 (AMXY spin system).

Table S7. Calculated coupling constants of the two isomers of **6** (AMXY spin system) with a R-factor of 1.76%.The two isomers were refined to a distribution of 63% to 37%.

Isomer 1							ls	omer 2	2		
Chemic	al shift [ppm]	Co	upling cor	nstants	[Hz]	Chemical shift [ppm] Coupling constants [Hz]				[Hz]	
Α	501.1	JAY	406.5	JAM	3.2	Α	500.9	JAY	407.3	JAM	6.8
Μ	465.5	J MX	480.6	JAX	-3.4	M	457.0	J MX	458.0	JAX	-8.6
Х	144.1	J _{XY}	544.9	J MY	26.7	Х	145.2	J _{XY}	546.1	J _{MY}	30.1
Y	126.0					Y	126.5				
Fej PX PM Fe Ct tBu											

Figure S25. ³¹P{¹H} NMR spectra of a crystalline sample of 6 in CD₂Cl₂ at different temperatures.

4. Computational Details

All calculations have been performed with the TURBOMOLE program package^[7] at the RI^[8,9]-BP86^[10]/def2-TZVP^[9,11] level of theory. To speed up the geometry optimization the Multipole Accelerated Resolution-of-the-Identity (MARI-J)^[8,9,12] approximation has been used. For the reaction energies single point calculations at the B3LYP/def2-TZVP level have been performed in which the solvent effects have been incorporated via the COSMO method (acetonitrile ε = 35.688). The numbering of the atoms in the computational part differs from that of the main part.

		Partial charge	Percentage [%]		Partial charge	Percentage [%]
Complex		6			7	
Iron fragment	Cp'''Fe2(CO)	0.08	8.00	Cp'''Fe2(CO)	0.33	16.39
Iron fragment	Cp'''Fe3(CO) ₂	0.34	34.38	Cp'''Fe3(CO) ₂	0.49	24.70
Ligand (Ru)	Cp*	0.29	28.74	Cym	0.64	32.17
Ruthenium	Ru1	-0.35	-35.00	Ru1	-0.40	-20.12
P4 unit	P ₄	0.64	63.88	P4	0.94	46.86
Total charge		1.00	100.00		2.00	100.00
Complex		5			2	
Iron fragment	Cp'"Fe2(CO) ₂	0.35	35.22	Cp'"Fe2(CO) ₂	0.51	25.73
Iron fragment	Cp'"Fe3(CO) ₂	0.34	34.30	Cp'''Fe3(CO) ₂	0.52	25.76
Ligand (Ru)	Cp*	0.18	18.04	Cym	0.52	26.01
Ruthenium	Ru1	-0.37	-37.04	Ru1	-0.41	-20.26
P4 unit	P4	0.49	49.48	P4	0.86	42.76
Total charge		1.00	100.00		2.00	100.00

Tahla	82	Partial	charge	of the	fragmente	of 6	75	and	2
able	30.	Faillai	charge	or the	nayments	010	, 1 , J	anu	۷.

 $\label{eq:Figure S26. Optimized structure of [{Cp'''Fe(CO)_2}_2(\mu_3,\eta^{4:1:1}-P_4)(CymRu)]^{2+} (2), \\ [{Cp'''Fe(CO)_2}_2(\mu_3,\eta^{4:1:1}-P_4)(Cp^*Ru)]^+ (5) [{Cp'''Fe(CO)_2}_{Cp'''Fe(CO)}(\mu_3,\eta^{4:2:1}-P_4)(CymRu)]^{2+} (7) and \\ [{Cp'''Fe(CO)_2}_{Cp'''Fe(CO)}(\mu_3,\eta^{4:2:1}-P_4)(Cp^*Ru)]^+ (6) with the atom assignment. \\ \end{array}$

	5	6	2	7	СО		
BP86/def2-TZVP							
Tot. E [au]	-6163.618	-6050.2167	-6162.736	-6049.308	-113.365		
Tot. E [kJ/mol]	-16182579.092	-15884843.558	-16180261.959	-15882457.721	-297640.623		
B3LYP/def2-TZVP; COSMO (acetonitrile)							
Tot. E. [a.u.]	-6160.950	-6047.602	-6160.191	-6046.823	-113.311		
Tot. E. [kJ/mol]	-16175573.423	-15877979.547	-16173582.450	-15875933.929	-297497.986		
Tot E. + OC corr [au]	-6160.945	-6047.598	-6160.184	-6046.815	-113.311		
Tot E. + OC corr [kJ/mol]	-16175561.872	-15877967.975	-16173562.440	-15875913.548	-297498.024		

Table S9. Calculated total energy	y of complexes 2 , 5 , 6 , 7 and	ICO.
-----------------------------------	--	------

Table S10. Calculated reaction energies at the SP-COSMO-B3LYP level of the transformation of 5 to 6 and 2 to7.

Reaction	Reaction energy [kJ/mol]
[{Cp'''Fe(CO) ₂ } ₂ (µ ₃ ,η ^{4:1:1} -P ₄)(Cp*Ru)] ⁺ → [{Cp'''Fe(CO) ₂ }{Cp'''Fe(CO)}(µ ₃ ,η ^{4:2:1} -P ₄)(Cp*Ru)] ⁺ + CO	95.87
[{Cp ^{'''} Fe(CO) ₂ } ₂ (µ ₃ ,η ^{4:1:1} -P ₄)(CymRu)] ²⁺ → [{Cp ^{'''} Fe(CO) ₂ }{Cp ^{'''} Fe(CO)}(µ ₃ ,η ^{4:2:1} -P ₄)(CymRu)] ²⁺ + CO	150.87

Table S11. Selected Wiberg bond indices for [{Cp^{''}Fe(CO)₂}{Cp^{'''}Fe(CO)}(μ_3 , $\eta^{4:2:1}$ -P₄)(Cp^{*}Ru)]⁺ (6).

Fe2 - Ru1	0.317	P4 - Ru1	1.015	P5 - P4	0.974
P4 - Fe2	0.796	P5 - Ru1	0.604	P6 - P5	1.012
P5 - Fe3	0.970	P6 - Ru1	0.742	P7 - P6	1.127
P7 - Fe2	0.768	P7 - Ru1	1.082	P7 … P4	0.029

5. Literature:

- [1] C. Schwarzmaier, A. Y. Timoshkin, G. Balázs, M. Scheer, *Angew. Chem. Int. Ed.* **2014**, 53, 9077.
- [2] F. Kleinbeck, G. J. Fettes, L. D. Fader, E. M. Carreira, Chem. Eur. J. 2012, 18, 3598.
- [3] CrysAlisPro Software System, Agilent Technologies UK Ltd, Yarnton, Oxford, 2014.
- [4] G. Sheldrick, Acta Cryst. A 2015, 71, 3.
- [5] G. M. Sheldrick, Acta Cryst. A 2015, 71, 3.
- [6] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339.
- [7] a) R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, *Chem. Phys. Lett.* **1989**, *162*, 165;
 b) O. Treutler, R. Ahlrichs, *J. Chem. Phys.* **1995**, *102*, 346.
- [8] K. Eichkorn, O. Treutler, H. Öhm, M. Häser, R. Ahlrichs, Chem. Phys. Lett. 1995, 242, 652.
- [9] K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, Theor. Chem. Acc. 1997, 97, 119.
- [10] a) P. A. M. Dirac, Proceedings of the Royal Society of London. Series A 1929, 123, 714;
 b) J. C. Slater, Physical Review 1951, 81, 385; c) S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200; d) A. D. Becke, Physical Review A 1988, 38, 3098; e) J. P. Perdew, Physical Review B 1986, 33, 8822; f) J. P. Perdew, Physical Review B 1986, 34, 7406.
- [11] A. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 1994, 100, 5829.
- [12] M. Sierka, A. Hogekamp, R. Ahlrichs, J. Chem. Phys. 2003, 118, 9136.