Supplementary Information

The *In-situ* Formation of an Electrolyte via the Lithiation of Mg(BH₄)₂ in an All-solid-state Lithium Battery

Hiroki Sato,^a Ryo Sakamoto,^a Hironari Minami,^b Hiroaki Izumi,^b Keiko Ideta,^c Atsushi Inoishi,*^{c,d} and Shigeto Okada^{c,d}

- a. Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-koen 6-1, Kasuga, Fukuoka, 816-8580, Japan.
- b. Suzuki Motor Corporation, Automobile Electrical Design Department, Hamamatsu, Shizuoka 432-8611, Japan.
- c. Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen 6-1, Kasuga 816-8580, Japan.
- d. Elements Strategy Initiative for Catalyst and Batteries (ESICB), Kyoto University, Japan

Experimental Material synthesis

All operations were carried out in a glove box filled with Ar gas. Commercially available LiBH₄ (\geq 95%, Sigma-Aldrich) was hand milled for 5 min before use. A sulfide-based solid electrolyte was synthesized by the continuous ball milling (370 rpm) of Li₂S (98%, Strem Chemicals, Inc.) and P₂S₅ (99%, Sigma-Aldrich) in an 80:20 molar ratio for 20 h to obtain 80Li₂S· 20P₂S₅ glass (LPS).^{13), 14)} Milling was performed using a planetary-type mill (FRITSCH Pulverisette 6). The LiBH₄ and LPS samples prepared as above were subsequently used as solid electrolytes. Two composites containing Mg(BH₄)₂ (95%, Sigma-Aldrich) were also prepared, one containing a solid electrolyte and the other without the solid electrolyte. These materials were respectively obtained by the mechanical milling of Mg(BH₄)₂ with LiBH₄ and acetylene black (AB) in a 40:30:30 mass ratio or Mg(BH₄)₂ and AB in a 70:30 mass ratio at 400 rpm for 30 min. Each mixture was subsequently used as an electrode.¹⁵)

Battery assembly

A coin cell set with a sleeve made out of poly(ether ether ketone) (EQ-PSC, AA Portable Power Corp.) was used to fabricate a battery having an inside diameter of 10 mm. Li foil (Honjo Metal Co., Ltd) was pressed by hand onto an SUS plate inside the cell as a counter electrode. Following this, a quantity of LiBH₄ was placed on the same Li foil and pressed at 255 MPa. Finally, a portion of either the Mg(BH₄)₂+LiBH₄+AB or Mg(BH₄)₂+AB mixture was placed on top of the LiBH₄ layer and pressed at 382 MPa. A second all-solid-state battery was fabricated by hand pressing Li foil onto an SUS plate, after which In foil (Nilaco Co.) was hand pressed over top of the Li foil to produce a Li-In counter electrode. A quantity of the LPS was then placed on the Li-In foil and pressed at 127 MPa. Finally, a portion of the Mg(BH₄)₂+AB mixture was placed over top of the LPS layer and pressed at 255 MPa.

Herein, the batteries having Li/LiBH₄/Mg(BH₄)₂+LiBH₄+AB (40:30:30 by mass), Li/LiBH₄/Mg(BH₄)₂+AB (70:30 by mass) and Li-In/LPS/Mg(BH₄)₂+AB (70:30 by mass) structures are referred to as samples 1, 2 and 3, respectively. Sample 3 was prepared to provide evidence for the formation of LiBH₄ during the lithiation process, because it was challenging to remove the effect of the LiBH₄ in the solid electrolyte layer when obtaining nuclear magnetic resonance (NMR) spectra and X-ray diffraction (XRD) patterns.

Sample preparation for solid state NMR

Prior to acquiring solid state magic angle spinning (MAS) NMR spectra of the initial electrode materials, quantities of the $Mg(BH_4)_2$ +AB (70:30 by mass) mixture and the LPS were hand milled for 5 min. In addition, pellets of these same materials in the discharged (lithiated) and charged (delithiated) states were milled by hand after extraction from the cell.

Electrochemical measurements

The discharge/charge properties of the batteries were examined using a galvanostat (Hokuto Denko Co.) at a current density of 0.5 mA/cm² and at 120 °C, to obtain high ionic conductivity from the LiBH₄. Samples 1 and 2 were assessed between 0.3 and 1.5 V (vs Li/Li⁺) while sample 3 was tested between 0.0 and 1.2 V (vs Li-In). The capacity of each device was calculated based on the mass of Mg(BH₄)₂ in the anode mixture, not including the masses of the solid electrolyte and AB. The capacity was also calculated based on the mass of anode mixture including Mg(BH₄)₂, the solid electrolyte and the AB.

Characterization

The crystal structures of the electrode mixtures at various stages during the discharge/charge process were determined based on *ex-situ* XRD analyses (MiniFlex600, Rigaku Corp.) using Cu-K α radiation at room temperature over the 2 θ range of 10° to 60° at a scanning rate of 4°/min. The samples were sealed in an airtight holder with polyimide film to prevent any effects of ambient oxygen or moisture. Solid state MAS NMR spectra were acquired using a JNM-ECA400 (JEOL Ltd.) spectrometer with a 9.4 T magnetic field at frequencies of 58.9 and 128.3 MHz for ⁶Li and ¹¹B single pulse experiments, respectively. The NMR spectrometer was equipped with a 4 mm MAS probe. In case of ¹¹B experiments, a B-free cap was adopted for the MAS probe. Samples were packed in ZiO₂ tubes and sealed with tight-fitting Kel-F caps in an Ar-filled glovebox, then spun at 10 kHz under dry N₂ gas at room temperature. The ⁶Li chemical shifts were determined with reference to an aqueous 1.0 M LiCl solution, assigned a chemical shift of 0 ppm, while the ¹¹B chemical shifts were determined based on assigning a chemical shift of 19.5 ppm to a saturated aqueous H₃BO₃ solution.

Figure S1. Diagrams of (a) a typical all-solid-state battery with electrodes consisting of an active material, solid electrolyte and conductive carbon and (b) a new all-solid-state battery with electrodes consisting only of an active material and a conductive aid, without a solid electrolyte.

Figure S2. Diagrams showing the lithiation of an all-solid-state battery electrode without a solid electrolyte. (a) A typical active material reaction producing materials with low ionic conductivity and (b) the reaction of an active material that generates a solid electrolyte with high ionic conductivity *in-situ*.

Figure S3. The detailed schematic diagram of the preparation of the electrode and cell.

Figure S4. Photo images of (a) prepared powder of electrode mixture, (b) prepared cell (Li/LiBH₄/Mg(BH₄)₂, AB) and (c) Fabricated cell for evaluation of the solid-state cell.

Figure S5. The *ex-situ* XRD patterns obtained from a $Mg(BH_4)_2$ -AB composite electrode after 15th cycles (charged state), together with reference ICSD patterns.

Figure S6. The solid state ⁶Li MAS-NMR spectra of reagents and bilayer pellets (LPS/Mg(BH_4)₂ + AB (70:30 by mass)) in the initial, 1st discharge, 1st charge and 15th charge states.

Figure S7. The solid state ¹¹B MAS-NMR spectra of reagents and bilayer pellets (LPS/Mg(BH_4)₂ + AB (70:30 by mass)) in the initial, 1st discharge, 1st charge and 15th charge states over the full spectral window.

Figure S8. The expanded solid state ¹¹B MAS-NMR spectra of reagents and bilayer pellets $(LPS/Mg(BH_4)_2 + AB (70:30 by mass))$ in the initial, 1st discharge, 1st charge and 15th charge states.

Active material	Theoretical capacity (mAh/g)
KBH ₄	503
$Ca(BH_4)_2$	769
NaBH ₄	721
Mg(BH ₄) ₂	993

Table S1. Properties of $M(BH_4)_x$ -type active anode materials.

Table S2. Proposed reactions of $Mg(BH_4)_2$ with Li.

Reaction	Theoretical capacity (mAh/g)
$Mg(BH_4)_2 + 8Li^+ + 8e^- \rightarrow 8LiH + 2B + Mg$	3970
$Mg(BH_4)_2 + 6Li^+ + 6e^- \rightarrow 6LiH + 2B + MgH_2$	2978
$Mg(BH_4)_2 + 4Li^+ + 4e^- \rightarrow LiBH_4 + 3LiH + B + 0.5Mg + 0.5MgH_2$	1985
$Mg(BH_4)_2 + 2Li^+ + 2e^- \rightarrow 2LiBH_4 + Mg$	993