Clues from cocrystals: A ternary solid, polymorphism, and rare supramolecular

isomerism involving resveratrol and 5-fluorouracil

Celymar Ortiz-de León and Leonard R. MacGillivray

Department of Chemistry, University of Iowa, Iowa City, IA 52242 USA

Email: <u>len-macgillivray@uiowa.edu</u>

Supplemental Information

- 1. Reagents and Experimental
- 2. Single crystal X-ray diffraction

Table S1. Summary of crystallographic data for (5-fu)·(resv)·(bpe) and (5-fu)·(bpe).

3. Powder X-ray diffraction measurements

Figure S1. Overlay of PXRD patterns of A) **5-fu**; B) **resv**; C) **bpe**; D) (**resv**)·(**5-fu**)·(**bpe**) (simulated from crystal structure); and E) (**resv**)·(**5-fu**)·(**bpe**) (experimental).

Figure S2. Overlay of PXRD patterns of A) **5-fu**; B) **bpe**; C) 4(**5-fu**)·(**bpe**)⁴; D) 4(**5-fu**)·(**bpe**) (simulated from crystal structure); and E 4(**5-fu**)·(**bpe**) (experimental).

4. NMR spectrum and analysis

Figure S3. ¹H NMR of ternary cocrystal (**5-fu**)·(**resv**)·(**bpe**).

1. Reagents and Experimental

5-fluorouracil and resveratrol were purchased from Oakwood Chemicals, 1,2-bis(4-pyridyl)ethylene was purchased from TCI Chemicals. Methanol was purchased from Sigma-Aldrich. All chemicals were used as received and without further purification.

Liquid-assisted grinding (LAG) experiments were carried out in an FTS-1000 shaker mill using stainless steel jars.

Preparation of single crystals of (5-fu)·(resv)·(bpe). An equimolar mixture of **resv** (0.17 mmol), **bpe** (0.17 mmol) and **5-fu** (0.17 mmol) was combined in MeOH (2.0 mL) to afford plate-like single crystals.

Preparation of single crystals of 4(5-fu)·(bpe) form II. An equimolar mixture of **5-fu** (0.13 mmol) and **bpe** (0.13 mmol) was combined in acetone (2.0 mL) to afford prism-like single crystals.

Preparation of (5-fu)·(resv)·(bpe) *via* **liquid-assisted grinding (LAG).** An equimolar mixture of **resv** (0.13 mmol) **5-fu** (0.13 mmol) and **bpe** (0.13 mmol) was milled with 20 μ L of MeOH in a 5mL stainless steel jar at 20 Hz for 30 min.

Preparation of 4(5-fu)·(bpe) *via* **LAG.** A mixture of **5-fu** (0.54 mmol) and **bpe** (0.13 mmol) was milled with 20 μ L of acetone in a 5mL stainless steel jar at 20 Hz for 30 min.

2. Single-crystal X-ray diffraction (SCXRD) measurements

SCXRD data were collected on a Bruker Nonius Kappa CCD single crystal X-ray diffractometer using MoK_{α} radiation (λ = 0.71073 Å). Reflections were harvested from ϕ and ω scans with an intensity threshold of I > 2 σ (I). Data collection, reduction, and cell refinement were accomplished using the Bruker Apex2 software suite. Using Olex2,¹ structure solution and refinement were accomplished using SHELXT² and SHELXL,³ respectively. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms associated with carbon atoms were refined in geometrically constrained positions.

Crystal data ^a	(5-fu)·(resv)·(bpe)	4(5-fu)·(bpe)
Chemical formula	$C_4H_3FN_2O_2 \cdot C_{14}H_{12}O_3 \cdot C_{12}H_{10}N_2$	$C_{28}H_{22}F_4N_{10}O_8$
MW (g mol⁻¹)	540.54	702.55
Space group	ΡĪ	P21/n
a (Å)	9.4819(9)	9.1087(9)
b (Å)	10.652(1)	10.997(1)
<i>c</i> (Å)	13.506(1)	14.935(1)
α (°)	76.407(5)	90
6 (°)	85.696(5)	93.732(5)
γ (°)	88.382(5)	90

Table S1. Summary of crystallographic data for (**5-fu**)·(**resv**)·(**bpe**) and (**5-fu**)·(**bpe**).

V (Å ³)	1322.1(2)	1492.7(3)
Z	2	2
μ (mm ⁻¹)	0.099	0.134
$ ho_{ m calcd}$ (g/cm ³)	1.358	1.563
R_1^b	0.0583	0.0388
wR ₂ ^c	0.1656	0.1128
GooF on F ²	0.974	1.050
CCDC	2050224	2050223

a λ (Mo-Kα) = 0.71073 Å. b l ≥ 2σ(l). c All data.

3. Powder X-ray diffraction measurements

Powder X-ray diffraction (PXRD) data were collected on a Bruker D8 Advance X-ray diffractometer using CuK_{α 1} radiation (λ = 1.5418 Å) in the range 5–45° (scan type: coupled TwoTheta/Theta; scan mode: continuous PSD fast; step size: 0.019°) (40 kV and 30 mA).

4. NMR spectrum and analysis

¹H NMR spectra for (**5-fu**)·(**resv**)·(**bpe**) was collected using a Bruker Avance-300 NMR spectrometer operating at 300 MHz. ¹H chemical shifts were referenced from the ¹H chemical shifts of DMSO-D6 (2.50 ppm). The ¹H spectrum with resonance assignments for (**resv**)·(**5-fu**)·(**bpe**) is provided below (Figure S3). Resonances for **resv** (H_a-H_f), **5-fu** (H_c)⁶ and **bpe** (H_i-H_k) were assigned according to published spectra. ¹H NMR (300 MHz, DMSO-*d*₆): δ 9.55 (s, 1H), 9.20 (s, 2H), 8.60 (dd, *J* = 4.6, 1.5 Hz, 4H), 7.77 (d, *J* = 6.1 Hz, 1H), 7.69 – 7.47 (m, 6H), 7.39 (d, *J* = 8.6 Hz, 2H), 6.99 – 6.70 (m, 4H), 6.37 (d, *J* = 2.0 Hz, 2H), 6.11 (t, *J* = 2.0 Hz, 1H).

Figure S3. ¹H NMR of ternary cocrystal (**5-fu**)·(**resv**)·(**bpe**).

References

- 1. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J., et al., J. Appl. Crystallogr. 2009, 42 (2), 339-341.
- 2. Sheldrick, G. M., Acta Crystallographica Section A: Foundations and Advances **2015**, *71* (1), 3-8.
- 3. Sheldrick, G. M., Acta Crystallographica Section C: Structural Chemistry **2015**, *71* (1), 3-8.

- 4. Delori, A.; Eddleston, M. D.; Jones, W., *CrystEngComm* **2013**, *15* (1), 73-77.
- 6. in SDBSWeb, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan.