# Supplementary Information for:

# "Isolable Small-Molecule Cysteine Sulfenic Acid"

Tsukasa Sano, Ryosuke Masuda, Shohei Sase and Kei Goto\*

Department of Chemistry, School of Science, Tokyo Institute of Technology

2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan

# Contents

| 1. Experimental section | <b>S1</b> |
|-------------------------|-----------|
| 2. NMR spectra          | S16       |
| 3. References           | S22       |

# **1. Experimental Section**

General experimental methods: Unless otherwise stated, all operations were performed by using high-vacuum and standard Schlenk techniques under an argon atmosphere or in an MBraun UNIlab glove box under an argon atmosphere. THF (anhydrous) was purchased from Kanto Chemical and passed through a Kayama Oxygen solvent purification system prior to use. Dichloromethane, chloroform, CDCl<sub>3</sub>, and C<sub>6</sub>D<sub>6</sub> were purchased from commercial sources and distilled over CaH<sub>2</sub>. Compounds S1<sup>i</sup> and S2<sup>ii</sup> were prepared according to the literature procedure. Other chemicals were purchased from commercial sources and used as received. Silica gel column chromatography was performed using Kanto silica gel N60 or Merck silica gel 60. Preparative thin layer chromatography (PTLC) was performed using Merck silica gel 60 PF<sub>254</sub>. Preparative gel permeation liquid chromatography (GPLC) was performed by LC-918 and LC-9210 NEXT with JAI gel 1H and 2H columns (Japan Analytical Industry) with chloroform as solvent. <sup>1</sup>H NMR spectra were recorded on a JEOL ECX-500, a JEOL ECX-400, a JEOL ECS-400, or a JEOL LAMBDA-400, and the chemical shifts of <sup>1</sup>H are referenced to the residual proton signal of CDCl<sub>3</sub> ( $\delta$  7.25) or C<sub>6</sub>D<sub>6</sub> ( $\delta$  7.20). No-D NMR spectra were recorded on a JEOL ECX-500 or a JEOL ECS-400. <sup>13</sup>C NMR spectra were recorded on a JEOL ECX-500 or a JEOL ECX-400, and the chemical shifts of <sup>13</sup>C are referenced to the signal of CDCl<sub>3</sub> ( $\delta$  77.0) or C<sub>6</sub>D<sub>6</sub> ( $\delta$  128.0). All spectra were assigned with the aid of DEPT, COSY, HMQC, and HMBC NMR experiments. IR spectra were recorded on a JASCO FT/IR-4100 by utilizing a KBr disk unless otherwise noted. Mass spectra were measured on a JEOL JMS-T100GCv "AccuTOF GCv" using a field desorption probe. Melting points were measured with a Yanaco MP-S3 and are uncorrected.

## Synthesis of Bpsc-OH (1).



## Scheme S1

To a Grignard reagent prepared by the reaction of **S1** (10.0 g, 10.5 mmol) and magnesium turnings (344 mg, 14.7 mmol) in THF (35 mmol) was added a solution of 1,3-dichloro-2-iodobenzene (**S2**) (945 mg, 3.47 mmol) in THF (15 mL) at 85 °C. After the reaction mixture was stirred at 85 °C overnight, it was cooled to ambient temperature and the system was filled with CO<sub>2</sub> by means of a balloon. The reaction mixture under CO<sub>2</sub> atmosphere was heated at 90 °C for 3.5 h and then treated

with 1 M aq. HCl at 0 °C. After extraction with ether, the combined organic layer was dried over MgSO<sub>4</sub> and evaporated in vacuo. To the crude mixture was added EtOH, and the mixture was heated at 85 °C for 2 h. After cooling to ambient temperature, precipitates were collected by filtration. It was purified by silica gel column chromatography (hexane/CHCl<sub>3</sub> = 2:1) to afford Bpsc–OH (**1**) (3.16 g, 1.68 mmol, 49%) as colorless crystals.

1: colorless crystals; mp 236.5-238.5 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta_{\rm H}$  1.03 (48H, d, J = 6.5 Hz), 1.10 (48H, d, J = 6.5 Hz), 2.74 (16H, septet, J = 6.5 Hz), 6.99 (4H, t, J = 1.5 Hz), 7.17 (16H, d, J = 7.5 Hz), 7.31 (8H, t, J = 7.5 Hz), 7.43 (8H, d, J = 1.5 Hz), 7.45-7.54 (3H, m), 7.71 (4H, d, J = 1.5 Hz), 7.84 (2H, t, J = 1.5 Hz); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta_{\rm C}$  24.35 (q), 24.51 (q), 30.60 (d), 122.71 (d), 125.84 (d), 126.30 (d), 126.62 (d), 128.16 (d), 129.62 (d), 130.02 (d), 130.41 (d), 131.87 (s), 139.20 (s), 140.23 (s), 140.43 (s), 141.27 (s), 141.54 (s), 141.89 (s), 170.01 (s); IR(KBr)  $v_{max}/cm^{-1}$  1732 (C=O), 3625 (O–H). Elemental Analysis: Found: C, 89.58; H, 8.36. Calc. for C<sub>139</sub>H<sub>158</sub>O<sub>2</sub>: C, 89.72; H, 8.56%.

# Synthesis of Bpsc–Cl (2).



#### Scheme S2

To a solution of **1** (1.60 g, 0.855 mmol) in  $CH_2Cl_2$  (8.6 mL) was added DMF (427 µL) and thionyl chloride (302 µL, 4.27 mmol) at ambient temperature. After stirring for 2.5 h at ambient temperature, the reaction mixture was evaporated in vacuo. The resulting solid was washed with hexane/EtOH (v/v = 1/10) and collected by filtration to give Bpsc–Cl (**2**) (1.51 g, 0.804 mmol, 94%) as colorless crystals.

**2**: colorless crystals; mp 248.9-250.5 °C (dec). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta_{\rm H}$  1.02 (48H, d, *J* = 7.0 Hz), 1.09 (48H, d, *J* = 7.0 Hz), 2.73 (16H, septet, *J* = 7.0 Hz), 6.99 (4H, t, *J* = 1.0 Hz), 7.16 (16H, d, *J* = 7.5 Hz), 7.31 (8H, t, *J* = 7.5 Hz), 7.45 (8H, d, *J* = 1.5 Hz), 7.50-7.59 (3H, m), 7.68 (4H, d, *J* = 1.5 Hz), 7.90 (1H, t, *J* = 1.5 Hz); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta_{\rm C}$  24.22 (q), 24.38 (q), 30.48 (d), 122.59 (d), 126.09 (d), 126.47 (d), 127.04 (d), 128.02 (d), 129.67 (d), 130.46 (d), 130.85 (d), 137.39 (s), 139.03 (s), 139.97 (s), 140.20 (s), 141.22 (s), 141.97 (s), 146.79 (s), 153.87 (s); IR(KBr) v<sub>max</sub>/cm<sup>-1</sup> 1792 (C=O). Elemental Analysis: Found: C, 89.09; H, 8.17. Calc. for C<sub>139</sub>H<sub>157</sub>ClO: C, 88.84; H, 8.42%.

## Synthesis of *S*-(pyridine-2-sulfanyl)cysteine (3).

## Scheme S3

To a solution of pyridine-2-thiol (148 mg, 1.26 mmol) in  $CH_2Cl_2$  (2.1 mL) was added a solution of sulfuryl chloride (0.24 mL, 3.0 mmol) in  $CH_2Cl_2$  (1.0 mL) at 0 °C. The reaction mixture was stirred at ambient temperature for 2 h and then evaporated in vacuo. After addition of a 2 mL of  $CH_2Cl_2$ followed by evaporation to dryness was repeated two times, acetic acid (2.0 mL) was added to the resulting residue to give a yellow suspension. To this suspension was added *L*-cysteine methyl ester hydrochloride (215 mg, 1.25 mmol) in acetic acid (2.3 mL) at ambient temperature. After stirring for 2 h, the reaction mixture was neutralized (pH 7) with sat. aq. NaHCO<sub>3</sub>. After extraction with CHCl<sub>3</sub>, the combined organic layer was dried over MgSO<sub>4</sub> and evaporated in vacuo to give *S*-(pyridine-2sulfanyl)cysteine (**3**) (272 mg, 1.11 mmol, 88%) as yellow oil, which was readily used in the next step without further purification.

**3**: yellow oil; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta_{\rm H}$  2.96 (1H, dd, J = 8.4 Hz, 13.9 Hz), 3.23 (1H, dd, J = 4.4 Hz, 13.9 Hz), 3.71 (3H, s), 3.81 (1H, dd, J = 4.4 Hz, 8.4 Hz), 7.09-7.14 (1H, m), 7.59-7.66 (2H, m), 8.46-8.50 (1H, m); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta_{\rm C}$  44.19, 52.33, 53.54, 120.21, 120.98, 136.97, 149.82, 159.24, 173.95.

# Synthesis of 4.



#### Scheme S4

To a solution of **2** (926 mg, 0.492 mmol) and **3** (272 mg, 1.11 mmol) in  $CH_2Cl_2$  (12 mL) was added  $Et_3N$  (0.21 mL, 1.5 mmol) at 0 °C. The reaction mixture was stirred at 0 ° C for 30 min and then at ambient temperature overnight. After the resulting mixture was washed with aq. NH<sub>4</sub>Cl and brine, the organic layer was dried over MgSO<sub>4</sub> and evaporated in vacuo. Purification by silica gel column chromatography (CHCl<sub>3</sub>/hexane = 5:6) afforded **4** (967 mg, 0.463 mmol, 94%) as colorless crystals.

**4**: colorless crystals; mp 204.2-206.3 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta_{\rm H}$  1.01 (24H, d, *J* = 6.8 Hz), 1.02 (24H, d, *J* = 6.8 Hz), 1.07 (24H, d, *J* = 6.8 Hz), 1.08 (24H, d, *J* = 6.8 Hz), 2.08-2.18 (1H, m),

2.66-2.81 (16H, m), 2.96 (3H, s), 3.20-3.28 (1H, m), 4.44-4.51 (1H, m), 6.57 (1H, d, J = 8.1 Hz), 6.22-6.67 (1H, m), 6.91-7.00 (5H, m), 7.14-7.19 (16H, m), 7.31 (8H, t, J = 7.4 Hz), 7.37-7.43 (11H, m), 7.45-7.50 (1H, m, A of AB<sub>2</sub>), 7.57 (4H, d, J = 1.6 Hz), 7.77 (2H, t, J = 1.6 Hz), 9.83 (1H, d, J = 7.6 Hz). HRMS (FD-TOF) *m*/*z* 2085.2494 [M]<sup>+</sup> (calc. for C<sub>148</sub>H<sub>168</sub>N<sub>2</sub>O<sub>3</sub>S<sub>2</sub>, 2085.2496).

Synthesis of the cradled Cys-SH 5.



#### Scheme S5

To a solution of 4 (418 mg, 0.20 mmol) in CHCl<sub>3</sub> (4 mL) were added *D*, *L*-dithiothreitol (DTT, 154 mg, 1.0 mmol) and Et<sub>3</sub>N (140  $\mu$ L, 1.0 mmol) at ambient temperature. The reaction mixture was stirred at ambient temperature for 1.5 h and then treated with aq. NH<sub>4</sub>Cl. The organic layer was washed successively with aq. NH<sub>4</sub>Cl and brine and then dried over MgSO<sub>4</sub>. After evaporation in vacuo, the crude mixture was purified by silica gel column chromatography (CHCl<sub>3</sub>/hexane = 1:1) to afford **5** (361 mg, 0.18 mmol, 91%) as colorless crystals.

**5**: colorless crystals; mp 233.5-235.0 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta_{\rm H}$  0.38 (1H, t, *J* = 6.8 Hz), 1.02 (24H, d, *J* = 6.8 Hz), 1.03 (24H, d, *J* = 6.8 Hz), 1.09 (24H, d, *J* = 6.8 Hz), 1.11 (24H, d, *J* = 6.8 Hz), 2.25-2.30 (1H, m), 2.41-2.46 (1H, m), 2.67-2.79 (16H, m), 3.03 (3H, s), 4.51-4.54 (1H, m), 6.42 (1H, d, *J* = 7.5 Hz), 6.98 (4H, t, *J* = 1.5 Hz), 7.14-7.19 (16H, m), 7.31 (8H, t, *J* = 7.6 Hz), 7.41 (8H, d, *J* = 1.5 Hz), 7.44-7.51 (3H, AB<sub>2</sub>), 7.67 (4H, d, *J* = 1.5 Hz), 7.78 (2H, t, *J* = 1.5 Hz); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta_{\rm C}$  24.32 (q), 24.49 (q), 26.30 (t), 30.56 (d), 52.41 (q), 53.39 (d), 122.66 (d), 126.21 (d), 126.70 (d), 127.11 (d), 128.08 (d), 129.44 (d), 129.91 (d), 130.46 (d), 135.12 (s), 139.17 (s), 140.14 (s), 140.53 (s), 141.20 (s), 141.73 (s), 141.97 (s), 146.89 (s), 168.11 (s), 169.74 (s). Elemental Analysis: Found: C, 86.59; H, 8.40; N, 0.57; S, 1.89. Calc. for C<sub>143</sub>H<sub>165</sub>NO<sub>3</sub>S: C, 86.84; H, 8.41; N, 0.71; S, 1.62%.

## Synthesis of the cradled Cys-SOH 6.



#### (a) Reaction using NaOH as base

To a solution of **5** (32.1 mg, 16.2  $\mu$ mol) in THF (2 mL) was added 0.1 M aq. NaOH (180  $\mu$ L, 18  $\mu$ mol) at ambient temperature. The reaction mixture was degassed through freeze-pump-thaw cycles, and the flask was then flushed with argon. To this solution was added 30% H<sub>2</sub>O<sub>2</sub> (2.1  $\mu$ L, 18  $\mu$ mol) at ambient temperature. The reaction mixture was stirred for 24 h at ambient temperature and treated with aq. NH<sub>4</sub>Cl. After extraction with ether, the combined organic layer was washed with brine and dried over MgSO<sub>4</sub>. The solvent was evaporated in vacuo, and the crude mixture was purified by silica gel column chromatography (CHCl<sub>3</sub>/hexane = 1:2) to afford **6** (8.7 mg, 4.4  $\mu$ mol, 27%) as colorless crystals.

### (b) Reaction using DBU as base

To a solution of **5** (27.6 mg, 13.9  $\mu$ mol) in THF (2 mL) was added DBU (42  $\mu$ L, 0.28 mmol) at ambient temperature. The reaction mixture was degassed through freeze-pump-thaw cycles, and the flask was then flushed with argon. To this solution was added 30% aq. H<sub>2</sub>O<sub>2</sub> (17  $\mu$ L, 0.14 mmol) at ambient temperature. The reaction mixture was stirred for 10 min at ambient temperature and then treated with aq. NH<sub>4</sub>Cl. After extraction with ether, the combined organic layer was washed with brine and dried over MgSO<sub>4</sub>. The solvent was evaporated in vacuo, and the crude mixture was purified by silica gel column chromatography (CHCl<sub>3</sub>/hexane = 2:3 to AcOEt/hexane = 2:1) to afford **6** (10.0 mg, 5.0  $\mu$ mol, 36%) as colorless crystals.

**6**: Colorless crystals; mp 214-217 °C (dec.). <sup>1</sup>H NMR (500 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta_{\rm H}$  1.14 (24H, d, *J* = 6.9 Hz), 1.15 (24H, d, *J* = 6.9 Hz), 1.19 (48H, d, *J* = 6.9 Hz), 1.56 (1H, dd, *J* = 11.2, 14.2 Hz), 2.77 (3H, s), 2.99-3.09 (16H, m), 3.21 (1H, dd, *J* = 3.8, 14.2 Hz), 4.22-4.27 (1H, m), 5.36 (1H, s, -SOH), 5.77 (1H, d, *J* = 8.0 Hz), 7.03-7.10 (3H, AB<sub>2</sub> pattern), 7.13 (4H, t, *J* = 1.5 Hz), 7.25 (16H, d, *J* = 7.7 Hz), 7.39 (8H, t, *J* = 7.7 Hz), 7.68 (8H, d, *J* = 1.5 Hz), 7.91 (4H, d, *J* = 1.4 Hz), 8.06 (2H, t, *J* = 1.4 Hz); <sup>13</sup>C NMR (125 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta_{\rm C}$  24.3 (q), 24.4 (q), 24.5 (q), 24.6 (q), 30.9 (d), 44.4 (t), 50.2 (d), 51.8 (q), 122.9 (d), 126.1 (d), 127.2 (d), 128.3 (d), 128.5 (d), 129.6 (d), 129.8 (d), 130.9 (d), 135.3 (s), 139.5 (s), 140.9 (s), 141.5 (s), 141.6 (s), 141.9 (s), 142.4 (s), 147.0 (s), 147.0 (s), 169.8 (s), 171.0 (s); IR (CCl<sub>4</sub>, 10.4 mM)  $v_{max}$ /cm<sup>-1</sup> 3100–3400 (br, O-H). Elemental Analysis: Found: C, 86.52; H, 8.31; N, 0.74; S, 1.48. Calc. for C<sub>143</sub>H<sub>165</sub>NO<sub>4</sub>S: C, 86.14; H, 8.34; N, 0.70; S, 1.61%.

## X-ray crystallographic analysis of Cys-SOH 6.

Single crystals of **6**•4C<sub>5</sub>H<sub>12</sub>•2C<sub>4</sub>H<sub>10</sub>O<sub>2</sub> were grown in their pentane-dimethoxyethane solution. A colorless crystal of **6**•4.5C<sub>5</sub>H<sub>12</sub> was mounted on a loop. All measurements were made on a Rigaku/Saturn CCD with VariMax Mo with graphite monochromated Mo-K $\alpha$  radiation ( $\lambda = 0.71075$ 

Å) at -153 °C. Crystallographic and experimental data are listed in Table S1. The structures were solved by the direct method (SIR97) and refined by full-matrix least squares on  $F^2$  (SHELXL-2018/3). The non-hydrogen atoms were refined anisotropically, except for the minor components of the disordered isopropyl groups. The hydrogen atoms bonded to carbon atoms were idealized by using the riding models. The hydrogen atoms bonded to N1 and O1 were treated as HFIX 43 and HFIX 147 command, respectively. The solvent molecules in the voids were highly disordered and were impossible to refine using conventional discrete-atom models. Therefore, the residual electron density was treated as diffuse contributions using the SQUEEZE procedure as implemented in PLATON. A total solvent-accessible void volume of 5040 Å<sup>3</sup> with a total electron count of 1093 (consistent with four molecules of pentane and two molecules of dimethoxyethane per formula) was found in the unit cell.

| Empirical fomula                | $C_{143}H_{165}NO_4S \bullet 4C_5H_{12} \bullet 2C_4H_{10}O_2$ |                       |
|---------------------------------|----------------------------------------------------------------|-----------------------|
| Fomula weight                   | 2462.63                                                        |                       |
| Temperature                     | 123(2) K                                                       |                       |
| wavelength                      | 0.71075 Å                                                      |                       |
| Crystal system                  | Orthorhombic                                                   |                       |
| Space group                     | $P2_{1}2_{1}2_{1}$                                             |                       |
| Unit cell dimensions            | a = 13.461(2) Å                                                | $\alpha = 90^{\circ}$ |
|                                 | b = 27.545(4)  Å                                               | $\beta = 90^{\circ}$  |
|                                 | c = 42.227(6) Å                                                | $\gamma = 90^{\circ}$ |
| Volume                          | 15658(4) Å <sup>3</sup>                                        |                       |
| Ζ                               | 4                                                              |                       |
| $D_{ m calc}$                   | 0.846 g/cm <sup>3</sup>                                        |                       |
| Absorption coefficient          | 0.075 mm <sup>-1</sup>                                         |                       |
| $F_{000}$                       | 4312                                                           |                       |
| Crystal size                    | 0.30 x 0.24 x 0.07 mm <sup>3</sup>                             |                       |
| Theta range for data collection | 3.03 to 25.00°.                                                |                       |
| Index ranges                    | -16<= <i>h</i> <=11, -32<= <i>k</i> <=12, -49<= <i>l</i> <=36  |                       |
| Reflections collected           | 29055                                                          |                       |
| Independent reflections         | 23475 [ $R_{\rm int} = 0.0620$ ]                               |                       |
| Max. and min. transmission      | 0.9951 and 0.9794                                              |                       |

Table S1. Crystal data and structure refinement for  $6.4C_5H_{12}.2C_4H_{10}O_2$ .

| data / restraints / parameters            | 23475 / 0 / 1396                   |
|-------------------------------------------|------------------------------------|
| Goodness-of-fit on $F^2$                  | 0.995                              |
| Final <i>R</i> induces $(I > 4\sigma(I))$ | R1 = 0.0765, wR2 = 0.1450          |
| <i>R</i> induces (all data)               | R1 = 0.1403, wR2 = 0.1705          |
| Largest diff. peak and hole               | 0.24 and $-0.27$ e.Å <sup>-3</sup> |



Figure. S1 Crystal structure of Cys–SOH 6 (hydrogen atoms of the Bpsc group are omitted for clarity).



Figure. S2 Thermal ellipsoid representation of the cysteine unit of 6 (50% probability).

#### Thermal stability of Cys-SOH 6 in solution.



(a) Without additives (50 °C in  $C_6D_6$ )

A solution of **6** (15.3 mg, 7.7  $\mu$ mol) in C<sub>6</sub>D<sub>6</sub> (0.6 mL) was placed in a 5 mm o/d NMR tube with a J-young valve, and the tube was carefully sealed. The solution was heated at 50 °C for 17 h by means of an oil bath. No decomposition of 6 was observed in <sup>1</sup>H NMR spectroscopy.

(b) In the presence of benzoic acid (50 °C in  $C_6D_6$ )

A solution of **6** (7.6 mg, 3.8  $\mu$ mol) and benzoic acid (2.3 mg, 19  $\mu$ mol) in C<sub>6</sub>D<sub>6</sub> (0.6 mL) was placed in a 5 mm o/d NMR tube with a J-young valve, and the tube was carefully sealed. The solution was heated at 50 °C for 7 h by means of an oil bath. No decomposition of **6** was observed in <sup>1</sup>H NMR spectroscopy.

(c) In the presence of triethylamine (ambient temperature in  $C_6D_6$ )

A solution of **6** (6.4 mg, 3.2  $\mu$ mol) and Et<sub>3</sub>N (2.2  $\mu$ L, 16  $\mu$ mol) in C<sub>6</sub>D<sub>6</sub> (0.6 mL) was placed in a 5 mm o/d NMR tube with a J-young valve, and the tube was carefully sealed. The solution was left at ambient temperature for 7 d. No decomposition of **6** was observed in <sup>1</sup>H NMR spectroscopy.

# Reaction of Cys–SOH 11 with *N*-acetylcysteine methyl ester (7).



#### Scheme S8

*General procedure*: To a solution of **6** (32.4 mg, 16.2  $\mu$ mol) in THF (1.2 mL) were added *N*-acetylcysteine methyl ester (7) (14.3 mg, 81  $\mu$ mol) and 1,3,5-trimethoxybenene (3 mg, internal standard) in a glove box at ambient temperature. This solution was divided equally among three, and

each was placed to a 5 mm o/d NMR tube with a J-young valve. The resulting three samples were used for the following NMR experiments. The yield of disulfide **8** was estimated by no-D NMR spectroscopy based on internal standard.

#### (a) Without additives

To a solution in a J-young NMR tube were added THF (150  $\mu$ L) and H<sub>2</sub>O (50  $\mu$ L), and the tube was carefully sealed. The sample was left at ambient temperature, and the reaction was monitored by no-D NMR spectroscopy. After 15 days, **8** was formed in 54% yield.

#### (b) In the presence of benzoic acid

To a solution in a J-young NMR tube were added benzoic acid (3.3 mg, 27  $\mu$ mol), THF (150  $\mu$ L) and H<sub>2</sub>O (50  $\mu$ L), and the tube was carefully sealed. The sample was left at ambient temperature, and the reaction was monitored by no-D NMR spectroscopy. After 15 days, **8** was formed in 55% yield.

#### (c) In the presence of triethylamine

To a solution in a J-young NMR tube were added Et<sub>3</sub>N (3.8 mg, 27  $\mu$ mol), THF (150  $\mu$ L) and H<sub>2</sub>O (50  $\mu$ L), and the tube was carefully sealed. The sample was left at ambient temperature. After 10 min, **8** was formed quantitatively.

**8**: Colorless crystals; mp 200.0-201.0 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta_{\rm H}$  1.03 (24H, d, J = 7.0 Hz), 1.03 (24H, d, J = 7.0 Hz), 1.10 (24H, d, J = 6.8 Hz), 1.11 (24H, d, J = 6.8 Hz), 1.84 (3H, s), 2.13 (1H, dd, J = 6.1 Hz, 14.0 Hz), 2.64 (1H, dd, J = 4.6 Hz, 14.0 Hz), 2.68-2.80 (16H, m), 2.81 (1H, dd, J = 3.1 Hz, 14.1 Hz), 3.02 (1H, dd, J = 5.1 Hz, 14.1 Hz), 3.05 (3H, s), 3.52 (3H, s), 4.47-4.51 (1H, m), 4.58-4.63 (1H, m), 6.31 (1H, d, J = 7.7 Hz), 6.42 (1H, d, J = 8.2 Hz), 6.98 (4H, t, J = 1.5 Hz), 7.17 (16H, d, J = 7.7 Hz), 7.31 (8H, t, J = 7.7 Hz), 7.41 (8H, d, J = 1.5 Hz), 7.41-7.51 (3H, m), 7.66 (4H, d, J = 1.7 Hz), 7.78 (2H, d, J = 1.7 Hz); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta_{\rm C}$  22.8 (q), 24.3 (q), 24.4 (q), 30.5 (d), 39.4 (t), 42.0 (t), 50.2 (d), 51.4 (d), 52.4 (q), 52.5 (q), 122.6 (d), 125.9 (d), 126.6 (d), 127.1 (d), 128.0 (d), 129.4 (d), 129.9 (d), 130.4 (d), 134.7 (s), 139.1 (s), 140.2 (s), 140.5 (s), 141.2 (s), 141.6 (s), 141.7 (s), 146.8 (s), 167.9 (s), 169.8 (s), 170.2 (s), 170.52 (s). Elemental Analysis: Found: C, 83.15; H, 8.45; N, 1.19; S, 2.69. Calc. for C<sub>149</sub>H<sub>174</sub>N<sub>2</sub>O<sub>6</sub>S<sub>2</sub>: C, 83.12; H, 8.15; N, 1.30; S, 2.98%.

#### **Reduction of Cys-SOH 6 with DTT.**



#### Scheme S9

To a solution of **6** (30.9 mg, 15.5  $\mu$ mol) in CHCl<sub>3</sub> (2 mL) were added DTT (12.2 mg, 77.4  $\mu$ mol) and Et<sub>3</sub>N (11  $\mu$ L, 77  $\mu$ mol) at ambient temperature. The reaction mixture was stirred for 3 h at ambient temperature and then treated with saturated aq. NH<sub>4</sub>Cl. After extraction with CHCl<sub>3</sub>, the combined organic layer was washed with brine and dried over MgSO<sub>4</sub>. The crude mixture was purified by PTLC (SiO<sub>2</sub>/CHCl<sub>3</sub>/hexane = 1:2) to afford **5** (26.2 mg, 13.2  $\mu$ mol, 85%).

#### **Reduction of disulfide 8 with DTT.**



## Scheme S10

To a solution of **8** (21.0 mg, 9.8  $\mu$ mol) in CDCl<sub>3</sub> (0.6 mL) in a 5 mm o/d NMR tube were added DTT (7.6 mg, 48  $\mu$ mol) and Et<sub>3</sub>N (6.7  $\mu$ L, 48  $\mu$ mol) at ambient temperature. The reaction at ambient temperature was monitored by <sup>1</sup>H NMR spectroscopy. It was found that **8** was totally consumed after 3 h and **5** was formed quantitatively. After evaporation of the solvent, the crude mixture was purified by PTLC (SiO<sub>2</sub>/CHCl<sub>3</sub>/hexane = 1:2) to afford **5** (19.2 mg, 9.7  $\mu$ mol, 99%).

#### **Reaction of Cys–SOH 11 with dimedone (9a).**



#### Scheme S11

*General procedure*: To a solution of **6** in  $C_6D_6$  (0.6 mL) in a 5 mm o/d NMR tube with a J-young valve were added dimedone (**9a**) and additives at ambient temperature, and the tube was carefully sealed. The reactions were conducted under the indicated conditions and monitored by <sup>1</sup>H NMR spectroscopy (at ambient temperature). When **6** was consumed totally, the reaction mixture was treated with saturated aq. NaHCO<sub>3</sub>. After extraction with CH<sub>2</sub>Cl<sub>2</sub>, the combined organic layer was washed with brine and dried over MgSO<sub>4</sub>. The solvent was evaporated in vacuo, and the crude mixture was purified by PTLC (SiO<sub>2</sub>/ CHCl<sub>3</sub>/hexane = 2:1) to afford **10a** as colorless crystals.

## (a) Without additives

Reagents: **6** (22.1 mg, 11.1 μmol), **9a** (4.6 mg, 33 μmol) Conditions: 75 °C, 23 h Result: **10a** (17.9 mg, 8.4 μmol, 76%)

(b) In the presence of benzoic acid Reagents: **6** (21.3 mg, 10.7 μmol), **9a** (4.5 mg, 32 μmol), benzoic acid (3.9 mg, 32 μmol) Conditions: 75 °C, 7 h Result: **10a** (19.7 mg, 9.3 μmol, 87%)

(c) In the presence of triethylamine Reagents: **6** (20.4 mg, 10.2  $\mu$ mol), **9a** (4.3 mg, 30  $\mu$ mol), Et<sub>3</sub>N (7  $\mu$ L, 30  $\mu$ mol) Conditions: ambient temperature, 3 h Result: **10a** (20.5 mg, 9.7  $\mu$ mol, 95%)

**10a**: Colorless crystals; mp 218.0-220.0 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta_{\rm H}$  0.85 (3H, s), 0.87 (3H, s), 1.02 (24H, d, *J* = 7.0 Hz), 1.03 (24H, d, *J* = 7.0 Hz), 1.08 (24H, d, *J* = 7.0 Hz), 1.09 (24H, d, *J* = 7.0 Hz), 1.81 (1H, dd, *J* = 8.5 Hz, 14 Hz), 1.87 (2H, ABq, *J* = 18 Hz), 2.04 (2H, ABq, *J* = 18 Hz), 2.51 (1H, dd, *J* = 2.0 Hz, 14 Hz), 2.69-2.80 (16H, m), 2.98 (3H, s), 4.04-4.12 (1H, m), 6.59 (1H, d, *J* = 8.0 Hz), 6.97 (4H, t, *J* = 1.0 Hz), 7.16 (16H, d, *J* = 8.0 Hz), 7.31 (8H, t, *J* = 8.0 Hz), 7.41 (8H, d, *J* = 1.0 Hz), 7.40-7.50 (3H, m), 7.67 (4H, d, *J* = 1.5 Hz), 7.79 (2H, t, *J* = 1.5 Hz), 9.62 (1H, s); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta_{\rm C}$  24.2 (q), 24.3 (q), 24.4 (q), 27.8 (q), 28.4 (q), 30.5 (d), 31.2 (s), 39.2 (t), 42.7 (t). 51.2 (t), 52.4 (d), 53.1 (q), 104.6 (s), 122.6 (d), 126.7 (d), 127.7 (d), 128.0 (d), 129.2 (d), 130.0 (d), 130.3 (d), 134.6 (s), 139.2 (s), 140.3 (s), 140.7 (s), 141.1 (s), 141.3 (s), 141.7 (s), 146.8 (s), 146.9 (s), 168.8 (s), 169.9 (s), 179.8 (s), 195.0 (s); LRMS (FD-TOF) *m/z* 2115 ([M]<sup>+</sup>). Elemental Analysis: Found: C, 85.65; H, 8.61; N, 0.57; S, 1.22. Calc. for C<sub>151</sub>H<sub>175</sub>NO<sub>5</sub>S<sub>2</sub>: C, 85.71; H, 8.34; N, 0.66; S, 1.52%.

## Reaction of a cradled Cys-SOH 6 with cyclohexane-1,3-dione (9b).



## Scheme S12

To a solution of **6** (7.70 mg, 3.86  $\mu$ mol) in C<sub>6</sub>D<sub>6</sub> (0.5 mL) in a 5 mm o/d NMR tube with a J-young valve were added cyclohexane-1,3-dione (**9b**) (1.3 mg, 12  $\mu$ mol) and Et<sub>3</sub>N (1.6  $\mu$ L, 12  $\mu$ mol) at

ambient temperature, and the tube was carefully sealed. The mixture was kept at ambient temperature for 6.5 h. The crude products were purified by GPC (CHCl<sub>3</sub>) to afford **10b** (7.9 mg, 3.4  $\mu$ mol, 98%) as colorless crystals.

**10b**: Colorless crystals; mp 212.0-214.5 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta_{\rm H}$  1.03 (48H, d, J = 6.8 Hz), 1.09 (24H, d, J = 6.8 Hz), 1.10 (24H, d, J = 6.8 Hz), 1.56-1.69 (2H, m), 1.92-2.10 (4H, m), 2.15-2.20 (1H, m), 2.51 (1H, dd, J = 14.0, 2.3 Hz), 2.72-2.79 (16H, m), 2.97 (3H, s), 4.08 (1H, td, J = 8.0, 2.3 Hz), 6.83 (1H, d, J = 7.9 Hz), 6.98 (4H, br), 7.17 (16H, d, J = 7.4 Hz), 7.32 (8H, t, J = 7.9 Hz), 7.41 (8H, br), 7.43-7.45 (2H, m, B of AB<sub>2</sub>), 7.48-7.51 (1H, m, A of AB<sub>2</sub>), 7.68 (4H, d, J = 1.1 Hz), 7.79 (2H, br), 9.24 (1H, br s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta_{\rm C}$  19.6 (t), 24.10 (q), 24.12 (q), 24.3 (q), 28.9 (t), 30.3 (d), 37.0 (t), 38.0 (t), 52.1 (q), 52.6 (d), 105.5 (s), 122.4 (d), 126.0 (d), 126.6 (d), 127.3 (d), 127.8 (d), 129.1 (d), 129.8 (d), 130.1 (d), 134.6 (s), 139.0 (s), 140.2 (s), 140.6 (s), 140.9 (s), 141.3 (s), 141.5 (s), 146.7 (s), 146.7 (s), 168.9 (s), 169.7 (s), 181.0 (s), 195.1 (s); HRMS (FD-TOF) *m*/*z* 2086.2879 [M<sup>+</sup>] (calc. for C<sub>149</sub>H<sub>171</sub>N<sub>3</sub>O<sub>6</sub>S, 2086.2878).

# Reaction of a cradled Cys-SOH 6 with 1,3-dimethylbarbituric acid (9c).



#### Scheme S13

To a solution of **6** (8.58 mg, 4.30  $\mu$ mol) in C<sub>6</sub>D<sub>6</sub> (0.5 mL) in a 5 mm o/d NMR tube with a J-young valve were added 1,3-dimethylbarbituric acid (**9c**) (2.0 mg, 13  $\mu$ mol) and Et<sub>3</sub>N (1.8  $\mu$ L, 13  $\mu$ mol) at ambient temperature, and the tube was carefully sealed. The mixture was kept at ambient temperature for 2.5 h. The crude products were purified by GPC (CHCl<sub>3</sub>) to afford **10c** (9.2 mg, 3.4  $\mu$ mol, 80%) as colorless crystals.

**10c**: Colorless crystals; mp 209.5-211.4 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta_{\rm H}$  1.03-1.06 (48H, m), 1.07-1.11 (48H, m), 1.88 (1H, t, J = 12.8 Hz), 2.70-2.79 (16H, m), 2.82-2.83 (4H, m), 2.92 (3H, s), 3.23 (3H, s), 4.06-4.10 (1H, m), 6.58 (1H, d, J = 8.5 Hz), 6.99 (4H, br), 7.17 (16H, d, J = 7.9 Hz), 7.33 (8H, t, J = 7.9 Hz), 7.41 (8H, d, J = 1.2 Hz), 7.45-7.47 (2H, m, B of AB<sub>2</sub>), 7.51-7.54 (1H, m, A of AB<sub>2</sub>), 7.63 (4H, d, J = 1.7 Hz), 7.82 (2H, br), 10.8 (1H, br s); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta_{\rm C}$  23.99 (q), 24.01(q), 24.3 (q), 28.3 (q), 29.6 (q), 30.3 (d), 39.6 (t), 52.2 (q), 53.0 (d), 80.9 (s), 122.5 (d), 126.0 (d), 126.4 (d), 126.8 (d), 127.9 (d), 129.5 (d), 129.9 (d), 130.3 (d), 133.8 (d), 138.9 (s), 140.3 (s), 140.5 (s), 140.96 (s), 141.03 (s), 141.7 (s), 146.6 (s), 150.6 (s), 162.4 (s), 162.8 (s), 169.3 (s), 170.6 (s); HRMS (FD-TOF) *m*/*z* 2130.2879 [M]<sup>+</sup> (calc. for C<sub>149</sub>H<sub>171</sub>N<sub>3</sub>O<sub>6</sub>S, 2130.2888).

Kinetic measurements of the reactions of Cys-SOH 6 with 1,3-dicarbonyl compounds



*General procedure*: To a solution of **6** in C<sub>6</sub>D<sub>6</sub> (0.5 mL) in a 5 mm o/d NMR tube with a J-young valve were added a 1,3-dicarbonyl compound (3 eq) and Et<sub>3</sub>N (3 eq) at ambient temperature, and the tube was carefully sealed. The mixture was kept at ambient temperature and <sup>1</sup>H NMR spectrum was recorded about every 5 minutes. Concentrations of **6**, products and a diketone were monitored by <sup>1</sup>H NMR spectroscopy using bis(trimethylsilyl)methane as an internal standard. The second-order rate constants were evaluated using a least-squares computer program (Excel program) from the plot  $((1/([diketones]_0-[6]_0)\ln([diketones][6]_0/[6][diketones]_0) / M^{-1} vs. t /min).$ 

## (i) Reaction of Cys-SOH 6 with dimedone (9a) to produce 10a.

Reagents: 6 (10.8 mg, 5.42 µmol), dimedone (9a) (2.3 mg, 16 µmol) and Et<sub>3</sub>N (2.3 µL, 16 µmol).



Figure. S3 (a) Second-order plot  $(A / M^{-1} vs. t / min)$ , (b) table of time dependence of conversion, [6], [9a] and A, (c) reaction rate.

## (ii) Reaction of Cys–SOH 6 with cyclohexane-1,3-dione (9b) to produce 10b.

Reagents: **6** (7.70 mg, 3.86  $\mu$ mol), cyclohexane-1,3-dione (**9b**) (1.3 mg, 12  $\mu$ mol), and Et<sub>3</sub>N (1.6  $\mu$ L, 12  $\mu$ mol).



Figure. S4 (a) Second-order plot  $(A / M^{-1} vs. t / min)$ , (b) table of time dependence of conversion, [6], [9b] and A, (c) reaction rate.

# (iii) Reaction of Cys-SOH 6 with 1,3-dimethylbarbituric acid (9c) to produce 10c.

Reagents: **6** (8.58 mg, 4.30  $\mu$ mol), 1,3-dimethylbarbituric acid (**9c**) (2.0 mg, 13  $\mu$ mol), and Et<sub>3</sub>N (1.8  $\mu$ L, 13  $\mu$ mol).



Figure. S5 (a) Second-order plot  $(A / M^{-1} vs. t / min)$  (b) table of time dependence of conversion, [6], [9c] and A, (c) reaction rate.

# 2. NMR spectra



Figure S6. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) spectrum of 5.



Figure S7. <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) spectrum of 5.



Figure S9. <sup>13</sup>C NMR (125 MHz,  $C_6D_6$ ) spectrum of 6.



Figure S11. <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) spectrum of 8.







Figure S13. <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) spectrum of 10a.



Figure S15. <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) spectrum of 10b.



Figure S17. <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) spectrum of 10c.

# 3. References

- i) S. Sase, R. Kimura, R. Masuda and K. Goto, New J. Chem., 2019, 43, 6830-6833.
- ii) J. D. Kehlbeck, E. J. Dimise, S. M. Sparks, S. Ferrara, J. M. Tanski and C. M. Anderson, *Synthesis*, 2007, 1979-1983.